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PART I: RADIATIVE PION DECAY INTO ELECTRONS
James Allan Young

Lawrence Radiation Laboratory
University of California
Berkeley, California

February 8, 1961

ABSTRACT

The possibility of distinguishing the pion structure-dependent
radiation from the conventional inner bremsstrahlung radiation in the
radiative decay of pions into electrons is discussed. Calculation of
the photon energy spectrum and angular correlation shows that evidence
for pion structure would be obtained if any photons of energy less than
76 Mev were detected in 180° coincidence with n-decay electrons. The
probability of such events per unit solid angle is >O,Z>\10-7 relative to
ordinary m— W + v decay, if the assumption of a conserved vector
current is made to relate the rate of radiative decay through the weak

V-interaction to! the rate of TI’O — 2y decay.



1. INTRODUCTION

The univezjs‘al'v\.h-:A‘foi"rri:df the Fermi interaction has in recent
years been suggested by the evidence in B _“anc'i w decay. The other
weak interactions are then, in pfincipie, c'onsequences’of strong
couplings tegether with the universal Fermi interaction. In the decay of
™ mesons into eléctrons, where the-morhentlim transfer is large, evi-
dence on the decay mechanism can be obtained, 1,2 in principle, by ob-
serving the associated radiative decay ™ e 4+ v +vy. In this paper we
amplify the calculation by Vaks and Ioffe1 and discuss the possibility of
distinguishing structure-dependent effects from less interesting structure-
independent effects. We supplement the electron spectrum already pre-
sentedl’ 3 by calculating the photon spectrum, which may be more easily
observed experimentally.

The diagrams for the radiative decay are given in Fig. 1. Diagrams
(2) and (b), when defined in a gauge-invariant way, give rise to the inner
bremsstrahlung by a decelerated or accelerated charge or magnetic
moment. The matrix element for this is proportional to eGm/ [/ k,
where e and G are the electromagnetic and Fermi coupling constants,
m is-the electron {(or muon) mass, and k the photon energy. Diagrams
(c) and (d) of Fig. 1 are structure-dependent, since here the emission
of a photon depends on the nature of the "black box. " The matrix
elements for these diagrams are proportional to eG }/-R-(M/M), where
i is the pion mass and M a mass or energy typical of the intermediate
states involved in the 'black box. " The two processes—inner bremsstrah-
lung and 'black box' (or structure-dependent) radiation—are coherent,
but the interference termis negligible in w > e +v + y decay. (In
™=+ VvV +y the reverse is the case: because of the small momentum
transfer involved, the structure-dependent radiation is small compared
with the inner bremsstrahlung, and the interference term dominates
the square of the structure-dependent matrix element. For this reason
radiative 7 - p decay, although more frequent by several orders of

magnitude than radiative m - g decay, reveals nothing indicative of



the pion decay structure ) The interesting question is not whether
radiative ni decay occurs, but whether the 1nterest1ng structure-

' dependent effects can be d1sentangled from the ordlnary qua51class1cal
bremsstrahlung We find that a un1que proof of structure to the m-de-
'cay mechamsm can be obtalned if any photons of energy less than

‘ kmax 70 Mev are detected in 180 ‘correlation to the d1rectlon of the
decay electron. The probablllty of such a decay per unit solid angle

per us decay is, however, approx1mately 0.2X10 7.

%
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II.  INNER BREMSSTRAHLUNG (IB)

The matrix element for the inner bremsstrahlung is defined as
the gauge-invariant part of diagrams (a) and (b) of Fig. 1. On invariance

grounds this is of the form
Mg =etm AR (PHT 1 (pre/pi-Poe/P 1)

+ quVFH V/4p- k]LlJV,

where fA( 0)2) is the amplitude for the nonradiative decay, @ is the pion
four-momentum, p the electron four-momentum, € the photon polarization
four-vector, F =ek -¢ k , and ¢ and Y are, respectively,

Ly [T VT e v :
the electron (or muon) and neutrino field gperators. The two terms in
Mg
magnetic moment, respectively.

correspond to emission of radiation by the accelerated charge and

This matrix element leads to the differential transition probability,

3 ' a 1 . 22 —>=2,2
dWig=W —‘3’”7“2‘}{“1’ - (pR)7/RT)

+ 2(Ek - p-K) (pk - Ek +'1S-"123}

Poadc BH-EZE, -K)
(Ek -%-B) EE k

where a = e2/4'n is the fine-structure constant, E the electron energy,
E, th¢ neutrino energy, and Wev the nonradiative decay rate. The electrlon
energy spectrum resulting from this expression has been given previously”
and is not repeated here.

We suspect that, because of the overwhelming background of
m—>e+V and w-—> u ~+ e electrons, the photon radiation (or at least
the hard component in which we are interested) may be more easily
distinguished than the spectrum of electrons. The spectrum of photons

into solid angle dQ2 = 2m sinfdf8, where 6 is the angle between the photon
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".Fig.' 1. ~The possible diagrams for the radiatiVe elﬂectron
~ decay of the pion. —
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and the electron, is obtained by integr.'ating Eq. (1) over electron

energies. This relation is generally complicated by the energy condition

n=E+k+ |K+p]|.
If the photon and electron emerge in opposite directions so that
- =12 . 2
6 = 180° andlp’f‘k_, = (p=Kk);,the energy condition becomes (u - E - p)-

(. - E+p =~ 2k) = 0. The photon spectrum obtained from Eq. (1) is then

dkd® ev 2 (E 4+ p) pp-k(p+E) ]

2 z.

a“w_ 2

( IL) o =W, B -2 - p) (2)
) 180 [

where p and E are determined by the energy condition. Now
M-E-p=0unless k= (p - E +p)/2 which lies between (p - me)/Z

and km < (MZ - mez)/Zp., Thus according to Eq. (2), the only inner

a
bremsstrahlung photons at 6 = 180° are those of essentially maximum

energy kmax' The probability for the emission of such photons is,
according to Eq. (2) (setting k = kmax) ,
3
dZW m 2
) =W, —— [1- — =1 sec”?
dxdSt /g - 180°, k = k ¢ (2m) u? ’

max

where k = kaax’ The inner bremsstrahlung spectrum at 180° vanishes
then except for photons of very near maximum energy.

For angles other than 180° (or Oo) the photon spectrum will be
adequately described by setting m_ = 0. In this approximation, we ob-

tain for any angle 6 between photon and electron

2
d WIB a 1 4+ cos@ (x - 1)2 + 1 1
dxdQ2 =Wy 2 I - cos0 2 x (22)
2m [ 2 + x(cosO - 1)]

Equation (2a) is thus applicable to all angles except 0° and 180° pro-
vided k <(p - m_)/2=69.6 Mev.



Integrating Eq. (2a) for photon energies greater than some low-

"energy cutoff §, we obtain the electronsphdton angular correlation,

: dWIB/dQ = We'v(a/Z)v (21:)'2 £\ 3 ' “

XN+ -N(-2%1n(1 -
+20%(1 - N[1a(L/x - 11}, (3)

where N = sinZG/Z and X in = 26/p. The rate of m > e + v + y decay

per unit solid angle with e and y at 180° to each other is

(dWp/dD) o _ jg00

W
MV

= 1,2X10_8/vsteradian. | (3a)

EQuation (3) agrees with Eq. (21) of Vaks and Ioffe, since when
the minimum photon energy is 6 the maximum electron energy is
approximately | /2 - 6(1 -\), so that Y max in Vaksand Ioffe equals

1-(1-Nx above.
} max _
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III. STRUCTURE-DEPENDENT (SD) RADIATION

Out of the pseudoscalar pion field operator ¢ and the electro-

magnetié field operator AH only two vectors aq)%‘JHv v and
IJLV (P can be constructed in a gauge-invariant manner. Here
¥ A k, - Ak , and
pv vV M
L= (1/2)ew)\pF)\p :

is the tensor dual to, FHV' and a and b are functions of6)° k, which
must be, assuming PC invariance, relatively real. The gauge-in-
variant contribution of diagrams (c) and (d) of Fig. 1 must therefore

be of the form,

M, @ ,g(a)/G ¢F O Y 1/2 (v,

1/2 4
M, = G bchwC‘v Y, 1/2 (1 + Yg)¥,, - (4)
Writing
= + s B = i 1/2 (1 ) G = B - B 3
q, =P, tPY W=y, /2 v, G = q B -q,B

one finds that Egs. (4) take the form

My

M, = (i/2) /2 Gab F,, Gy | | (5)

The matrix element for the gamma decay of pseudo-scalar =

- {i/2) (a)l/ G a¢F Gw

H

mesons is; on invarianée grounds:

. ’\l :
Mﬂo = - (1/2)ac¢FHV Fw , , (6)

from which the rate of 'no/ decay is
8 3 2 )
= (a /4) (2m) : (7)
"lT
where ¢ is a constant depending on the pion decay structure. In lowest-

order perturbation theory (where the '"black box"in Fig. 1 stands for a

nucleon-antinucleon loop, each of mass M, coupled to the pion field via
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via (g/ﬁ)ﬂ?N:ySﬂJN“ ), we have?

‘c=a-= 4(n)5/zg/M . ‘ ' ST (8)

‘ This relation bétween the'e‘léctrdmagnetic decay of the '110 ,and the

vector radiative decay of the nt holds, for photons of near maximum
energy, to all orders if the Feynman-Gell-Mann principle of conservation
of the weak vector curren’c5 is assumed. (Generally a is a function

of k which equals ¢ strlctly only when k =p/2, the photon energy in

' 170 decay We are neglectlng this poss1b1e energy dependence and

s<=tt1ng a=c¢= constant ) This assump‘clony which was also made in
referencel defermlnes the over-all rate of w decay, and w1ll be

made in the remainder of this paper.

A. Photon Specfrufn and Angular Correlation

The differential transition probability obtained from Eqgs. (4) or
Eqgs. (5) is '

, : 2, -5 -2
d"Wgp = (2Gy /a) (2m) " TpTTW ok

i

X[+ yZ) (1 -~ B cosB cos ¢) + 2y(cosd - cosB)]
XS(E + E, +k - wa’pa’k, (9)

where . is the electron velocity, ¢ the angle between neutrino and

photon and vy = bGA/aGV
From Eq. (9) we obtain the photon spectrum angular distribution

2
d w o 3 2
dxdQSD :(GV2/4‘1) (2“)~4H4W . x (1l -~ x) .
- [ 2+ x(cosb - 1)}

X 2l +'y2) (1+ cc‘»‘sz@)_' - 4y cosf]

Fx(x - 2) (14950 - cosd)} . (10)

Y
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In the case of 6 = 180° Eq. (10) reduces to

d’2 ‘
(m%)e e (G /a) <4w)'4u4wno (1+v)%. (11)
These equations show that, at least for Y ~1, structure-dependent
radiation is predominantly hard and in the backwards direction. This

is to be contrasted with the inner bremsstrahlung which is predominantly
soft and in the forward direction. In lowest order perturbation theory

b =a, and Eq. (10) gives for the angular distribution of photon and

electron:

AW /40 = (G%/4a) (2m) tputw o

Tl'

NN a4 (1 - a0 4 1802

- 4504 35) In (1 - \) 4 (1 - ») (12377

X[ s f s 1) 410 BAE - 33N +42) ]} . (12)

Equations (3) and (12) are plotted in Fig. 2, with the lower liri'li‘c7
assumed to be O.5><10l6 sec-1 for W 0° The electron-photon angular
distribution is the superposition of two noninterfering mechanisms:

(2) the inner bremsstrahlung, Eq. (3), and (b) the photon emission
by 4the intermediate states in nt decay, Eq. (12). In calculation of the
létter the rate of radiétive decay through the V interaction has been
related to the rate W 0 of TTO decay by the assumption of a conserved
vector current. The gecay through the A interaction can be related
to that through the V interaction by choosing y = (b‘GA)/(aGV) =1 as

is suggested by lowest order perturbation theory.
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Fig. 2. Plot of the angular distribution between the photon and
electron for inner bremmstrahlung and for structure-
dependent radiation, :
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IV. DISCUSSION ‘
We have seen that at 0 = 180o no inner b.re"ms str‘ahlung photons
occur of\“en.ergy less than (p - me)/Z, while structure-dependent
photons of all energies occur. Thus if any photons are detected of energy
less than 69.6 Mev when photon and electron are in anticoincidence there
is unambiguous proof of structure mediating the Tr:t decéy. The number
of such decays per unit solid angle about 0 = 180° per m—>p + v de-

cay is calculated, according to Eq. (12), to be

(AWgp/dR g _ 1640

w
MV

?«O,ZXIO_?/steradian .

This conclusion rests on the assumption relating the V interaction
T - evVy matrix element to the rate of 'no decay but is insensitive to
the particular choice of the parameter b imithe A interaction matrix
element provided b# -a.

The lowest published upper limit on the rate of radiative 7 — a

8,9 This group

decay is that obtained by Cassels and collaborators.
measured the rate of electron-gamma production at 6 = 180° and used
a calculated electron-;photon angular correlation function to convert
these measurements into a total rate of radiative ™ -+ e decay relative
to normal m - p decay:

6

w_ /W , 2B x5 x10 (13)

evy T

In the earlier work9 the angular correlation function was calculated
assuming an ST (-decay interaction, while in the later work7 the V-A
interaction was used but the interference term between V and A was
ﬁeglected. From the rate (13) quoted in reference 9 and the fact that
the relative probability for emission into the backwards direction

(1l/W)dW/d(cosb) was taken to be 3.0, we can work backwards to find
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(AW /dQ), _ 000 3.0
- evyW 6 =180~ _ o (3:1:5)><10"6
wv ,

= (1.5 = 2.5)X 10;6/steradian,

Since we calculated

(AW._/dD . . o.0
W
TR Y
-and
(AW /d), _ o - '
SDW =180 ~2x1078/steradian, (13a)
v

the experimental sensitivity would have to be improved by two orders
of- magnitude"to detect the interesting stfucture—dependent radiation.
‘In looking for the structure-dependent radiation one should discriminate
against the 70-Mev inner bremsstrahlung "line spectrum. " If these
‘photons .are not observed one will have to conclude either (a) that the
vector current is not conserved, and that if the pion decay structure
involves bary"ons at all, the typical energies of the ihtermediate- states
involved probably exceed the nucleon rest mass, or (b) that the pion

| decay should be regarded as primary. In either ‘case applying the idea
~of the universal Fermi interaction to other weak decays willl have

practically lost its attractiveness.
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PART II. ELECTROMAGNETIC PROPERTIES OF A CHARGED VECTOR
MESON INTERMEDIARY IN WEAK INTERACTIONS

James ‘Allan Young ..-

Lawrence Radiation Laboratory
University of California
Berkeley, California

February 8, 1961

ABSTRACT

A systematic study is made of the electromagnetic properties of
charged vector mesons (B mesons). The various formalisms used to
describe charged particles of spin 1 are compared, and a new first.-
order formulation of the. Stuckelberg formalism is giveﬁ, For the
most general first-order Proca Lagrangian, subject to the usual
symmetry requirements wé eliminate redundant components to obtain
a Hamiltonian formulation. The theory is interpreted in the non-
relativistic limit, and the terms corresponding to spin-orbit coupling
and electric quadrupole-moment interaction are identified. The analogy
to spin 1/2 theory has led us to consider classical spin equations of
motion which agree with the quantum mechanical equaLtio'nﬂs' to order

-2
m .

This general form for the electromagnetic interaction is applied
. to a recalculation of the W -~ e + y decay rate thrdugh-a vector meson
intermediary. We conclude, on the basis of B - e conversion alone,
that it is not necessary to abandon the intermediary B-meson hypothesis
in weak interactions.

As a means of producing B-mesons, we propose searchihg for
their pair production in the Coulomb field of a nucleus. By using the
Weizsacker-Williams approximation, the pair-production cross section
is calculated in the high-energy limit for vector mesons with gyro-
magnetic ratios unity and zero. This method of production is com-

pared and contrasted with the alternative high-energy neutrino method
of production. '
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I. INTRODUCTION

A charged vector meson has been proposed as an intermediary
field (B field) in the weak interactions. 1 This mewson must, if it ekists,
have a mass greater than that of the K meson and a very short life-
time. Against such an intermediary field, it has béen argued that,
provided the two neutrinos in p decay are capable of annihilating each
other, su.ch a B field would allow the decay p - e + vy in first order '
in the p-decay coupling constant G with a rate considerably larger
than the upper limit experimentally observed, Here we wish to show,
by a systematic study of charged-vector meson theory, how this rate
actually depends on the electromagnetic interactions assumed for the
vector meson, and to see if the absence of w-+e conversion need
exclude the intermediate-meson hypothesis.

An important and definitive test for the B meson is the poési-
bility of detecting its production. Lee and Yang2 have proposed
searching for the B meson by looking for the onset of the semiweak
process Vv +e 4+ B. We wish to propose another experiment for the
production of B mesons not requiring h.igh-energy neutrinos and

whose cross section, instead of being semiweak (10"37 cm ), 18

31 cm_z)° It is suggested that the pair

typically eiectromagnetic (10~
e <

production of B mesons by high-energy photons in the Coulomb field

of a nucleus is a possible method of observing the production of vector

" mesons, if such exist.
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II. ELECTROMAGNETIC INTERACTIONS OF A CHARGED
- VECTOR MESON

A. Comparison of the Formulations of the Theory of Spin 1

1. First-Order Proca Equation.s :

A first-order form of the Proca 'cheory3 is given by the

lagrangian -
I 1 + 4
' i_ 2z U p.v(dp U av Up) + -2-(8 |J.jU v~ 8VU i ) 'Upv < (2--1)
J ; 2.+

for the case of free vfi'_e‘l'dsv. In Eq. (2,1) UH(X)° Upv(x) are independent

fiqld _v_axjiables, Ufp (x), U-I:H‘v(x) are the Hermitian conj;\igate fields,
and m is the mass. The above Lagrangian gives the free field equations

In the présehce of an-éiectromagnetic field we perform the usual gauge-
invariant re’p’laceme'nt4 0 —>1TH§ BH- ie AH,' where AH(X) is the electro-

" magnetic four-potential, which yields the field equations

U =mn'U - & U, - ' (2.2)
VI T VTR

m U =mZU (2.3)
pooMv v

The second-order wave equation

2 2 :
(m -m)Uv mTT“‘lTVUHZO ‘ (2.4)

is obtained by substituting Eq. -(2.2) into Eq. (2.3). Since a four-
vector field must actually possess only three independent components,
a subsidiary condition eliminating the unwanted fourth component is

needed. This is most easily obtained from K. (2.3),
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2

L. . - (s -
VO™ T 2 My T ) Uy s (e/2) B U s me U
or o
™ U = (ie/ZmZ) F U (2.5)
Vo ’ VR A ‘ :
where
F =dJd A -0 A
pv N 4 v oM
The second-order wave equation (2.4) then becomes
(TTZ-mZ)U ie/2 Z)Tr(F U,)+ie F U =0 (2.6)
, - ie/2m v px Sl ie wvUy =0 .

2, Duffin-Kemmer Formalism

The first-order Proca equations (2.2) and (2.3) may be written in

the matrix form ({3FL 1'rPL + m) y = 0 by setting

- -
- 1/m U14
- 1/m U24
- 1/m Usy
-1/m U23
Y=1 - l/rn U31 ;
-1/m Uys
Y
Uz
4U3
Uy
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— : 1.._ — —
1
1
. -1 )
B1 7 ! s Bp® 1
..]_‘
N |
-1 . 1
1 .. 1 :
_ i u -
r—’ Py p— _1 —
-1
1 a a é L] * Lo & ® "1
-1
53 = 1 ‘34‘—'
.1 -1
-1 . -1
-1 .o e
1

These B's satisfy the algebra-defining equations

ﬁ[ﬂ. [3\/ B)\ t ‘3)\61/ Bp i ﬁpsv)\/ +B)\6+Lv ’

The first-order Proca equations are thus a realization of the Duffin-

Kemmer formalism.
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3. Discussion of Second-Order Field Equations

In a first-order formalism, the subsidiary condition elimihating
‘the timelike vector mesons either is one of the equations of motion or
can be derived from them. When the equations of motion are of second
order, however, the subsidiary condition must be separately assumed.
The second-order equations obtained by the substitution BH -+1TPL will
then generally not be mutually consistent without the addition of suitable
va terms. For example, equations
2
(0O -mZ)U =0 and 8 U =0
M M
on @8 7 become
v M M
5 :
(m - mz) UpL =0, (2.7)

T U =0 . ‘ (2.8)
TR

Since ['nv, 112] # 0, Eq. (2.7)is inconsistent with Eq. (2.8). A
similar difficulty arises with the conventional Stuckelberg formalism4 in
the case of electromagnetic interaction, ‘For these reasons we have pre-
fer‘red to use a Lagrangian giving first-order equations of motion which
after ap - can be iterated so as to yield the consistent second-

order equations (2.5) and (2.6).

4, Stuckelberg Formalism

There is one other dynamical form of the vector meson theory
introduced by Stuckelberg4 which is well known in the neutral-meson
case, There has apparently been, however, no consistent treatment of
the electromagnetic interaction of charged mesons in the Stuckelberg
formalism. The original Stuckelberg theory is a second-order formalism
involving a four-vector field Zp and a scalar field B. In the absence
of interaction, these fields are related to the Proca field UI-L by the

equation UH = Zp +m} aH B. By the subsidiary condition

zZ B=0,
BH HL+rn
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the scalar field B cancels out the fourth component of the vector
meson field. In the conventionalvformﬁlation, when the ele“cﬂtromagnetic
interaction is introduced by the minimal substitution ap —- TIH , this
separately imposed subsidiary:condition becomes inconsistent with the
- field equations. We will consider here a new first-order formulation
of this theory which is internally consistent automatically and turns out
- to be identical with the Proca theory..

For free mesons consider the Lagrangian.

_ + -1 : D
f_l/zzwv[apzv-avzp+m (apav-avap)B]

\ + -1 N S
+1/2] aHz - 8VZH+m (apa.v - a.vaH)B ]Zw"/

+ 2+ + +
-1/2 Z Z Z Z + Z B B Z
/227, 2, ,+m 22, +mZ" 8 B+md B2,
+c¢t s B+a BTc -ctc ,
TP % m T T
(2.9)
. 'Where' ZHV , B, ZH’ C are independent field variables. On vari-
“ation of i’ we obtain the equations '
| | & Z —rnZ'Z‘ meoe B=20 : (210)‘
v Sy b B )
Z,, =0,Z,-8,2, (2.11)
2,Z,+m’ 3G =0, (2.12)
cC =a B, o ' | (2.13)

By operating on Eq. (2.10) with 8, we obtain Eq. (2.12) on using
Eq. (2.13). Substitute Eq. (2.11) into Eq. (2.10) to obtain '

2 2 a '
(O" -m") zpL - ap (8,2, + mB) -01,
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and; using Eqgs.: (2.12) and (2.13), we find -

! a,B)=0. ' L (2.14)

(0% . m% (Z, +m’
'set“UH = zH'-r"m'1 ap‘LB ‘so that Eq. (214) along with the condition
8,0,=2,2 + m”? 7D>2‘B = 0 (which is identical to Eqs. (2.12)

and (2.13) reduces to the Proca equations. Thus the internally consistent

equations
5 ,
8,2, ~m Z, -m3 B=0, (2.15)
LV R ' - (2.16)

together with (2.14), are equivalent to the Proca equations.

The advantage of the above first-ordér‘formulation is the possi-
bility of introducing the electromagnetic interaction consistently. Put
8, =, inEq (2.9) to obtain | |

_ + .
a( = 1/2 28, U m 2, -2, - ie/m F, B] .

: + + . +
+ l/Z[n_HZ, v o '~.‘nvzp‘+-.le*/m vaB.]lmZp,v
«1/22% 72 4m?z" 2 tmzT rB+mm BTZ
v TR TR TR V"
+ct =B+ BYc -ct c. (2.17)
BoOR B U BOTR
From Eq. (2.17) follow the equations
T, Z -mZZ -m m™ B=0, (2.18)
v Ty u K
zpLV = vNZv wvzH - ie/m FW B, (2.19)
-1 . _ |
T, Z,tm TrHCH-=1e/Zm vazpv'o ) (2.20)
C =m B, , (2.21)



as in the free-field case (if we use Eq. 2.21), operating on Eq. (2.18)
with > 1'rPL gives Eq. (2.20). Substitute Eq. (2.19) into Eq. (2.18)
to find R
-2 2 ' . _
(7 -_rn)ZH“‘-“'nV npz,v-m ﬂHB=1e/m irrv(FVHB) 5.0.

When Eqs. (2.20) and (2.21) are used, this latter equation becomes

2 2 -1 : / -1
(7 -m)) (ZH + m Trp_ ﬁB?. +ie FV1~L (Zv+ m Tru B) .
_ie/2mZm (R Z ) =0 (2.22)
M r)\vZXJ/ ! )

on making use of the commutation relations

[ﬁ"‘;'ﬂ]jz;iéﬂ F ' -ie F__m .
' . v Tpv pv v

Lor o =1 T ‘
If we set UH- = Z“L + m ‘WLB, then _ZHV = Upv , and Eq. (2.22) be -
comes : ' ‘ Co '

2 2 . 2 Vs e
(m -m>) U|;L"' - ie/2m -.TTH.(F)\VU)\V)'P ie F,VHUV: 0,

which is identical with Eq. (2.6) in the Proca theory. In addition, the
subsidiary condition Eq. (2.5) in the Proca theory is readily seen to be

identical to Eq. (2.20).
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B. Most General Lagrangian for a Charged Ve»cto»r Meson

1. Divergence Transformations

The theories we have just ccnsidered possess, as we shall see
in Sectiorn D, .a -"necrmal® magnretic moment, i.e., their gyromagnetic
ratio g is 1. The Lagrangians we have been using are not unique,
however.. In the Proca theory the divergence

+ +
. = ) U U - @& U U
va,la, Ul,u -2, U Ul

=yl a, U a, u,- aHU'*p a,u 1, (2.23)

M
where Yy is a dimensionless constant, may be added to the free-field
Lagrangian (2.1) The divergence ! will not change the field equations

derived from the Lagrangian. However, the Lagrangiang{ + ‘i'__ will

have, as field equations in the presence of electromagnetic interaction,
U =« U -m U , = ° | (2.24)

w'p U“v ~m2UV+ ieyFHVUH =0. (2.25)
The term proportionél to y in Eq. (2.25) will correspond to an additional
magnetic moment interaction. 4 We see then that there are infinitely
many free-particle Lagrangians leading to the free-field equations but
differing in the distribution of charge density. Thus the principle of
minimal electromagnetic interaction does not define a "normal"
magnetic moment unless the free.-particle Lagrangian is specified.
Since, for any choice of vy, the theory is nonrenormalizable, > this
criterion too (as in the spin 1/2 case) is not usable to define a preferred

electromagnetic interaction.
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2. Electric Quadrupole Moment Interaction:

Group theoretical considerations allow a particle of spin 1 to
possess an electric quadrupole-moment in addition to a magnetic dipole
moment. We now proceed to show how an electric quadrupole-moment
interaction can be added to the first-order Proca Lagrangian. We
require that such an interaction be bilinear in the meson field variables
UHL and Upn‘b and 1inear in the electric charger e and the derivatives
of the electromagnetic field a)\ va' Since these derivatives are con-

strained by the Maxwell equations

3, Fp)\— _au Foas a.)\Fva’

only the form
;.{—” vtua, F *utu e, F 2.26
-ae }.L;v})\a)\ Hv-}'ae N RV ON TRV (2.26)

satisfies these requirements along with the requirements of Lorentz
and gauge invariance. The multiplication factor a is néw determined
by demanding invariance of this electromagnetic interaction under time
reversal. |

We define the time-reversed fields (apart from arbitrary phases,

which are the same for all terms in the total Lagrangian) by

T _ — T—> . —
Ai = Ai (r, -t), AO (r, t) ='- AO (r, -t),
T - T ,—~ _ ing
Ui = Ui (r, - t), U0 (J-:‘, t) = - U0 (r, -t),
T _ . T _ T B 3k
81 —8i, 8+ ——34,a - a

Applying these definitions to Eq. (2.26), we have

T _ x4 ' .
(R _ﬁ"—anHvU)\a)\_F‘H+an U)\a)\FHV s
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and thus, in complete analogy to the B- decay Hamiltonian, "all coupling
constants must be relatively real, and a pure imaginary. Choosing

5 _
a=i1 q/4m , where q is an arb;trary d1mens1onl‘ess'constant, we ob-

tain the electric quadrupole-moment interaction.

' .‘ 2 + :+
_(in:(leq/ﬁlm)[UHVUK—U)\UHV]JSAFHvo (2.27)

We have béen unable to introduce a term like (2.27) in'a "normal®'
way by suitable choice of a fre’e-pa’rtiéle Lagrangian without going to
derivatives of third of higher order. The quadrupole moment is never-
‘theless subject to the same degree of ambiguity as the magnetic moment,
since, as we shall see in Section D, the “‘normabl"' interaction (2.23).
already implies a certain amount of quadrupole moment.

Addi.ng Eqs. (2.1), (2.23) (with aH'—“ nH), and Eq. (2.27), we now

have as the total Lagrangian

t ~-11-U+ YU -
Voo

P + |
A= l/2UL, (v, Us m U )H1/2(m U v

+ ‘. 2 4 ‘ ) .
S1/2 U s UL +§fxﬁ Uy, Uyt lie v/2) (UT, U - UT U F

+ (e q/4m%) [ ut,, Uy - )\ vl 8,F,, - . (2.28)
Except for the possibility of letting 'y and q have form factor space-
time dependence, ‘this Lagrangian is the most general charged vector
meson Lagrangian consistent with the ordlnary invariance requirements.
The vector-meson theory tac1t1y used in the or1gma16’ 13 M e+ Y

‘argument _-Vcorre’sp'bnded:‘to_the choice y =9 = 0. As discussed in
Section B-1, we know of na physical criterion justifying a particular
choice of v.

In the next two sectlons we 1nvest1ga’ce more fully the physical

content of this theory.
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. C. Generalized Sakata-Taketahi ‘Equation . .

" 1. Elimination of Redundant Components

The Lagrangian (2.28) furnishes the field equations
m U -m’U +ieyU F 4+ (eq/4m?) U , 8 F ., =0,

(VRN VR Y v BT RV V0. VR VR N

o : v (2.29)
u,, =T, Uv' - T UL+ e q/2m%) Uy 3 Fp, - - (2.30)
A meson field satisfying first-order wave equations is expected to have
six dy.namically‘indep’ende-nt components, corresponding to the three in-
. dependent field va_rijabAles‘ and the_irf time derivatives. E’qﬁations (2.29) and
(2.30) must therefore contain four redundant. components which we wish
to eliminate. Since in Eqs. (2.29) and (2.31) Uij (i,j.=1,2,3) and U4
ao not contribute to the time development of the meson field, these are
the four components' to be eliminated. After this elimination we possess
a Hamiltonian form of the theory. For simplicity, we consider the
electromagnetic fields time-independent. .
From Eq. \(Z_.29) we have

2., . '
U (1/m") (1.0, +iey U F ).

4

Let mq)i

Ui4’ | so that

L Ug=l/m T FreymhT-E, .
. where, f is the electric field strength. Also from Eq. (2.29),
'nj in —‘rn Ui'+ 'rr4U4i = -ie vy Fji_ Uj - 1§ Y U4 F4i
- (ie q/Zm-Z) Uu,. 8 F,. - (ie q/4m2) U, @a.F
_ 4j i T 4j _ gm i T fm”

1

"~ which becomes’

26,

\ -1 —> —> — A '_1 _. —
FE el tmU+m [mx (@ xT) ] +ieym™ (Ux H)y

i
+ eym-Z E (7" ¢)+ ezyzm_3 E(U:-E)-e (Ci/Z)m_2¢; aiEj
J

- ie (g/2) m™> (% x G’)J. o, H, , (2.31)
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where ¢ is the scalar potential, and H is the magnetic field strength.
We wish to write this last equation in matrix form. It is lengthy, but

not difficult, to show that if one introduces the spinQI matrices

000 0\ 0 0 i 0 -i 0
s, ={0 0 -i ) s,={000], s, ={i 0 0],

0i 0 \i 00 000

Eq. (2.31) can be written as

i g_? = epp + mU - m_l'(§° 1T)Z U - er_l S-H U -'er_Z
SiSjEjniq)
+ eym-Z (E- 7 ¢ - ezyzvm—3(§' E)Z U + ezyzm_3 ]-*52 U

+ elq/2)m" % $;5;8,E ¢ - (q/2)m”%( T+ By

- ie (g/2)m"> 5,5,9, (ﬁ.x.?r’)j U +ie (@/2)m™>F - @xD U,

(2.32)
¢l Ul
and ¢ =| ¢, » U={1U, Now Eq. (2.30) becomes

o U, : .

U =WUme+ie(/2)m—2UaF

4i 451" Ve 4 j% T4i
which can also he written in matrix form:
13U equ i mgtm € T (o em @ H) g

-2 - -2 - = S 2
+ eym Sisj 'njEi U - eym | (m* EYU+e (qg/2) m SiSj aiEj U

- e (q/2m % (Y- B) u. | - (2.33)
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“We define now a’six- component wave - function' -
Eq (z 32) and (2.33) take the form

i ¥

at

+ie(g - 1)/4&;2 (§ ExT -5~ (#‘;{ E)]+eQ/2 V-
#ipy (§40) /m - <~e/2m ) (g - ey L5

-2E- T- V- E] +ie (g-2)/2m p, (S -

? (g-1)%/2m’ (o, Sip,) (8 ByY -

—

s -3 . . =
:ie q/2m ~(p3 - 1p2) ,sisjai (H x 'n)j :

+ e q/2m3* (p3 = ip5,) _“va' (H x?ﬂ g,

where g=v+ 1,
For g = 1:_,1‘“q =0, Eq. (

The charge matrices Pp» P2s P3 are the usual 2 x 2 Pauli matrices:

[0 1 . {01 {10
Pr7\1t o) P21 0 ) P37 lo-1)"

Z. Operators and Expectation Values

Since the charge is given by

expectatlon values A= of operators A must be deflned relative to the

indefinite charge metric ps, i.e.,

A:fd x gt Py A,

J—(

—->—->

>(§

Ut o)
U+¢

)

)

2
Qij = Sisj + SjSi, and Q=-(g - 1,“+ q) (B/mc)

(2.34) reduces to the Sakata-Taketani equation.

50’ that

el

S M(E B .

(2.34)

E

¥

g v‘ - - (‘v‘ ) :.:_,__)2
8y = [e\{p +mp; - (ge/_Z‘m) S* H- (p3 +ipy)™ /2m - (eQ/4)QijaEi/aX

J
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In order that these expectation values be real, the operators must

satisfy the condition of pseudo Hermiticity
A=op, At - . (2.35)
P3 Py » .

where A+ = (AT) is the ordinarily defined Hermitian adjoint, Note that
H is pseudo-Hermitian (H = P3 ut p3), SO that its interpretation as the
energy is consistent. For the canonical transformations (¢ = Sy') be-
tween the same physical state in different represéntations, we require
Q to be invariant, i.e., that

-1 +
st-p, st . (2.36)

Such transformations S are called pseudo-unitary transformations.

We find, as in the nonrelativistic case (p3 =1),

In the following discussion we shall omit the prefix !"pseudo, ™
always understanding Hermiticity and unitarity to be defined relative

to the metric p, by Eqs. (2.35) and (2.36).
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D. Nonrelativistic Limit of the Vector Meson Theory.

To find the nonrelativistic limit of Eq. (2.34):we use the Foldy-
Wouthuysen method9 of successive unitary transformations. The free-
particle Hamiltonian (e = 0 in Eq. 2.34 is diagonalized by the unitary

transformation

~exp ((1/2)4p0),
where .

tan §/2) = (2i/(E° + mP) ) [ BY/2- - B,

so that we have

E+m -(P%/2 - (s PH

2/ mE - . - (E+m) J mE

~(P%/2 - (5 - P? E+m

(E 4+ m) / mE 2/ mE

o
and E =/ P + m2 Thus in the free-meson case H' = U—l HU = p3E

so that each 51gn of the charge (energy) can be represented by a three-

component wave function,

In the interacting Harriiitoni.én of Eq.. .(2.34) we define "even™
operators as those containing p3 oOT 1, and '"odd' operators as those
containing P, Or py- For the nonrelativistic limit we require that H
be free of odd operators up to some order in the inverse mass. Successive
canonical transformations U, where .

U= S, s- ip30/2m ,
and the 0 are odd operators of the Hamiltonian, will effect the elimi-
nation of 0 from the Hamiltonian. An exe.mple of such a 0 is
ipz(g" -T-?)Z/m. The resulting wave equation is
idy/8t = (Hy + H)) ¥ (2.37)
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and
>2 — -
H0=e‘f)+m+ﬂ /Zm—(n2_)2/8m3+0(m 5),
H =- 5 § [gf+ &L Ex7-7x5)]
1 2mC _ ZmC

- eQ/4Q; VE,/8X; -1 Q/2H (7 - ) +0 (m7)),

where T =P - e A, The three téerms in H, are identified as a magnetic-

1
moment spin-orbit coupling term, an electric-=quadrupole coupiing
term, and a (non-Hermitian‘) Darwin term. Except for this last term,

the same Hamiltonian Hj + Hl is also obtained for spin -0 (Si = Q.. =0)

1)
and for spin - 1/2 (Si = % 0. Qij = 0) particles of arbitrary gyro-
magnetic ratio. The Darwin term is zero for spin 0 and -2 2—"? E

for spin 1/2. Except for these Darwin terms, which vangzslr{l(l:rl the
classical (’I{= 0) limit, particles of different spin are thus found to
obey the same nonrelativistic wave equation (2.37), once allowance is
made for the possibility of arbitrary magnetic dipole and electric
quadrupole moments in the higher-spin cases. This result suggests
that, except for the obscure and specifically quantum mechanical Darwin
term, the nonrelativistic wave equation is actually spin-independent
and that its form depends on classical invariance arguments only.

It is worth noting that a vector particle could have, except for
g = 1, a quadrupole-moment interaction proportional to the "anomalous
moment® g - 1, even if the specific form (2.27) had not been introduced.
Unless there are reasons (unknown) for preferx:ing g = 1 theory, a
term (2.27) is not to be excluded. As we shall see later, sucha q term
apparen’cly does not lead to any more divergent a form of electrorﬁagnetic
interaction than does the y term itself.

The factor 1/4 has been introduced before Q in H1 in order to
- make our normalization of the quadrupole moment strength conform to
that conventionalized by Ramsey. 10 Consider the meson to have its

spin along the positive z axis, and also take as a very weak electric
field
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E, =- (K/2)x, E, = - (K/2)y, E; = KZ,

where K is a small constant., For a meson with spin up ¥ = é_
that : ( ‘/ 2

<’P—4— 209 ; - 4‘> =2

- Ramsey defines the energy E of an electric-quadrupole moment q as

1
i}, so
0

E= - (a/4) (8E,/02),_

for p’értici"es with spin along the positive 'z axis. The quadrupole
2
moment is usually divided by the charge and given in units ¢cm , and
2
so the vector meson has quadrupole moment Q= - (g = 1 + q) (/H/mc) cm .

If we %on'sider the spin pi‘oj_e'ctidn along the z axis to be 0, then

U= (0] and

1 . .

aE,
« - eQ i -
(55=0 e Q5 s3_o>
""to' give  Qf (83 =0) = - 2Q, in agreement with the group theoretical
result '
2
’ _ 3m - S(S4+ 1)
Qm) = —ms .1 Q.

where S is the particle spin'and m the projection of the spin along the
'z ‘axis. The chargé' distribution can be considered as having the shape of
an ellipsoid of revolution centered at the origin, and thus Q = 4/5 7 RZ,

- where 1= (C2 “ a‘Z)/(C'Z + az'), R = % (aZ + CZ) is the mean square
radius, C is the axXis of the ellipsoid in the z direction, and a is

the axis perpendicular to the z direction. A positive quadrupole
moment corresponds to a cigar-shaped charge distribution, and a
negative quadrupole moment corresponds to a pancake charge distribution.
For g=1, q= 0, our result (2.37) reduces to that obtained by

‘Case, 11
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E. Classical Spin Equations of Motion

In the precedin,g section we noted that spinning particles of the
same gyromagnetic ratio have (except for the Darwin term) the same
Hamiltonian, at least to order l/mz. This suggests the possibility of
a classical spin-independent descfiption of the magnetic-moment pre-
cession. Bargmann, Michel, and"Telegdilz have recently given such a
description using a four-vector SH for the spin or magnetic moment.

In quantum mechanics the spin has, however, more often been described
as part of the angular momentum antisymmetric tensor Sl~W° We will
here derive covar1ant classical equatlons of motion in terms of the more
familiar SH » While the equations (2. 40) we obtain are apparently quite
different from the equations (2.42) obtained by Bargmann, Michel, and
Telegdi, the two sets. of equations are actually the same when SIJL and

S ,are related as they have to be. This will show then that covariant
spin-precession equations equivalent to those of Bargmann, Michel,

and Telegdi can be derived from classical invariance arguments by

using the more familiar S . formulation for the spin angular momentum.

We wish to generalize to an arbitrary Lorentz frame the equation
of spin precession

ds/dt = (eg/2m) s x H , (2.38)
which holds in a rest frame, by using an antisymrhetric tensor SHV'
.The tensor SHVV must have only three independent components, which
in a rest frame are Sl’ $55 3. .This condition is expressed covariantly

by the constraint : v

S, U, =0, | (2.39)
where U is the four velocity (U = - 1). It is readily confirmed that
the unique expres sion for the time variation of - Sp y consistent with the
- particle equation of motion dUH/d{r; e/m F‘;.va ~and reduqing to the
form (2.38) in a rest frame is

as, ,/dt = - (eg/2m) [S, F, -S, F T

av va = ap

- (e(g - 2)/2m) (U, Sf*«. - Uy 5 ]] Fﬁa a. (2.40)
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Here 7 is.the eighth-time.

Define a four-vector Sa by the relation

= - 1/2 e S U (2.41)

apv B Tuv "B’
wh1ch then also satisfies a supplementary condition

S U -=0.
bR

The time variation of de can be obtained from Eqs. (2.40) and (2.21):

ldSa/d'r - :;/2_ € [0, S, +Up S_HVJ_,

apvp - 7P _
= ie/4m € apvp [ gUB (SHX'F)\V- va-FxH)

‘—(g—Z)U [U. sv-UvspHﬂ]

oA I3
v— 1e/2m 6\ HVB H‘V ‘3), )\ ’

Wher'ev_ A 51 dA/d'T .. Now use the two relations

S =i e U S

pv pvap “a B 7
Suapy “urpo = [2an Opp 63"-.' Biy® %0 %pvt Pap Pva bop
“ 800 652‘*,,6‘-7"”* 8. o 6[3->\ 6vp - '6ao'6[3p N
to obtain
7 dsa/dT = e/m '[g‘/Z Fa;ﬁv - (g/Z - 1) S, FVHUH Ua:ﬁ (2.42)

This is the result obtained by Bargmann, Michel, and Telegdi. '°

" We now show, in particular, that Eqs. (2.40) and (2.42) both lead
to the same (spin-orbit coupling) | coupling between spin and momentum
in an electric field, and thus to order l/mz. For this purpose we ex-
‘press both equations in three-vector form and keep terms linear in the

velocity 7 From Eq. (2.40) we have
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- — —>

ds/dt = - eg/2m [ -sxH+(ExV)xE] - e(g-2)/2m [s(V- E)
_E (5-V) ]

—>

= eg/2m sx H+ e(g - Z)/Zm_gx (E X—{f) + e/ml_*":x (s x V) .

x (Ex V) - m/2e d?/'/dt s

~where V! =5 V" -V (s. V); and we have used \ =é5/m—ﬁ§, so that we
write :
d;/dt = eg/«?.m—s> xH+e (g=-1)/2.rn'_s> x (E x V) + m/2e dv'/dt

to terms linear in V. Now consider the case in which the spin changes
slowly compared with the velocity, and the velocity periodically takes
on the same values, so that we can drop the last term. The spin

. -2
precession result to order m then becomes

ds/dt = eg/2m s x H + e(g_l)/zmz“s,’ x (E x p) (2.43)

for particles with a positive charge. Equation (2.42) expressed in the

same way becomes

ds/dt = e/m [g/2sxH+g/2E (5 V) - (g/2 - 1)V &+ B) ]
=eg/2msx H+e(g - 1)/2m s x (E x V) + m/2e dV*/dt ,
where V"= - \—/’(; \_/"’) Thus, by dropping the last term in exactly

the same way as wé arrived at Eq. (2.43), we obtain the same result.
It is easily shown that (2.43) is identical with the result obtained from
the Hamiltonian Eq. (2.37) though the relation ds/dt =i [H,s] .
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+
I1L, APPLICATION TO DECAY pL ~e +Y

Felnberg6 and Gell Mann13 have argued that if there were a
B meson 1nfermed1ary in weak interactions, the photodecay of the
"‘rnuon }.L - e + Y would be allowed with a rate considerably larger
than that experimentally observed. The situation is far from clear,
however, since the ‘d'.eca'y" pe t yis actually strongly déependent on

‘the electromagnetic properties of this B meson.

A., (b~ ey) Matr1x Element

The Feynman dlagrams for the process |J. —~ e + y are given in
.. Fig. 1; the matrix element for the process p = e with emission of a

real or virtual photon is given by the expression’

M =i b (L) Ty Ay, (3.1)
where W, wp. are the electron and muon spinors respectlvely,
and ‘

_ . -3 /...
‘FH = - i {2n) - {1fo (YHK Y, K ) K + f o /H} K, .
. -3 . ext, g ’
' A = (2 2 F . 3.2
ir, A, = @) {OM /6 4 /o, H} 3.2

"Here K is the photon momentum, j the ruon mass, and

Foo=ilK, A -K A),

Yy
ext . o ’
JH .= 1‘=K'v,Fva
The form factors f, and f ‘which are functions of KZ, are responsible

0
for monopole radlatlon (m the Coulornb f1e1d of a nucleus) and d1pole

radiation respectively. The rate for p -~ e +y with emission of a real
photon is proportional to ’ f (O)I , and the rate for the coherent process

M+n-—-e+n is proportional to if (|~L ) + fl(uz)g .
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Fig. 1. Diagrams for decay p—e + y.
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B. Branching Ratio wp*e+\l/ wp—ke+v+\7

If the p > e conversion proceeds through B — v + B and
v + B = e, then the branching ratio between the unobserved decay

p—>e + vy and.the normal decéy can be written as

w .
p = w“ ~ety — = ('3a/’8"+r)z\}2, ' (3.3)
where a is the fine-structure constant, and N is a number independent
of the Weakecouplingvconstant’. Amplitude N generally ‘di;\c—serges
logarithmic_ally_ with A/m,f'the ratio of cutoff to the B-meson mass.
Feinberg~ and Gell-Mann'>. found (tacitly assuming unit magnetic
moment for the vector meson) that for A = nuclgon mass, and
m =~ K-meson mass, N =1, This value for N gives p = 10_3, v
which is 103 times the experimentally 'measﬁred upper limit for p. :

Aside from the mild cutoff dependence, there are tho reasons
in a one-neutrino theory as to why the above-calculated p need not be
taken as evidence against the B meson. We have already pointed out
that there is an infinity of free-particle B-meson Lagrangians which
differ in their definition of ™normal' magnetic moment. Also, if the
B meson exists it must have a large mass (greater than the K-meson
mass), and yet the gauge-invariance type of arguments for its presence
indicate that it should have a vanishing mass. This implies that the
B meson must have a rather complicated'structu\re, so that one should
keep an open mind with regard to its electromagnetic properties.

We have recalculated the pey vertex as a function of magnetic
moment (1 + v) e‘x{/ch and electric quadrupole moment Q = - (y+q)
(ﬁ/mc)z, with the interaction Lagrangian given by Eq. (2-28). After a '

lengthy calculation, the value of N ob‘cained19 is

N = (1-y - qu’/8m%) 1t | + (1 + 2y + qu¥/am®) 11

+(3-yu?/2m? + 11H2/6m2)1‘2 +(22/3 + 4v) (uz/m2)1‘3 +1092/m21’4»
' (3.4)
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where

. 2n 4
I =_}_1m d'q
2 2 2
u (@ -m7)

n+2 °

This i'esult is correct to order pz/mz, terms of order (}‘L/m)4 have
been dropped, and the electron mass has been set equal to zero. The
expression (3.4) for N is consistent with that obtained by Meyer and
Salzrnan17 and by Ebel and Ernst, 18 who, however, did not calculate
terms in }.L?"/m2 or q. Because q was originally defined divided

by the square of the boson mass mZ, and the muon mass is the only
other quantity of dimensions mass in our calculation, q always appears

in N multiplied by pz/mz.

C. Discussion of N

In our calculation of N, y and q appear only in the combination
2 2 ' 2 2 2
Y' = y+qr/8m” = (g-1) (1-p7/8m") - Qu7/8 . (3.5)

This means that the rate for p - e + y will depend only on this com-

bination of moments. This result is apparently fortuitous, since,in

19

the monopole form factor fO this particular combination does not occur.

1. Finite N

The integral I, is logarithmically divergent so that, except for

0
v' =1, N is formally divergent. Since

n
Ii - (')

n_  nn+l)’

for y! =1, we obtain

5,2
N=1+ £, (3.7

9m

(3.6)

which for any value of the boson mass leads to a branching ratio p > 10-3.

The cutoff independent calculation of N is thus in definite disagreement

with experiment.
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2, Logarithmically divergent N

N can be made vanishingly small by 'retainfi{ng the integral 10’ ‘
making it finite by the formal device of a covariant cutoff A . Con-
81stency then requires that all 1ntegrals I be calcﬁlated with the same
kind of cutoff W1th the Feynman cutoff factor + A 2/(q.2 - Azmz) we

obtain the 1ntegrals o
; . :h+ i n'len d4q AZ mZ : _ 5.8)

7z (q._z_m) - 2%m

—
0

-+ 8%/0 - 2% +a%/0 - 2% 10g %,

0

Y 2 2 2, 1
I =- 3 ——>=[28%loga“+(1+4%) (1 -09],

1-a%° "7 |

L= 5 21 3a%10ga%+0-2% 1+ 365291,

(r-a9% . oo ,
(“1A12 1o 20 4,2 2
= go—gpl1-4"+ 5 2A7(a%-1) (327 - 172

(1-A7)
| +430° - 77_) + 50% 1og A°] .

By def1n1ng y o 28 that value of y Wthh makes N vanish,

we find
ylo=A+Be, o | (3.9)
where ‘
A= (I +I 4+ 312)/(10 - 21)),
_ - : ' v_l . . . Lo ]
B = (I - 21))° (11/6 1, + 22/3 1, + 10 14).
- (1/21,-41,) (1 Caa) 2 +1, +3L),
2 3" Yo T T 0" " 2!
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2
and € = { u/m)” << 1;in fact, we expect the upper limit for ¢ to be
1/25, since m must be greater than the K-meson mass. "For two

representative values of A, say A =1, A = 2, we have

I, I I, I, 1, A B
K=1 0.5000 -0.167  0.084  -0.050 -0.033 0.700  -0.060
&=2 1.13 -0.296 0.125  -0.070 -0.044. 0.702  0.058

This table shows that yol is insensitive to both the cutoff A and the
square of the ratio of the masses ¢ (as long as ¢ is small). If
€ = 1/25, then for A =1, yol = 0.698 and for A = 2, Y01v= 0.703. In

the expression (3.4) for N, it is evident that we can write

N

1 1,
where
R

fl

I, +1; +31, +¢ (11/6 I, + 22/3 I, +10.1,) .

The term proportional to € in R will always be small in comparison

with the other terms, so that in R we can neglect € to obtain

2
_ A 2,4 2 2 2 4 2

The branching ratio p then becomes
2 1 1,2
p = 30./81T R (]. - Y /YO ) B

The quantity -3a/8w R? has been plotted by Ebel and Ernst, and varies
from 10—4 to 10_2 as A varies from 1 to 10.

. The branching ratio p, when it does not vanish (i.e., for
Yl# \(0’1)s is sensitive to the value of A. The combination of y and
q necessary to forbid the p —- e + y decay is thus certainly ad hoc.
On the other hand, we know of no criterion for fixing on a choice of vy

and q a priori.
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Now only one combination of the two parameters y and q is
involved in choosing yl to forbid the process p ~ e + y. Another_
different combination of y and g will determine the rate of the coherent
H-Zl-nucleus — e + nucleus process. In other words, we expect to be able
to choose y and-q so that fl(O) 2 and {fl(uz) : -+ fo(p.z)} 2_

are both small enough not to exclude the vector meson hypothesis.

D. Two-Neutrino Hypothesis

Another explanation for the absence of o - e conversion consists
in the as sumptionz'0 that two different neutrinos Vv ahd- vt .ar‘e involved
in p decay, v being coupled to the electron, and v' to the muon.
‘Since these neutrinos are different, they are not capable of annihilating
each other, and thus any B = e processes are strictly forbidden. The

implications of this alternative are not pursued here.
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IV. PAIR CREATION OF VECTOR MESONS BY PHOTONS
If the B mesons do exist as real intermediaries in the weak
interactions, then it should be possible to produce them in some way
amenable to expern'nent., Lee and Yang have proposed using high-
energy neutrinos to search for the onset of the semiweak process
v>e+ B or v >pn+ B in the Coulomb field of a nucleus. We here
consider the possibility of their pair production in the electromagnetic
process Yy —> B+ + B~ in the field of a nudeus. This latter process

has a cross section which instead of being semiweak ( 0 = 10—37cm )

- 2 :
is typically electromagnetic (o = 10 31 cm ). In this section we compare
qualitatively the advantages and disadvantages of these two methods of

production.

A. Discussion of Energy Dependencé of the Cross Sections

The cross sections for ¥Yector-meson processes have a much
stronger energy dependence than those for Dirac particles and, in
Born approximation, increase indefinitely with energy. We now in-
Vestigate the Coulomb scattering of vector mesons to illustrate that
this singular behavior is associated with the extra longitudinal spin

degree of freedom thatspin-1 particles pbssess.
. \

1. Plane-Wave Expans'ion‘

We begin with the plane-wave expansion of the vector meson

field U (X),

" ‘ 3 3 , '
U (X) = __%7_2_ >} d’p ¢ T a.r e—va X+ ¢ + rb+r e1P° X] ,
" (2m) r=1 | v2E " o b

(4.1)

where E is the meson energy, and :;._r, b’ are ‘res‘pectively the
destruction and creation.oper'ato.rs for partiéie and antiparticle of spin
polarization eHr . We choose the z axis in the direction of propagation
P sothat r = 3 denotes longitudinal and r = 1, 2 transverse polari-
zations. Then since epz =land & U =0, P-e¥f =0, for the

BoM
transverse polarization vectors Epl’ 2,
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GI;L]-’_Z = (?l} 2’0 ) , . B . . . . (4'2)

_where ? are unit vectors perpendicular to ﬁ; and for the longi: .. ...~

tudinal polarization vector

.e‘H3X= (E,—ﬁ/_,mp, 1P/m) . o | h o (4.3)

The covariant polarization sum is given by

3 ’
. : ) I r _ B .:' Lo : 2 . . -
rZil €|J. € = (BHV + PH Pv/m ) ' . (4.4)

while for the transverse polarizations only we obtain

2
z

T et = (6., - P, -P./PZ), i, j=1,2,3). o _ (4.5)
r=1 1 rd '

1)

© 2. -Vertex Operator. -

 For the matrix element of the vector meson current operator
between free-particle states of initial and final momenta P, \a_nd‘P' ,

corresponding to the emission or absorption of a photon of momentum

- K(P.= P! + K), we have

< P‘I JH' P>= - (e/2) (Zn?-3{EE‘z)'l/2 [(Pu + paH) e=e"' + Kv. 3
(e ll~l €, - e'vep Yl . (4.6)

(We are here specializing to vector mesons of unit magnetic moment

‘ and no quad'rupoi'é moment g =1, g =0).



-50-

3. Coulomb Scattering

For the Coulomb scattering differential cross section, cor-

responding to the diagram in Fig. 2, we find

2 2
2
% Z(Z s 7 ) ~ [‘*‘Pm)z (- e+ (Pren)i(a o)
4PV sin“6/2/4E

Q

Lt 4 (P E)Z(no e‘)z‘

+2(Pe!')(P'-e)(ne)(ne')y -4 (Pn)(P-e')(ne)(eret)

-=4(‘P.'ee)(e’°n) (P-n) (e"e'ﬂ , (4.7)

where primed and unprimed quantities refer to initial and final meson
respectively, n = (0,0,0,1) is the virtual photon polarization, and 6

is the scattering angle. If we sum over final polarizations and average
over initial polarizations we obtain, for the total differential c:oss

sec‘cionZl do T/dQ ;

i 222‘1; 1 14 (—\éiﬁ sin’ G]. (4.8)
ds2 4P“v® sin*g/2 by

Here yz = (1l - VZ/CZ)-I. In contrast to the case of spin-1/2 and
spin-0 particles dgo T/dQ does not approach zero with increasing in-
cident meson energy. We now separate out of the total cross section
(4.8) the separate contributions of longitudinal and transverse polarized
mesons,

(a) Transverse-Transverse Spin Transitions. When both the initial

and final meson are transverse-polarized, Eqs. (4.2) and (4.7) give

2 2 . :
d Z 1 - = 2
o - 7‘12 4 (6 - €)” . (4.9)
aQ  4P°V sin~0/2 |
Let op = z? al sin-4(0/2) (4PZVZ)"1 , the relativistic Rutherford

cross section. If we sum Eq. (4.7) over the transverse polarizations by

using Eq. (4.5), we find
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" Fig. 2. Diagram for Coulomb scattering of B mesons.
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do _ 1+ 2 o 4
_Q._,UR( cos” @), (4.10)

. &

- [transverse-transverse transitions]

(b) Longitudinal—Longitudiné.l Spin Transitions. When both the

initial and final meson are longitudinally polarized, Eqgs. (4.3) and
(4.7) give .
2
do/dQ = op cos 6. (4.11)

[ longitudinal-longitudinal transitions ]

(c) Transverse-Longitudinal Spin Transitions. Finally, when the

initial meson is transverse-polarized and the final meson longitudinally

polarized (or vice versa), we have

do /dQ = CRr (E2 + mZ)Z/(ZmE)2 (I:’" . ?)Z/P2 . (4.12)
By summing over the transverse polarizations we obtain
do/df2=o0, [ (E2 + m2)2/4m2E2]| sin 6
R (4.13)

[transverse-longitudinal transitions] .

After adding Eqgs. (4.10), (4.12) and twice (4:13) (to account for
both transverse-longitudinal and longitudinal-transverse transitions),
and then dividing the sum by 3 (the statistical weight of the initial
meson), we obtain Eq. (4.8). This calculation illustrates how, in
Coulomb scattering at least, the high-energy behavior of the vector
meson cross sections is due to the transverse-longitudinal and the
longitudinal-transverse spin transitions, the matrix element of which

increases indefinitely with energy.
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In the spin-1/2 case, the second term in the bracket of Eq. (4.8),
which is just the spin-correction term- to the relat1v1st1c Rutherford
cross section . OR: is replaced by (V/c) sin 0/,1 while for spin O there
is no such term. This comparison of the Coulomb scattering cross

' sections illustrates how th'e electromagnetic interaction of vector mesons
incre‘aseé' with increasing eﬁergy, 'contrar'y to the beha\}i'o'.r'. we are used
to in the spin-1/2 and spin-0 cases, This energy dependehce will
appear again in our discussion of the Compton scattering and pair-
production formulae, ' | ‘

The above considerations can be applied to the decay B —> e + Y.
If one calculates, N by assurmng a scalar intermediate meson  a

.'fll’llte value for N ‘is obtained, while: for a vector meson the value for
N is 1ogar1thm1cally d1vergen‘c, The reason for this is the energy
dependence of the longitudinalc-tvrahs"verse épin'treﬁéifioﬁs, which can
occur when the vector meson emits magnetic dipole radiation in spin-

flip transitions.

B. Photo-Pair Production of Vector Mesons

In this section we employ the Weizsacker-Williams appfoximation
to calculate the cross section for forward production of vector meson
pairs in the limit of High Iincident—photon energies., 23 An exact Born’
approximation calculation would be considerably more tedious and,
because of the unphyslcal quadratlc 1ncrease of th.e cross section with
i energy, would be, in any case no more reasonable physlcally . These
cross sections are only suggestwe, since at hlgh energles ‘the neglect

of vector-meson form-factor structure is unJustlfled

1. Welzsacker=W1111ams Ap(p_rox1mat10n

We present here a brief description of the Weizsacker-Williams
approximation. Consider a fast meson (V = c) moving by a fixed nucleus
of charge Ze, and use the reference frame in which the incoming
meson is at rest and the nucleus moves by with a velocity VO° In
this moving frame the field of the nucleus is contracted along the di-

rection of motion of the nucleus and can be considered to consist of
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virtual quanta directed along this direction. At a distance r from
the nucleus the nu.mber' Iv of tiuanta per unit fréquency interval per

unit area is given by
2 2 '
I, =2(Ze)"/mx for v <EO/anr ,
I =0 for v > EO/Z'nmr )

where EO is initial meson energy in original frame. - These quanta

are scattered by the meson, and we find those that have energy
, eEO (0 <e 1) after the scattering in the original frame. In the

moving frame let K, and K be the momenta of the incident and

0

scattered quanta respectively, and 6 the angle between EO and K.

The energy of the scattered quantum in the original frame is

¢eE =K(l-V_cos 6)(l - de)—l/’2~ K(l - cos 6) Eo/m.

0 0
B (4.14)
By the Compton relation we have
K, = K/(1 - (K/m) (1 - cos 6) ),
and thus, by Eq. (4.14) ,
K=me (1l - cos 6)-1, Ky=m ¢ (1 - e)-1 (1 - cos 0)_1
(4.15)

Consequently the bremsstrahlung cross section (from which we can ob-
tain the pair production cross section) for emission of a quantum of
energy between ¢ Eg and (e + de) EO is

B | 2 z%e?

’ 1 K e
¢(e)de = = f Zﬂrdrj d(cos 6) — » — 5
€. _Ja L1 0 (1-5)2 ‘7-,-Zr2

(4.16)

-
oy 0.
2la
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where do/dQ is the Compton cross sectlon, d is the smallest
impact parameter, i.e., the nuclear radius, K and Ko are gwen by

Eq. (4.15), and ' ' X

R=2E, (1-¢)/m%, 7= 'rvrnz(e/v‘EO’) (1-¢)71.

2. Compton Effect for g = 1 Vector Mesons

In order to find the pair-production cross section from Eq. (4.16)
it is necessary to evaluate the Compton cross section for the particle
in question. The Compton cross section for vector mesons of unit
magnetic momeént (g = 1) was calculated by Booth and Wi.ls-on,2
In the rest frame of the initial meson their result, corresponding to

the diagrams of Fig.’ 3, is

2 KK
do 1 2, K 2 0 2
= = r, (=) 1l +cos 6+ (7 - 16 cos 8 + 3 cos™ 6)
w2 to KO [ y 12m2 SR
+ (29 - 16 cos 6 + cos 9) (K + K /48 mz] , (4.17)
where K, KO are the final and initial photon momenta respectively,
0 is the scattering angle, and r, = a/m .is the classical '"meson”

0
radius.

Compton Effect for g=0 Vector Mesons

It would be 1nterest1ng to see the dependence of the vector meson
Compton cross section, and hence pair-production cross section, on
’ vzarB'it‘rér‘y m'agrretic moment and quadrupole moment, but the inclusion
“of 'such terms would in general make the calculation very difficult. By
way of illustration, however, we are able to do the caleculation in the
"special»_case Y= - 1 {(q = 0), whieh corresponds to g=0. The matrix
element for Compton’ scattering correspondi'ng to the diagrams of Fig. 3,

is obtained from the Lagrangian (2.28) with y = - 1, Q = 0. We find
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(c)

MU=-22735

Diagrams for Compton scattering of B mesons.
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4
\Yp— ie27 6(P+K—PO—KO) .
11 2(2m) 7_—_ 0
KKOEEO B
p P P P
P ePO 60 _P'GOPO € —ep Ep
PO K.0 PO K 0
P e PK € P
+ 0 00 0 P. e"K: € e P
2 P. K
m 0
P : . ¢ P .
+PO et K eo . ip P EOKO €
2 0o - P K ’
m 0
P p
€ _ - € € €
0 0 P _ . P 0 ; Pk .
+T (PO KOE € K GP €)+ o PEO KOE

where eop, P are respectively the initial and final photon p‘olarization
four-vectors and the notation is evident from Fig. 3. If we now choose
the initial meson to be at rest, and the photon gauge so that

P, eop =P, ¢ = 0, then "W\ simplifies considerably, a simplifi-
cation that occurs only for g = 0. In this frame (which is just the
frame required for the Weiszacker- Williams approximation) the dif-

ferential Compton cross section is

2 2
2 K™ +K
d 1 2, K 2 2
E(;:_Zro (K) [1+cos 6 + ——-—29——-(5+cos 8)
0 3m _
KK ‘
——;%- ——%cos@(l-éos 6))-'}}.
m

(4.18)
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4, Compton Cross Sections For. Spin 1/2 and Spin 0 °

By way of comparison we quote here the Compton cross-sections

for both spin 1/227‘ and spin 0. 26 - They are

2

de _ 1 _2,K .° 2,0 . :
= 5 r, (=) (1l +cos 8) ' for spin0,
a8 2 0 KO
' 2 K - K
do _ 1 2 K 2 : 0
.m. = 7 I'O ( -K-O—) [1 + cos ] + KO— + —? - 2]

f_of spin 1/2 .

By comparing these two results with Eqs. (4.17) and (4.18),  we see

that the cross section for vector mesons has a much stronger ener
dependence than the cross sections for spin 0.and spin 1/2, and.als

that the energy dependence for both g =0 and g =1 in the vector

gy
o

meson case is the same.. This increased energy dependence for spin-1

particles is caused by the longitudinal-transverse spin transitions as

in:Coulomb scattering,

5. High-Energy Limit of Pair Production of Vector Mesons,

By using Eq. (4.17) in Eq. (4.18), we are able to calculate the

bremsstrahlung cross section and hence, by the substitution rule,

the pair-produtction cross section, The bremsstrahlung cross section

was obtained by Christy and Kusaka28 for this case g=1, q = 0.
For the total pair production cross section for mesons with

g=1, we find

. a?(ez)? o log> 2K, + 9 log? 2Ky
T mZ 12 mz.d 36 mzd m d
2K,
+1l6log [ ——| -4/3

(4.19)
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This result is valid only for high incident-photon energies, Ko/m >>1;

terms of order m/K_ were dropped-in the expression (4.19). In O

0
d is taken to be the !'root-mean-square" nuclear radius in the

2 v
equivalent uniform-charge model of the nucleus. ? This quantity is
13

1 1/3 2w o1n"
relatedto r, A"/ ", the range ( =1.3x 10

0 cm) in the exponential

model by
P Lo 1/3
=y 3/5 T, A ,

where A 1is the nuclear mass nﬁmber.
If we now use Eq. (4.18) in Eq. (4.16), the leading term in the

pair-production cross section obtained is

o = 4,2 (ze)? %o
9T 3 —Z Z

m m d.

" We thus find that the energy dependence of the leading term is the same
. for g =0 as for g=1. Although this result may be fortuitous, it
suggests that the leading term in the energy dependence of the cross

section is not very g-dependent.
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C. Discussion of the Proposed Experiment

The photoproduction‘of‘ B-meson pairs is in many experimental
ways éomplementai'y to the proposed high-energy neutrino production.
The neutrino reac_tion" vVv—>pn+ B has a small cross section (about one
count per hour per ton of detector is expected), but ‘enjoys' the ad-
‘vantage of freedom from competing semiweak processes. For pair
production, on the other hand, the cross section is very much larger,
but a background of even more likely electron:iagnetic processes must
be contended with. It is this problem of discrimination against back-
ground that we wish to discuss qualitatively in this section.

Although the neutrino production of B mesons requires high-
energy particle accelerators, the electromagnetic pair production is
feasible at any synchrotron facility possessing the requisite threshold
energy ZmB. The neutrino production experiments con'stitute part of
a large program of high-energy neutrino experiments, while the photo-
production experiments constitute part of a rather different program of

high-energy electromagnetic experiments.

1. Electron Background

The background in the pair-production experiment consists mainly
of directly produced lighter-mass pairs: ete™, utu”, oTe7, KTK.
Because of the dimensional factor aZ.Z(eZ/mZ) in all the pair-production-
cross sections the electrons will, because of their small mass, provide
by far the greatest background contamination. At high energies the

ratio of total cross sections for B and e pair production {?(OT)B is

given by Eq. (4-16) ), and (0..) = a.ZZ(eZ/rn)2 28 log ath )2"7‘ will be
T e 9 me )
(o) 2 K ‘ 2K
Ortlg 3 Mo 0= " 0
- 16 m 2 v/ m
(-GT)e B m Bd e

0
mass 500 Mev.

. . -5
= 2 =
At K Bev this gives (o'T)B / (O'T)e 10 for B mes.ons'of
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The probab1l1ty that an electron will be produced in pair

, product1on with energy E and at an angle gréater than 6 is approxi-
‘ mately?’og /E ) (3/8) (1 - cos 8)” 1, while the heavier B mesons,

‘ and more 1mportantly their decay products, will be producéd rather
1sotroplca11y Unfor"tun-'atel:y, without knowing the mass of the assumed

B meson, we cannot be more quant1tat1ve about these kinematic factors.

2. B-Meson S1gnatures

. -The pair- produced B mesons decay promptly 1nto " +v, e+ v,
and other products. The B leptomc decays w1ll therefore lead to
.e.++.e--+-"+". H++}J~ +v+v, ++ |~L_+V+V,and_e+p.+v+v
.with about equal frequency. rThls p - e +’ svignature in half the decays
is unique to B-pair productmn J B

- The muons and electrons from B productlon are polarlzed
because of the semi weak decay, while the electromagnetlcally pro-
duced electroos and muons are not. The products of B deoay will
- also be enefgetically distinguished. fro_m directly pfoduced muons and

electrons.

i
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. -, V. CONCLUSION
. The decay W —.e +y is certainly very important for the inter-
. mediate-vector .meson hypothesis. in the.weak interactions if we assume
the two neutrinos in ordinary p. decay are the Vsa'trr‘le, - As we have shown,
absence of the p > e + y decay mode does not _proyid.e conclusive '
evidence that the B-meson hypothesis is incorrect, §iﬁce by a judicious
combination of magnetic dipole and electric quadrupole moments, the
decay amplitude can be made to vanish for both p - e + y and the
coherent conversion H +n - e + n. . The rather ad hoc nature of
this solution is unsatisfactory, but lack of any criteria for fixing the
electromagnetic properties of the B meson prevents us from definitely
excluding the intermediary meson solely because of the failure to ob-
serve [ — e conversion processes.

A definitive test for the existence of the B meson is, of course;,
its production either by high-energy neutrinos or by photons in the
Coulomb field of a nucleus. Although there are serious background
difficulties in the detection of pair production of B mesons, the
cross section is large enough that, if B mesons exist, this process
should ultimately be observed. If neither of the proposed production
experiments is successful, then the attractive Yukawa mechanism for

" the Fermi interactions will have to be rejected.
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