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ABSTRACT 

On the basis of heuristic arguments it is shown that the amplitude for 

the reaction a1 + a2 ~ b1 + b2 + b
3 

and the channels associated with it 

allows a dispersion representation analogous to that given by Mandelstam for 

processes of type a
1 

+ a2 ~b1 + b
2

, provided that the singularities of the 

amplitude can be assumed to be restricted, in complete analogy to Mandelstam's 

case, to certain parts of real hyperplanes in the (complex) space of the 

invariant variables (Here the q_. (i=l,2, •• ·,5) are the 
l 

particle four-momenta •. ) The q_uestion whether or not this assumption is actually 

fulfilled and to what extent it may be violated is not discussed in this paper. 

A Lorentz-invariant description due to Kibble for the boundary of the 

physical region of the process a1 + a2 ~b1 + b2 •is generalized for 

arbitrary reactions and discussed in terms of scattering angles for some 

special cases. After suitable generalization of the Breit frame a set of ten 

one-dimensional dispersion relations analogous to the three one-dimensional 

relations of Mandelstam is obtained by using a method due to Polkinghorne. Each 

relation apart from pole terms consists of six dispersion integrals, each of 

which corresponds to a certain reaction channel. The absorptive parts are 

obtained from analytic continuation of the unitarity condition in the respective 

channel, For obtaining such a result it is essential to keep fixed not four 

variables of type but three such variables and a fourth variable v, 

which was formerly introduced by Polkinghorne and which is a general linear 
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function of those sik , which have not been kept fixed. Provided that there 

are no complex singularities each of these one-dimensional dispersion relations J~ 
~ 

can--in a formal way--be derived from a two-dimensional representation, in 

------------~~~--~~--~--------~~--------------~--~--~~~~----~~--~~--~~------~~~ ' 
which certain three variables sik are fixed and which consists of twelve 

double integrals. It is suggested that if we had analyticity with regard to 

all variables and only real singularities.a possible representation in terms 

of fivefold dispersion integrals would be of considerable complexity and 

consist of at least 162 terms. 

,. 
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I. INTRODUCTION 

The method of dispersion relations has in recent years found a wide 

application for the study of elementary particle reactions. Most of the work, 

however, deals with reactions of the type a1 + a2 ~b1 + b2 , while the theory 

of those with more than two particles in the final state is still in a very 

preliminary stage. One reason for this is that even with only three particles 

in the final state the theory is already much more complicated. Nevertheless, 

a further development of the theory seemed to us very desirable. 

As is well known, the theory at present is being developed on various 

levels simultaneously. 

(a) From a heuristic point of view, approaches of a more or less formal 

character are. being carried out with the aim of suggesting plausible formulations 

of equations and theorems that interconnect the various amplitudes. 

* Work done under an appointment supported by the International Cooperation 

Administration under the Visiting Research Scientists Program administered 

by the'National Academy of Sciences of the United States of America. 

'i t Permanent address after September 1, 1961: Max-Planck-Institut fUr Physik 

,~ und Astr,ophysik, Munchen 23, Germany. 
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(b) Attempts are being made to correlate these equations and theorems 

with experimental data, eventually after appropriate approximations. 

(c) The heuristic approaches have to be :put on a mathematically rigorous 

basis, ·starting from the "axioms" of quantum field theory. This part is by far 

the most difficult and has so far been carried through successfully for only a 

small number of :problems. 

This :paper clearly falls into the first category, but we hope to contr±bute 

in subsequent :publications,to the two others also. Generally speaking, the 

aim of this paper is to :put the theory in a form as closely as :possible analogous 

to Mandelstam's formulation (!) of the theory of reactions of type 

al + a2 -) bl + b2 In the later sections we specialize on reactions 

a
1 

+ a
2 

-) b
1 

+ b
2 

+ b
3 

, but as much as :possible the formulation is in more 

general terms. A discussion of specific :physical reactions, in particular :pion 

:production in :pion-nucleon collisions, has also been carried out, but is to be 

:presented in a later :publication. Here we restrict ourselves to those aspects 

of the theory which can be formulated q_uite generally. 

The first :problem of course, is the definition of appropriate variables. 

As one might expect, we will introduce quantities 

qi, qk are particle four-momenta, and will call these s variables. They are 

related to one another by various linear equations, which will be discussed in 

detail. As for the description of the :physical region, we will generalize the 

Lorentz-invariant, elegant formulation due to Kibble (g). All these kinematical 

questions can, of course, be treated on a mathematically rigorous basis. The 

next :point will be to write down dispersion relations, not only for the reaction 

a 1 + a2 -) b1 + b2 + b
3 

, but also for the associated 'channels" 

a1 + b1 -) a2 + . b2 + by a
1 

+ b
2 

-) a
2 

+ b
1 

+ b
3 

, etc. In order to do this in 

a rigorous theory one would have to :prove the :possibility of various analytic 
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continuations. In the present context, however, we are content with an application 

of the heuristic and purely formal techniq_ues developed by Polkinghorne (~,) . All 

9 objections that could be raised against his. work would likew:i,se apply. to this one. 

Keeping an arbitrary incoming and an arbitrary outgoing particle in the state 

vectors, and after generalizing the Breit system in an appropriate way (such 

that the vector of momentum transfer between these two particles has a vanishing 

timelike component, which, of course, is possible only for negative momentum 

transfers), we can readily apply Polkinghorne's techniq_ues and obtain in this way 

a set of 10 one-dimensional dispersion relations, each connecting a set of she 

"reaction channels" to one another. Since the amplitudes are determined by five 

independent variables, the important q_uestion arises how to choose four variables 

which are kept fixed. For obvious reasons we cannot for our purposes simply 

choose four s variables, but we have to take three s variables and a q_uantity 

v, which is a general linear function of s variables. If those s variables 

which represent the total center-of-mass energy in.the respective; "reaction channels" 

are introduced into the dispersion integrals as integration variables, the 

dispersion relations assume a very neat form, which is completely analogous to that 

of the three one-dimensional dispersion relations given by Mandelstam (!). 

This is an interesting starting point for speculations on the form of 

possible multidimensional dispersion relations. The first thing to do here is 

to remove the q_uantities v from the pictlire. We will show that, at least on a 

purely formal basis, for each of the one-dimensional dispersion relations one can 

'i write down a two-dimensional dispersion relation in which three s-variables are 

' kept fixed and from which the corresponding one-dimensional relation can be 

derived. It would be interesting to see if these two-dimensional representations 

could be proved in perturbation theory. It is to be expected that, if their 
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validity can be established at all, it will be restricted as in Mandelstam's 

case (!J to certain combinations of external masses with normal or with only certain-

types of anomalous thresholds. Possibly there will also be restrictions on the 
11 

9 

fixed variables. Up to now these questions are completely open. 

Once the two-dimensional representations formulated solely in terms of 

s-variables have been established, we might ask the further question: If the 

amplitudes were analytic functions in all five variables and if there were a 

five-dimensional dispersion representation, what would it look like? Mandelstam's 

result might suggest that we have to write a fivefold dispersion integral for each 

combination of five independent s variables. If this were the case, the 

representation would consist, besides the pole terms, of 162 fivefold integrals. 

It is well realized that within the framework of a rigorous field theoretical 

approach the present calculations do not ~rove anything. It is hoped, however, 

that they will not be quite useless, but may provide us with some definite 

suggestions on what the results of a more complete theory might be. G. F. Chew (~), 

in his recent outline of the possible framework of a complete dynamical theory 

for s:trong interactions, points out why investigations of this type are desirable 

and what use can be made of them. He even raises doubts that correct final 

answers can be obtained from quantum field theory in its present form. 
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II. DEFINITION OF VARIABLES 

We begin with the consideration of a general reaction, for which the 

total number of 
1
ingoing and outgoing particles is n. Each particle is characterized 
\ 

by a four-momentum ~ (i = 1, 2,q .,n), which has a positive timelike component for 

an incoming particle, and a negative timelike component for an outgoing particle. 

With this convention all momenta in Fig. l are pointing inward and our formulae 

maintain a maximum of symmetry. The mass of the ith particle is given by1 

2 
m. 

l 
and energy and momentum conservation are expressed by 

o. (l) 

Now denote by cr
0 

the set of'indices i = l,2,;·•• 1 n, let cr be a subset of 

cr
0

, and cr that subset of cr
0 

which is complementary to cr (i.e., af'a = 0 

and cr u cr = cr 
0

) . Each such cr d~fines a "reaction channel, " i.e •. , it may be 

associated with the reaction in which the particles characterized by iEcr 

are incoming (and iEd outgoing). The s~uare of the total center-of-mass energy 

in this reaction channel is given by 

s = cr 
2 

~.) 
l 

(2) 

This Lorentz-invariant expression will subse~uently be called an "s variable, " 

·-. and we shall try to make as wide a use of these variables as possible. For obvious 

~ reasons we are particularly interested in reaction channels with only two incoming 

particles, and we introduce a special notation for the associated s variables, 

= (3) 



UCRL-9553 

-:9·-

From energy and momentum conservation we obtain a set of 
l n 

2 I ( n ) = 2n-l 
r 

identities for the s variables, 

s = s 
a a 

All the s 
a 

can be expressed in terms of 

L: 
kea i, kea 

i<k 

!r=O 

( 4) 

and 

- (r - 2) 2 
m. , (5) 

l 

where r denotes the number of ipdices contained in a. Therefore we can deduce 

from the identities (4).a number of (not necessaril~ independent) relations for 

the sik , 

L sik - (r - 2) L 
i, kea iea 
i<k 

2 
m. 

l 
= L _ s ik - ( n - r - 2) ~ _ mi 

2 

i,kea lEa 
i<k (6) 

For later purposes it will be convenient.to have some of these equations written 

explicitly: 
n n 

2 for r' = o, a empty: 0 = L s.k - (n - 2) l: m. ( 7a) 
. k-1 l i=l l l, -
i<k 

for l, j: 2 l: (n 3) l: 2 (7b) r = a = m. = sik - - m. 
J i,kfj ifj 

l 

i<k 

for 2, j, .£: l: (n 4) L: 2 
(7c) r = a = sj.£ ::: s.k - - m. 

i, k/.j' 
l ' 

ifj, .£ 
l 

i, kf.£ 
i<k 

..,. 

~ 

If', 



UCRL-9553 

-1:0-

By subtracting (7b) from (7a) _we obtain another useful equation, 

n n 

L: (~ - 4) 
2 L: 2 

sjk m. + m. 
k==l J i=l 

l 
(8) 

k,h 

Equations (7c) and (8) will be the most fbeqEntly used relations. In the case 

n == 4, (7c) reduces to s
12 

== s
34 

, s
13 

== s24 , s
14 

= s
23 

and each of the 

relatiop.s (7a ),_ (7b ), ( 8) reduc_es to the well-known equation 

2. 2' 2 2 
sl2 + sl3 +. sl4 == ml + m2 + m3 + m4 

... 
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III. CONDITIONS. FOR THE PHYSICAL REGION 

In the physical region of any reaction the four-momenta qi of the 

particles involved . (i = 1,2; · • .,,n, where n is the total number ·of incoming 

and outgoing particles) are real timelike vectors (since 
2 2 

ql. =m >O). 
i 

fact will be used in this section to derive inequalities ~hat tell us where 

This 

in the space of s variables the physical regions of the various reaction channels 

are situated. 

Theorem I: In the physical region any two of the n four-momenta qi satisfy 

the inequality 

2 m. q. q. 

D. .. -
ll ll l2 

< 
0 ' lll2== 

2 

(9) 

q_. q. m. 
ll l2 l2 

any three of the n four-momenta q_i satisfy the ineq_uality 

2 m. 
ll 

q_. q. 
ll l2 

q. q. 
ll l3 

D., . . 
2 .:::= o, (10) 

lll2l3 q. q_. m. q. q. 
l2 ll l2 l2 l3 

qi q_ q. q_. 2 m. 
3 ll l3 l2 l3 

any four of the n four-momenta qi satisfy the inequality 
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2 
m. q_. q_. q_. q_. q_. q_. 

11 11 12 11 13. 11 14 

2 q_. q_. m. q_. q_. q_. q_. 

6.. 
12 11 12 12 13 12 14 

--= 
11 i2i3i4= 

q_. q_. q_. q_. m. 2. q_. q_. 
13 11. 13 12 13 13 14 

2· q_. q_. 
14 11 

q_. q_ .. 
14 12 

q_. q_. 
14 13 

m. 
14 

(11) 

Analogous.determinants, constructed from more than four four-momenta q_. vanish. 
1 

Remark: This theorem can be formulated in terms of s variables by using Eq_. (3) 

Also we could, following Kibble (2 ), express. 6.. . , 6.. . . , 6.. . . . as 
' ...,. . 1112 111213 11121314 

homogeneous polynomials_in s variables •. The resulting,expressions, however, would 

in general (i.e., for n::: 5) not be uniq_uely determined, since. we have many 

relations (not only one) among the s variables. 

Proof: First we prove (11). Denoting the metric tensor. by g~v 
11 

- g = -
22 

g = 

side of (11) in the form 

b· 
~v 

1, gik = 0 

~v 
q_i v q_. g 

11~ 1 

for i f. k), we can writ~_ the left-hand 

I: ~v 
q_. v q_i ~ g 

~v 1 12 

o. 

6 .. = (12) 1li2i3i4 

2: ~v 2: ~v 
q_i ~·g q_. v q_i ~ g q_i v 

~v 2 ' 11 ~v 2 2 

•••••••O•••o••••o•••••••••••••••••••••••• 

= det (q_. q_i q_. q_. ) . det (g~v ) . det (q_. q_. q_. q_. ) . 
11 2 13 14 11. 12 13 14 
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denotes_ the determinant, whose rth row Here det (q_. q_. q_. q_. ) 
11 12 13 14 

(r = 1, 2, 3, 4) consists ·of the four components of the vector g_i Eq_uation(ll)• ,,, 

follows from the fact that 
r 2 

= -1 and (det (q_. q_. q_. q_. )) > 0, 
11 12 13 14 

all the four-momenta q_. , q_. , q_. , q_. 
1

1 
1

2 
1

3 
1

4 
are real. To prove (10), we first 

a Lorentz frame in which the fourth component of each of the three vectors 

if 

find 

<1.' g_i q_. 
11 2'- 13 

vanishes. The argument then proceeds in the same way as before; 

we have, however, instead of det (g~v), the three-rowed determinant 

00 
g 

10 g -

20 
g 

01 
g 

ll 
g 

21 
g 

02 
g 

12 
g 

22 
g 

= + l 

Similarly we proceed for the proof of (9). The last statement follows from the 

fact that any five four-vectors are linearly dependent, and therefore by combining 

rows and columns in an appropriate way the elements of a whole column can be made 

to vanish. _Introducing into (9), by means of (3 ), the variable 

= l 
4 

(13) 

Thus the hypersurface _in the space of the sik (i, k = 1, · • 'jn, i f k) defined 

by = 0 

s .. 
1112 

holds when 

consists of two hyperplanes. -In the physical.region we have either 

or 
2 

s. . > (m. + m. ) 
1

1
1

2 
1

1 
1

2 
is in the initial and 

The first ineq_uality obviously 

in the final $tate, or vice 

versa; the second ineq_uality holds, when both particles are in eithe~ the initial 

or final state. Thus we have 
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is called an "energy-type variable" if in the physical region 

It is called a "momentillll-transfer type variable" 

if in the physical region s .. 
1112 

The six hyperplanes, defined by 

< (m. 
11 

6.. . 
1112 

= o,. and 

0 are tangent .to the hypersurface defined by = o. Similarly 

= o, and 

are tangent to the hypersurface defined by 6.. . . . = 0. 
11121314 

Proof: In order to show that 6.. . = 0 is tangent to 6.. . . = o, we need only 
. 1112 111213 

prove tha~ all points common to both hypersurfaces.are double points. Writing 

the equation 6.. . . = 0 in terms of s v'{iriables, we obtain 
111213 

1 
- 4 

+ m. 
13 

= I-nserting s. 
11 i2 

2 
(s. . 

1112 

(m. + 
11 -

1 
= - 4 

2 - m. 
11 

m. 
12 

[ m. 
l 
1. 

)2 

;. m. 2)2] 
12 

' 
we find 

(14) 

(15) 
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which proves our statement on 6. . = 0. In a similar fashion we show, that 
lll2 

6·. . = 0 and 6. .. 
lll3 l2l3 

= 0 are tangent to 

part of ou~ theorem. 

write 

with coefficients .aik depending on 

forward calculation one can show 

I all al2 all al3 a22 a23 
! + + 
I 
!a12 a22 a13 a33 a23 a33 

all al2 al3 

al2 a22 a23 (6 ... )2 
lll2l3 

al3 a23 a33 

From this we conclude: For 6 .... 
lll2l3 

= 

3 

= 

form 2: xi~ aik with eigenvalues 
i,k=l 

o, 

6. = o. Now we prove the second 
ll i2i3 

X = q_. q_, 
' 

X - q_. q_. we can 
.2 l2 l4 3 l3 l4 

By straight-

2 2 2 
(m. + m. + m. ) 6. 

ll l2 l3 ll i2i3 

(17) 

(18) 

then 6 .... is a quadratic 
lll2l3l4 

A.l I o, A. = A. 
2 3 

o. Therefore, 

. ~~~..1 

<i, 

,JI 
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three coefficients b
1

, b
2

, b
3 

.· (depending on 

2 
such that !:::.. • • • = E (b

1
x

1 
_+ b

2
x

2 
+ . b

3
x

3
) 

. 11121314 

UCRL-9553 

s . . , s . . , s . . ) exist, 
1112 1113 1213 

E being the sign of ~1· 

This proyes that the two hypersurface~ !:::.. • • = 0 and !:::.. • . • = 0 
111213 11121314 

have only double points in common and are thus tangent to each other. 

The meaning of this theorem can best be seen from a discussion of the 

case n = 4, for which we refer the reader to Kibble's paper (g). Roughly 

speaking we may say: The set of inequalities (ll) is mare restrictive than 

the set of inequalities (10) j these in turn are stronger than the inequalities ( 9). 

In saying this we have considered all reaction channels_simuli:;aneously~ When 

we wish to pick out a specific channel, we have in addition to specify which 

s variables are of the "energy type" and which are of the "momentum_-transfer 

type". 

In special cases some of the inequalities (9), (10), (ll) admit a simple 

interpretation in terms of scattering angles. To show this let us consider (10). 

Denoting. the timelike and spatial part pf qi (i = 1,(2, •· ... ,,n) by qiO and 

qi respectively, and defining the angle 9ik by I ~i I · I qk I cos 9ik.7 ~i • ~k , 

we find the general expression 



lqiJ· ~ I 
+ q. 0 qi ' 

. sin l ' 
3 2j 

~ 2 ~ 2 ~ 2 
(cos 

2 2. 
+ q. q. q, 9 .. + cos e .. 

ll l2 l3 lll2- lll3 

. It is easily seen that the last. four terms vanish if 

9 .. 
lll2 

2 
+ cos 

UCRL-9553 

)2 

~ 

q. 
l3 

e .. 
l2l3 

(19) 

are c.oplanar .. 

This is the case, . for example, when we. cons.ider .a reaction. with three particles 

in the final (or initial) state in its center-of-mass. system and when 

are the four-momenta of these. three~particles .. Another simple case is a 

reaction with only two particles .in the initial (or final) state. When· .<1
1 

and ~ are the four-momenta of the two. incoming particles,. then ii). the 

~2 
center-of-mass system we can put q

1 

vanish, and the first one red~ces to 

~2 = q The l~st four terms in (19) 
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~2 
• q ~ 2 2 

a. (l - cos e1 . ) ::: o • 
""]_3 1 3 

(20) 

~ The expression for (11), which is quite complicated in the general case, reduces 

'." 

.... 

now to 

~2~2~2 2 2 2 
= - s

12 
q q. q. (l - cos e

1
. - cos e

11
.
4 

- cos 8 ... 
13 14 13 1314 

+ 2 cos e
1

. cos e
1

. cos 
13 14 

Obviously to fulfill (20) and (21) we have to require 

-1 :: COS 8 < + l and 
li3-

(21) 
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IV. DEFINITION OF AMPLITUDES 

In--...this section we collect some definitions that are useful for the 

discussion of _dispersion relations! In doing so we restrict ourselves to the 

consideration of reactions with only two incoming _and_a~ arbitrar~ number of 

outgoing J:)8.rticles. . (Pqlkinghorne (~) bas given, a heuristic derivation of 

dispersion relations _for a reaction with one nucleon_ and . m mesons in. the initial 

state and one nucleon and n mesons in the final state (m;::l, n=:l)~ For this 

derivat:i.on a particular causalityrequirement bad to be used. To fulfill this 

cond;Ltion a "causal prOduct" was defined, and it bas been explicitly assumed 

that the amplitude possesses a representation_ in .terms. of trere: "causal products. 11 

Subsequent. investigations (~), ,however, showed that in the S-matrix formalism 

using reduction formulae (~ .§., 1) and local commutativity such representations 

would be obtained only for .m = 1 or. n = 1. Thus, if we have both m=: 2 and 

n ~ 2, the connection of Polkinghorne 1 s generalized dispersion relations with the 

s~matrix _formalism is nbt clear.), For reasons of simplicity_ we consider only 

scal~r hermiteap fields~ In the follow.ing we-assume that the four-momenta of the 

two incoming particles are given by q 
1 

and those of the n-2 -outgoing 

particles by q
3
, q4, • · · ~. Using the LSZ-formalism (§) and .denoting the time

like component of qi (i = 1, 2, .• • • n) by qio'. we can express the matrix 

elements of the S matrix and its adjoint st" as follows: 

4· 4 
(-i)·(2n) ·5 (q1+%-l:-·-··+~). 

J(2n) 3n··2lq_10 l·21~0 1 •... ·21~0 1. 
;iJ.\ 

TR (~, ~-1' •. ·, q_3; ~' ql ), 
. . 

(22a) 

I 
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., 

-20-

where 

UCRL-9553 

(22b) 

4. -iq X -iq4x4 - -iq X 
3 3 , • • -n-1 n-1 ·d x e 

·n-1. 

(23a) . 

4 -:iq_
3

x
3 

.. iq4x4 - -iq x 
. • . 11-1 n-1 

·d x e 
n-1 

(23b) 

Here we have used Screaton's notation (}); Q is defined as 

(24) 

and jk(xk) =- (0+ ~2 ) ¢k (~) is the currentassociatedwith the field 

¢k(~), which describes the particle of momentum qk. The expressions 
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L 8 (xn-l - x~ ... 2 ) .e. (xn ... 2 .- xn.,. 
3

) · : .. -~ e. (x4 - x
3

) 8 (x
3

) 
/ 

= L: 8 e-x ) 8(x - x4)· . e.(x . -xn_2 ). e(xn_2 -xn_1 ) 3- 3 . . . n-3-

. r. .. nj2(o), j3(x)] ' j4(x4)1 ... jn-1 (xn-1)]' 

(25b) 

where the summation goes over all permutations of 3, 4, ·-· ·, n-1,_ are apart from 

a factor ( ..,i )n-3 identi~al _to the advanced and r~tarded_ commutators_ as _defined 

in LSZ (§). The e2q)ressions (23) _will be used to define dispersi_ve and absorptive 

amplitudes D and A: 

(26a) 

1 
=-. 2i 

(26b) 

such that 
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TR = D + iA, (27a) 

TA = D - iA. (27b) 

If we can (denoting by * the complex conjugate). show 

* TR (~, ~-1' ... ' q3; ~' ql) 

(28) 

* TA (~, ~-1' .•• ,q3; ~' ql) 

then .we can conclude_ that the dispersive and absorptive amplitudes D and A 

are real functions. In fact, assuming the validity for our theory of the TCP 

theorem_ (~), Eq. (28) holds in the physical region, where all four-momenta 

qi(i=l,2,. ... ,n) _are real._ This is most easily seen_ by expressing T. and 
R 

in terms ofvacuum.expectation values (cf. LSZ (§), Eq. (43)), _taking the complex 

conjugate, substituting _ xi ~ -

Jost's formulation, 

= 

x. (i=l,2,_ ... ,n), 
~ 

and using tqe TCP theorem in 

(29) 

The representations (23a) and (23b) are,_ of course, not the only representations 

of TR and TA in terms of expectation values between one-particle states. We 

could as well have kept the other incoming:particle (withmomentum ~) in the 

state vector and "converted" Particle 1 into a field operator. Likewise we could 

have "converted" the outgoingparticle with four-momentum ~ into a field operator 

and kept any one of the other outgoing part_icles (3, 4, · · ·, n-1) _ in the state vector. 

Indeed, these other representations_ will also be of importance for us' later on. 
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V. GENERALIZATIONS OF BREIT 1 S FRAME OF REFERENCE 

It is well known that in order to.derive for elastic scattering of a 

Particle 1 by a Particle 2 the dispersion relation in which the momentum

transfer . ( q_
1 

+ q_ 1

1
)

2 
is kept. constant, 2 it is most conv_enient. tQ use the so

called Br~it syste~. ThJs is the frame. of referen<;:e in which for the timelike 

components of the four-momenta q_1~ q_'
1 

we have 

and for the spaceli$.e components 

= 4 ql 

o, (30) 

(31) 

In discussing more general reactions we shall wish to keep the.momentum transfer 

between particles. of uneq_val mas_s constant. Then we c.f!,nnqt fulfill simultaneously 
. . 

the two eq_uations corresponding to (30) and (31). Usually one choose.s to satisfy 

the second equation.. This, however, would not be of great :use for our purposes, 

since we wish to generalize Polkinghorne 1 s (~) heuristic. proof of general .dispersion 

relations for the case in which the~e are. ohly .two in~om:j..ng P?r:ti.cles_ but the 

masses of the particles involved may all.be different from each other~ For this 

proof tt is essential that the vector of momentum ~ransfer.between the two particles, 

which are kept _in the state. vectors _in a :representation. of type (23) of TR and 

TA (in the case ~f (23) the. v:ector. q_
1 

+' ~) have a van;i.shing tirl)oelike 

component. In. addit;i.on we will requ_ire that in this system the timelike components , 

q_iO of all four-momenta q_i (i=l, 2, • · •., n) be eq_ual to invariants that. depend linearly 

on the total en.ergy s
12 

•. Thi::; leads uniq_uely to repiacing (30) and (31) by 
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= (l - c) ~' 

and to the ansatz 

(J) = (l + c) q_i q_l - (l - c) q_i~1 

i./((1 +c) q_
1

- (l- c) ~)2 for ,i=2, 3, • · ·, n-1. 

(32) 

(33) 

(34) 

Evidently (32) cannot be satisfied unless s < 0. 3 Therefore we will assume ln--

explicitly i.n the following that s ::: 0. Equation (33). has the solution ln 

q1 = (l- c) P, ~ = (l + c) P, and this inserted into (32) yields 

4 --7 2 
cp = 0. On the other hand, 

Thus c can be expressed in terms 

of 

c = 
m 

n 
2 

(35) 

The m.(i=2,3, ···,n-1) can now be expressed entirely in terms of s variables: 
l 

we have, using (3 ), 

2 ( q_i q_l - q_i ~ + c ( q_i q_l + q_i ~) ) 

2 2 
mn - ml 

From (8) we find 

2 
(sl.l + s. + s - 2 m. ln ln l 

2 
- m 1 

2 
m ) • 

n 

(36). 
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Therefore, with the. abbreviation (note that 6 = 2q_10 = - 2~0 ) 

6
2 :=.((1+ c) q_- (1- c) q }

2 =2(m 2 + m 2
)-

- l -n l . n 

we can write rn. ( i=2, 3, • • ·, n-1) as 
]. 

s. + 
ln 

2 2 
m - m 

n 1 ( _..;;;;. __ ...;;;;.._ 8ln-
8 ln 

n-1 
L: 
k=2 
k~i 

s -ln 

( 2 2)2 m - m n l 
---'~----· ' 

8
ln 

2 n-1 2 
(n-6.) m. + L ~ ) ) . 

]. k=2· 

(39) 

Furthermore it is use~ul_for the following to introduce 

v. 
]. 

for i=2, 3, · · ·, n.,.l (40) 

From ( l) and . ( 32) .we_ have . ~O + q_
30 

_ + · · · _ + ~-l, 0 . = 0, therefore 

' 

We will also make use of q_uantities 

-1 
vik == vki = 

+ v = o. 
n-1 

= 
().), 

l for 

(41) 

i, k=2, 3, · · •, n-1 

( 42) 
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In particular we have vi2 = - vi. In the physical region m2 represents the 

energy of an incoming particle and is thus positive. 

outgoing particles and are negative. Therefore all 

All other m. belong to 
1. 

v. 
1. 

e:x;cept are 

positive quantities. After these preparations we can proceed to discuss the 

dispersion relations •. 

r 
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VI. DISPERSION RELATIONS 

An important point in the derivatiqn of general dispersion relations is the 

selection of a set of variables,_ which ar.e kept fixed at real values in the 

physioal region of the considered process. Polkinghorrre (~) . suggested choosing 

the v. defined_in (40) and in addition to this constructing a set of linear 
l 

combinati_ons ~a · of the f t u our -momen a q1,~, ···,~, such that the timelike 

component of each oa vanishes, and keeping the. squares of the spatial parts 

( ~ a)2 
u at fixed values. But since we have restricted ourselves to reactions with 

only two incoming particles, it is actually sufficient to have only one such 

vector, namely the momentum transfer .between the two particles, which have been 

kept in the state vectors--for example,. in representation (23) _the vector 

q
1 

+ ~. Thus in order to derive the dispersion relation for the amplitude as 

represented in (23) we propose to keep fixed the quantities v. (i=3, 4, • · ·, n-1), 
l 

sln' and all with 2 := i.::.: n-1, 2~k~n-l and i f- k.. Not all these variables, 

of course, ~re independent of one another. As shown in the pt:Bceeding section, for 

s
1

n < 0, the timelike componen~ of q1 + ~ can be made to vanish, and then an 

examination. of Polkinghorne's heuristic derivation_ of the dispersion relations shows 

that his arguments can be applied even in our general mass case without any changes. 

We thus find that T (m v , • · •, v , s · · • s ) 
R . 2' 3 · n-1 · 23' ' n-2~ n-1 

is an analytic function 

.. 

in the upper half of the comp~ex m2 plane, while TA(m2, v
3
; ••·,vn-l' s23, ···,sn-2,n-l) 

is an analytic function in the lower half plane (except for cuts along the real ~ 

axis). We define T(m
2
,. v

3
, • • ·, v 

1
, s

23
, • • •, s 2 1

) to be the analytic function," 
n- n- , n- .. 

which equals TR in the upper half plane and T A in the lower half plane. 

We then can write the dispersion relation4 (ignoring the eventual necessity 

of subtractions) 



UCRL-9553 

-28-

D((l)2 ; v3, ... , Y.n-l' s , • • ·, s ) 23 n-2,n-l 

or 

+<D 
= 

1 
:n: 

p J 

=lim" 
€~+0 

-<D 

1 
:n: 

d(l)' 
2 

+CO 

J 
;;.CD 

A((l) 1 • v, ···,v. , s , ... ,s 
~, 3 · n;l 23 n-2,n-l 

d(l)' . 
2. 

().)I - ().) 
2 2 

(43) 

A ( ().) '2; v 3' • . •' v.. 1. ' s ' • • ·'' s. . 2 1) . n- . 23 n- , n-

().)' . - (().) + i€) 
2 2 

~44) 

Since we have not necessarily_ s
1

n < 0. throughout the physical regia!)., we assume 

that the_dispersion .relations can be_COJ::ltinued_analytically_ to those parts where 

s1n~ 0. In this connection :pate that the quantities 

the_a.rnplitu~es depend, are not singular at. s1n = O. 

v. (i=2, .•. , n-1), on wb,ich 
]. 

One might ask whether_or not one could avoid introducing the. variables 

v ••• v . 
3' ' n-1 

and replace them simply by s variables .. ·In order to decide this 

question·let us consider. the simplest _example, n = 5, which. exhibits. all. essential 

featurecs. _ .As is easily. demonstrated,. there are five linearly independent s. 

variables, and therefore in. order to write. one-dimensional diE?persion relations 

four independent variables have to be kept fixed~. As sucJ.:. we have proposed to 

choose 

( 45) 
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and From ( 7c) we have 

(46) 

so that is also fixed. The remaining s variables are_ s12, s
13

, _ s1 4 

and s2
5

, _ s
35

, s45. Now we shall wish to replace the integral with respect to 

in (44) by_a sum of integrals witJ:?. resp~ct to.s variables, so,that we obtain 

a dispersion relation resembiing_MaQdelstam's one-dimensiona~ relations. For this 

one has to discuss in some detail_the structure_of the absorptive amplitudes. As 

will be shown in a moment, all six reaction .channels,_ whose s variables have not 

yet been fi:x;ed, _ contribute to the d,ispers_ion. relation an<;l therefore the, rema.ining 

six s variables appear in the denominators_ of the dispersion integrals. Hence 

none of these six s variables_ ca~ be chosen as a fourth fixed variable, and we 

ne.cef;lsarily_have to resort to certain functions of the. s. like the _above v 
3 

.. 

Altogether ,the structure .of the absorptive amplitude leads to the conclu9ion 

that in ge.neral (n arbitrary) all s variable_s s , where o contains eitrer 
0 

1 or n, _but not 1 and ,n simultaneously, will appear in tlfe d~n_o~ipators of the 

dispersion integrals._ . Tb.erefore no other_ s variabl_~$ than sln' s
23

, 

dr variables dependent_on these can be chosen as fixed s variables. 

needs we have -to make use of-the v .• 
l 

s •• •' s 
24' ' n-2, n~l 

For all further 

Since a complete discussion. of the general case would be too involved, 

we shall in the following again restrict ourselves to n = 5. 

-We will now eliminate from (43) or (44) the integration with respect-to_ 

m' 
2 

in.favor of integrations over -1 

s :;Li or s'i
5 

(i=2,3,4). For this purpose 

we have to decompose the absorptive amplitude :and introduce appropriate sums over 

intermediate states. First we obserye that from .e(x) . + 8(-x) = 1 we obtain 
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(47a) 

or, equivalently, 

_ e(x
1 

- x2 ) · 9(x2 - x ) -9(x - x . ) .. 9(x - x ) = 9(x · - x . ) -9(x - x1 ). . 3 . ' 3 . 2 . . 2 1 . . 2 3 2 

(47b) 

Therefor~, using the Jacobi ~dentity, we find 

= ~i (-9 (x3- x4) [j2(o), [j3(~), j4(x4)1} + 9.(x3) ~j4(x4), lj3(x3), j2_(o)lj 

+ e(-x4) h("3), [ j2(o), j4(x4) J]): (48) 

For the right-hand side we can find other equivalent expressions, for example 

~i { -Q(x4 - x) [J2(o), [ j4(x4), j5(x5j l} + Q (-x3) [j4(x4), [j2(o), j5(x5) Jl 

+ e(x4) [j5("3), [a'4(x4)' j2(o) J l), (49) 

a~d by taking the average.of (48) and (49) we obtain 

J;r {-€(x5- x4) [j2(0), [j5(x5), j4(x4l}l + <("3)[j4(x4)' [j5(x5)' j2(o)J] 

+ <(x4) h<x3)' h<x4)' j2(o)J]), (50) 

where € (x) = 9(x). - 9( -x). 
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Using any one of these formulae,, we can define a decomposition of;the 

absorptive amplitude into partial amplitudes; for example, using (48), we define, 

for i == 2,3,4 (let i, k,£ be (2,3,4), (31 2,4), or (4,3,2)), 

(5la) 

(5lb) 

Thus we have 

A(m2, v3,s23' s34' s42) == A (12) -A (13) - A (14) - A (52) + A (53) + A (54). 

(52) 

The q_uestion_arises whether.analogous decompositions of the absorptive amplitude 

derived by using (49) or (50)_instead of (48) are equivalent to (51). We shall 

come to this in a moment. 

Let us remark that the indiGes_on the r~ght-hand side <?f (52.) indica,te with 

which s variable we' w:is~ to associate the respectiv~ partial ampli;IJ.l de._ It will 

turn out that A(li) .resp. A (5i) -can be obtained_ by analytic continuation via the 

unitarity ~ondition from the imaginary part of the_ amplitude _in t~e physi~al region 

of that reaction channel, in which Js1i resp.Vs
5

i represents the total center

of-mass energy. To make this statement somewhat more. explicit we now introduce 

a resolution of unity into (51). 
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Let the one-particle states of ou,r theory be associated with masses 

~' ~2, ···,~m'. and the mass of the lowest two~particle state be 

resolution of_unity is given by 

~ ; then the 
C. 

I = E !d
4
p Jd~2 p(!i

2
) o (p0 - J~2 + 'P 2 

) IPr) (prl 
')', 

(53) 

with the weight function 

m 

= ' L' q;::;I 
(54) 

Introducing this into (51) and using 

j ·2 ~ 2 ( ( 2 ( 2· ~ 2 ) ( ) ( 2 2) o(p0 - ~ + p ·) = 2p0 . 9 -p0) o p0 ·- ~ + p ) = 2p0 9 Po o p - ~ , 

we find 

= -1! p(sli) 9 (q1o+ qio) T(~,qk;q.t' (ql + <lj_)r) \(-(ql + qi) rlqilql), 

(55) 

-:rrp(s5i) 9(-~o. -qiO) r(~lqil -- (~ + q:t)r).T((~+ qi)r, qk; q.t' ql), 

(56) 
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where we have used the abbreviations 

.Here ( ~p1a1 1 and I p
2

c;x
2

) are_ arbitrary state vectors,_ which satisfy 

p1 + ~ + p2 = 0. in (57) and p1 + Clk+ Cl£ + p2 = 0 in-(58). When 

(57) 

( -p
1

Q:
1

1 and lp2a
2

) both .are_ one-particle states. and describe an outgoing 

particle a and an. incoming particle 13 . respectively,_ then r(p1a
1

1 Cli lp2a 2 ) 

_continued. analytically to the point where 
2 2 ' 

Cli eq_ua~s mi is by definition the 

renormalized_.coupling constant g~il3"· Similarly_ ~(p1a1,_q_k; Cl.£ p2a 2 ), when 
' . ' .. i ' 

continued analytically to a region where p
2 

and Cl£ are real and belong_ to the 

physical region of the reaction. 13 + £.~a+ k,. is just _the amplit)ld,e_of this 

reaction. ·In general, however, the intermediate states_ in (55), (56) are 

mul tiparticle state9. Thvs, when (- ( q_
1 

+ Cli )r I -in (55) .represents an outgoing 

state of particles al' ... ·,ar with total center-of.;.maks energy vsli' then 

·-

r(- ( q_1 + Cli ); I qi I q_
1

) is essentially _the amplitude of the reaction .1 + i ~ a 1 + · · •+ar 

in its physical region,_ likewise T(~, qk; Cl£' _ (q_1 + q_i)r) is the amplitude of the 

reac:tion -5 + k + £ ~ a 1 + · • ·+ ar and is. also_in the physical regio~, provided that 

(ru2,vys
23

,s
34

,s42 ) _lies in :the physicalregion._of lt i ~k+ £+ 5. Ther~for~ 

the partial amplitude .A (li) (ru
2

, v
3

, s2
3
: s

34
, s

42
), whe1;1 continued analytically to the 

physical region o:f the r~action. 1 + i -~ k.+ £ + 5, represents the imaginary part 

of the reac_tion amplitude for 1 + i ~ k + £ + 5, and the right-::hand side of (55) 

is nothing else. than the unitarity condition. In a similar fashion w.e can discuss (56). 
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We can now investigate the possible equivalence to (51) of partial 

amplitudes defined with help,of (49) or (50). After intermediate states have 

been introduced, the only part that might be affec~ed is the analog of (58) . As 

long as we consider multiparticle intermediate states all three possible forms of 

the partial amplitudes A(li) and A(5i) are equivalent, since then 

T(p
1

a
1 

qk; q.e' p2a 2 ). and its analogs .are related to amplitudes, where particles 

k and .e are either both incoming or both outgoing.. The order in whieh k 

and .e are taken out of the sta~e vector and converted. into current operators 

clearly does not matter •. But considering.one-particle intermediate states and 

using (49), we would now find the analog of (58)related by analytical continuation 

to the reaction amplitud~ ~ +. k ~a+ .e instead of .~ + .e ~a.+ k. Since we know 

from the Mandelstam representation that both these reaction ampl~t~des ~re one and 

the same analytic function, the analytic continuati.on from the physical regio~ of 

~ + k ~a+ .e. or from ~ + .£.~a+ k . to the unphysical points needed_ in (55) 

. and (56) will in either case lead. to. the same result. From this .conside.ration it 

is also evident that a linear combination of (48) and (49) is not admissible. 

PrE?viously several authors .(_2, 10) have used~ the decomposition (50) and were 

consequently led to the conclusion. that the residues. of the one-particle p_ole . 

terms essentially are the product of a renormalize~ coupli~g constant with the 

dispersive part only of a reaction amplitude of type a+ k ~ .£ + ~. A 

perturbation calculation,. however, .~ontr.a,dicts this result and predicts instead 

of the dispersive part .the full amplitude, and this comfirms our above conclusions. 

Using 

s24' s34 and 

(39) and the 

(37), '(39), and ( 40 ), we now can 

any one of the six variables sli 

remarks following this equation.we 

express. m2 

or si5 

see: When 

in terms of Yy . s2y 

(for i=2, 3, 4). From 

then each of the three "energy-type'' variables slf?' s
35

, s
45 

also tends to 
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+co (-co), while each of the three ''momentum-transfer:-type" variables s
13

, s14, 

tends to -co.(+co). Thus introducing these variables as integration variables ~ 

into (44) and using (52) 13-nd the content of (55) and (56), we can write (the small. 

imaginary parts in the denominators of the dispersion .integrals have to be taken 

negative, when the integral is with respect to an "eneJgy-type" variable, and 

positive when_ it is with respect to a "momentum-::transfer type" variable): 

+ lim 
€~ 0 

l 
1! 

A (5i) 
a 

+ 

4 00 

I I 
i=2 2 

1-Lc 

co 

ds'li 

4 
l: 
i=2 

+ J ds'5i (59) '. -. 
s 5i - s5i + ~E 

(li) Here we have taken into account that A as a function .of sii due to (54), 

(55), and (56) .vanishes for s1 i < 1-Lc 
2 

· apart from isolated points 1-La: 
2

. · . Likewise . -~ 

behaves as a functio!'). of 

and (56) taken at 
2. 

s - '' and li -.,...a 

A. (li) - and A (5i) th · (55) s
5
·i. . a _ a ·are e. express~ons . 

2 
S5· • = 1-Lrv 

-~ . u, 
respectively, but with the factor 

:rr • p(s1i) resp._ :rr • p(s5 i~ left out. Ifwe specifieq. the reaction so that we 

could use selection rules,_ we would eventuallybe able to show that the residues of 

some of the pole terms _vanish and to finq higher values for the lower limits. of the 

. 

integrations. This will be see~ in detail when in subsequent papers we treat reactions 

involving pions, nucleons and antinucleons. 
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. The dispersion relation (59) for the reaction 1 + 2 --7 3 + 4 + 5 connects 

this reaction "channel" with five other channels, namely with the reactions 

1 + 3 --7 2 + 4 + 5, 1 + 4 --7 2 + 3 + 5, 5 + 2 --7 1 + 3 + 4, 5 :t- 3 --7 1 + 2 + 4, 

5 + 4--71 + 2 + 3 .. If we had derived a dispersion relation for any of these oth~ 

five reactions, using the same methods as above and also keeping Particles 1 and 

5 in the state vectors, then we would have found formally exactly the same result, 

the only difference being that now the variables v 3' s23' s34' s 42 would be 

fixed at certain values in the physical region of one of tbe other five reactions. 

In all the foregoing we have assumed, that Particles 1 and 5 have been 

kept in the state vectors. Obviously we could have chosen any pt~er pair of 

particles instead._ We would then have obtained a different dispersion relation 
' 

connecting a different set of six channels to one another. All together, we can 

construct 10 different one-dimensiona~ dispersion relations,_ each relating a set 

of six channels t;o one another. Focusing our attention on a specific. reaction, 

say 1 + 2 --7-3 + 4 + 5,. we find that there are six dispersion relations. in which 

a dispersion integral with respect to the s~uare of the total energy s12 occurs, 

and that there are four other dispersion relations in which the total e!lergy is 

a fixed variable. 

It is ~uite informative to write down in form of a t~ble the various sets 

of fixed ~riables and related channels. 
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TABLE I: The One-Dimensional Dispersion Relations For n = 5 

Particles kept in 
the state vectors 

Fixed s variables 

Integration variables-, 
corresponding to 
related channels 

13 

sl3 

s24 

s25 

s45 

sl2 

sl4 

sl5 

s32 

s34 

s 
35 

14 I 15 I 23T--24 I 25 1-34--~1 35-- I -45 I 12 

sl4 s15 8
23 s24 

s23 s23 8 14 sl3 

s25 s24 sl5 s15 

s35 s34 s45. s35 

sl2 sl2 s21 s21 

sl3 8
13 s24 s23 

sl5 8 14 s25 s25 

s42 s52 s31 s4l 

s43 8
53 s34 s43 

s45 s54 s 
35· s45 

s25 s34 

sl3 sl2 

sl4 sl5 

s34 s25 

s21 s3l 

s23 s32 

s24 s35 

s5l s4l 

s53 I s42 
I 

s54 s45 

s35 

sl2 

sl4 

s24 

s31 

s32 

s34 

s5l 

s52 

s54 

s45 l sl2 
------ ---------

812 I 834 

sl3 I s35 

s23 s45 

s4l I sl3 
I 

s42 ! sl4 . 

s43 I sl5 

s5l s23--

s52 : s24 

s53 s25 

In addition to the fixed s variables one of the :functions v has to be kept fixed. The first 

six -columns correspond to dispersion,re1ations in which integrals with respect to s
12 

occur, 

the last four are for fixed s12· 
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VII. SOME CONSIDERATIONS TOWARDS A GENERALIZATION OF THE 

MANDELSTAM REPRESENTATION 

For n=4 one has a set of three_one-dimensional dispersion relations, 

each relating two of the three reaction channels. These one-dimensional relations 

form the starting point for Mandelstam 1 s (;!) discussion of double diQpersion 

relations. For n=5 the analogous set of dispersion relations is given 

symbolically in Table I. It is therefore tempting to search for possible forms 

of multiple_dispersion relations,. from yhich_ those of Table I can be deduced. 

Such considerations can, of cour_se,. be only of a purely. formal character. What 

we wish to assert is this: The dispersion relation (59) can be derived from 

a two-dimensional dispersion relation with fixed s
23

, s2~ s
34

, if the singularities 

of the amplitude can be assumed to be restricted to the real plane of the 

remaining two variables and if they are located there in a way similar to that 

in Mandelstam's case n=4. If such a two-dimensional relation should exist, one 

would expect it to hold (analogously to n=4) only for certain combinations of 

external masses and possibllf only for restricted values of the fixed variables. 

At present the only conceivable method of investigating this ~uestion 

uses the framework of perturbation theory. For n=4 it has thus been possible 

to establish the validity of the double-dispersion relation (11), but for n=5 

not even the analytic properties of the contribution from the simplest loop 

diagram are known in detail. There is evidence that in general there are 

complex singularities (~ 13), but their precise location is unknown. Among 

these singularities there are complex pole terms. Cook and Tarski (14) have 

investigated their positibh for some special cases and found that they may or 

may not lie on the physical sheet. It should be kept in mind that the 

singularity from a certain graph may in some cases cancel out singularities 

contributed by other graphs of the perturbation series (15). Also it has been 
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suggested by Eden that, even if there are complex singularities on the 

:physical sheet, their occurence might be restricted to a finite number of 

graphs so that the rest of the amplitude (including all higher-order 

contributions) might satisfy a double-dispersion relation (16). From this :point 

of view there is a certain interest in answering the ~uestion on what the double-

dispersion relations for n=5 may :possibly look like. Eventually the formulas 

given below·will have to be modified to include contributions from complex 

contours. 

The first :problem, which :presents itself quite naturally, is to remove 

the ~uantities v from the :picture, in other words to search for double-

dispersion relations in which three s variables are kept fixed and which 

consist of a sum of double integrals with respect to s variables. Obviously 

every :pair of integration variables together with the three fixed variables has 

to form a set of five independent s variables. Considering again the case in 

.which Particles l and 5 have been kept in the state vector, and neglecting 

for the moment :possible :pole terms, we are thus led to the following ansatz, 

' ' 

which is the most general one, if we assume that the singularities are 

restricted to certain :parts of real hyperplanes in complete analogy to 

Mandelstam 1 s case: 
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co (X) 

T(P) 1 J ds'12 J ds'13 = ~ ·2 rt ·2 
~c w. c 

)(s ' -s) (s 
1 

- s 13 13 · 12 12 ' 

(12, 14) (X) ClD A 1 J ds'12 J dsl14 
(s'12 - s12)(s'14 - s1J 

+ 2 2 1( 2 
~c ~c 

ClD co A (13, 14) 1 J ds'13 J ds '14 
(s'13 - s13)(s'14- s14) 

+ 2 2 1( 2 
~c ~c 

co ClD 

+ 12 f. , ds I 25 f2 - ds I 35 
1( 'I 2 ~· , 

li ' c 
9 

( )(s ' - s35) s'25 - s25 35 

(25, 45) co co A 1 J ds'25 J ds'45 
)(sl - s4 )· 

+ 2 2 (s'25 - s25 45 5 1( 2 
~c ~c 

co co A (35, 45) 1 J dsl35 J ds'45 
(s'35 - s35)(s'45 - s45) 

+ 2 2 2 1( 

~c ··~c 

co co A(12,35) 1 J ds'12 J ds'35 
(s 112 - )(s•· -s) 

+ 2 
2 8

12 35 35 
.1( 2 

~c ~c 

00 (X) A (12, 45) 1 f dsl12 J dsl45 
(s'12 - s12)(s'45 - s45) 

+ 2 2 1( 2 
~c ~c 

(13, 45) c;o co A 1 .J ds' 
- s13) ( s' 45 - 8 45) 

+ 2 J ds·l13 
2 45 ( S I 2 

13 
1( 

~c ~c 

(60) 



+ 
l 

2 
rc 

+ 

+ 

ds'25 

l 
2 
rc 

l 
2 
rc 

00 

f 
. 2 
llc 

co 
f 

2 
llc 

co 
f 
2 

IJ.c 

ds' 
13 

ds'25 

(X) 

f 
2 

. IJ.c 

00 

ds'35 f 
2 

IJ.c 

ds '14 

ds '14 

Here the "spectral functions" A (ij, k.£) depend on 
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A(l4,25) 

. (s'25 - s25)(s'l4 - sl4) 

.A (14, 35) 

(s'35 - s35)(s'l4- sl4) 

(60) 

S I • •J s·' and the fixed 
~J k.£ 

variables s23, s24, s
34

• On the right-hand side, of course, all 12 terms have 

to be t~en at the same point P in the five-dimensional space of s variables 

as on -t:h:; Jef't-mrrl side.. P can be given either in terms of 

(ru
2

, v
3

, s
23

, s
34

, s
42

1 or in terms of any of the 12 combinations 

(sl2' si3-' s23' s3iv s42), (sl2' sl4' s23' s34' s42), • ·' The denominators 

of all integrals have to be thought of as being furnished in the usual fashion 

with small imaginary parts. Likewise we could have given a formulation in 

terms of Cauchy principal values. As in Mandelstam's case we should add on the 

right-hand side of (60) certain one~dimensional dispersion integrals, but we 

left these out, being interested mainly in the two-dimensional integrals. 

Let .us now investigate how the one-dimensional dispersion relation 

(59) can be derived from (60). Let i,k,£ be a permutation of 2,3,4, and 

define 

A. 
~ 

2 
- m l ( 61) 



C. = B. + A., 
)_ )_ )_ 

5 
- I: 

k=l 

2 
~' 

D. = B. - A.; 
)_ )_ )_ 

then we can write, using (37), (39 ), and ( 42 ), 

We thus have three relations, 

sli - vik slk = 
1 - 2 

s5i - v.k 
,)_ 

1 
s5k = - 2 

(ci 

(D. 
)_ 

2sli + ci 

2s5k + Dk 
= 

- vik ck) 

- vik Dk) = 

vik 
(ck 2 

v.k 
2- (Dk 2 

v.k )_ 

=- 2 
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2s5i + Di 

2slk + ck 

- vk. c.) 
)_ )_ ' 

-vk.D.) . )_ )_ ' 

(62) 

(63) 

(64) 

(65a) 

(65b) 

(65c) 

We see that for all three types of integrals the problem is formally the same, 

namely:: Given an integral 

I dz' I dz' 1 . 2 

f(z 1

1, z ' 2 ) 

' 

introduce a new variable v by z
1

, - vz2 = a and decompose the above integral 

into a sum of integrals, each of which depends on only a single one of the 

variables We define z
1 

= vz ' 2 + a, and then 

find 



and therefore 

Thus 

with 

1 

J dz 1 J dz 1 
1 2 

= f dz 1 

1 

fl (z 11' 

f2(z12' 

v, 

v, 

+ 

(z 1

1 
- z )(z 1 

- z ) 1 2 2 

zll - zl 

a) J dz 1 = 2 
z12 

a) = f dz 1 

f dz 1 

2 

f(z 11, zl ) 
2 

-1 
- v zl + 

1 

f(z 11, z I ) 
2 
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-1 2 = - v (z 1
1 - vz 1

2 - a) 

(66) 

1 
'·' 

(zll - zl)(z12 - z2) 

(67) 

' 
(68) 

z 1 
- z2 . 2 

-1 ' v a 
(69a) 

(69b) 
1 

Z I - V z 1 - a 1 2 

This outlines the procedure by.whichall integrals of Relation (60) can be 

decomposed into one-dimensional dispersion integrals with fixed v. We obtain 

the following dispersion relations for _the absorptive parts A(li), A(5i) 

that occur in (59): 



-· 

= 
l 
1! 

l CD 
+- J 

1! 2 
llc 

00 

J 2 d81
lk 

llc 

l +-
1! 

d815k 

l +-
1! 
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A(li,lk)( I I ) 

. 
8 

li' 
8 

lk' 
8 23' 8 34' 8 42 

, v (I lc l c) 8 lk - 'ki 8 li + 2 i - 2 v ik k 

d8'lt 

. ( ) 
A,,li, 1£ ( I I ) 

8 
li' 

8 
1,£' 

8 23' 8 34' 8 42 • 

d8 I 5£ 
A (li, 5£) ( I I 

8 
li' 

8 5£' 8 23' 
I ( I l c 8 5£ + v ti 8 li + 2 i + 

l 
2 v it D.e) 

(70) 



1 
:::: 

rc 

+ 
1 
:n: 
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00 
A (lk, 5i) ( I 

s 15i' s23' s34' s42) 
J dsllk 

. s lk' 

2 s
1
lk + 

( I 1 D 1 Ck) vki s 5i + 2 i + 2 v ik 
~c 

00 

J 
2 

~c 

1 + :n: 

dsl5k 

+ 
1 
:n: 

(l) 
A (1£, 5i) ( I 

s 12i' s23'. s~4' s42) . s 1£' 
J ds 

1
l£ 1 ~vi.ec.e) 2 s 11£ + v.ei (s '5" + 2 Di + 

~c . ~ 

A (5k, 5i) (s 1 
5k' s 12i'. s23' s34' s42) 

v (s 1
5

. +~D. 1 . . ) 
S I - 2 v ik Dk 5k ki ~ . ~ 

00 

J 
2 

~c 

ds 1 5£ 
A(5£, 5i) (s 1 

5£' s '5i' s23' s34' s 42 ) 

s'5A - vti (s'5i + ~ Di -~vi£ D.e) 

(71) 

These equations as they stand, however, a·re correct only when we have no 

contributions from the one-particle intermediate states. In general the 
. I 

dispersion relation (60) will have to be supplemented by additional terms 

corresponding to the graphs of Fig. 2. These terms arise from the contribution 

to the absorptive amplitudes as given by (55), (56) from one~particle intermediate 

states. They are represented by pole terms with residues being the product of 

a renormalized coupling constant and a scattering amplitude at some unphysical 

point. Apart from these two factors, Eqs. (55) and (56) predict also a step 

fUnction e (q10 + qi
0

) resp. e (-~0 - qi0 ), which comes from the requirement 

that the intermediate state be a state of positive energy. In the specific 

coordinate system that we use the arguments of the step functions can be 

expre~sed in terms of s variables, 
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q_1o + q_iol 

8li = 

1 ( 2 2 
= 26 ti. + c i + 2 ila ) ' (72) 

(~o + q_ioj 2 
s5i = il13 

1 . (62 + D 2 2) M i + ll13 . (73) 

Here we have used (37) through (39) and (61) through (63). The q_uantities 

6, Ci' Di depend only on the fixed variables s
23

, s
34

, s
42 

and the particle 

masses. 5 These step functions are not obtained in the framework of a perturbation 

calculation, and therefore we suppose that they would not have appeared had we 

carried out the analytical continuation of (55) and (56) somewhat more carefully. 

In all eq_uations that are to follow we shall ignore the step functions. 

The scattering amplitudes, which occur in the residues of the pole 

terms, themselves satisfy dispersion.relations. For example, we obtain by the 

usual methods for the amplitude T(~, q_k; q_i' q_
1

) of the reaction 

1 + i ~ k + 13 the following dispersion relation: 

(X) 
1 

+ J :1L 2 
!lc 

m 

=- L: + 

ds'li 

+ 
1 
:1L 

CX=l 

~li,kl3) ( t 
a, s li' sik) 

t 
s li - sli 

(lk, il3:)( ) 
a s'lk' sik 

ds 'lk. 
s'lk - slk 

(74) 
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b t 2 2 2 . 2. Th . ht su jec to the condition s
1

i + s
1

k + sik = m
1 

+ mi + ~· + mt' .. . e rlg -

band side bas been flirnished as usual with small imaginary parts. The 

absorptive amplitudes in (74) are in accordance with (22) through (26), defined ~ 

by 

1 3 J 4 •iqkx 
=- 2 • (2:n:) · 2lq10 l "21%0 1! d x• e (-q13;1jk(x) ji(o)lq1 ) 

(75a) 

4 -iq.x 
2l%;olf d x e l (-~;lji (x)' jk (o) lq1 ) . 

(75b) 

We can now write.down an explicit expression for the contribution of 

the pole terms ~o the dispersion relation (59): 

L: 
m glicx~cxkf3 g~£5 L: 

( i, k, .e) cx,t)=l (I-ta 
2 

- sli) (I-tt' 
2 

- s5£) 

m (5£, kcx) ( I ) 

gliCX 1 
(X) a s 2&'sk£ 2: 2: . - J ds I 5£ 

( i, k, .e) CX=l 2 1( 
2 s I 5£ - s5.e 1-La - sl. l· 1-Lc 

m a(li,kf3)(s 1 s ) 
I I g5£~ 1 

(X) 

J ds lli 
li' ik . -

(i, k, .e) 2 1( 
2 I -t'=l 1-Lt' - s5£ 

f.lc 
s li - sli 

(76) 

Here· L: 
( i, k, .e) 

.indicates.a summation over,all permutations of (2,3,4) and the 
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quantities are the values of s
5

£ resp. s1 i at the points, 

2. 2 
described by ·vi£'. s23, s

3
4' s 42 . and s1 i = IJ.a: resp. s

5
£ = IJ.fj • They are 

given ( cf. Eq. ( 65c) ) by 

v £i (c. + 
2 

. s5£ = - vi£ D£ + 2 . IJ.a: ) ' 2 ~ 
(77) 

vi£ 
(D .i + 

2 
sli = - v .e· c. + 2 j.l. . ) 

2 l. ~ f3 

In writing th~ firsttermof (76) we have used (67) and combined. by pairs 

the. double-pole terms arising ... from (59). ,an.d, (74) •. Therefore .the; f-irst ter.m of (76) 

is independent. 9f the v variables._ This however, is not the case for the 

second,and third term of (76) .. Here the counter terms, which are requ;i..red in order 

to form expressions not dependent on v variables, but analytic in the two 

independ_ent variables . sli' s
5

£ , . are ordinary dispersion. integrals in · s1 i 

and s
5

£ , . which might. be contained in the third and fourth term of (59). 

Thus, supplementing the double-dispersion relation (60) by the expression 

(76), but with s
5

£..; instead of 8
5

£ . and with sii instead of sli' we. find 

that the one-_dimensional dispersion :relation (59) follows from this by the 

procedure discussed above. The resulting expressions for the absorptive parts 

are (70) and (71), but supplemented by 

m 

- 2:: 
f3=1 {

. (li, £f3) ( 1 • ) 

g5kj3 a . . s li' si£ . 

+ (70') 



m L2 
I 
a=l 
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glka 
(5i, £a) ( ' 

a s .5i' si£) 

+ vk. ' J. (s '5i + 
l 
2 Di + 

l 
2. vik ck) 

+ 
g a(5i,ka). (s' s ·) 
lia . 5i' ik 

2 ( , l D l ll +Vn. s5.+-2 .+-2V·n a kJ. J. J. J.k 
c ) .e 
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(71') 

It. isclffir that from the double-dispersion relation (60) supplemented by 

the one-particle terms only the one-dimensional relation (59) can be derived, 

but none of the nine _others, which are listed symbolically in Table I. This is 

so because in the other relations different combinations of s variables are kept 

fixed. Mandelstam' s representation (~) of amplitudes :for re;3.ct_ions . of type 

l + 2 ~ 3 + 4 might suggest as a possibl~ general rule that the amplitudes 

for more general reactions. are likewise_ analytic functions--except for certain 

cuts--of all variables on which they depend, and that they possess representations 

in terms of multiple-dispersion integrals analogous to those of Mandelstam. 

From such a general representation it should then be possible to derive all· 

one-dimensional dispersion relations, for example in the case of the reaction 

l + 2 ~ 3 + 4 + 5 and related channels, all the one-dimensional relations 

listed on Table I. 

In Mandelstam's representation we have a double integral for each 

pair of. indepe:pdent s variables.. This suggests that in the. present case 

(n=5), where we have five independent variables, we have to write a fivefold 

dispersion integral.~or eachquir1tuple of independent s variables. Since we 

have 10 different s variables, we can form from then ( ~O ) = 252 quintuples, 

but not all of them consist. of independent variables. Using (7c) and (8), we 

find that there are four distinct classes of combinations_ of five independent 



• 
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s variables (il i2i3i4i5' denoting an arbitrary permutation of 1,2,3,4,5), 

s. s .. s: . s .. s. (12 combinations) (2 '+ 2 + 2 + 2 + 2 ), 
~li2 ~2~3- ~3~4 ~4~5 ~5il 

s. 
~li2 

S· •• 
.~1 ~3 

s •. 
~1~4 

s. 
~2i3 

S·. 
~2i4 

(30 combinations) (3 + 3+2+2+ 0 ), 

s .. s .. s. s .. s .. (60 combinations) (3 + 3 + 2 + 1+ 1), 
~1 ~2 ~1~3 ~li4 ~2~3 ~2~5 

s. 
~1 i2 

s. 
~1 i3 

s. 
~li4 

S-. •. 
-~2~5 

s .. 
~3~5 

(60 combinations) (3 + 2 + 2 + 2 + 1), 

(79) 

all together 162 combinations. Thus we would suppose that for n=5 the 

generalized Mandelstam rep:r;esentation.would consist of 162, fivefold dispersion 

integrals. It would seem conceivable,. howe.ver, that one or several of the 

clas::;;es (79) do not contribute nonvanishing terms (eventually after we have 

made certain approximations)_. For example, when we write down the contributions 

of lowest .order (i.e., .. fifth-order) perturbation theory .in the form used by 

Tarski (17), we find that only those combinations 9f s variables occur 

which belong to the first class in (79). This might suggest that in lowest-

order perturbation theory we have .a representation,. if there exists one at 

all, in terms of the 12 fivefold dispersion integrals belonging to the first 

class. 

By keeping one s variable fixed we could derive from the five-

dimensional dispersion relation 10 different four-dimensional relations. . . ~ ' ~ ' 

There would be two types of three-dimensiopal dispersion relations a•ccording 

to whether the pair of fixed s variables is sij' sk£ _ with i, j, k, £ 

all different, or whether it is si}'.' sk£ •. From each relation of the first 
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type we could derive two of the one-dimensional dispersion relations, from 

each one of the second type only a single one-dimensional relation. Likewise 

from each of the four-dimensional representations we could derive four of the 

one-dimensional relations. 

We will close with some remarks on the evaluation of the unitarity. 

condition for the process 1 + 2 ~ 3 + 4 + 5. Even when we restrict ourselves 

to the approximation whereby only two-particle intermediate states are 

considered, the two-dimensional dispersion relation (60) must be used. This 

is because we have only three independent energy-type variables, so that 

the integration over intermediate states involves at least two of the five 

variables on which the amplitude depends. Unlike the analogous problem in 

Mandelstam' s i:l"a:ry (]) the restD. ting integral is too complicated to be 

evaluated explicitly, but some of its proper_ties can be discussed by 

representing it as an integral over Feynman parameters and using Tarski's 

methods (Jj). It would also se·em that for an exact evaluat_ion of the 

three-particle contributions to the unitarity condition for a process of type 

1 + 2 ~3 + 4 one has to use the four-dimensional dispersion representation 

of the amplitudes for 1 + 2 ~a + b + c and a + b + c ~ 3 + 4. 
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FOOTNarES 

1. We use the metric, _in which 
,2 

- X 1 
2 

- X . 2 
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2 
- X 3 

2. Here we have denoted by q
1

, ~ and q'
1

, q'
2 

the four~mamenta of 

Particles 1 and 2 before and after the scattering,, and chosen the 

sign of q' 
1 

and q' 2 according to the convention of Section 2, 

i.e., such that we have q1 + ~ + q' 1 + q' 2 = 0. 

3· Kibble;(g) h3.s shown tmt in '.'small u parts _of the physical region this 

inequality is not necessarily satisfied. 

4. sin does not appear explicitly in the arguments, because it can be 

expre$sed by s23, ···; sn::.:2, sn-l· (cf. Eq., (7c)). 

5. For n=4 the expressions .corresponding to (72) and (73) are always 

positive _except for some processes that involve vert~ces with anomalous 

thresholds,_ e.g., certain strange:-particle.reactions. 
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FIGURE CAPriONS 

The diagram of a general reaction. 
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Graphs representing the pole terms in the dispersion relation (59). 

If, for example, we consider pion production in inelastic pion

nucleon scattering and keep the nucleons in the state vectors, 

then the solid lines represent the nucleon lines and the broken 

lines meson lines, and rna= m~ = nucleon.mass. 
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