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It has now become apparent that the strength of the "strong nuclear 

interactions" of the strange particles must be considered comparable to that 

of the pion-nucleon and nucleon-nucleon interactions, despite the fact that 

strange-particle production occurs with relatively small branching ratio 

even at the highest energies studied. This conclusion is particularly 

evident from the data on A-hypernuclear binding energies1 and on the 

2 low-energy reaction processes for strange particles, as will be pointed 

out again in Sections III and v. It is also indicated by th~ occurrence of 

resonances with substantial half-widths in a number of strange~particle 
. ' 

systems, for example in the K--p system3 at approx 1850 Mev, the K-~ 
4 - 8 system at approx 75 Mev, and the ~-A 

6 -
system5' ,7 at approx 1485 Mev. 

With such strong interactions, the restrictions of the unitarity condition 

--that is, of probability conservation--onthe cross sections for competing 

processes and on their energy dependence are of the greatest importance, as . 
we know from experience in the nonrelativistic domain of low-energy nucle_ar 

reaction phenomena. Their effect on the energy dependence of reaction 

• w amplitudes and cross sections is especially marked in th~ neighborhood of .. ' 

* Work done under auspices of the Uo Se Atomic Energy Commission. 

t 
Permanent address: Enrico Fermi Institute for Nuclear Studies, University 

of Chicago. 
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new two-particle thresholds where,. for example~ they give riseto thecusp 

behavior now pbserved8 particularly in the angula~ distribution of the 

:n: + p -+A+ K0 reaction at the t:: + K threshold. 

In this situation it is particularly appropriate to describe these 

reaction processes in terms of the elements of the reaction matrix K 
' 

since the scattering matrix constructed from them necessarily satisfies the 

unitarity conditions. The theory appropriate to the definition and 

application of the reaction matrix is reviewed briefly in Section II, with. 

special· reference·. to coupled two-particle systems and to the occurrence of 

and description of resonant states in this formalism. In Section III (and 

Appendix A), the analysis of the low-energy K--proton data is reviewed in 

terms of this formalism, and the "K-nucleon virtual bound state" interpre-

tation of the :n:-A resonance is compared with the experimental data. 

Although the reaction-matrix formalism is quite general, it has 

proved convenient in the dispersion-theory treatment9,lO,ll of elementary 

particle processes to adopt a specific method of solution, which involves 

separating the scattering matrix for a state of definite angular momentum 

and parity into two factors -1 ND , each with characteristic analytic 

properties as functions of the·barycentric energy. The function D may 

be determined explicitly from N, and the singularities of N are directly 

related to the dynamical mechanisms which lead to the observed processes. 

The function N either may be regarded as a function to be determined 

experimentally or, more satisfactorily, it may be used to include in the 

form of the scattering amplitudes those specific features which would arise 

from particular mechanisms that could influence these reaction processes. 

The use of this formalism, and its relationship with the reaction-matrix 

formalism, is discussed briefly in Section IV, with special reference to 

. ~ ... 
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the description of resonant states. These remarks are illustrated in 

Appendix B by discussion of a simple example. 

In Sec. V, the present evidence bearing on the validity of the 

12 13 global symmetry hypothesis of Gell-Mann and Schwinger is reviewed, and 

the interpretation of the ~-A resonance as an analogue of the (3,3) isobar 

state in the ~-N system is discussed and compared with the data • 

.. 

.. 

. , .•. 
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II. TEE REACTION MATRIX AND RESONANCES FOR MULTICHANNEL SYSTEMS 

We consider explicitly a system with n two-particle channels 

labeled i = 1, • • ",n, .channel i de~cribing a spinless and a spinor particle 

of rest masses m1 , Mi respectively, with c.m. momentum k .• 
l 

For the total 

energy E we have, then,, 

E = + ( 2.1) 

The elements of the reaction matrix K are now defined in terms of 

the asymptotic form of the wavefunction for an incident wave of unit 

amplitude in one channel, together with standing waves in all channels. 

Explicitly, with orbital angular momentum ti for channel i, the elements 

of K are defined by the form of the wavefunction v. ( i) 
J 

for the .J_th 

channel: 

where A 
i 

sin (k n 1t ) . ( 1t ) j r - hj 2 cos kjr tj 2 
k.r 

J 

+ A. K.. Ai ----~>~.--~,;;;;;._.-
J Jl r 

is ··a normalization coefficient given by 1/2 ('Jt p .. /k.) 
ll l . 

and 

(2.2) 

is the .i th diagonal element of the phase .. space density (which is diagonal - ' 

in the present representation), namely: 

= 
M. 

l 

E (2.3) 

.. 
The wavefunction (2.2) corresponds to a configuration in which there is an 

.. 

incident ·~ve (the part of exp( i_!!i • !) with or~i tal angular momentum ti) "' t' 

in channel i, together with a standing wave of cosine form in all channels. 

The matrix element Kij may be written in the form 



• 
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K,. 
~J 

= 
.tj 

R .. kj 
~J 

-7-

' 
(2.4) 

where the two energy-dependent factors remove the leading term of the energy 

dependence of K .. 
~J 

in the neighborhood of the threshold energies E.' 
~ 

for channels i and j. When both channels i, j are open, that is 

when E >E., E., we have; from the hermiticity of the Hamiltonian, 
~ J 

= 

If, in addition, the Hamiltonian is invariant with respect to time reversal, 

the elements of the K matrix are real, and K is a real symmetric matrix in 

16 this region. 

The K-matrix elements are analytic functions of the total energy, 

with a branch cut at each threshold energy E. where .t. is odd. The 
~ ~ 

elements R. . are real and do not have these branch cuts at threshold 
~J 

energies. When the energy is sufficiently far below threshold in channel i, 

even the R. . will generally become complex when the dynamical singularities 
~J 

are reached: 17 this last point is brought out rather clearly in t~e 

dispersion formalism discussed in Section IV. It is in dealing with this 

region of unphysical energy values that the dispersion formalism has great 

advantage over the present discussion and there is no doubt that this 

formalism, or some modification of it in the same spirit, will become the 

more appropriate procedure for the discussion of the more complicated 

situations which will arise in the future. 

For multiparticle channels, the defining boundary conditions are 

more conveniently expressed in momentum-space variables (see Ref. 14). The 

energy E, the angular momentum, and the parity are then no longer sufficient 
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to characterize the configuration completely, and further continuous variables 

are necessary to characterize the sharing of the total energy and the total 

angular momentum among the particles. In this case the label i becomes 

continuous and the reaction matrix becomes an integral operator. 

In principle, for complete theoretical expressions with the correct 

analyticity properties, it is necessary to give the K-matrix elements for all 

possible channels, open or closed. In practice, however, we aim only to 

obtain expressions valid over some limited energy range; in this case, 

attention may be confined to the open channels and to those channels whose 

thresholds lie close to this energy range, as discussed by Dalitz and Tuan. 2 

In the cases discussed here, the three-particle channels either are weak or 

have thresholds outside the range of interest, and we shall not have to 

consider multiparticle channels explicitly. For this reason, and because 

of the mathematical complexity of situations involving multiparticle channels, 

we shall not go i~to further detail about this here. 18 

The formal relation of the scattering matrix T to the reaction 

matrix K is given by the equation 

T :::: 
..;1 

K[ 1 - be p K] 

where p denotes the matrix of phase-space densities. In terms of T, the 

cross section for the reaction i_~ j in a state of total angular momentum 

J and definite parity is then given by 

a(i-+ j) :::: 
41(2 

1 ) Mi • (J +-
k. 2 E. 

1 1 

2 
I ( i I T I j ) I pjj • 

For any two-particle channel i, the elastic scattering in this 

channel may be described by a complex phase shift o., such that 
1 

( 2. 7) 

,_ .... . 

~ ' . ., 
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i8. 
( i I T I i ) == e ~ sin 8 i /sr. P ii , (2.8) 

or by a complex scattering length Ai = ~i + ibi , such that 

= ' 
(2.9) 

and 

= A./(1 - ik. Ai) • 
~ ~ 

( 2.10) 

We will now distinguish channel i from the other channels f and subdivide 

the reaction matrix K as follows, 

K = 

where ai denotes ( i I K I i ) , 

elements and ( i I K I f ) for f I 

~. denotes the row matrix whose 
~ 

i, ~.t its Hermitian conjugate 
~ 

(equal to the transpose of ~i , if time-reversal invariance holds), and 

( 2.11) 

7i denotes the submatrix obtained by excluding from K the row and column 

labeled i. In other words, ~i includes the elements of K describing 

transitions from i to all other channels, and r. consists of all those 
~ 

elements describing transitions between the channels f • Then the 

following expression
21 

relates ai + ibi to these matrices, 

a. + ib. 
~ ~ 

M. 
~ 

E 

In a similar way, the transition amplitude may be expressed in the form 

1 
< i 17ni If>, 

(2.i2) 

(2.13) 
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where the first factor results from the damping effect of the competing 

channels on the incident channel, and the second factor is the appropriate 

element of the transition matrix ~. from initial state i · to all final 
' l 

states, which includes the effects of the scattering processes in the final 

states, namely: 

/?Zi ::: . (2.14) 

The imaginary part of Ai is directly related to ~i , since 

' 

so that we have 

(2.16) 

Finally, an important expression for the partial cross section for the 
I 

reaction i-+ f may now be obtained, using (2.13) and (2.7), 

a(i -+ f) == 
1 41£ Mi . 1 

( J + -2 ) 0 - ... ------:~-----::::' 
ki Ei (1 + k.b.) 2 

+ (k.a.)2 
. l l l l 

(2.17) 

::: 

{ } 

M. 2 

1C 1 2 E
1 

j(i 17lli I f) I pf 
2 ( J + -2) ( 1 - T}. ) ..;;;;___;__b..-....;;;; ___ ...;:._ 
k. l i 

l. 
' 

where the. last bracket may be abbreviated as {bif/bi} ., and bi == L.ffi bif • 

This expression (2.17) has a simple physical interpretation. The first 

factor is the total absorption cross section for incident par~icles in 

~· 
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channel i, for ~. denotes the usual absorption parameter 
J. 

~ = exp(-2 Im o ) = i . i 
2 I ( 1 + ik. A. ) I ( 1 - iki A. ) I . 

J. J. J. 
(2.18) 

The second factor then gives the fraction of the absorption transitions out 

of channel i which lead to the fin~l channel f. 

We shall now restrict our discussion to the case of coupled K-nucleon 

and ~-hyperon channels of definite J, parity, and isotopic spin Io For 

channel i, we take the K-N channel, so that a denotes the diagonal 

element of K for the K-N channel, ~ is the row matrix (~~' ~A) for 

the transitions K + N- ~ + Y, and 7 is the submatrix of K referring 

to the ~-Y channels. The scattering length a + ib now refers to the 

K-N channels.- According to (2.16), its i~ginary part, b, is proportional 

to the square of /?.t, the transition amplitude defined by (2.14) carrying 

the K-N channel to the ~-Y channels. Its real part, a, is given by 

a = ~{a E- ( 2.19) 

Unless 7 is particularly large, the values of a and ~/E are rather 

close when the imaginary part b is small. 

In the low-energy region for the K-N system, the simplest possible 

assumption for the s-wave interaction is that (a + ib) is constant. This is 

generally referred to as the "zero-range approximation" and corresponds to 

the assumption of a constant K matrix and the neglect of the variation of 

'.1 Py with energyo This is not unreasonable if the (KA) and (Ia:) parities 

are odd, since the ~-Y channels are then s-wave; however, for odd (KY) 

parities, the centrifUgal barrier effect causes the elements of ~Y to 

have the energy dependence Byqy (at least for sufficiently low momentum ~) 
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where ~ is the c.m. momentum in the relevant ~-Y channel, and the 

elements to have the form Cyy, ~ ~, , where B and C denote 

smoothly varying real functions of E. In the latter case, it would be 

surprising if the imaginary part of A did not have quite appreciable 

energy dependence. 

An effective range theory has been developed for the representation 

of the K matrix by Ross and Shaw.22 For this purpose, the appropriate 
. -1 

quantity to consider is the reciprocal matrix K • Assuming first that 

2. ~ 0 for all channels, the effective range expansion improves on the 
l. 

assumption of a constant K matrix by making a linear approximation to the 

energy dependence of -1 
K ' 

-1 -1 
K ~ K

0 
+ B( E - E

0
) = A + BE • (2.20.) 

The discuss;t.on given by Ros.s and Shaw makes it apparent that the symmetric 

matrix R, given by 

R = M -1/2 B M -1/2 
r r ' 

( 2.21) 

where the matrix M of reduced masses for each channel has been introduced 
r 

for dimensional reasons, may be interpreted as an effective range matrix in 

exactly the same sense as is well known for the one-channel case, and also 

makes it plausible that the off-diagonal elements of R are generally 

somewhat smaller than the diagonal elements in the representation in which 

"the phase-space density p is_ diagonal. With (2.6), the T matrix is then 

given by 

T. = 1 (A + BE - i~p)- • (2.22) 

'.' 
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More generally, the quantity a·ppropriate for expansion in powers of E is 

the matrix (k£)K-1(k£), where (k£) denotes the· diagonal matrix with 
£. 

elements (ki) ~, thus 

( 2.23) 

We remark next that the discussion given above (following Eq. 2.11) 

of the structure of transition amplitudes (i I T I j) · is equally valid if 

the label i is extended to refer to a group of channels; in this case the 

label·. f refers to all the remaining channels. For the channels i, the 

submatrix Tii of the scattering matrix T may be obtained by exactly the 

same methods (see Ref. 21), with the form 

(2.2h) 

where a is the matrix analogous to (2.12), 

a · Q, ( 1 · · ) - 1 
Q, t = a. + ~~ ~. - ~~ Pf r. Pf ~-

~ ~ ~ ~ 
(2.25) 

It is of interest to note that the expression (2.24) has again the form (2.6), 

and that a plays the role of an "equivalent reaction matrix" for the chan-

nels .i considered alone. In general, this nequ:!.valent reaction matrix11 

~ has complex elements, although it remains a symmetric matrix. Physically, 

this feature corresponds to.the use of a different boundary condition for the 

channels f from that used for channels · i in the defini ti·on of the 

reaction matrix K, namely that there are now only outgoing waves in all 

the channels f. For energies such that some of' .the channels f are open, 

this modification has no particular virtue. 23 How.ever, if group i is 

chosen such that at energy E all the channels i are open and all the · 

channels f' are closed, then this modified boundary condition is especially 
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appropriate to the physical situation. In each channel f, the c.m. momentum 

is then imaginary, with the value kf = i I kf I, and the condition of 

outgoing waves becomes the condition that the wavefunction falls off 

exponentially with increasing distance in the closed channels f. Further, 

since ipf ,; - 'Pf in this energy range, the matrix tZ is real and symmetric 

and does have the form.of a reaction matrix for the channels i. We shall 

24 /7 refer to c...u as the "reduced reaction matrix" for channels i. Finally, 

we remark that, if the channels f were isolated from the channels i 

(that is, the off-diagonal elements ~. of the K matrix were replaced by 
. ~ 

zeros) and with interactions corresponding to a reaction matrix r., the 
~ 

eondition for a bound state in the system of channels f is given bY- the 

eigenvalue equation 

This may be seen in a number of ways. For example, in the case that .matrix 

~i is taken zero, the scattering matrix Tff reduces to 

1. (1 -
~ 

(2.27) 

and Eq. (2.26) is the condition for Tff to have ~a po.le on_j;he real axis 

below all the thresholds Ef for the channelS f. Alternatively, Eq~ (2.26) 

represents the condition that it is possible, 

to form a linear combination V = Ef cf t(f) 

Eq. (2.2), such that the asymptotic form of v 

for an energy value E < E f , 

of the states v(f) given by 

is exponentially damped in 

all channels f. We note that Eq. (2.26) is also the condition for the 

vanishing of the denominator of the second term of expression (2.25) in the 

energy region E < Ef • 
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In our present example of coupled K-N and ~-Y channels,this 

1 transformation to the reduced reaction matrix is appropriate for the discussion 

of the ~-Y channels below the K-N threshold Et.= ~ + ~· The scattering 

matrix for the ~-Y system then takes the form 

) -1 
i~ Py r (2.28) 

where, in terms of the matrices a, ~' r defined above for the K-N and 

1r~Y channels, the reduced reaction matrix r . has the form 

( 2.29) 

The eigenphases of the scattering matrix are most conveniently 

defined in terms of a modified matrix T' , directly related to T· by the 

equation 

where the matrix Kl 1/2 K 1/2 = 1!p p is again a symmetric matrix and the 

submatrix of K' referring to open channels is both real and symmetric. 
i8 s The eigenvalues of T' may be written in the form e sin 8 : for the s 

(2.30) 

submatrix of T' referring to the i open channels, these i eigenphases 

are all real. In the present review, we define a resonance energy Er as 

an energy E at which one of these eigenphases passes through a value 

1 (n + 2 )~ , for some integer n. From the relation between K and T, 

it then follows that, at these energies E , the reduced reaction matrix . r 

KR for the open channels becomes infinite. The corresponding resonant 

state is the eigenstate of the scattering matrix.correspondingto this 

particular eigenphase. 
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For a multichannel system, these resonances can arise in two distinct 

ways: 

(a) The complete reaction matrix may have a pole in E at the real 

energy value E • r 
This is the situation usually discussed· in nuclear 

reaction theory. In this case, each of the matrices r, ~' and a in 

Eq. (2.25), for example, will have a pole at the same enel'gy value E • r 

A simple example of this situation is given at once by the e:ffective

range approximation of Ross and Shaw.22 The matrix 

K = (A + BE)-l 

has poles only on the real axis,· since (A+ BE) ·is a symmetric real matrix; 

these poles occur at energy values for which det(A + BE) =. 0, and are then 

common to all elements of K. Of course, only those energy eigenvalues 

which lie within the region of valid,ity of the effective range expansion 

may be expected to represent physical resonances. 

A well-known example of such a resonance is the (3,3) ~-N resonance, 

for which 

K = 
. 2 
k 
E" 

-1 
r(E - ~) ' 

where 2 f ~ 0.08 denotes the pion-nucleon coupling constant and the effective 

range parameter r has been determined empirically. 
-

(b) The reduced reaction matrix KR may have a pole occurring in . 

the terms which .. arise from the closed channels,. that is, at energies for 

which det(l + ~ jpf ri) is zero. At these energies, elements a 1, ~i' 

and 7. of the complete reaction matrix K do not become infinite. The 
~ 

physical interpretation of the-se resonances is that they would correspond 
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to bound states in the closed channels f if it were not for their coupling 

to the open channels i, as a result of which they appear as resonances in 

the open channels i. For this reason we have referred to these resonances 

as "virtual bou,nd-state resonances".25 The possibility of such resonant 

states obviously arises only in multichannel situations. Their occurrence 

is due primarily to interactions existing between the particles in the 

closed channels and they will ,generally be located not too far below the 

threshold energy for a new channel. 

These possibilities can be illustrated conveniently by reference to 

the coupled K-N and 'JC-Y systems. For E < Et = ~ + nx ' the reduced 

reaction matrix r Qf Eq. (2.28) becomes 

r = 1 ' (2.32) 

where ~ denotes the modulus of pK and we have assumed that time reversal 

invariance holds in replacing ~t 
,... 

by ~ • A resonance of the first type 

will occur in this energy region if a, ~' 1 have a ~anpole on the real 

axis in E. This would occur for the 1C-Y state (cf. Section V), 

if the 'JC-Y interaction is analogous to the 'JC-N isobar interaction, as 

envisaged in the global symmetry hypothesis. This situation could occur 

either above or beiow the K-N thresholdo Although there would, in either 

case, be a component of the K-N state in the resonant state, this would 

not be a dominant component here. A resonance of the second type is possible 

only below the K-N threshold and will then appear as a pion-hyperon 

resonance. It can occur only if a is such that (1 + 1C ~a ) vanishes 

between the 1C-A and the K-N thresholds. This requires that a be 

negative and sufficiently large. If the imaginary part of the K-N 

scattering length A is small, this condition is essentially equivalent to 
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the . requirement that the real part of ·A be large and negative o In order 

that the resonant phase shift pass through 90 deg rapidly enough to give rise 

to a marked resonance bunpin ~-Y scattering, it is necessary that the 

coe:fficient (11: i3"Prc t3) of the resonance term in (2.32) be sufficiently 

small: this ls equivalent to the requirement of a sufficiently small value 

for the imaginary part of A at theresonance energy. 

The eigenphases of the ~-Y system are most conveniently obtained 

by the diagonalization of 

po = ' 

whose eigenvalues give the values of tan B 
s 

Near a resonance of the 

second type, where the term 7 may be neglected in first approximation, 

(2.33) 

this diagonalization is particularly simple. In the neighborhood of resonance, 

the resonant eigenstate has the form 

'If = 
r 

and the resonant phase shift is given by 

tan 8 = 
r 

2 2 )-
rt(t3z Pz + t3A PA ~ 

+ c 0 

The correction term c may be obtained nea~ resonance by taking the 

expe~tation value of I' 0 in the resonant state (2.34), thus 

In this region, the nonresonant phase shift is given by 

( 2._35) 



... 

UCRL-9580 

tan 8 
nr 

(2.37) 

These expressions are valid, of course, only when the resonance energy lies 

above the ~-~ threshold. If the resonance energy lay below this threshold, 

it would be necessary to take p~ = +.i p~ and to include the ~-~ channel 

among the closed channels f. 

If t3~ an~ t3A. are relatively small, and . a: re_latively _large_ (and 

negative), the phase ~hift 8r passes rapidly through 90 deg at the resonance 

energy def~ned by_the relation. (1 +~-~a:) = 0. The shape of the cross 

section in the resonant state then depends_ on the value of C , as is well 
r 

known in the parallel case of resonances opserved in ~he scattering of low· 

energy neutrons by nuclei. "Poten:tial sc~::~.ttering"_in the pion-hypero!l 

syste~, which the ~erm Cr represe~ts, would have quite .a marked effect on 

the symmetry of the resonanc~ c?rve._ If C were large, the cross section 
; r . ' 

would generally fall _tQ zero . for an ~nergy_ near __ the resonance energy before 

rising to the reson~nce maximum. For the .observed ~-A re~onance, the 
/' 

degree of symm~try _in the reson~ce curve shows that there can be at most 

quite moderat; po~ential scattering, indic~ting that the term Cr (and 

correspondingly the elements of r) corresponds to quite a small phase 

angle. The curves shown in Fig. 1 illustrate :the effect of potential 

scattering on the ~-A. ~catteri~g for a particular sit~ation. 

A~ resonance, the structure of the resonant state is_ given by the 

wavefunction (2.)4), fromwhich we conclude the following expression for the 

branching ratio- ~/A for the resonant state, 
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2-
( I ) ( r/ r) ( r/. r) E- A r =. t3z t3 A . Pz p A " 

When the resonant state _is produced, the nonreson$Ilt, 1C-Y state orthogonal 

to (2 .. 34) will generally _be produced also. At resonance the matrix elements 

for these two contributions _will be ~pproximately 9~ d~g out of ppase so that, 
. 

provided_the resonance is reasonably sharp, there_will be little interference 

between the resona~t and nonresonant A (or E) production, and production 

through the resonant state will generally be dominant~ In this case, the 

(E/A) ratio .observed in-proQ.uction processes_ may be generally expected to 

be given by the ratio (2 .. ;8), although it,is_quite possible for deviations 

to occur in special_ circumstances. 
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* III.. THE K-NUCLEON INTERACTION AND THE INTERPRETATION OF THE Y RESONANCE 

AS A K-N BOUND STATE· 

The data available on the scattering and reaction cross sections for 

K--p collisions at low energies (lab momentum~ 200 Mev/c) are still rather 

limited.29 For the K- mesons that come to rest in liquid hydrogen, the 

branching ·.ratios for the reactions 

K - - + + p .... ~ + 1( 

~0 0 .... + 1( ( 3olb) 

... ~+ + 1( · ( 3.lc) 

A 
0 .... + 1( ( ).ld) 

are known. From the arguments concerning the role .of the Stark distortion 

of the K--p atom in these K--p capture processes, as discussed by Day, Snow, 

and Sucher, 30 we assume that these ratios are characteristic of the K-N 

s-wavf!! interaction at .zero energy!' From _these, we obtain three parameters"' 

of interest, 

( ).2) 

the relative intensity of the I = 1 and I = 0 final pion-hyperon states 

in zero-energy K--p capture,. 

( 3.3) 

the proportion of I= 1 absorptions .which lead to A. hyperons, and ¢t, 

the relative phase between the I ·= 0 . and.. I = 1 . amplitudefii for the ~ + 11: 

reactions •. As discussed in Append~x A, the'" :para.meters e. and . ¢t are 

rather poorly determined, mainly because.of the dominance of the I.=. 0 
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reaction channel over the I = 1 channeL 

In the (lab) momentum range 100 to 200 Mev/c, total cross sections 

are available :for K-.. p elastic scattering, :for the charge-exchange reaction 

0 
+p-+K +n, ( ).4) 

and :for the absorptive reactions (3.1a) and ().lc) _leading.to charged hyperons. 

The total absorption .cross section is not yet available; separation between 

reactions ().lb) and ().ld) is difficult .and has not yet been achieved in 

this ~nergy range. For elastic scattering, the statistics are su:f:ficient to 

show that the angular, distribution is quite isotropic, except at :forward 

angles,where the Coulomb scattering becomes important. In the angular 

distribution at 175 Mev/~ the Coulomb-nuclear interference is quite weak, 

showing that the real part of' the elastic scattering amplitude is rather 

small at this energy. The value obtained at 175 Mev/c is Re(:f) = 0.3 ± 0.3 

:fermi, corresponding to a weakly constructive interference, but a more 

31 careful analysis of' the data is necessary and is at present under way. 

·' ·-~ 

Within statistics, the other angular distributions are all consistent with 

isotropy. Sin~e the absorption cross sections show the rapid decrease with 

increasing energy characteristic of' s-wave absorption, and since the elastic 

cross section varies slowly over this energy range, the evidence is strong 

~ 32 
that the K -P interaction is predominantly s-wave below 200 Mev/c. 

These data on total cross sections in the region 100 to 200 Mev/c 

and on the zero-energy reactions is just su:f:ficie~t :for a rough determination 

of' the s-wave scattering len~hs A0 and A1, provided that these are 

assumed to have negligible energy dependence between zero and 175 Mev/c 

momentum (lab). In this analysis (discussed in Appendix A), the~-,.~). 
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mass difference must be taken into account, as it has a quite strong effect 

on the expressions for the reaction rates in the low-energy region. 33,34, 2 

The four sets of scattering amplitudes (A0, A1) obtained are listed in 

Table I. It will be seen that their values are not yet accurately determined. 

On the other hand, for each set, the outstanding qualitative features are 

now rather definite. For example, for the (a-) set, A1 has a large negative 

real part and a small imaginary part; A0 has a large imaginary part, whereas 

its real part is rather poorly determined and may be either. large or small. 

From the discussion in Section II, it is apparent that an interpretation 

* of the Y resonance in terms of an I = 1 K-N bound state requires that 

the (a-) set, the only set for which the I= 1 amplitude A1 has a large 

negative real part, be the physically correct set. We note that the (a-) 

amplitude A1 gives a low rate for the absorption process K + N-Y + ~, 

which is in good correlation with the relatively narrow width (r/2 ~ 20 Mev) 

* .. 56 
reported for the Y resonance. ' (We note also that, with the (a-) 

amplitudes, it is conceivable that there might exist also an I = 0 K-N 
+ -- + bound state which would appear as a ~ - Z resonance. Because of the 

large value of b0 , this resonance would necessarily be rather broad and 

correspondingly difficult to detect. Although this possibility exists, there 

is no compelling reason at present to expect this to be the case; a0 may 

well be quite small, and may correspond to a repulsive interaction.) 

Since the resonance is narrow, it is sufficient for the determination 

• • of the parameters of this resonant state to consider the I = 1 elastic 

scattering amplitude (2.8), 

= E -. 
~ 

if> 
e sin 5 

k 
= ' ( 3-5) 



Set 

(a+) 

(a-) 

( b+) 

(b-) 

(a) 

TABLE I. 

-24-

(a) 
K-N Scattering Lengths · 

A0 (f'ermis) A1 ( f'ermis) 

0.05 ± 0.2 + i(l.lO ~ ~:~) 

UCRL-9580 

+0.,35 ( ) -0 .. 75 - 0.45 + i 2.0 ± .0.35 -0.85 ± 0.15 + i(0.21 ± 0.04) 

1.25 ± 0.4 + i(2.0 ± 0.3) 0.75 ± 0.2 + i(0.24 ± 0.05) 

8 + ( . + 0.9) ~1. 5.- 0.15 + i 1.10 - 0.3 

Note that the sign convention is chosen such that 

k cot B = 1/A, so that a positive real part f'or A 

corresponds to constructive interference with Coulomb 

scattering, a negative real part to destructive inter-

f'erence, and the imaginary part of' A is necessarily 

positive. 
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in the unphysical region of negative K-N kinetic energy~ ·· In this region we 

1/2 . 
have k=+iK,where K=[2~(Et-E)] , Et:7~+DX, and~ i:s 

the K-N reduced mass. We make a linear approximation of the Breit-Wigrier 

resonance form (E - E + ir/2)'"*1 to the denominator factor of (3.5) and 
r 

are then led to conclude that the resonance energy E corresponds to 
r 

Kr = [2~(Et- Er)]
1

/
2 = la1 1-l, that is, 

2 -1 
( 2p.K al ) ' (3.6) 

as expected from the expression (2.35) for the ~-Y scattering phase and 

from the smallness of b, and that the width is given by35 

In these expressions, the values of a1 and b1 which appear should be 

taken at the momentum k = + i K 
r 

corresponding to the resonance energy 

If the energy dependence of a1 and b1 is neglected, the I = 1 (a-) 

amplitude leads to the value K = 230(±40) Mev/c. This corresponds to a r . 

E • r 

resonance erlergy at 82(±30) Mev below the K--p threshold, i.e. at mass value 
I • . 

M* = 1350(±30) Mev, which is not in disagreement with the observed location 

* of the Y resonance. According to . ( 3.7), the corresponding half-width of 

this resonance is rj2 = 21 ± 4 Mev. In making ~his est~te, we have 

adjusted a1(Kr) to the observed value, that is to the value giving the 

* observed resonance location M according to Eq. (3.6). The narrowness of 

this resonance is due partly to the smallness.of b, which reflects the 

slowness of the I = 1 K + N -+ Y + ~ transition rate, and partly to the 

largeness of a1, as a result of the corresponding diffuseness of the K-N 

bound-state system. 
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A more adequate discussion of the resonance shape may be based on 

the expression (2.35) for the ~-Y scattering phase in the resonant state. 

However, the matrix r is not known. If we first consider the approximation 

of taking r = 0, the parameters 132: and ·13A can be related to the zero

energy data, if we assume them to have the simple energy dependence appropriate 

to the angular momentum of each channel, and the expression 

2 

a(~ + A -+ ~ + A) 
(KbA) 

is then obtained for the s~wave ~-A elastic scattering cross section, where 

. b = (3.9) 

is to be taken as energy-dependent. 

The resonance shape given by (3.8) is shown in Fig. 1 for several 

cases of interest. For s-wave ~-A resonance, the shape is somewhat asymmetric, 

with a long tail on the low-energy side; the fUll width at half maximum is 

42 Mev, in agreement with that given by expression ( .3· 7). Although, as 

remarked in Section II, a large value for 7 does appear excluded by the 

degree of symmetry observed for the resonant state, a moderate value of 7 

would not distort the resonance curve unreasonably. In fact, the rather 

symmetric-resonance curve (b) has been drawn by taking the (arbitrarily 

chosen)· value CjqA = -0 .. .3.3 fermi in the expression (2.35); it will be 

noticed that this assumption of a moderate finite value for 1 has not 

appreciably affected either the half-width or the location of the resonance. 

If it is supposed that the (2:, A) parity is odd; so that the corresponding 

~-2: system is p1/ 2 , the corresponding curve for a(~ + 2: -+ ~ + 2:) is 
f 

given by (d); owing to the centrifugal barrier this resonance curve is 

• ,~. 
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displaced upward in energy a little (.;., 7 Mev). If the rc-A resonant state 
\ 

is (corresponding to even (KA) parity), the resonance shape is rather 

symmetric for r = o, the lO'Wer side being suppressed by the decrease in bA 

as the energy falls, but the half-width is rather smaller (~ 14 Mev) as a 

resulto These variations illustrate the uncertainties inherent in any attempt 

* to predict the width of the Y resonance on the basis of this model at 

present. Rather, a definite measurement of the resonance half-width would 

be of value for the interpretation of the detailed character of the K-N 

bound state and its outgoing channels. 

This interpretation of the ~-A resonance naturally requires that 

1 * . . 
j = 2' hold for the Y spin. The experimental evidence appears consistent 

with this assignment, 4' 6 and the evidence on the polarization proper~ies 
* of the A decay when the Y rese>nance produced in a polarized state 

* further suggests that the ~-A system resulting from Y . decay is in an 

s1; 2 state. The latter situation requires that the (KA) parity be odd, and 

this requirement is consistent with what other indications exist concerning 

the (KA) parity.3,36 

Finally, this interpretation allows a simPle explanation37 of the 
. . 6 * 

excitation ±'unction observed for Y . production in K- + p collisions. 

* On this view, there is quite a close analogy between the Y production 

reaction, 

K * + y 
' 

and the well-known nucleon-nucleon reaction 

N +N-.~ +d. ( 3.11) 
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For the latter reaction, it is known that the pion production is predominantly 

p-wave for final c.m. momentum above about 50 Mev/c, and it is now believed 

16 the this.is a direct consequence of the pseudoscalar nature of the pion. 

* Regarding the Y as a K-N bound state analogous to the deuteron, the 

pion in reaction (3.6) can be emitted only from the nucleon (the interaction 

- -K ~ K + ~ being forbidden by angular momentum and parity conservation), and 

the analogy38 between these reactions leads to the expectation that p-wave 

* pion production should be dominant in the Y production reaction also, 

sufficiently far above the threshold energy. 

The Z/A * ratio observed for Y decay is quite small; in fact, 

there is. ·at present almost no clear evidence f'or a resonance in the 'E.-~ system 

at the y* energy and an upper limit at approx lo% has been placed7 on the 

ratio. (Z0~- + z-~0 )/(~-). In terms of' the present interpretation, it is 

difficult to make any prediction of'. this. ratio, except by an extrapolation 

from the Z/A ratio in I~ 1 absorption at the K--p threshold, which 

depends on some additional assumptions. As discussed in Appendix A, this 

threshold ratio is known rather poorly, but it is shown that a lower limit 

of' 0.25 can be placed on it f'rom the ob~erved z-;t+ ratio and the (A +·~0 ) 

rate at threshold. In terms of' the reaction matrix elements, this threshold 

2 ratio is given by 

2 
~ ( ) 

' 

(3.12) 

where very little is known of' these elements of' r. As remarked above, there 

is no indication f'rom the resonance shape that these elements are at all 

'~ 

I 
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large. · If we first neglect them, the relationship between the L./A ratio 

at threshold and at resonance may be discussed as follows: 

(a) s1; 2 resonance for both ~-A and ~-L. channels. Here the 

natural approximation is to neglect the energy dependence of ~L. and ~A' 

so that the L./A ratio falls from the threshold value only because of the 

fall in the phase-space ratio 

is clear that a ratio as small as that observed can be accounted for only 

if the parameters ~L.' ~A have quite appreciable energy dependence over 

this energy range, or if the elements of 7 are sufficiently large at 

threshold to modify this comparison. Neither of these possibilities gives 

a simple interpretation of the data. 

(b) p1; 2 resonance for the ~-L. channel. If the (KE) parity were 

even, the final ~-L. system would be p1/ 2' and the natural assumption on 

the energy dependence of ~L. is that of proportionality to qL.. Since the 

y* energy is about 55 Mev about the ~-L. threshold, qL.r ~ 120 Mev/c, and 

In this case it is conceivable that a (L./A) ratio as 
r - . 

low as 0.25 x 0.8 x 0.45 0.09 is compatible with the threshold data, and 

this is comparable to the upper limit quoted by Dahl et a1.5 If it is 

supposed that the (KA) parity also is .even, so that the ~-A resonant state 

r t 2 
(~A /f3A ) ~ o.66, a somewhat less favorable ratio is p1/ 2 and 

(L./A) ~ 0.14 
r 

results from these simple assumptions on the energy dependence 

of ~L. and ~A • 

At this point, we must emphasize that there is no clear-cut experi

mental evidence which otherwise requires that the (a-) amplitudes are the 

physically correct ones. Not even the sign of the real parts of the 

amplitudes is definitely established. In principle, this last could be 

achieved from the observation of the Coulomb-nuclear interference in K--P 
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elastic scattering at low energies. At lab momentum of 172 Mev/e, the 

scattering amplitudes corresponding to the (a+) and (a-) solutions of 

Table I are 

f(a±) = ± 0.35 + 0.74 i • 

The real parts of these scattering amplitudes arise almost entirely from 

a1 and are moderately well determined (within about 20%). Owing to the 

dominance of the absorptive part of f , however, a clear~cut decision 

between the two sign possibilities is difficult and will probably not be 

( 3ol3) 

achieved until the statistics on K~-proton scattering are greatly improved. 

ForK--nucleus scattering, the optical-model potential is known to be 

·4o 
attractive.. This conclusion was convincingly argued by Alles et al. 

several years ago from observations on the inelastic scattering of low-energy 

K- mesons by nuclei, and has also been reached in the study of small•angle 

- 41 scattering of K mesons by emulsion nuclei. However, if we think in terms 

of potential interactions, we must realize that the existence of a K-N 

bound state means that the potential corresponding to the I = 1 (a-) 

amplitude must actually be strongly attractive. In this situation there 

42 is some doubt whether the sign of the K-~nucleus potential at low energies 

really provides any clear indication of the sign of the real part of the 

K-N scattering amplitudes. 

The (b-) solution differs most markedly from the other amplitude 

sets in the behavior it predicts for the absorption cross sections. For 

this solution, the . I = 0 absorption cross section falls more rapidly with 

increasing momentum, while the I = 1 · absorption cross section fall.s less 

rapidly, than for any of the other solutions. Thus, whereas the other 
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solutions give values for a(A) between 7 and 9 mb., and for a(E0) 

between 12 and 14mb., at (lab) momentum 172 Mev/c, the (b-) solution leads 

to a(A) ~ 16 mb and a(E0) ~ 9 mb. This corresponds also to a much stronger 

energy dependence· of the A/(E0 +A) ·ratio for the {b-) solution than for 

the others; the ratio predicted at 172 Mev/c (for :value 0.21 at zero energy) 

is 0.63 for the (b-) solution, compared with the predictions 0.37 for (a+), 

0.31 for (a-), and 0.40 for (b+). It is expected that data will soon be 

available on this ratio in this momentum region.31 Another experimental 

parameter of particular interest is the E-/E+ ratio, whose-mean value 

averaged over the (lab) momentum interval 100 to 200 Mev/c is 0.95 ± 0.3. 

The energy dependence of this ratio depends on the energy dependence both of 

the absorption cross sections a
0 

and a
1 

and of the phase angle ¢ 
between the corresponding matrix elements M0(E) and M1(E). If the KYN 

parity is odd, or if the final state scattering is weak, it is natural to 

assume that the energy dependence of ¢ arises entirely from the initial 

. 2 . 8 -; + state scattering. With the value 2.~ for the E E ratio at zero 

energy, the mean E-/E+ ratio predicted for the 100 to 200 Mev/c (lab) 

momentum interval is 0.83 for the (a-) solution, 1.45 for the (b+) solution, 

in agreement with the data, whereas the values predicted with the (a+) and 

(b-) solutions are 2.15 and 3.24,respectively. It must be borne in mind, 

however, that, especially if the KY.N parity is even,.the neglect of energy 

dependence for the final state scattering may be an uncertain assumption. 
\ 

There are considerable data available on K--deuterium scatterin~ 

and reactions in the low-energy region. 29, 43 The analysis of this in terms 

of the K-N interaction amplitudes is complicated, however, by the strong 

initial- and final-state interactions which occur in the initial and final 
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three-body systems. The discussions which have been given for the capture 

44 . 
reactions from rest and for the elastic and inelastic scattering at approx 

. 45 
200 Mev/c .. are not yet sufficiently complete to give any c~ear-eut 

indications for preferring a particular .set of K-N ·amplitudes, although 

there is.every reason to expect that such data will become valuable in this 

respe~tas the experiments and the theoretical calculations each become more 

refined. 

0 There is also promise t~t the study of K2 -p scattering and 

reaction processes; in the loW energy region will give some direct indications 

- ~ concerning the K~N amplitudes in the near future. On the one hand, the 

.K-N . interactions in K
2 
° ... p collisions are entirely in the I = 1 state, 

so that the observation of K
2
°-p reactions will allow a very direct 

determination of the (~/A) ratio in the I = 1 channel, and the 

measurement of a total absorption cross section for the I = 1 channel 

will help greatly in distinguishing between the (a) and (b) sets of amplitudes. 
. 47 . 

On the other hand, a~ pointed out by Biswas, the s-wave cross section for 

the reaction 

Ko 
1 

is given by the expression 

0 . . 0 
a(K2 + p - K1 + p) = ~ 

+ p (3.14) 

2 

' 

where a
0

, a 1 are the (real) scattering lengths for the I = o, 1 K-N 

channels. The scattering iength a 1 is well known, a
0 

is less well known 

but is smaller, with the same sign, and there is some hope of discriminating 

... 

lr 
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quite strongly between the (a+) and (a~) K-N amplitudes as a result of the 

interference between the real parts of the two· terms of (3.15). Unfortunately, 

such an experiment appears feasible only down to (lab) momenta of about 

300 Mev/c, a momentum region where there will be some. question concerning 

the importance of' p-wave contributions to the expression (3.15). 

At the present stage, any further indications of the sign of the 

K-N scatte:dng amplitudes, and whether they are of the (a) or the (b) type, 

will be of the greatestimportance in establishing the relationship of the 

* Y resonance observed with the possible existence of an I = 1 K-~ virtual 

bound state. 
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IV. THE DISPERSION-RElATION. FORMALISM AND THE K-N INTERACTION 

In order to go beyond a strictly phenomenological approach and to 

discuss what energy dependences may be expected ror the parameters we have 

introduced, .the use. of the dispersion-relation rormalism is the most complete 

and convenient procedure .for. including speciric physical mechanisms, such as 

- 10 the exchange of pions between the K meson and nucleon. As Bjorken and 

Nauenberg11 have pointed out, the method used by Chew and Mandelstam9' 48 for 

one-channel problems may readily b~.extended for multichannel situations. 

For a state of definite· angular momentum and parity, the scattering matrix 

T(E) for a system of n two-particle channels may be written in the form 

T(E) = N(E) D-l (E) , ( 4.1) 

where the elements or the n-by-n matrix D(E) are analytic functions or the 

total energy E, each in a cut E plane where the branch cut is chosen to run 

rrom an appropriate threshold along the positive real axiso The elements of 

the n-by-n matrix N(E) are analytic functions, for each or which the branch 

cuts and singularities lie to the left or the corresponding threSholds, their 

location and character reflecting the nature of the dynamical inrluerices 

arfecting the corresponding reaction processes. Since the elements of N(E) 

are real on the branch cut of' the cerresponding element of D(E), the.;,p.nitarity 

condition 

Im(T-l (E) ] = - 1t p(E) ( 4.2) 

leads to the result that 

Im D(E) = - 1t p(E) N(E) 

along the upper side or the right-hand branch cut. Assuming that Re D(E) 
I, 
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approaches a constant as E ~ oo, it is then convenient to normalize D(E) 

in such a way that Re D(E) approaches the unit matrix at infinity, which 

is possible because T(E) is expressed in the form of a ratio by Eq. (4.1). 

Then, following Bjorken and·~auenberg, D(E) may be determined, leading to 

the form49 

T(E) = N(E) p(E') N(E') 

E' - E 

-1 

dE' ( 4.4) 

The matrix N(E) may now be regarded as a quantity to be determined in terms 

of its -singularities, either in a senU,.phe:q.omenologicalway or in terms of 

some dynamical principles. For arbitrary N(E), .the expression .T(E) is 

not general~y a symmetric.matrix, as is requi~ed by time-reversal invariance, 

' 50 
but Bjorken and Nauenberg. have.demonstrated that if N(E) is determined 

from the condition 

Im N(E) = ( Im T(E)] D(E) 

on its dynamical singularities, then T(E) will be symmetric as long as the 

matrix [Im T{E)] on these dynamical singularities is itself symmetric. 

This formaiism is, of course, very closely related to the K-matrix 

formalism. In fact, the explicit relationship is given by the equation 

K(E) = N(E) ( D(E) + i1C p(E) N(E). ) -l 
' 

( 4.6) 

where D(E) is given by the denominator of expression (4.4). The elements 

of the denominator of (4.6) are real functions of E along the real E 

axis, both for physical energies and for energies below the thresholds, 

until E reaches the first dynamical branch cuts appropriate to the matrix 

ele$ent considered. Thus, in this region to the right of all branch cuts, 
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the elements of the K matrix are real, as they should be; K(E) has the 

correct symmetry when the condition specified following Eqo (4.5) is 

satisfied. Further, as expected, 51 these elements are analytic functions 

of E, and in particular they are analytic functions of E along the real 

axis, in both physical and unphysical regions, to the right of these branch 

cuts. To the left, however, the function N(E) generally becomes complex 

below the onset of the first branch cut and the K=matrix elements become 

complex in this region, as remarked in Ref. 2. The form (4o6) has the 

advantage that it makes explicit the cause and nature of this behavior.52 

In terms of the form (4.6), resonances of the first type discussed 

in Section II correspond to _zeros of the determinant of the denominator, i.e., 

they occur for real energies such that 

det (D(E) + i 1t p(E) N(E)) = 0 • ( 4. 7) 

At these resonance energy values, all elements of the complete K matrix for 

the n systems become infinite. 

As discussed in Section II, the more convenient procedure is to 

confine explicit attention to the subset i of channels which are 

energetically available at the energy of interest and to make use of the 

"reduced K matrix" KR(E). This matrix KR(E) is related to the scattering 

matrix T(E) by the relation 

T(E) = RR(E) ( 1 ( 4.8) 

-

where ei(E) denotes a projection operator which is unity for the 

energetically available channels at energy E, and zero otherwise. Only 

the submatrix KR i(E) of KR(E) which refers to the open channels is of 

direct physical interest, since the scattering amplitudes for the energetically 

·.-.· 
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permitted reactions obviously depend on the elements of KRi(E) alone. 

Remembering the condition (4.;) and that its right-hand side is simply to be 

taken zero for an energy below the appropriate threshold, comparison of (4.8) 

with (4.1) leads to the following expression for KR(E): 

KR(E) = N(E) ( Re D(E) ) -l • 

From its definition, and the discussion in Section II, it is clear that 

KR(E), although continuous along the real axis, is not an analytic function 

of E but has, in fact, a cusp-like behavior with a change of analytic form 

at each threshold. 

From the expression (4.9), the location of all resonances of the 

system are given by the real roots of the equation 

det { Re D(E) ) = 0 ( 4.10) 

Those roots of (4.10) which lie below all thresholds represent stable bound 

state.s of the system. Those which lie between the .!:_ th and ( :i+l)th threshold 

represent resonances in the set of i channels; these resonances include 

the "virtual bound-state" resonances arising from interactions in the closed 

channels as well as the resonances of the first type. To determine the 

structure of such a resonance state, the scattering matrix T.(E) for the . ~ 

open channels is then considered; the eigenvalues of 1f pi l/2 Ti (E). pi l/2 

iB 
are the set ( e s sin B ), where the {B ) are (with s = 1, 2,•••i) 

s s 

the (real) eigenphases for the open channels. At the resonance energy, one 

of these eigenphases (s = r, say) passes through 90 deg; the eigenstate 

corresponding to this eigenphase B ' r 

I r, E ) 
i a 

= E c · (E) I a, E ) , 
C¥=1 r 

. ( 4.11) 
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'then represents the resonant state, the relative intensity of the channel 

a being I C a(E) 12 E a:t energy r 
in this state. 

For coupled K-N, ~-E, and ~~A channels, the branch cut which lies 

closest to the physical region is that arising from the exchange of two pions 

between K and N. For exchange of a system of mass m, the corresponding 

branch cut begins at energy E(m) given by 

E(m) ::::: 
1 2 1/2 2 

) ( m__ 4 m + K 

1 2 1/2 
= - m ) 4 .. ( 4.12) 

For the exchange of a pion pair, ·the cut begins only about 30 Mev below the 

K-N threshold. This situation certainly raises questions concerning the 

* validity of extrapolation from the threshold to the Y resonance energy, 

as is discussed again below and in Appendix B. If the emission of a pair 

of s=wave pions by the K meson is not an especially strong coupling, it is 

possible that this branch cut may not have an important effect on the K-matrix 

elements· in this energy region. However, more serious branch cuts may well 

arise from exchange of the I ::::: 0 ro0 particle53 (if it is strongly coupled 

with K mesens); or of a resonating pion pair. 

Ferrariet aL 54,55,56 have taken the first step iri a more general 

discussion of these K=N reaction processes following dispersion-theory 

methods, by including a simple pole in the K~N diagonal element of [Im T] 

as a rough representation of the-terms arising from the exchange of a 

particle or resonant system (nominally a pion= pion resonance) between K 

and N. This pole has residues R0 and R1 for the I ::::: 0 and I ::::: 1 

systems, respectively. These ·residues are related by R0 = R1, or 

R0 ::::: -3 R1, according as the isotopic spin of the system exchanged is 

i ::::: 0 or 1. The magnitudes of these residues are otherwise not known, 
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unless some specific dynamical theory is adopted, 57 and are generally to be 

regarded as 
. 60 

parameters to be determined empirically. At present, it 

appears a very difficult proposition to determine further such parameters 

from the low-energy K--P data, since these have proved barely sufficient 

Using for the determination of constant scattering amplitudes A0 

a rather speculative estimate of R0 and R1 (with a ratio 

and A1 • 

R /R ~ 0 1 - 3, 

corresponding to the exchange of a j = 1, I = 1 ~-~ resonance), Ferrari 

et al.56 have calculated the energy dependence of the (a+) amplitudes A0 

and A1, due to K-N interactions corresponding to the exchange of mass 

m = 3.6 m~, and have concluded that an extremely strong energy dependence 

can result, even though the range parameter of this interaction is only 

(3.6 m~)-l ~ 0.4 fermi. Since their calculated scattering lengths vary by 

as much as a factor of 2 between zero and 150 Mev/c momentum (c.m.), it is 

apparent that such a strong energy dependence would completely invalidate 

* any attempt to relate the Y resonance to the low-energy K--P data 

without a rather complete theory of the mechanisms giving rise to this 

energy dependence. 

A simplified treatment of the situation discussed by Ferrari et al. 

is given in Appendix B. It appears that the strong energy dependence they 

obtained for the (a+) amplitudes is largely a consequence of the great 

strength assumed for the interaction of the pion pair with the K meson. 

In this case, there is a question whether, for consistency, further branch-cut 

terms corresponding to the exchange of two, three, and more resonating pion 

pairs should not also be included at the same time; although these more 

complicated singularities are more distant from the physical energy region, 

their strength may be very great, and they may play a significant part in 
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. . 61 
determining the energy dependence of even the low~energy scattering .. 

Although the dispersion-theory formalism represents a tremendous step forward 

in the technique and understanding of strong=interaction problems,' the way 

in which it is used at the present preliminary stage does often represent a 

new kind of perturbation approach, involving the assumption that a strong 

near=by singularity can be introduc~d to represent some particular physical 

mechanism without need for the inclusion of any related, further distant 

singularities .. 

On the other hand, for mechanisms of moderate strength, the~di.spersion 

method provides a·convenient method for the semiphenomenological inclusion of 

their effects in the theoretical expressions to be compared with the.experi-
. I 

mental data., Since, for the strange particles, nothing is known concerning 

the strengths of the many possible vertices that play a role even in the 

simplest situations, it is clear that a phenomenological approach of this 

kind places a very severe demand on th~ data.. At the present stage, the 

guidance of some framework of dynamical principles, such as those of global 

symmetry (cfo Section V) or of the vector theory of strong interactions 
•. 8 .. 

discuss~d by Sakurai,5 would be exceedingly advantageous., 

Ferrari et aL.55 have also discussed the relatio~ship between the 

K~N and the K-N interactions which arise from pion~exchange processes.. In 

* the interpretation of the Y - resonance as K-N bound state, these processes 

appear of the greatest importance, since they can give rise to potential 

interactions which have relatively long range, and which can therefore be 

especially effective in binding the K-N system.. For this discussion, we 

need the relationship between the vertices for the interactions 
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(a) K-+K + Il3f, (4.13a) 

(b) K-+K+rut, (4.13b) 

in corresponding configurations. For the derivation of this relationship, the 

operation of G conjugation ·is appropriate. For the pions, this operation 

simply multiplies their wavefunction by (-l)n; for the K mesons, this operation 

changes each K meson to its antiparticle and multiplies the matrix element 

by (-l)i where i is the isotopic spin transferred by the (Il3f) system. 

Since the (rut)-N interaction is common to the K-N a~d the K-N inter-

actions, we have at once 

( 4.14) 

By taking this relation (4.14) in turn for p and n, we deduce the following 

relationships between the amplitudes ~ , M! for definite I-spin states 

of the K-N and K-N systems, 

and 

Finally, we recall that for i = 0, we have i\_ = M0 and M
1 

= M0 ; .for 

i = 1, M0 = - 3 M1 and M0 = - 3 ~· Inserting these relations into 

( 4.15a) 

( 4.15b) 

Eqs. (4.15) for the case i = 0 and i = 1 in turn, we derive the general 

result, 63 independent of the I-spin state of the interacting particles and of 

the i-spin transferred between them, 

~(K-N) = (-l)n ~(K-N) • (4.16) 



64 . 
This relation has the same form as the well~known relation connecting the 

picnic contributions to the NaN and the N~N interactions. 

If we denote by (Xe' x0 ) and (Ye' t 0 ) the contributions to the 

I = 1 K-N interaction due to the exchange of systems with even and odd 

G.,.conjugation parity (eag., for even and odd n), with total isotopic spin 

i = 0 and 1, respectively, then we have for the other K-N and K~N states 

the following interactions: 

V1(K-N) = ·x +X +Yo + Ye' v
1
(K-N) :::: =X +X ~ y +Y ' 0 e 0 e 0 e 

arid 

V
0

(K ... N) = xo +X = 3Y = '5!e ' v0(K~N) :::: ~xo +X + '5! d> ?5Y e 0 e 0 e 

The interactions v
1

(K-N) and v
1

(K-N) are known to be strongly repulsive 

* and strongly attractive (with the interpretation of the Y res0nance as 

an I._;, 1 K-N bound state), respectively, whereas v0(~ .. N) is weakly repulsive 

and v
0

(K-N) may be repulsive~ of uncertain strength, or·very strongly attractive. 
These 

·" 

~facts could be fitted qualitatively by these expressions if the dominant 

contributions were from the exchange of an I = 0 particle (aP ? ) with 

odd G-conjugation parity, and of an I = 1 system with odd G. In the attempt 

to understand what interactions could give rise to a bound K-N state, it 

is natural, as remarked abo~e, to consider first the processes of. pion 

- -exchange between the K meson and the nucleon, since, for given coupling strength, 

the K-N interactions of longest range are those which will be the most 

effective in binding. However, in terms of the pion configurations at present 
yet 

conjectured to be of par-ticular importance, there does not~appear an obvious 

and simple interpretation of the character of the observed (K-N) and R-N 
potentials.65 
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V. GLOBAL SYMMETRY AND PION-HYPERON RESONANCES 

The charge-independent Yukawa interaction of the pion with A and E 

hyperons may be written 

~M.(A t 0~ - ~t OA) • 1( -
where A, z, - and 1C denote the isotopic-spin components of the A, -· 
and pion wave functions, and 0 denotes the relevant space-spin operators. 

It was pointed out independently by Gell•Mann12 and by Scbwinger13 that, for 

the interaction (5.1) can be written in a form whose structure parallels that 

of the pion-nucleon interaction, namely 

g__y (Nt T 0 N) • 1C (5.3) 
-1'11'11( - -

This was achieved by replacing the A singlet and Z triplet by two 

doublets, which we may denote by N2 and N
3

, 

;:: ;:: 

' 

in terms of which,the pion-hyperon interaction (5.1) takes the form 

(5.5) 

For this to be possible, it must, of course, be assumed that A and Z 

hyperons have the same parity and that the operators 0 associated with 



and are of identical form .. If the A and E hyperons had the 

same mass, and (5o5) represented their only strong interaction, then, regardless 

of the coupling strength g, this doublet symmetry would be exacte 

N
3 

would then represent two independent doublets of the same mass, which 

could not be transformed ~ne into the other by any pion processes .. 

This doublet representation of the A and Z hyperons actually 

corresponds to a representation of their isotopic spin !y as the sum of 

two half~integer isotopic spins i and k, such that I __ = i + k The 
.~ ~ ~ ~ ~ 

form of (5 .. 5) then co~responds to the situation where the pion field is 

coupled with only one of these (say !); the N
2 

and N
3 

doublets are 

l l then the + - and - -
2 

substates, respectively, of the 3-component of the . 2 

other isotopic spin ~ .. As Pais66 has pointed out, the experimental 

evidence on K•meson processes shows that the N
2 

and N
3 

doublets are 

actually linked quite strongly through the K couplings.. In fact, the 

large AaE mass difference already represents a large deviation from the 

doublet approximation, which has often been att~ibuted to the nonsymmetry 

of the K couplings· and which itself must lead to substantial mixing between 

the N2 and N
3 

doublets .. 

The "global symmetrY' hypothesis" of Gell-Mann and Schwinger supposes 

further that the coupling parameters and (as well as · ~ =:1e ) 
-

are all equal to ~1C' the space-spin-operator 0 being assumed the same 

for all of these interactions.. With this hypothesis, the N2 and N
3 

states will behave exactly like nucleons as far as their interactions with 

pions are concerned, at least in the limit that those interactions for 

which the doublet symmetry does not hold do not strongly disturb this 

symmetry for the pion processes .. 
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The global-symmetry hypothesis then leads directly to relationships 

between the hyperon-nucleon and the nucleon-nucleon potentials, at least for 

t'hat part of these potentials which arises_from the exchange of pions. If 

the N-N potential is written in the form 

where v0 and V
1 

denote the I = 0 and I = 1 potentials, then the 

hyperon-nucleon potentials may be deduced in terms of v0 and v
1 

on the 

basis of this hypothesis. Thus, in the z--n configuration, the isotopic 

spins are aligned to total ~ , so that the N
3

-N . configuration which is 

effective is that with parallel isotopic spins, that is with I = 1; 

generally, for the I = 2 Y-N_ states, we have then 
2 

For the 

that the 

1 I = 2 Y-N states, both Z-N and A-N systems contribute, so 

1 I = - interaction takes a matrix form, as follows: . 2 

= 

( 5· 7) 
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1 J. vz. + v~ *z + vr.A v A (E - 6)vz , 
~ 

= 

1 if ljr . v AJ:. *z + v ljr E ljr A,' -- + = 
2M A A M A 

(5.9b) 

where E denotes the kinetic energy in the A-N system, and the inclusion 

of the mass difference 6 : ~ - MA is, of course, quite essential. 

The main difficulty of principle in the use of these relations to 

predict the hyperon-nucleon interactions in terms of the global-symmetry 

hypothesis lies in the fact that the Pauli exclusion principle limits the 

states available for the N•N system, but not for the Y~N system. For 

example, consider the z--n 3s interaction. Equation (5.7) states that 

this is given by the I ~ 1 3s N-N interaction, but this interaction 

cannot be measured directly, since the exclusion principle forbids the 

3s state for the I = 1 N~N system. The I = 1 triplet N-N potential 

must be deduced from measurements on the 3p, 3F, and ~ states; if it 

is possible to identify the angular momentum dependence of the potential, 

we can then extrapolate to zero angular momentum and deduce the form of the 

I = '1 3s · potential. Such an extrapolation will be possible in practice 

only if it is justified to confine attention to potentials of sufficiently 

simple angular mOmentum dependence, such as tensor forces, spin-orbit 

((a1 + a2 ) o L12) forces, and perhaps forces depep.ding on 

Fortunately, the pion theory of nucleon 

forces gives us some reason to believe that, outside a strongly repulsive 

central region whose details are not of particular importance, the N~N 

forces have a dependence on ~12 , f 12 and spin in which more complicated 

terms than these will not play a major role. Further, the theory gives 

considerable guidance concerning the spin, isotopic spin, and radial 
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dependence of various terms of the nuclear potential in the outer region. 

On this basis it appears reasonable to believe that, given sufficient 

experimental data on the N-N system, one could make a fairly reliable 

extrapolation to determine the potential appropriate to states forbidden 

for the N•N system. Such an extrapolation procedure would appear partie-

ularly plausible for the I = 1 singlet and the I = 0 triplet potentials, 

where the potential is obtained empirically in the s, D, and G states 

and extrapolation is required to the P, and F states lying between the~ 

since the s·scattering explores the inner regions of the potential while the 

higher partial waves are particularly sensitive to the outer regions and to 

the angular-momentum-dependent parts of the interaction. The extrapolation 

to the S interaction for the I = 1 triplet or the I = 0 singlet 

potentials is much less certain, for the experimental data then refer only 

to the P, F, H, states. The inner region of the central potential, 

which is particularly important for the S scattering, cannot really be so 

well established from the study of the higher partial waves, and this may be 

a source of appreciable uncertainty in the applications now to be discussed. 

De Swart and Dullemond67 have recently carried out detailed calculations 

on the S-wave hyperon-nucleon interactions, based on an N-N potential which 

gives a good fit to the data available at present. This potential consisted 
. 68 

of the I = 1 potential deduced by Bryan from the p-p data and the 

I~ 0 n-p potential of Gartenhaus.69 

The s~wave scattering amplitudes for the A-N system at low energies 

have been calculated by using Eqs. (5.9), including the coupling to the 

(energetically unavailable) Z-N channel. For the lg state, the zero-energy 

scattering length obtained was -2.1 fermis, with an effective range of 2.24 
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fermis. The Yukawa potential corresponding to these parameters has a range 

parameter of 0~78 fermi, close to (2m1f)a.1 
, as expected. This equivalent 

central potential has volume integral 370 Mev f 3, in good agreement with 

the 1s · A-N potential strength deduced by Dali tz and Downs 70 from the 

data on light A ·hypernuclei. For the 3s state; the scattering length 

obtained was 0.12 fermi (with effective range 85 fermis, which corresponds 

to a range parameter of approx 0.65 fermi), corresponding to a weakly 

repulsive equivalent potential of volume integral approx -55 Mev f 3
o The 

latter is compatible with the data on hypernuclei if a three-body A-N-N 

potential7l is included which is attractive and of reasonable strength.72 

Calculations .have also been made by de Swart and Dullemond on the 

rates for the competing reactions 

and 

0 + p ... I: 

-+ A 

+ n 

+ n ' 

(5.10a) 

(5o lOb) 

for !:~-proton collisions at very low energies. For I:- hyperons which came 

to rest in liquid hydrogen, these reactions have been studied by Ross,75 who 

found the ratio· 

(!:- + p ... A + n)j(z- + p - rP + n) 2.0 ± Oo5 o 

If these reactions are assumed to occur through the S-wave I:-N interaction, 

'>0 . -as would follow from the discussion by Day, Sucher, and Snow- of mesic 

absorption from high-lying levels of hydrogen .. like mesic atoms in consequence 

of the Stark-mixing mechanism, then the.se calculations can be compared with 

Ross 1 s dat~. The amplitudes for I:--p elastic scattering and for the z0 
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reaction (5.10a) are given by 

where a
3
(z,z) and a1(z,~) denote the zero-energy elastic-scattering 

amplitudes for the ~-N system in the 3 1 I = 2 and I = 2 states, respec-

tively. At zero energy, the amplitude a3(~,~) is real, but a1(~,~) is 

complex, because of the absorption due to the competing reaction (5.10b), 

'Confined to the_ I=~ channel. The amplitude for the A reaction (5.10b) 

is given by 

M(~- + p ~ A + n) l/2 
= 3(a1 (£,A)), ( 5.12c) 

where t~e amplitudes_ a1(~,~), a1(z,A) are,calculated together from the 

I = ~ equations (5.9) o For the- ~ state, the I = ~ interaction is 

almost resonant at zero energy, since it is equal to the ~ N-N interaction, 

and the amplitude a3(~,~) is very large, whereas a1(~,~) and a1(~,A) 
0 have only moderate values. As a result, the ~ reaction is strongly 

dominant in the ~ state, the calculated A/rP ratio 76 being ::::::< 1/40. 

For the 3s state this near-resonant situation does not hold, and the 

I 0 6 76 -A ~ ratio obtained is closer to the phase-space ratio of 4. , although 

somewhat smaller than this for the reasons discussed previously; 77 the 

calculated A/~0 ratio for the 3s state is 3.6 (± 0.4) where the 

error given reflects the present uncertainty in the mass 

difference. Assuming that the processes of atomic capture and Stark mixing 

. 30 
discussed by Day et al. do not depend on the relative spin orientation of 

~- and proton, the A/~0 ratio predicted for ~- capture in hydrogen is 
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predicted to be 

~ ~0) = 0 0 . 
+ 3(~ ~~. + A)S=l 

s-wave capture 

which is in es~entialagreement with the observed ratio (5oll). 

These two comparisons with the experimental data really provide quite 

different tests of global symmetryo For the AeN potential, the dominant 

2 terms arise from two-pion exchange and are proportional to g ~ ; from 

the ~ 2 comparison here, we conclude that the values of g ~ 
2 

and g NNn: 

must be very comparable o However, the longest-range potentials which give 

rise to the ~- + p reactions (5.~10a, b) are those arising from exchange of 

one pion, and are therefore proportional to g~~ and ~' respectivelyo 

The ratio of the (~0 + n) and (A + n) transition rates therefore provides 

', a rough measure of the ratio (gi:Iar/~II:Jr.) 2 o The two eomparisons discussed 
.· 78 . . . 2 2 2 

above therefore indicate, · at least qualitatively, g ~ ~ g ~ ~ g NNn: , 

in accord with the global symmetry hypothesiso 

The main argument against global symmetry wa.s that given by Salam, 79 

concerning the nature of the finalo.state interactions in the K- +,..p..., 1C + 2: 

reactions in the low-energy region~ The early data indicated that the phase difo 

ference ¢t between the I = 0 and I = 1 matrix elements at zero energy 

was large, ¢t ~ 60 dego Since the n:-2: scattering states involved are 

s1; 2 or p
1

/
2 

, according as t~e (~) parity is odd or even, it was 

difficult to understand in terms of global symmetry how these could be so large, 

even when the kinematic effects of the (A,l:) mass difference were includedo More 
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recent data29 have shown that, although the phase difference l~tl could be as 

large as 6o deg, uncertainties in the data are such that they are also 

compatible with any angle ¢t down to ¢t :::::: 0 deg, and this argument 

against global symmetry loses much of its force,·at least until a more 

certain determination of ¢t is achieved. 

For pion~hyperon scattering, as pointed out by Gell-Mann, 12 global 

symmetry requires j = 2 ' 2 
I = ~ resonances in the 1C•N2 and 1r-N

3 
systems, corresponding to the 1t-N (3,3) resonance.· After the "£-A mass 

difference f::J. istaken into account, thea~ resonances are expected to appear 

as separated I = 1 and I = 2 resonant states in the pion-hyperon 

. 8o 
scattering. Their final location has been estimated by Amati et al. in 

terms of a static model of the pion-hyperon interaction. They have also 

considered the effect of a disturbance of ~A:rc and ~ fromthe global 

symmetry value ~-· by nonsymmetric forces, measured by the parameters 
-!'U\11( 

2 2 ·2 2 
0 = {g "ZA:rc - g ~)/(g "ZA:rc + g ~), 

2 1 2 2 
~ = 2 (g "ZA:rc + g ~) • 

(5.14) 

For small values of o , Amati et al. find that the resonance energies are 

given by 

E l = MA + u - .!6 - t6o ' r 2 

E 2 = MA + u + .26 + .! 8 0 
' r 2 2 

where u is given by 

00 
9.'3 u2~9.'l u -2 p 

I dru' 
= ~ l21C 2 ' m ro' (ro' - ro) 

1( 

and depends on 2 
~ and the cutoff energy. As expected, the location of 

the resonance is rather sensitive to the value of 2 
~· The I = 2 resonance 
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is predicted to lie higher.than the I= 1 resonance, which is reasonable, 

since, to a first approximation, the resonance location is expected to 

correspond to a definite momentum for the incident system, which must be 

entirely ~-Z for the I = 2 case. 

Amati et al. have suggested recently that the observed ~-A resonance 

may represent this . I = 1, j = ~ resonance o They calculate the half .. width 

of this resonance as 

j: 4 2 3 3 
r 1 2 = §' &r ( 2qA + qE ) ' 

with a correction factor of (1 + 0.66 o) for ~ I ~ . Taking the 

2 
same value of &r as for the ( 3, 3) resonance, o = 0, and the value 

~N = 230 Mev/c, the (3,3) resonance balf-width16 r~N/2 = 50 Mev leads 

to a half-width r 1j2 = 28 Mev for the ~-A resonance, quite compatible 

with the present experimental evidence. The branching ratio at resonance 

is given by 

3 
) 1 

' 

which takes the value 0.11 for o = 0. This prediction is also compatible 

with the data. 

These predictions are in remarkable agreement with the data on the 

* Y resonanceo The conclusion above that the hyperon-nucleon interactions 

are in good general agreement with the global symmetry hypothesis gives 

* further weight to the identification of the Y resonance with this 

resonance. Obviously, a clear-cut spin determination would distinguish most 

clearly between this possibility and the '' R .. N bound~state'' interpretation 

discussed in the earlier sections. At present, although the Adair analyses 
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* which have been made are all consistent With isotropic decay of the Y and 

1 . 81 . . . . 
a j = 2 spin assignment, these are still somewhat unsatisfactory in that 

these Adair'plots show considerable backward-forward asynnnetry,84 a feature 

. . * which could not be present if the Y decayed in isolation, as the use of 

the Adair analysis assumes. 

* With this identification of the Y resonance, the prediction of 

an I = 2 ~-E resonance becomes rather specific. The I = 2 resonance 

is expected to occur at a mass value close to 1545 Mev and to have a half

width of about 50(288/230)3 ~ 100 Mev. It is of obvious importance to 

investigate whether this resonant state is produced in reactions such as 

and 

(5.l9b) 

at higher energies than have been investigated to date. 

In conclusion, it must be emphasized that the calculations by Amati 

et al. ignore the effect of the coupling between the pion-hyperon system and 

the 3-
j = 2 K-N channel. Since the KYN coupling is strong, it is quite 

possible that, even with global symmetry, these interactions could modify 

appreciably the location of these resonances, quite beyond their influence 

on the effective values of and ~ • It may well be that the 

* agreement between the observed Y resonance and this predicted . -- 3 
J = -2 

resonance is fortuitous, and that an analogue of the (3,3) resonance may lie 

in some higher energy region. (Although our intuitive expectation, based 

on lowest•order perturbation theory, would be that this additional coupling 

to a highe~-energy configuration would depress, rather than raise, the 

resonance energy.) In this event, it could appear as an I = 1 K-N resonance, 
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but its influence on the K-N channel need be marked only if the matrix 

elements coupling the resonant state with the KmN system were sufficiently 

large. As we have seen above in the discussion of the K-N system, the 

coupling between open channels for strongly interacting systems need not 

always be large. Since such a pion-hyperon resonance would influence 

strongly the phase of the I = 1 reaction amplitude M(K + N ~· ~ + Z), 

the 
+ + . (Z + ~a)/(Z- + ~ ) ratio, which depends sensitively on the relative 

phases of the I = 0 and I = 1 reaction amplitudes, may provide a 

sensitive indicator for such a pion-hyperon resonance. It is quite probable 

that further surprises are in store for us concerning resonances in these 

strange-particle systemso 
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APPENDIX A 

THE ZERO-ENERGY K-N SCATTERING LENGTHS 

A brief 4iscussion is given here of the derivation of the scattering 

lengths A
0 

and A1 given in Table I and of the uncertainties in this 

derivation. The data used were those summarized in the Kiev Conference 

Report of Alvarez. 29 

First consider the in-flight data. All evidence concerning the data 

in the (lab) momentum range ioo to 200 Mev/c is consistent with the 

assumption that the interaction is effective dominantly in the s~ve. 34 

Instead of attempting an elaborate least-squares fitting to the data in 

various momentum ranges, we concentrated the available data at a mean energy 

of 172 Mev/c in the following way. Since the elastic scattering cross section 

is slowly varying, a weighted average of the available cross sections was 

used, giving ae.£ = 79 ± 10 mb. The charge-exchange cross section was 

taken as 15 ± 4 mb. A value for aabs(rt) was obtained by taking a 
+ 

weighted average of ~ x aabs(r) over this momentum range; from this 

+ 
mean value, the estimate aabs(E-) = 45 ± 7 mb ~s obtained for ~ = 172 Mev/c. 

At this energy, ~~2 = 98.5 mb, and this partial absorption cross section 

is therefore to be considered rather large; in fact, its upper limit comes 

relatively close to the geometrical limit allowed by the other cross sections, 

taken together with the zero-energy parameters. For this reason it was 

decided to make some rough allowance for the amount of p-wave absorption 

included in this cross section, as follows. At 400 Mev/c, the angular 

distributions show clear evidence of strong p-wave interactions and the 

total absorption cross section for all hyperon production is observed to 

be 33.5 mb, to be compared with an s•wave geomet~al limit of ~~2 = 20 mb 
. ) -

' 
at this energy. Rather arbitrarily, it was assumed that about half of the 
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absorption cross section at 400 Mev/c was from the p wave, and that the p-wave 

± 
cross section for E production at this energy was_about 9mb. This 

estimate was scaled in proportion to the momentum, to give a corresponding 

estimate for 172 Mev/c, which was then subtracted from the above figure for 

+ 
a b (~-) at this momentum. This procedure led to the estimate of 40.5 ± 7 mb a s 

adopted for 

As Kruse and Nauenberg have discussed, 85 the knowledge of the s=wave 

cross sections for all hyperonQproduction reactions at a given energy E, 

together with the elastic and charge-exchange cross sections, would allow a 

determination _of the scattering amplitudes A0(E) and A1(E) appropriate 

to that energy. However, such complete data are not yet available, and, ·in 

order:to obtain an estimate of the scattering amplitudes, it is necessary 

to make use of the "at rest" data and to make some specific assumption 

concerning the energy dependence_of A0 and A1• _For example, one could 

( 1 2 -1 
assume the energy dependence of effective range theory, AI 1 + 2 RI AI k ) , 

with some physically appropriate choice for the effective ranges R0 and R1 • 

For simplicity, we have made the choice of zero efr"'ective range, that is, of 

energy~independent values for _A0 . and A
1 • 

At c.m. momentum k, it is. convenient to.write the expressions for 

elastic and charge-exchange cross sections as 

a ce 

where D denotes ((1 + kb) 2 + (ka) 2}. In these expressions, the 

modifications _due to the (K=, K?) mass difference and to the K--p 

Coulomb interaction have been neglected, as they do not represent major 

(Al) 

(A2) 

. -
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corrections at 172 Mev/c and can be allowed for subsequently. For the 

absorption cross section, we have 

± 
0abs (.E ) = 

where E denotes the fraction of I = 1 absorption which leads to A 

hyperons. The value of E was also assumed energy-independent and was 

(A3) 

taken from the zero energy data (see below). The equations (Al) and (A3) 

could then be solved algebraically for D0 and D1 in terms of b0 and 

b1, and therefore for a
0 

and a
1

• By a systematic procedure of trial and 

error, for assigned values of b
0

, all values of b
1 

(together with the 

corresponding values of a
0 

and a 1 ) which satisfy the equation (A3) were 

then determined by an electronic computer. 

At zero energy, the quantities determined directly from the "at rest" 

events are 

R = 1.79 ± 0.18, 

S = Aj(.E0 + A) = 0.214 ± 0.04, 

These numbers allow an estimate to be obtained for e, or for (.E/A)1, 

( 1 
€ 

1) = (R 2(1 - s) )js • 

The value obtained, E = 0.5 + ~:i§ , is rather poorly determined at 

present. In terms of M
0 

and M
1

, the zero-energy amplitudes for 

(A4) 

absorption leading to (~ + .E) states with I = 0 and 1, the expression for 

T is 



T = (M 2 3 M 2 
0 + 2 1 

(A5) 

where ~t is the relative phase between M0 and M1• Comparison of this 

expression with the observed value for T. allows a lower limit of 0.025 to 

be placed on the ratio M
1

2jM
0

2
; combining this with the ~alue of 

2 2 
N

1 
jM

0 
= 0.091 (where N

1 
denotes the I = 1 amplitude leading to the 

(:n: + A) cha:nnel) obtained from S leads to the lower limit of 0.28 ± 0.05 

for the ratio (E/A)1, which correspon~s to an upper limit of about 0.8 for E. 

The ratio a
0
ja

1 
of the I = 0 and I = 1 zero energy. absorption rates 

(given by ·· M
0

2 
/( M

1 
2 

· +. N ~2) ) · may b§! d,etel:'IIlined :from 

(A6) 

Since the second factor is relatively well determined (11.0 ± 3) uncertainties 

in o
0
/a

1 
and E are quite strongly correlated. The relationship between 

0'0 bo 
= ( 

0'0 bl 

where K denotes 

difference. Since 

. 2 
(1 + Ka

1
) 

) 
2 

( 1 + Ka0 ) 

( 2~J'K 6) 1/2 and 

2 is given by 

2 
+ (Kb

1
) 

2 
+ (Kb0 ) ' 

6 is here the 

the solutions obtained have the 

(A7) 

(K-, ~) mass 

feature that either ao 

or a
1 

is large, this second factor has a considerable effect on the 

determination of A
0 

and A
1

; in particular, the magnitude of this factor 

depends quite strongly on the absolute sign chosen for the pair (a0 , a1). 

The procedure for determining A
0 

as follows. For specified values of ae£' 

and A
1 

from these data was then 

+ 
a b (z-), a , and e, the a s . ce 

' '"' 
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parameters a
0

, a
1

, and b
1 

·were determined as function of b0 • Generally, 

two solutions were obtained in each of which the relative sign of a0 and 

a1 was definite but the absolute sign of (a0, a1) was not determined. For 

all four solutions (ioe., with both choices for the absolute sign of (a0, a1 ) 

for b~th cases), the right-hand side of (A7) was calculated as a fUnction of 

b
0

, and the value of b
0 

(and with it, the values of a0, a1, and b1) was 

then determined by comparison of o
0
ja1 with the physical value determined 

from (~6). 

The mean values given in Table I for the (a±) and (b-) amplitudes 

were obtained in this way from the best values for the input data. The 

uncertainties to be associated with these amplitudes were then estimated 

by considering the sum 

(A8) 

where X1, X
2

, x
3

, x4 denote the expressions (Al), (A2), (A3), (A7), 

respectively, and denote the standard deviations 

associated with the experimentally observed values xl, x2, x3, and x4 . 
The relative probability for a given set (a0, b0, a1, b1) on the basis 

of this data is then proportional to exp(- x2/2) .• For a mean value set, 

x2 = 0; the surface x2-= 1 in the (ao, bo' al, bl) space then defines 

the uncertainty on these parameter values to the confidence level of one 

standard deviation. The error quoted for each parameter in Table I was 

obtained from the ·intersections of this surface with the corresponding 

co-ordinate axis when the other three parameters were held at their mean 

valueso This procedure ignores the possibility of large off-diagonal 

elements in the error matrix and may underestimate the uncertainty of the 
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parameter i.n certain cases. 

For the (a+) set, the amplitudes appear to be relatively well 

determined. For the (a~) set, a0 is quite poo~l~ determined in 

comparison with a1 • This insensitivity of the data to the value of a0 is 

due to the large value of b0, for the contribution from b0 generally 

dominates the contribution from a0 in the expressions above; the value of 

b0 itself is also no more accurately determined. It is of interest to 

note that the ~-/E+ ratio in the region 190 to 200 Mevjc, which has not 

been u~ed in the above analysis, is also insensitive to the value of a. " 
0 

As a0 varies from =1.15 to -0.35, the value calculated for the.average 

~- ""+ 8 8 ~ 1 ~ ratio over this interval varies from 0. 7 to 0. 0, the experimental 

value being 0.95 ± 0.3. For the (b=) set, the amplitudes are quite well 

determined except for b
0

, for which any value between 0.8 and 1.8 is 

acceptable; the probability curve for b0 is very asymmetric and falls 

very gradually on the upper side of the best value for b0 • 

No solution of the (b+) type exists for the best values of the 

input data. However, a solution of this type existed if oabs' E or A 

were reduced by one standard deviation. These solutions were used as 

starting values in a systematic search for the set (a0, b0, a1, b1) giving 

2 the least value of X • This set of (b+) amplitudes is given in Table I 

and corresponds to x2 = 0."12, which is a quite acceptable value.. This 

minimum is quite well-defined and gives a satisfactory (b+) set of 

scattering amplitudes. 

In concluding this Appendix, we wish to express our appreciation 

for the assistance of Mr. J. Dick, Applied Mathematics Division, Argonne 

National Laboratory, and of Mr. J. Schwartz, Physics Department, Lawrence 

Radiation Laboratory, with the programming of the computer calculations which 

were necessary here. 
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APPENDIX B 

A SIMPLE DISPERSION-THEORETIC DISCUSSION OF PION-EXCHANGE IN K-N PROCESSES 

In order to illustrate some of the points made in Section IV, we 
. 4 6 

consider here, following Ferrari et a1., 5 ,55,5 a simplified nonrel~tivistic 

treatment of the effect of the exchange of a vector boson B between K mesons 

and nucleon on the energy dependence of the scattering amplitudes. The 

diagram of interest is shown in Figure 2. Its amplitude is given by 

F = f f ~(k + k')/(-(k • k1
)
2 

K N ..-.... -
2 

+ ~) ' 
(Bl) 

where ~ = TN • TK/4 or 1, according as the boson B has I = 1 or I = o, 

and fK' fN denote the coupling strength of B with the K meson and 

nucleon, respectively. This boson may represent a pair of J = 1-, I = 1 

resonating pions, or perhaps the I = 0 ro0 particle, or some other resonant 

j = 1~, I = 0 pion configuration. In the nonrelativistic limit, (Bl) 

reduces to 

F n.r. = 
2 

+ (k - k') ) - ..... 
(B2) 

Averaging over angles to obtain the sawave amplitude leads to a logarithmic 

branch cut in F s(k?) 
n.r. as a function of k2, running from 2 2 

k = -~ /4 
to the left. Following Ferrari et al., we replace this branch cut by a 

2 2 simple pole at the point k = ~~ /2 • For the scattering matrix T, this 

corresponds to the assumption that on the left-hand cut, the imaginary part · 

of T on the upper side of the cut may be approximated by 

2 
Im TKK = ~ R 8(k 

' 
(B3) 
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where k 2 = 
0 

T = F /2:1! for 
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2 
-~ /2 and R = ~ Q fK fN/2n, recalling the relationship 

the T matrix as defined in the text. 

Consider first the two-channel case. The analytic function N(E) 

which satisfies the condition (4o5) on the left~hand cut, and which is finite 

at infinity, may be written 

N = 

(B4) 

The elements a, ~' and y are constants which represent the contributions 

to N from more distant singularities. When R = o, the matrix N mUst 

reduce to the K matrix used in the text and must then be symmetrico The 

factors DKK(O) and DKY(o) denote the values of the corresponding elements 

of D 2 2 at the point k = ~k0 o 

The elements of the denominator matrix D are analytic functions in 

the k2 plane, whose imaginary parts along the right-hand cuts are g±ven by 

Im D = = ~ p N • (B5) 

Approximating the K-N phase-space density by ~PK = Ck, and the ~~Y phase 

space density by corresponding expressions, we may write down by inspection 

the analytic functions which satisfy Eq. (B5) and which agree with the 

normalization condition that Re D ~ 1 at infinity. The result is 
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D = 1 - iCk.a - -iCkt3 -

(B6) 

We now have two equations of consistency for the determination of DI<K( 0) .~ 

and DKY( 0) o Thus, for k = + ik0 in (B6), we have 

CR 
1 + Ck0a - ---2k Dvv(O) , 

0 
lU\. 

(B7) 

from which we obtain 

(B8) 

Similarly, 

(B9) 

so that the matrices N and D, modified for the effect of exchange of the 

boson B, are now obtainedo 

As pointed out by Bjorken and Nauenberg,50 it is not immediately 

apparent that the scattering matrix T thus obtained is symmetric, but this 

may be verified quite readily by direct calculation of 

D(T - T)D = DN - No ' 
(BlO) 

by showing that the right-hand side vanishes identically. It is now of 

interest to calculate the K matrix, by means of the relation (4.6). This 

leads to the result 
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K = Z 

' 

(Bll) 

where z = (1- ~Ck0(1 + Ck0a))-1 and ¢ = [R/(1 + GR/2k0)]/(k2 + k0
2) o 

The result (Bll) has been written in such a form that it is valid at once 

for the three-channel case also, when ~ is ·replaced by a 1-by-2 matrixo 

The K-N scattering amplitude may now be obtained from (Bll), with the 

result 

A=Z~ 
E + i~~(l - ~Ck0(1 + Ck0a) -

- i~,:y(rz"1 + (Ck0 ) 2¢~f~))-1 Py ~t} 
(B12) 

In the unphysiqal region for the K-N channel, the reduced K matrix 

may be obtained by using expression (4o9), 

1 CR(l + Ck0a) 
-..;;;;..- )( 1 + CKO: - _, __ _.;;....._ 

K + k0 1 + CR/2k0 

(B13) 

The location of a K-N ~ound state is then to be determined from Eqo (4o10), 

which, as can be seen from (B13), reduces here to the simple equation 

1 + CKO: -
CR(l + Ck0a) 

1 + CR/2k0 

1 = 0 , (B14) 

where the replacement k = +iK has been made in this regiono It is of 

-1 
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interest to note that, despite the occurrence of a pole in T at the point 

k2 '== -K2 = ..;k 2, the condition (Bl4) for a bound state ·shows no singuiar 
0 

behavior even at the point K = k
0

• This is in accord With expectation; as 

discussed in Section IV. The Eq. (Bl4) is of course identical with the 

equation (1 + C~) = 0. 

The energy dependence of (Bll) and (Bl2) arises from the energy 

dependence of the term ¢. If the coupling parameters fK and fN are 

small, so that R. is also small, this energy dependence is generally quite 

weak. 

The case of most interest is that in which the coupling parameters 

fK and fN are large and most of the real part of the large scattering 

amplitude (a
1 

· for the (a±) solutions, for the (b±) solutions) 

can be attributed to the attractive potential generated by the exchange of 

the boson B between K meson and nucleon. For this case the parameter R 

is large and positive and the coefficient R/(1 + CR/2k0 ) which appears in 

¢ is not strongly sensitive to its precise value. We shall illustrate the 

situation for the (a±) solutions by choosing k0 to correspond to the mass 

0 305 Mev (roughly the ill mass), the lowest mass which may be relevant, since 

this may be expected to lead to a correspondingly large effective range and to 

the strongest energy dependence for A. 

First we consider the (a-) situation. Here the potential term is 

sufficiently strong for binding, so a coupling strength f~N/4~ ~ 1.4 was 

chosen (sufficient to give about the observed K-N binding for the static 

potential)o Since the value of b1 is small relative to a1, we neglect 

the small contributions from the last term of (Bl2), neglecting also the 

element 7 for the reasons discussed in Section III, and determine the 
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value of a from the observed value a= -0.85 f, with the result a= -1.06 f.' 
p 

To illustrate the energy dependence of A = a + ib, we then calculate these 

parameters at lab momentum 175 Mev/c, with the result A1 = (-0.93 + 0.15 i)f. 

The energy dependence found for this case is relatively slight. Finally, we 

substitute in Eq. (Bl4) to determine the location of the K-N bound state 

for this model. The value obtained for K 
-1 

is 1.27 f , to be compared with 

the value -1 
K = 1.18 f computed from the zero-range approximation. This 

corrected value of K would place the K-N bound-state resonance at about 

97 Mev below the K-N threshold, compared with the estimate of -80 ± 30 Mev, 

with the zero-range assumption. When we recall that, in this case, the 

location of this K-N bound state almost coincides with the location of the 

pole inserted into N(E) to represent the exchange of this boson, it is 

quite remarkable that this extrapolation into the unphysical region deviates 

so little from the extrapolation carried out with the zero-range approximation. 

To illustrate the (a+) situation, we have chosen (rather arbitrarily) 

a weaker coupling, fKfN/4~ ~ 0.7, to correspond to the absence of a bound 

state. The value of a corresponding to a = + 1.45 f 
1 

is then found to 

be -0.27f· In this case the energy dependence of a and b is found to 

be much stronger; at i75 Mevjc, the vaiue A1 = (0.45 + 0.15 i)f results, a 

very substantial fall from the zero-energy value assumed. With such a 

rapid variation of the parameters, it would be quite essential to modify 

the proced'jlre of the analysis given in Appendix A, to relate the 11 at .. rest'' 

data and the 175 Mev/c data correctly. It is not easy to understand 

physically why the effective range for this case turns out to be so large, 

and a more detailed study of the effect of "long-range pion exchange" on the 

K-N interaction certainly appears desirable at this stage. 
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FIGURE :LEGENDS 

Fig. 1 Pion .. hyperon scattering cross-sections calculated for the (a-) 

set of K-N scattering ~mplitudes, with a 
1 

adjusted to ~ocate 

the resonance energy at 1382 Mev and b = 0.20 fermi. The curves 
' 1 

shown are as. fQllows: (a) .the total rc-A elastic scattering 

cross section, with rc-A and re-I: systems both s1; 2, and with 

~zero potential scattering (y. :;= 0); (b) , the same, with the potential 

scattering chosen to give a potential scattering phase of 5 = - 15 deg. 

at the resonance ·energy; (c) .the total rc-A elastic scattering 

cross section, with rc•A and re-I: systems both p
1

/ 2 , and with 

zero potential scattering; and. (d) . the energy, dependence of the 

total re-I: .elastic scattering cross section (arbitrary normalization), 

with the assumptions of case (c). 

Fig. 2 Graph showing schematically the exchange of vector boson B between 

K and nucleon, as considered inthe model calculation of Appendix B. 
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