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ABSTRACT 

The information-content of a track is analyzed with respect to the 

prime track-variable, g , and to the particle velocity on which g depends. 

Quantities are operationally defined that are applicable to emulsion, bubble-
/ 

chamber or cloud-chamber tracks inclined with arbitrary dip angles. The 

theory is developed of the projected linear structure of such particle-tracks. 

Previously derived connections between the true value of g and measureable 

track features are reviewed. A new and independent estimate of g based on 

'the mean blob length is introduced. The two independent q_uantities, mean gap 

length and mean bJ.,ob length, each yield measurements of g . These are com-

bined into an estimate of maximum likelihood. Tt is argued that in a practi-

cal sense this exhausts the information-content of the track. The statisti-

cal error of this result is evaluated. It is found that correct utilization 

of the information in the measured blob lengths greatly reduces the error. 

Suggestions are made regarding techniq_ue for the reduction of error in g 

and in particle-masses estimated from grain-density measurements. 
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I. Introduction 

INFORMATION-CONTENT OF PARTICLE-TRACKS 

Walter H. Barkas 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

May 1, 1961 

An exact treatment of the statistical structure of particle-tracks 

1 
in nuclear-research emulsions recently was attempted. Many of the proofs 

appear to be valid also for bubble tracks and tracks in Wilson chambers, 

and they have had considerable experimental verification. 2'3, 4,5,6,7,S 

In this paper we recapitulate these results and find additional 

track q_uantities. Then we construct a likelihood function of the grain

(bubble-,droplet-) information in the track. This function yields the 

expectation value of the grain- (bubble-,droplet-) density, and also meas-

ures the statistical reliability of the result. By means of it we learn 

what are the optimum conditions for observation. 

In the case of emulsion, the linear density, g
0 

, of silver-halide 

crystals that develop is the primary track variable. In a bubble chamber, 

g
0 

represents the linear density of sites on which bubbles grow, and in a 

cloud chamber it is the linear density of points on which liq_uid condenses. 

(By ngrain" hereafter we shall mean the q_uantity whose density is g
0 

irrespective of which of these instruments was used.) 

It is asstimed that the conditions of observation do not change along 

the track. No variations of the sensitivity, illumination, etc. are con-

sidered, and possible distortions of the track not dis·cussed. In this paper, 
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. too, we limit the investigation to the linear track structure. Further 

information is contained in the track width, in the delta rays, and in 

the scattering. Moreover, it is sometimes possible to decrease the ef-

fective track saturation by letting track-elements diffuse radially be-

fore counting them. These techniQues are left for other theoretical 

studies. 

The connection between the grain density and the particle-velocity 

usually is an empirical one. The dependence on velocity is strong. The 

grain density over a wide range tends to be proportional to the inverse 

SQuare of the velocity. 

The problem now posed is how best to determine g
0 

from the measure

able features of the track granularity. Besides this immediate goal, we 

seek criteria for the improvement of emulsion QUality. We wish to know, 

in general terms, how to alter the emulsion in manufacture to increase 

the information-density attainable. The parallel problem in bubble chambers 

is how to adjust the temperature, the age of the tracks, the amount of ex-

pansion, and the optics so as to obtain the optimum bubble-image size as 

well as bubble density. In a Wilson chamber, the gas pressure, the expan-

sion ratio, and the age of the tracks are among the variables, the adjust-

ment of which also can optimize the information density existing in track 

photographs. 

II. Statistical Geometry of Particle-Tracks 

In this section we review and supplement operational definitions 

and mathematical results of reference (1) that are needed for this analysis. 

., , . 
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A track is seen as a somewhat indefinite locus of grain-images 

distributed generally along the path of the particle that produced it. 

The grain-centers are displaced by small random amounts from the most 

probable particle trajectory. The images generally are not all of the 

same size. Some grains occult others or fuse with them. Owing also to 

imperfect optical resolution~ clusters of several unresolved grains may 

be present in the image of a track-segment. Such clotting of the grain-

images always causes a loss of information about the grain density, but 

by analysis we can greatly reduce the information-loss in partially satu-

rated tracks • 

Let (1!/2) - 8 be the angle·between the direction of motion of the 

particle and the line of sight. Then o is the "dip angle" in unprocessed 

emulsion. (Since all particle trajectories are inclined more or less, we 

shall from the outset treat the general case of tracks with arbitrary dip 

angles.) For the analysis, let the track grain-images be projected on a 

plane perpendicular to the line of sight. All measurements are to be made 

·in this plane • 

A "resolution distancen, a , is defined as the minimum distance be-

tween centers of two grain-images at which they can be resolved into two 

objects separated by a gap. If c is the distance, projected on the most 

probable particle trajectory, between the centers of consecutive track 

grains, and if this exceeds the resolution distance, a gap of length c - a 

is said to exist in the track. The grains are not all of the same size, 

but a mean value, a , of the resolution distance exists. The q_uantity a . 

is also called the ~grain diameter, but it has more significance than 

this name implies. When referred to emulsion, for example, the effects 
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.of several diverse quantities are lumped in this parameter. Among these 

are the original halide-crystal size, the amount .ofphysical development 

sustained by the silver grains, and the optical resolution of the .observer-

microscope instrument. When certain equipment is used, a is even affected 

by the reaction time .of the .observer, 

A "cluster of class c
1 

n: is a segment of track bounded by gaps with 

lengths exceeding £ , and in which no gap longer than l exists. The 

density H(£) .of such clusters is also equal to the average number of 

gaps with lengths exceeding £ in unit track length. The cluster den-

si ty when £ = 0, has the special name "blob density" or "gap de.nsi tyn. 

The blob density is symbolized by B = H(O). 

An important measureable track quantity is the lacunarity L . This 

is the average fraction .of the track segment that consists of gaps. Thus 

L dH d£ 
d£ . 

The quantity 1-L is known as the track opacity. 

(1) 

It was shown, as a fundamental result of reference (1), that the 

density of clusters .of class c£ is 

. H( £) -g(a: + £) ge (2) 

where £ is the projected gap-length, g = g
0

sec o, and g
0 

is the value 

that would be found for g were the track not inclined. 

1~e .original treatment was carried .out for primary emulsion grains 

that were traversed by the moving particle. Because of the finite non-

interpenetrating volumes .of the silver-halide crystals, this proof 

t • 
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re~uired close analysis. The extension to secondary grains, the positions 

of which are in effect unrestricted, was an obvious step. In bubble- and 

cloud-chamber tracks the g-sites are almost dimensionless, and have a 

Poisson distribution. For them, E~. (2) also applies. 

Inclination of the track shortens most gaps and closes some entirely. 

Typically a grain-center is displaced from the particle trajectory. This 

makes it possible for a gap to appear in an inclined track that, in accord 

with the definitions above, would not have been counted as a gap were the 

track not inclined. The effect of the inclination on a track of grain 

.density g
0 

is to produce a grain structure-pattern ·in its projection that 

is statistically e~uivalent to that in an uninclined track having a grain 

density g . This exactness of the correspondence between the structure 

of the projection of the inclined track and a flat one of higher grain 

density was not brought out in reference (1). 

The same track with different optical resolution will have an ob-

served structure corresponding to a changed value of a , but of course, 

g remains unaltered. The theory of the track structure must contain this 

invariance. 

The gap density in the track projection is 

B = '"ga 
ge ' ( 3) 

and the lacunarity is 

L = 
-ga 

e . (4) 
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Quantities like L and B that depend on g are often-referred 

to as ionization parameters. Several other t~ack quanti ties also have s:Lmple 

expectation values. For example, that for the number of grains per blob is 

ega. The expression 1 -e-ga for the track opacity is also the probability 

for no gap to be left between successive developed grains. While these 

expectation values are exact, the complete distribution function of L or 

B can be derived only approximately by introducing a blob-model. (See 

Appendix.) 

The product (a+ £}H(£) is a universal function of (a+ .e)g . Any 

observation of H(£), therefore, is a measure of g 

The expectation value, (£), of the gap length is equal to ljg. If the 

measured mean gap length is designated £ , we are led to an important estimate 

of the grain density which we shall call g1 : 

( 5) 

A new result of this work is the utilization of the mean blob length to 

estimate g The expectation value, (b), of the blob length is (eag- l)jg. 

A second important estimate, g
2 

, therefore can be derived from the observed 

mean blob length b : 

= b (6) 

The numerical relation between g and the mean blob length is given in 

Table I. 

For what follows it is essential that g
2 

be independent of g
1 

Their relationship, therefore, must be elaborated. For and 

g2 to be independent, it is necessary that no information about 

the blob-lengths be obtainable from the gap lengths, and that the 

,,,. 

., 
~· . 
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blob lengths suffice for a measure of g when no knowledge exists 

of the gap lengths. These conditions are satisfied. When one 

measures the gap lengths, he gains no information about the blobs. 

A measured blob length, therefore, is entirely new information. 

Moreover, the value g
2 

can be calculated from the mean blob 

length while making no reference to the gap lengths or to the 

length of the track-segment (which contains both the gap- and 

blob-lengths). 

A peculiarity of the exponential gap-distribution is that, if all 

gaps are shortened by the same amount, the mean gap length remains unaltered. 

It follows from this circumstance that whatever the distribution of the 

amounts by which gaps are shortened, the mean gap length is unaffected. 

This is a very useful deduction. It means, for example, that the growth 

of grains and bubbles and displacements caused by their crowding do not 

affect the mean gap length. This quantity, 7 = LjB, therefore is.an, ex-

cellent measure of g when there are many gaps in the track. Such a 

measurement also does not require knowledge of a . On the other hand, 

when the grain density is high, it is the mean blob length that contains most 

of the grain-density information. To use it, however, the quantity a must 

also be known. 

An estimate, gB , of the grain density is found from the blob density: 

= B . 

Another, ~ , is obtained from the lacunarity: 

= - (ln L)/a . 

The estimates and are combinations of and 
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Long blobs are distributed exponentially• Their distribution is 

b approximately qe-q db in the interval of blob length between b and 

b + db . The blob-coefficient, q , is related to an estimate, gq , of 

the grain density by 

g 
q 

agq 
e . - 1 -ag q 

A measurement of gq contains part of the information in g
2 

• 

The gap coefficient6 ' 7, which we designate- gg , is 

::: 

ln [H(£1 )/H(£2)] 

£2 - £1 

(7) 

Although this fact was not known at the time that it was introduced, gg 

also is an estimate. of the true grain density. It contains part of the 

informa-tion in 

I 

As g is varied, B passes through a maximum, B when ag = 1 , 
max' 

so that 

ex (8) 

A measurement of B under normal observing conditions is a max 

correct procedure for determining ex, at least for tracks with 

Another measure of a is o: = - (L/B)ln L -- an importan~ formula. 

The cluster-lengths or blob-lengths have a somewhat more complex 

behavior than the gap-lengthf3. The probability that the next j developed 
j 

(1. - e-ag) grains that follow a developed grain will leave no gap is 

The mean length of a blob consisting of j + 1 grains takes the form 

a+ j~ , where ~ is the average length added to a blob by the addition 
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of a grain. Then the expectation value, (b) _, of b 

and 

(b) = a + (eag - l)~ , 

eag - l - ag 

g(eag - l) 

since (b) = (eag - 1)/g 

. l 
~s 

(9) 

(10) 

Let the distance parallel to the particle path between the centers 

of the first and last grains in a blob be x • The freq_uency with which 

blobs of j + l grains occur relative to those with j grains is l -
-ag e • 

Therefore, the fraction of blobs having b - a greater than x varies like 

e-qx for x >>a . 

There are two kinds of linear-structure elements, blobs and gaps, 

that alternate in a track-segment. The elementary track-cell is comprised 

of a blob and an adjacent gap. The track is generated by a repetition of 

this unit. The length of a cell is a random variable eq_ual to the sum of 

two random variables: the blob-length and the gap-length. The distribution 

function of each depends on g • Their observed distributions provide all 

the information regarding g • 

In the course of this work it was surprising to discover that the whole 

information-content of th'e gaps resided in the mean gap length. Thus the 

mean gap length is an example of a sufficient statistic in the terminology 

of Sir Ronald Fisher, who is 1920 first found this most efficient estimate. 9 

.A sufficient statistic contains all the information in the observations from 

which it is derived. The mean gap length is such a statistic because _the gap-

lengths have an exponential distribution (see below). 
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The estimate g
1 

derived from the gaps, therefore, completely ex-

hausts their information content relative to g . The variance of 

based on N cells, has the irreducible minimum of g
2 
/N . 

The situation with respect to the blob lengths, on the other hand, 

has complicating elements. The blob-length distribution function depends on 

the grain-size distribution, and even for idealized models, an analytic 

blob-length distribution is difficult to derive. One may deduce, however, 

that the blob-length distribution falls exponentially for long blobs, and 

when g is large, the distiibution is approximately exponential. The 

blob lengths contain the bulk of the track information only when g is 

high, but when it is h.igh, the mean blob length approaches a sufficient 

statistic. Now, in addition, if a large number of blobs are used to make 

the estimate of b , by the central limit theorem
10

, b will approach a 

Gaussian distribution. Its distribution function then is written: 

JN exp [-
N( b- (b)) 2 

J f2n 2 
O'b 2o b 

2 in 
where O'b is the variance of b ' and N is the number of cells the track-

t\. 

segment. This expression describes the distribution of b , given (b) , or 

the distribution of (b) , given a measurement, b . The distribution of 

expectation va.+ues is assumed to be such that a priori every (b). is eq_ually 

probable. 

Since the distribution function of b is intractable for any except 

artificial models, the calculated moments of b beyond the first must be 

approximations. The variance of b , however, is a readily observed q_uantity. 

Moreover, obja is a function of the lacunarity that may be meas1rred on any 

. ... 
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tracks. We therefore can choose to consider both a and ob/a as 

calibration data describing the instrument. 

The mean blob length and mean gap length provide independent and 

efficient11 estimates and of g We now wish to combine them 

so as to obtain the best estimate of g . 

III. Maximum Likelihood Estimate of Grain DenFity 

We have distribution functions for the gap lengths, and for the mean 

blob length. Then the likelihood function11 of the configuration of gaps 

and blobs observed in N cells can be constructed as follows: 

p 

.. l/2 

= ;b [ ~~J 
N - 2 

gN exp [-g ~i] exp [ ·-N( b; (b)) J 
l 2ob 

(11) 

The sufficiency of the mean gap 
N 

,We have . merely to replace 1: £ . 

length as a statistic now is easy to prove. 

I l 1 
by N£ The only gap information that 

appears in the likelihood function then is £ • 

A particular value of g in Eq_. (ll) maxjmi.zes P • When N is 

suHiciently large (see-appendix b), this 

value, g 1 , is the one of maximum likelihood. The function P also estimates 

the probability that a value of g other than the mode could be the true 
I 

value. Any desired confidence intervals can be quoted with a knowledge of 

this function. 

Let W = ln P . Then the condition of maximum likelihood is oW fog = 0 , 

or 

l - £ + 
g 

b - (b) 
2 

ab 

d(b) = 
dg 0 . (12) 
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d(b) = 
dg 

are supposed to differ little from each 

other, so that a solution g' of Eq_. (12), valid through the first order 

in 

with 

1 

-- E , will suffice. 

g' = wgl + (1 - w)g2 = 

w L2(ln L) 2 
= 2 - w (1 - L + ln L) 

The weighting of g · and 
1 

The solution is the linear combination 

g2 - WE (13) 

(a~) 

is not critical, and any reasonably 

good measurement of L may be used in the expression for w • 

When an empirical value of ab has not been obtained, a theoretical 

estimate must be used. In the appendix, limits between which lies have 

been estimated for any physical tracks. One estimate based on a completely 

12 random grain-spacing in the blob has been made by H. Stapp • This model we 

shall designate Model 1. In reference (1), 2 ab was obtained for a completely 

ordered spacing. The results using this model, designated Model 2, are also 

given. All real,tracks should.exhibit blob-variance behavior intermediate 

between these extremes. The more inclined the track, the better it should 

be approximated by Model 1. '!·' ·' 
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Eq_uation (13) provides a best estimate of g'. It remains to ealculate 

its reliability. The second derivative of W with respect to g provides 

a measure of the width of the probability peak. The likelihood function, 

Eq_. (11), approaches a Gaussian as N becomes large. For a Gaussian, the 

variance of g' is given by 

2 
a t g 

-1 

( a2~) , 
og 

(14) 

at the maximum of W . We adopt this expression for the error. Then we 

find for a track length A : 

= 
w 
L 

(15) 

This function, corresponding to the theoretical limits (Model 1 and· 

Model 2) for 2 ob , is also included in Table I. In order to demonstrate the 

substantial gairt effected by introducing the mean blob length, a column is also 

given that is the calculated uncertainty remaining in the grain density when 

the mean gap length alone is used. It can be seen that a very important 

amount of information has been salvaged by utilizing the blob information 

especially in near-saturated tracks. Moreover, the req_uired measurements are 

of ty;pes that are efficiently made w-lth automatic track analysis eq_uipment. 

The req_uirement that N ·be large (say 10 or more) for the Gaussian to 

represent ~ell the mean blob length distribution, seldom limits the appli-

cability of the theory. 

In the error estimates, no allowance has been made for the uncertainty 

of a or for systematic errors of other sorts. For minimum error, the 

calibration measurements of ex and are to be made, independently of 
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and 

played, 

g
2 

on other track segments. If a faulty measuring technique is em

-(L/B) ln L (=a) may vary with the dip of the track. In other 

circumstances a could depend slightly on g . For example, in a bubble 

chamber the energy required to produce the bubbles might so lower the temper-

ature in the vicinity of a saturated track that the bubble-size is reduced. 

For these reasons it is good technique to make the calibration measurements 

on tracks similar to the one in which g,' is to be measured, and, of course, 

with the identical equipment. If no separate estimate of a is available, 

the likelihood function can~e considered to depend on g and a. Then its 

maximum as a functioc1 of both parameters may be found. There is generally a 

13 loss of information when such a procedure is necessary, however. 

To measure b , one could observe only the track and gap lengths along 

with the blob density. Then b would be estimated from (1 - L)jB. A wise 

check would be to measure the blobs themselves, because measurement errors 

can tend to be systematic. This should especially be done if and 

fail to agree as well as expected. 

The results of reference (1) giving statistical errors in ionization 
on 

parameters were based~inexact assumptions and are superseded by these results. 
. I 

The possibility that the instrument sensitivity may vary with track 

position, particularly with depth, has previously been mentioned. This 

effeat must be eliminated by empirical correction. Each estimate of g 

requires multiplication by a factor f(r,g), where r represents the point 

coordinates. As indicated, f may also be a function of g • 

Some nUmerical data drawn from grain, bubble, and. droplet measurements 

are now cited in order that the reader may be oriented as to orders-of-magnitude. 

For Ilford K.5 emulsion, using optics of high numerical aperture, a is 

about 0.48 microns. At the minimum of ionization g ~ 2000 per centimeter 

~--' 

j .• 
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(5000, perhaps, if the emulsion is hypersensitized). In K.5 emulsion g 

saturates at a value of 60,000-70,000 per centimeter for singly-charged 

particles. 

In a propane bubble chamber a can be about 0.03 centimeter, and at the 

minimum of ionization, g may be 20-30 per centimeter. In a bubble chamber 

g does not saturate, but for g > 100 per centimeter the lacunarity becomes 

very low. 

On a photograph in which a cloud-chamber track image is reduced to 

1/10 actual size, a~ L0-3 centimeter, and at the minimum of ionization, 

g is perhaps 250 per centimeter on the film. There is no saturation of g 
•( 

in a cloud chamber and the droplets can be allowed to diffuse. When droplets 

are individually countable, the present methods of analysis do not provide any 

additional information, but the diffused image of the track then limits the 

accuracy of a curvature measurement. 

IV. Mass Estimation 

A principle of mass-ratio determination that uses grain-density infor-

mation alorte is the following: 

Segments of track having the same initial and terminal grain densities 

have lengths in proportion to the masses of the equally-charged particles 

that ~roduced them. 

A corollary is: If tracks of stopping particles of equal charge have 

equal mean grain densities, the track lengths are proportional to the particle 

masses. 

As an application of the preceeding theory we shall apply this corollary. 

Let the track of a particle that comes to rest be broken into segments of equal 
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projected lengths. ;Such s.~gments are to be short enough so that the. average 

grain_density in one of them is negligibly different from that at its center. 

For protons in emulsion, a length of about 100 microns might be suitable. 

We let the segment-length be unity in what follows. 

The grain densities in different parts of a track are not known equally 

we:)...l. They must be weighted by their reciprocal variance&:. Th1;s, for n un-

_inclined segments: 

n 

~ (gtja2r). 
g· l 

~C(n) "" 
i""l 

,o· n 

I (l/a
2

,) 
g i 

i""l 

The expression (g'fa~:\ for the 

the measured gt in this cell is 

L. 
l 

w. == p(L. ) ' 
l 

l 

.th 
l cell can be designated 

g~ 
l 

Now from Eq_. (15), 

(16) 

p. 
]_ 

and 

(17) 

where L. and w. are the measured values in the ith cell. 
l l 

Suppose that when the particle-mass is known we symbolize the grain 

density by y and reserve g for the grain density in the track of the 

particle of unknown mass. Then for a known particle, the weighted mean 

grain density, y
0 

, in the terminal n cells (length, 

track is 

n . 
E sec 6.) of its 
1 l 

v • 
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n 

( I sec oi) y . := 
0 

1 

Here the argument 
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h 

I p.cos o. 
l 

1 
n 

I (pijyi) 

1 

n 
( 2: sec o. ) 

1 . l 

l 

,··· 

(18) 

of the function Y
0 

is the track 

length and, as for g , the subscript zero indicates that the ~uantity is 
0 

the calculated value for an uninclined track. The angle o. 
l 

is the incli-

nation angle of the track in the ith cell. The average of y
0 

for many 

particles we designate 1
0 

fixed argument. 

Each average is understood to be made for a 

The track of an unknown particle is also to be segmented into portions 

of unit projected length. ~1e available length is broken into n' segments 

like those comprising the track of the particle of known mass. In each 

interval, g and o are measured, Then p cos o and pfg are determined. 

Using these numbers we calculate a single number, 

nt 

n' I p. cos o. 

g0 ( L sec oj) 

J J 
1 (19) := nr 

1 I (pjfgj) 
1 

To apply the corollary condition above, the value of 1
0 

or 1
0 

is tabulated or graphed as a function of its argument. Then we find what 

value of 
n 
2: 

i=l 

n 

sec o. 
l 

y
0 

( 2: sec o.) 
i=l l 

makes 

nt 
or eq,ual to g

0 
( 2: sec o.). 
i=l J 



-18-

When and are eq_ual, the ratio of the track lengths, 

nr 
L: sec 0. 

j=l J 
n J is the estimated mass-ratio. The mass-ratio limits corresponMng 

L: sec o. 
i=l l 

to a confidence interval of ± r standard deviations are found from the 

following condition: 

g ( ~rsec o.) 
0 . l J ;]= 

± 
/ nt : ) .., -l/2 

+ ( E (p_.fg.) J 
\ j=l J J 

(20) 

This error estimate neglects the energy-loss straggling. 

Means for mass estimation that combine grain density with multiple 

scattering or curvature in a magnetic field have been developed, and are 

especially valuable if the particle fails to come to rest. The result is 

always improved if the properly weighted combination of and is 

used in preference to another estimate of g • Of course, it may not be 

necessary to segment the tracks of high-velocity particles if the velocity 

changes little in the observed portion of the track. On the other hand, 

it could be advisable to segment tracks in bubble or cloud chambers when the 

track-to-camera distance and the track aspect change along the track. 
. c-• 

Thanks are owing to Dr. Henry P. Stapp for his efforts to construct 

mathematical track-models, and for very useful discussions on the subject [• . 

of likelihood theory. 
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(a) 
Mathematical Appendix:~ ~lob Length Variance 

Let y
1

, y
2

, ••• , yn be the projections on the particle path of the 

distances between successive grain centers in a blob. The expectation value of 

is {y) , and its variance is 

= 

2 cr 
y 

= of + (2a(y) + cr2 
) y 

The mean-sq,uare blob-length is 

DO 

+ (y)2e -ga I n2(1 

n=O 

The mean blob length also can be calculated. 

(b) 

Then 

DO 

= 
n 

(a+ Yl + Y2 + ••• + yn) ) (1- e-ga) 

DO 

- or + (y)e -ga L ~(1 - e -gat . 
n=O 

can be found, and in general, 

This formula neglects the variance of the diameter of a single grain, which could 

be included as an added term, but is hardly justified. 12 Stapp has made calcula-

tions based on a model in which the grain-centers have a Poisson distribution, and 

in which each grain has the diameter a . To avoid interpenetration of the grains, 



- ;L () -

they can be thought to be displaced from the particle trajectory. 

we calculate 

(y) 

(y2) 

and 

2 
a 

y 

exge-etg J 
l - e -ag 

2{1 -ag -ag) - e - <Xge 
2 2 -ag - a g e 

=' 
g2(l - e-ag) 

[ 2 2 -ag 

J 
_l__ 1 _age 

2 2 
g (l - e-exg) 

' 

2!. 2 When expressed as a function of the lacunarity, the quantity crb,a 

written 

l - L2 + 2L ln L 

L
2 (ln L)

2 

For this model 

then can be 

Stappts model (Model l) permits the maximum variance of y • The non-

interpenetrability of crystals in emulsion and the finite size of bubbles in a 

l:n,1bble cluster t·ends to reduce this variance •.. Barkas+ calcUlated for a model 

(Model 2) in which the term containing 

the expression 

(l - L + L ln L) 2 

L
2
(ln L) 2 (l - L) 

cr2 was omitted. 
y 

This yields for 

1 The two models probably represent opposite extremes, and in actual tracks 
results of numerical 

intermediate behavior should be observed. ThJ calculations for these models are 

included in Table I. 

'. 
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(b) Gaussian Approximation Error 

Let m be the number of grains in a typical blob. The expectation 

value, (m) 
' 

of this number is eag 
' and an estimate m derived from 

mean length, b of N blobs is 
ag2 

For Model 2, the distribution 
' e 

function, P(m, (m)) of (m) can be written down exactly. It is 

P(;;;:, (m)) 
= {(m) _ l)N(m- 1) 

(m)Nm 

In this expression m is a sufficient statistic. 

- (m) We put m - = E Then 

- 2 2 N(b- (b)) 
--" 

E 
2 2 

2ab 2a E 

the 

Then also the distribution function P(m, (m)) can be developed in powers of 

E It takes the unnormalized form 

with 2 ffi(ffi - 1) 
0 e - N 

N (2m - l)E3 

:3ill2 (ill - 1)
2 + ... J . 

Whereas the modal value of (m) is m , the presence of the second term 

in the brackets indicates that the mean value of E is not zero. This term 

measures the deviation of the Model 2 distribution function from the assumed 

G . (2iii-l) 
auss~an. The mean value of E is approximately N On the other 

hand, its statistical uncertainty, aE = [m(mN- l) ] 1/ 2 , always exceeds the 

above systematic effect when N is greater than 4 + (1/ m(m- l)) . 

When m is small, N must be large, but then the weight given the blob 



information is negligible.- The Gaussian, therefore, is probably always a 

satisfactory approximation for N > 4. Model 2 describes the real blob 

structure well enough so that this result can be applied with confidence. 

,_ 
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TABLE I 

The important trac~ q_uantities are tabulated.,as·functions of the track lacunarity. The table also re

lates them to each other. The q_uantity Acr
2
/g gives: (a) the error for the maximum likelihood solution using g 

Model l for ab ) (b) the maximum likelihood solution using Model 2) and (c) the error when g
1 

alone is 

measured. The corresponding values of w and p are also tabulated. 

Combined gl and g2 g1 alone 

{b) (a) Model l 

l 
(b) Model 2 (c) 

L ag aB 0: w Aa
2
/g p w Aijg p ! Aa

2
/g g g g 

0.00 00 0.00 00 0.000 00 0.00 0.000 00 0.00 00 

0.05 2.9957 0.1498 6.342 0.143 2.86 0.350 0.139 2.77 0.361 20. 

0.10 2.3026 0.2303 3-908 0.212 2.12 0.472 0.202 2.02 0.495 10. 
0.15 1.8971 0.2846 2.987 0.271 1.81 0.553 0.255 1.70 0.587 6.67 

0.20 1.6094 0.3219 2.485 0.326 1.63 0.614 0.304 1.52 0.659 5.00 
0.25 1.3863 0.3466 2.164 0.376 1.51 0.664 0.349 1.40 0.717 4 .. oo. 

' 
0.30 1.2040 0.3612 1.938 0.425 1.42 0.7o6 0.392 1.31 0.765 3-33 
0.35 1.0498 0.3674 1.769 0.471 1.35 0.742 0.435 1.24 0.805 2.86 

o.4o 0.9163 0.3665 1.637 0.517 1.29 0.774 0.476 1.19 0.840 2.50 
0 ,~l5 0.7985 0.3593 1.531 0.561 1.25 0.803 0.517 1.15 0.870 '2.22 

0.50 0.6932 0.3466 1.440 0.604 1.21 0.828 0-558 1.12 0.896 2 •. 00 
0.55 0.5978 0.3288 1.369 0.6-46 1.17 0.851 0-599 1.09 0.918 ·1.82 

0.60 0.5108 0-3065 1.305 0.688 1.15 0.873 o.64o 1.07 0.937 1.67 
0.65 0.4308 0.2800 1.250 0.728 1.12 0.893 0.682 1.05 0.953 1.54 

0.70 0. 3567 0.2497 1.201 o. 769 1.10 0.911 0.724 1.03 0.966 1.43 
0.75 0.2877 0.2158 1.158 o.8o8 1.08 0.928 0.768 1.02 0.977 1.33 

o.8o 0.2231 0.1785 1.120 0.848 l.o6 0.944 0.812 1.01 0.986 1.25 
0.85 0.1625 - 0.1381 1.079 0.886 1.04 0.960 0.857 1.01 0-992 1.18 

0.90 0.1054 0.0949 1.054 0.925 1.03 0.973 0.903 1.00 0.997 l.ll 

0.95 0.0513 0.0487 1.027 0.963 1.01 0.986 0.951 1.00 0.999 1.05 

11.00 0.0000 0.0000 1.000 1.000 1.00 1.000 1.000 1.00 l.OOC 1.00 
-~----- ~ 
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LEGAL NOTICE -------------; 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the information con
tained in this report, or that the use of any information, apparatus, method, 
or process disclosed in this report may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method or process dis
closed in this report. 

As used in the above, "person acting on behalf of the Commission " 
includes any employee or contractor of the commission, or employee of such 
contractor, to the extent that such employee or contractor of the Commission, 
or employee of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract with the Commis
sion, or his employment with such contractor. 


