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‘1. Introduction

A general form of a collective modél Qaa developed in a fundamental
paper by J. A, Wheeler in 1937.l

In this theory, any state of a nucleus is regarde& as a superposition of
all possible kinds of nucleon clusters, continually broken and re-formed in new
ways, the interchange of neutrons and protons between the groups being largely
responsible for the intergroup forces. Such a state is called by Wﬁe;ler a
“resonating group structure.' To make the calculation £ea§ib1e. no more than
two clusters are considered, and the intergroup separatfcp variable T (joinlnﬁ
the centers of mass of the two clqaters) is the maiﬁ one of the problem, the" scat-
tering function being F(?)._ After an exchange of nucleons bet@een the clusters,
T becomes 'x.'". It can then be shown that for any type of intex.'.gction we get an

equation of the form

2 o |
G‘E er+ Em) F(T) = U(r) F(T)+ J K(T, r') F(r')dr'. (1)

Because of the principle of conservation of energy, K('r.. ;5) is symmetric

- -
in r and »',

The three-nucleon problem {(n-d scattering) was tackled first by
Buckingham and Massey in 1941, 2 using a central potential of exponential shape

and the Massey and Mohr wave functiori3 for the ground state of the deuteron,
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Since then, and also in this paper, Gaussian ﬁave been preferred both |
for the potential shape and for the nuclear wave function because the analysis ie
easier an@ can be carried out further. But even when the Gaussian shape is used,
the solution of Eq. (1) still requiree the help of a powerful computer to tabulate tl'_xe
kerneis and to solve Eq, (1) using finite-difference approximations. 4 Both programs
have been written for the Ferranti Mercury digital computer by Dr. Philip G. Burke,
and areuow available at London University Computer Unit, 5

The work presented here is half way between the fundamental Wheeler paper
én resonating gﬁroup structure and Burke's programs for tabulating kernels and
;olving the equations.

‘The reactions involved in the following scheme are considered here, -

D(A,Z) - D(A,Z) D(A, Z) = n{A+1, Z+1)  D{A, Z) ~plA+1,2Z)
n(A+1, Z+1) = D{A, Z) n{A+1, Z+1) = n(A+1, Z+1) n(A+1, Z+1) = p(A+1, Z)
p(A+l, Z) - D(A, Z) PlA+L, Z) = n(A+l, Z+1) plA+1,Z) -p(A+l, Z)

This is written in abbreviated form as

AA. AB AC
BA BB BC
CA CB cCC

For A=2 we have the full three-channel d-d reactiona;6 for A=3 we have |

the two-channel d-t¢ reactton37

or d-l‘!e3 reactions; for A=4 we have the singlel-
channel d-He* elastic scattering.

The minor of AA of the type N{(A, Z) (N being a nucleon, either a neutron,
n or proton, p ), and most of the possible cases have already been published, The
n-d case of course, has been extensively studied; the Gaussian formulation with
central forces of interest in connection with this paper has been carried out sepa,c;ately

9 410 11

8 .
for n-d, n-H03 and n-T," N-He", and finally the two-channel u-He'3 case,
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In each of the above papers is a formulation correspondiﬁg to the reaction
studied; all the formulations published (or to be published) can be found her'ein, 80
that Wheeler's model appears with full effect namely, covering a very large quantity
of experimental data with only three parameters:  V, (potential depth), Po = 1/ Ny
(range of the nuclear forces), and the type of exchange. However, one musf keep
in mind that the formulation is only the minor part of these problems, the far
greater one being to get out numerical results, and in that respect the machine
programs are much more valuable. | |
The limitation A < 4 is due to the symmetry property of the ground-state
nuclear wave functions, namely factorization of spin and space part with invariance
of the space part under any ‘permutation of the nucleons inside the nucleus. This
important property allows for a relabeling of the nucleons, which considerably
simplifies the analysis. |
Among the possible types of functions consistent with that property,
Gaussian functions have béen preferred. We také, for the potential shape,
V(r) = Vo e-p'rz;
for the deuteron wave function,
GlA+], A+2) = ¢(py) = ﬁg[exr)(-n'plz) tc eXP(-ﬁplz)]x

and for any other nuclei,

$(A,Z) = 4(1,2, -+ A) = NIX exp[-(0/2) (11)°].

As we ha§e A £ 4, we can denote protons by even numbers and neutrons
by odd nﬁmbers. Also‘ we assume 1 andiA+l £o be of the same nature, Zas well as
2 and A+2.

From the form of ¢(A, Z) it is obvious tha‘t‘ AC can be deduced from AB,

and similarly BB and CC from BC, by appropriate changes of \.
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Finally, owing to the symmetry property of the scattering matrix, we
have BA = (AB)T, ca=(ac), cB=(BC)!, and we need to consider only the .

three terms
'AA, AB, BC.

In the minor of AA, the nucleus involved contains A+l nucleons; when
dealing with it, to simplify the formulae, we write only A, so that we have at once
the formulae ready fbr the two channels N(A, Z). The method is detailed in that
case, and 6nly tables are given for AA and AB and for BC.

Chapter II of this paper defines the central two-body interaction used in
the formulation, and deals with the space-part wave function of the nuclei (A, Z).
Chapter III gives the wave function, written according to the resonating-group-
structure method, and the corresponding equations that the wave function must
satisfy. Chapter IV deals mainly with the BC term, and in the appendix are
given the corresponding Table II and Tables III for AA and AB terms built
up by following the same method. Chapter V is a brief review ;of the method for
getting the cross sections; this topic is dealt with in detail in qther papers. 1<2’ 13

In appendices are given some details of the algebra involved in the

calculations, and the results are listed in Tables II and III.
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II. The Two-Body Potential and the Nuclear Wave Functions

1. The Exchange-Dependent Two-Body Potential

The potential used is a central two-body potential with Gaussian
shape and exchange dependence. It can be written equally well in two forms,
and the connection between these two forms is reviewed here.

The interaction between two nucleons can be written (using the same

shape for all exchange potentials) as

2
rWrij) = (wWij + rnMij + bBij + hHij) V(rij)+€ij . ;e_i; R

where eij =1 if { and j are protons, and zero otherwise, rij = |;1 - ;’jl’

W is an identity operator, and

ij
Mij' ‘Bij’ Hij are the usual Majorana, Bartlett, and Heisenberg operators
exchanging space, spin, and spin-and-space co-ordinates of particles

i and § suchthat HBM y=W{ =,

According to the Pauli principle, the total wave function must be totdlly
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antisymmetric in epace, spin, and isotopic spin so that, lgﬁce H'=%“+.;i . ’.;j)

is the operator exchanging the isotopic spin, we have H' B M = - . Consequently,

Lndd

we have H' = - H, and H, = - zl'(“ AR AN

i
1 - . 1 . = .

As Bijg Z-(H»cri-' a’). we deduce MiJ = - 1+ ?i' qj)(l + ?1 ’fj).

Either from their very definition or from the above expressions, we deduce the

following multiplication table:

Wy My By Hy

o Yy [ Yy My By Hy
MU ' "'Mu WU HU BU

BU Bu Hu Wu M“

Hy | By By, My Wy

Here w, m, b, and h are constants that determine the relative importance of
each type of exchange; they are chosen according to the different theories of nuclear
forces, and it is hoped that the comparison of the final results with the experimental
data lead to a reasonable choice,

Let us write Y(rﬂ) s Vo flu, ru). |
vﬁxere Vo and p give the depth and the range of this well,
wd by by Yy, 04 o, (W)

is a wave ﬁmction for the two nucleons { and j.

|
23+lv (-1)

Then V(ru) acting on 41“ ~will give an effective potential 2T+1 ¢ quch tha@

zs+1v(-1)&

2141 Sl W (-0 m (-0 e s (-t tet! B} Vo flwry).
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Wetake w+m+b+ha=l,

so that Vo 'is the depth of the well of the deuteron in the 38 state. Also,

w + m-b-h = x

is the ratio of the l.E"» to 38 interaction.
The value of x is usually taken to be 0.6, 14
Wé have |
1+ _ - 3V + lV'
W + m = 2 k- 3 = 1 - 8;
2("V)
3 1
b + h = l;x = V3— V = g.
2(°V)

Using the previous definitions of W“ R 'MU' EU' and HU' we can write
the nuclear interaction,

- -

1+0,' 0 | 140, 0
i i
'V(ru)g [w+ m M-u+ b (__2.___!) + hMU (.__2...__.!>} v(ru).

As Mij had no effect on even states, we have, for the states of even parity only,

[w+m+§-+%ﬁ-<!’-§h) 7, B“j]wru)n [1 -%g+§-g(3‘; ?,)] Virg).

The potential for astates of odd parity is suggested by meson theory:

" {8) Ordinary forces or neutral meson theory:

V. .5 V i.e., m=h=o, w= 1/2(1+x), b= 1/2(1-x).

odd even'

'(b) Exchange forces or charged-meson theory:

Voqq=t-DLV_ , fe., w=b=o, m=1/2(14x), h = 1/2(1-x).

even

(c) Symmetric forces or M HW B:

,‘v

—

T - r- - 3 1
Voda 1/3(71 Tj)(oi aj, even' '’ odd ~ 1/3 Veven®d Voaq=-3

or

m = 2b =(1/§(1+3x), h=2w =(1/;¥1-3x).

even'’
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- L

(because here ;i :;j goea as .&.i. aj. and ;i. crj = +1 for triplet states and

-

. (Ji
(d) Serber empirical forces:

= 0, wam=(1/4)(1+4x), b=h = (1/4)(1-x).

. 'c'r.j = - 3 for singlet atates).

vodd
(e) Piel's force, a mixture of Serber and symmetrical exchange (which has given
good results for the'binding energy of tho first 4n nuclei and the a-a scattering):
Bielgl/g, v ., wsb= 5/18; 2300 h =5/18-x/2. m = Jg + ¥4

That the deuteron has a quadrupole moment implies that the nuclear force

v +2/3V

sym Serber

is not merely a central one.‘

However, 8o that preliminary results may be obtained in a reasonable
time, this work does ndt include a tensor force or a spin-orbit coupling. Using
the central force not only saves labor but also allows us to congider the total epin
8 of the system and the angular momentum £ as good quantum numbers; thus it is
possible to solve, for each value of f, the system of equations obtainetd for each
value of 8. The phases and the cross sections are deduced according to the
classical method of partial waves. |

At low energy, the results are rather insensitive to the shape of the well,
as we have seen from the Blatt and Jackson formula.

The potential shape used in this work is Gaussian,
_ 2
VO f(p, r) = Vo e PT

this form being the one which allows us to perform most of the algebra. The value

6 15

of p(p = O.é669 10Z cm'z) is that derived by Breit‘,', Hoisington, and Share"~ from

analysis of low-energy proton-proton scattering, and has been used in previous
16

four- and five-nucleon calculations (see Bransden review paper ). Assuming that

the nuclear forces are charge-independent, this range can be used indifferently

for p-p, n-n, or n-p interaction. The corresponding range Po = 1/Nu =1.936 107}

is larger than normal and in that respect can account, to a certain extent, for the

effect of the neglected noncentral forces.

3
cm
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The corresponding value of the depth Vo (that is, V,=- 46.8 Mev) was
interpolated from the results obtained by Burke” for the determination of the well -
depth required to give the observed binding energy of the deuteron for a Gaussian
well using p = 0.2 (0.1) 0.6,

2. Trial Functions and the Variational Principle

With the interaction V(ru) defined previously, and T being the appropriate
kinetic energy operator, the Hamiltonian will be

H=T+ Z Virg) .
all pairs

The wave function ¢ to choose for the different nuclei in their ground states

3

(D, T,He", He4) should be the exact solution of the Schrodinger equation,

(H=E)¢ =0,

E being the corresponding binding energy.

As is well known, it {s not possible, using Gaussian potential, to solve
these equations and express the eigenfunctions in an analytical form. To allow
for an analytical evaluation of most of the integrals, a trial function is chosen for
the space part.

As the total wave function must be totally antisymmetric, and as the
product of the spin and isotopic spin parts can be antisymmetrized for any number
of nucleons up to four, it is possible to take a space part completely symmetric
with respect to permutation of the nucleons. Among this class of function, the
Gaussian form has been chosen.

2 2
Deuteron: ¢ = (I/NO)[exp'o'r +c exp'ﬁr 13

T, He’, He'; ¢ = 1/N expl -(2/2) ) (1§)*]

where N is the corresponding normalizing factor, -

Writing ¢ = ¢ 0, and with A being any of the parameters a,f,c, \, we have
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+
E()\) = ¢+H¢d'r )
Jo par
the integral sign involving the appropriate sums over the spin variables.
Then, according to the variational method, the parameters of the trial

functions given above are determined so that

8 E ()= Z-g-% 53, =0,
b

whatever the 5xi may be. This gives a system of simultaneous equations and
therefore the values of ).i.
The corresponding mean value Emin 8o obtained is an upper limit for

the binding energy E and verifies the equation

ju;*(n -E_, )ydr=0,

This integral equation satisﬁed by the nuclear wave function is used later on to
simplify the equations of the scattering problem.
The Gaussian form is

o= IN exp[-2/20 (2],
i<j

where (ij) is any two-by-two combination of the (1,2, A) nucleons. Using

the elementary relation of the moment of inertia,

1Zm‘ MAZ = (g m,) MG + E‘: m, GA .,

we get P
2 AlA-p) o 2
T Sd-p) 5 2,
i< pzl PP
with
I . $Tx
K e3 - 2 Pt v

P P A-p ’
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By use of the formula given in the appendix, the normalizing factor is easily deduced:

g <P (A-p+1)) 372
N II (hﬁ%)—?)

p=1

where w means the product of all terms obtained by using successively
p= l. 2,00°A-1,

The kinetic energy is given by

- " 3
For each Rp we get the contril::xtion 7 AA,

and as we have (A-1) different vectors RP' we get

2
(¢1K.E.|s) = Tr 7 MA(A-D.

2
The nuclear potential shape being V(r) = VO e-p'(i‘” Bial o

3/2

The Coulomb potential gives

2 1/2
c Z(z-1) 2 e A\
(¢ 1vele)= =3 = (‘2‘)

And finally the binding energy is

1/2

2

B E(A, Z) = % %K MA(A-1) + ﬂ?—’ﬂ(mw)vo mn.p . z(;-l 2e (Azk) .
'Jﬂ'

By making A =2, 3, 4 onecan get all the formulae needed for deuterons,

tritons, He3, and He4.
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Table I

TS TR IR e i TR T ST =

Summary of Chapter II. Parameters used m the trial wave functions and
corresponding calculated and experimental binding energies.

Nucleus A Emin Eexp
(Mev) (Mev)
d a = 0.0299x1026cm™2  -2.133 -2.226
B = 0.186x10%%cm 2
c=2,73
6 0.15715 -6.744 -8.3
He’ 0.15400 -5.975 -7.55
Het 0.15780 -27.315 -28.2

The potential range p, = Ql-ﬂ- = 1,936 XlO'ncm (from p= 0.2669X1026cm'z)

and depth V, = - 46.8 Mev
chosen can account for the binding energies of all the light nuclei we intend to deal
with in our scattering pfoblemn. This is very important when dealing with coupled
equations of a complete (elastic and nonelastic) system which has to be described
with consistent parameters,

The values of the physical constants (h, e, etc.) used in the calculation

are those given by DuMond and Cohen, 18
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11I. Total Wave Function and Coupled Equations

A resonating-group wave function of correct symmetry may be written as '

YglAtL At2i1, 2, o AV = (1-Ppgy ) =Py 3o W1-Ppyp 5oPryp gmn)
WAL, A¥2) (1,2, 7~ A) 0 (A+], A+2;1,2, -+ A) F (At], As2;e - A)

. . o0 * . LR ] * a-.A
+(1-PA+1' l—pA+l,3' «ee) ${A42,1,2,3 A) UB(A+1'A+2' 1,2,3, A)GQ(AO-I,A!-Z.I,Z. )

HI-Pps 0-Paya gt JHATL 1,2,3, -0 A) 0 (A+1,1,2,3, - - AVH (M2 AH, 1,2, -« A).

Here PU are exchange operatox;s of Heisenberg type;

o is the: spin function corresponding to the total spin S of the system of
A+2 nucleons. As is well known, even though all spin orientations are contained in
the usual beam, we may take only one definite spin orientation m for the spiﬂ
function c-sms ‘because different values of m, lead to incoherent contributions,.

In fact, we have taken m_ = S and dropped the superscript;

F, G, H are the scattering functions (to be replaced by plane wave in Born
approximation), which we are going to determine by the partial-wave method, as
described in Mott and Massey. 12

The general way of deriving the coupled equations through the variational

principle is given in Wheeler's fundamental paper, and the application to the case of

A=2 is given in detail in Burke and Laskar, 6
The variational method leads to an integration over internal variables, and

the appropriate different ial volume elements are:

dr, = d(A+1,A+2) dR, dR, **- dR, |,
dr, = d(R,,,); dR; dR, -+ AR, |,
dry = &R, \); dR, dR, <+ dR, |,
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where we define

. -l bl -
& I ) rl + t2+‘ oo TA
A+2 A+2 A ’
or A+l [, or A+l
The basic intergroup separation variables are

- L . L d -
r +r T, +r, - +K

ve Al A 1z A for AA, AB, AC;

Fa+2,17 5 T 5y 0¥ ¥y

-lp
vl'Z = rA+l,2 - vy for the other elements.

_ The exchange operators Pij replace this set of :by a set of ¥', and
special care must be given to AA. AB, AC terms because of the occurrence of two
types of exchanges, |

First type of exchange:

o+ T T ETah ee T
r r LTt cov
AA: et = A ’ Avz A+l 2 3 A,
A
T, . +T. +T +T
e - 4 o CA+2 T 71T 2 T A
ABl r!=ar, ., — AT .

~ Second type of exchange:

-y -l -ty L 4 -l -l
rl-frz ) rA+l+rA+z+r3+---+rA
g .

AA . .;""*“Z““

- - ;A+z ":AH "';2 *oeee +;'.A
ABO r = rl - A"‘l L}

As already mentioned, BC belongs to the type N(A, Z), and on that. basis

we have a single type of exchange:

-lip - [
-z Tap tTpt s +T,
A

1
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W interactions (n-p). They fall into

Consider now all the
different classes which can be listed and indicated as follows (where appearance of
- the same symbol indicates that the expressions are the same; the dagger is the

classical adjoint eymbol):

AA | AB BC
First type  Second type First type Second type
Type of exchange of exchange of exchange of exchange
(A-1, A) v v v v o v
(1, i) ' x x v | x x
(A+1, i) - xt v 0 | v x'
(A+2, i) Ly v ey
(1, A+l) 0 v 0 0 0
(1, A+2) ot R | v 0
(A+1, A+2) O - x 0 D _ |
(1)
(2,)) oo
(A+1,)) o'
(A$2,) o

The BC term will be dealt with in detail later on to illustrate the method. In this
table {=2,3,-..A except in (AA [II) and BC where { = 2 only;
J=3,...4,
Within a given column (AA, first type of exchange, for instance), all kernels
corresponding to the same symbol are the same; for instance the L—A-:-l—%(—-‘t—z—)—

kernels interactions of the type (A-1, A) (in which neither neutron nor proton is

A+l, A+2, or 1), are all the same.
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Within a given colhmn, (AA, first type of exchange for inatance) the dagger

b

signs correspond to the adjoint of the one without dagger; for instance

[AA|1 |A+1,A+2] = [ Aa]1[1, a+2]t,
The notation ['AAI 1 Inp] speaks for itself: it means the kérnel corresponding

€ 5.

to the interaction np, in AA, first type of exchange.

The c‘uﬂ“e’sp-'Qndér"icl‘le_zbet\fleen kernels shown above is self-evideﬁt as soon as
the interaction (np) ;s expressed in terms of the variables v, r'.‘ Rz. v -RA“I..and
| allows for tremendous simplification in the formulation.

The following notations will be used:

g = Emn{D) * EpyilA: 2) + By = B (A+1,2) + E_ = E_, (A+1,Z+1) + E

Zp
2 d,n,or p
k- = -Ed.n. orp’

h

where Ed n,or p is the kinetic energy of the corresponding particle in the
center-of-mass frame,

1 1 1 A+2

— 2 +
*d Gy T MD) P MGE T ZEM

1 _ 1, 1 _ A
M ABHTIIM T (AFTIM

Panorp

So that g = f (k).

Also, uf/qis the kernel arising from the product of the initial-state wave
function on the one hand and the final-state wave function after exchange on the

other hand.
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For a given value oi the total spin S, the system of coupled equations can:

" then be written;

A+2,2

+(¢.o'w+p'm+ﬂ'b+t'h)vA+ L l}d Ty

0 = -{‘_Agp-fl'f‘_+ E(d)} F(v)+F(v)j¢ (p1)¢ (A, Z) {zv
+ JAZJ{YAA [ T- &) +((A+Z,2))C +((A+1, 1))
+ ((A-1, ANH((1, A+1))+((A+], A+2 {1, A+2))+((A+2,2)14((1, 2 [+]A+1, 2)) Y F(r')dr

N {yAf [ T- E47) + ((A+2,2))_ + ((A+2,4)),

""J'AXJ{ Yap [ T- EA') + ((A+2,2)) + ((A+2, 4)),

+ ((A-1, A)) + ((1, A+1)) + ((A+1, A+2)) + ((A+2, 2)) G(r')dr!'

+((A-1, ADH((1, A+1))+((A+1, A+2))+(1, 3 |+ | A+1, 3)) }F(r ')dr!

+ JAgJ{yAB [T- £of) +((A42,2)) + ((A+2, 4)),
| $((A-1,A)) + ((1, A+1)) + ((A+1, A+2)) + (A+2,2))+((1,2)) } G(r')dr!
+ AC terms deduced flfom' AB by interchanging conveniently A+l and A+2

and also replacing G(r') by H(r').

2 .
0 =BA - {z(‘(t&"r)“mf)ﬁm + E(n)} Gl¥)* Glv)wwtpmtpbreh) [$5(A+1, Z+1) vA*L L
¥ JBBj{ Ypp [ T- ] + ((A+2,2))_ + ((A+2,4))_
+ ((A-1, A))+((1,A+1))+((1,2|+|A+1’ 2)) } G(r')dr"

A+1, 1

+ H(v)(w"w+p."m+{3"b+t"h)f¢(A+l, Z41) V n(A+1, z) dr,

*Tpc [ {YBC [ T-‘?#]+((A+2))c+(<A+a,4>)C+<(A-l,A))+((1.A+1))+<(1.2|+|A+1,zn} H( )z’

2
0 = cA+cB-{%+ E(p)} H(v)+H(v)(ww+pm+[3b+th)\/'q2(A+1, z) VT2 2 ar,

Jec j { Yoo [T- Zut/“]+(<A+z.z)>C+((A+z.4))c+((A-1.A))+<<z,A+zn+((2.1|+|A+z.1))}H(f>dr'.
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The equation for D—He4 scattering (which exists only for total spin |)

4

is given as an example: DH " = (56) (1234).

2 {2 |
3h {d S el kz} £,(F) = {va62 + (8w - 2m+4b - 4h) vls} f,(r)

8M er 1_2

0
_J;{ Z(T- W+ (16 2)C+(1|51)C+(1|16+1|56)) + 6(w+m) ((1|12+1|52) + (1|34))
+ (2w-8m+4b- 4h)(1!15) + (6w-4m+2b-6h)(1|26)} fl(r') dr'
e X .
+ J{T ‘BQVV+2(III62)C+2(II| 12) + (I1|34) + (4w-6m+6b-2h) (11]15)
0 .
+ (4w+4m-2b-2h) (11| 13+11|53)} £,(r') ar'.
For each value of the total spin S of the system of (A+2) nucleons we‘l‘get
a system of the type shown above. In this system, the Jacobian has been kept in
front of each integral to show from where it arises, To simplify the writing of the
equations, we use a notation explained by ‘the example
((n,p)) = ( ww + pmtpb + th) [ AA|Ior II|np],
!

where w i, B, and t are appropriate numerical coefficients depending on spin.

Finally, for the whole system we use the abbreviated notation

AA AB Ac \ /F
BA BB BC | | G = 0,
CA CB CC H

Some relations between the spin-dependent coefficients can easily be obtained
by using the multiplication table given in the definition of the potential, For instance,
we have, before any direct term,

wwt+tpm+pb+th,
and before the corresponding kernel,
pw+wm+th+ ph.,
Also
o ((AA[ 1] A+2,2)) = (o wHp'm +p'brt'h) [AA|1]|A+2,2]
((AA[IL | A+1,1)) = (' wtw'm +t'b +p'h) [AA|IL| A+l, 1]
These spin-dependent coefficients will be analyzed in a more detailéd

manner for the BB case considered as a N(A, Z) problem.
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IV. The Gaussian Formulation of the Different Terms

The method is fully explained for N(A, Z) and results are also given for

DA, Z).

1. The _cgreét potential term

As all the (ij) couples involving (1,2, - +A) disappear when we uge the

integral equation verified by the nuclei wave function

j¢ (Hs Emm’ $dr=o0,

we are left w.th couples of the form (A+l,i), where i= 1,2, _‘A » and (A+1) ‘in the
incident nucfeon. -All these terms give the same cont:&bution. as we can always
relabel the nucleons, and it {s enough to calculate the contribution of one of them,
say (1, A+l). Now in a cross term it is the space-part wave f\mctioh of the newly
formed nucleus n({A+l,2, 3, +A) after exchange (A+l = 1) which {8 involved.

!‘l‘f 3'2 "+rA
Therefore, calling_v = 'AH - y: ’

we have

(A+1,1) =? = r u(—-—r) = v,

and the corresponding contribution is
f¢ (1,2,°** A) V, exp[-p{A+l, 12 n(A+1, 2 --A)d‘ﬁldﬁ;-- dﬁAol

where (A+1,2,3," -+ A) is the space-part wave functions of (A, Z-1); we get
Al

Voj‘”‘l’[ - 2 ( «—-ﬁ’) R2. WA+, 1) ldﬁ ai, +raf, | =

pm

A+1)} {[ 4va - }(3%13) “3}3/2 exp[- p(x+zv)A2 2

(Mv) A* +2(A- 1)(Mv) (Mv)A“+2 (A1)
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In particular, for A = 2,3, and 4 one gets the direct terms given for
n-d, n—HeS. and n~}3{e£1 respectively.
When N is a neutron obviously there is no Coulomb direct term,

When N is a proton a straightforward calculation gives (e.g., for the CC term)

ol )

where ‘ x ) g
s 2 t &
$ (x) = j e
T A '

and ¢ (x) is the well-known error function,

In the D(A, Z) case, one gets for the nuclear and Coulomb direct AA term

respectively,
. 3/2 2
oY e tih VP | et ]
- Np 4(a+f5)[)\+p.-;2-—] +Ap / 4(a+p)[ Mp -XZ-]- + A\p
- 2 ¢ 2mA(A ujl n e 4 +p)uétz 2
= < s - dt ) l- a v ],
Qv = e Ny Ot 0 (4(c+ﬁ)(A-l)+t_:Z).A2 “PLT HatpHA-14E2 A"

where the integral is computed numerically by any suitable method (six-point .

Gaussian integration formula, for instance). 19

2. The Kinetic Energy Kernals in BC

The original intergroup separation variable being called V (defined in the

preceding section), the intergroup separation variable after exchange is T

rA+l+ rz+ r3 +rA

rery - A '

as a relabeling of the nucleons can let ue call 1 the exchanéed nucleon,
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T4t T, - - I '
Therefore R, = ry - a3 L A (Ar' + v) = U(x', v).
1 Al 8y S

The change of variable from ffl to T brings the Jacobian

3
13) =(— |
A" -1
~and dR, dR, aRly-+dR, = (?_T) det dR, dRy-+-dR) .
In conjunction with | f(’1 let us define ﬁoAH !
> o EFTgbesdT, e
RA*ls Tatl” 2 —A-1 A = Az-l(;%*'Ay) = V(r', v)= Ut(pl:) = U(v, ;') .

Consider the product ¢(1,2°**A)n (A+l, 2+ A),
We have ‘

. A-1
Ml.z.---A)n(AH.?-.--'A)=N£m exp [ My ) SAE sz-ég—‘(vuznvz)] :

p=2
‘The kinetic energy operator is
h A-p+l 2 A 2, A+l _2
- 'M{p; Tp“z A-p")vnp*f(r-'l) Yot 3% Vr'} .

Using the method given in the Appendix, we obtain a kinetic energy kernel,
and the result {s given in the general table.

3, The Potential Kernels in BC

We have to consider a central two-body interaction V(r)= Vo’e:'"“”z s
between all the t@o%y-two combinations of the (A+1) nucleons (A from the target
nucleus and one incident). These couples can be separated in three basic groupas:
First, the ones involving neither 1 nor (A+l); they are of the type (A-1, A); e.g.,
(i,§), 1 or §, for §= 2, A,

Second, the ones involving nucleon 1; they are (A-1) of this type, e.g., (1,1)
for {=2,3,...A
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(tha ones involving nucleon A+l; they are alao (A-1) of this type,
8 8. (A"'l.‘) fOl' i= Z' 3"..A.

~and they are the transposed of the corresfmonding one with the exchange 1= A+l,
.
An 1‘».. ),[ ‘r..v)] ,‘Kl 1(v. )

Third and last, we have the single kernel (A+], 1) which has to be calculated

for its own sake,
In each group all the kernels give the same contribution as can be explained

by the relabeling argument or by direct calculation, using the formula
1 = 1 -k ‘ ' |
(A-p, A-p+k) uﬁA 5 ﬁA p+l+—-:-1 RA—p+Z+' . -+§:m ﬁA—p‘Fkol' (i)z-m)g‘.ﬂ-p*‘ké o
| We have now to calculate o ' =
‘\ -uy)® o <
wa,z.--.mvo e MUYy (A+1,2, 0+ A) & oF, aFf, oF, ,

A2 \? U . ‘
with the Jacobian J= (;-2-— ) As already seen fhe product 4"\%1\'&1 in the
-1 o

preceding section and for (i,}), the three basic couples, {.e.

(A-1, A) = R, .,
{1, 2) = - %—:—% R
(A+1,1) = T-¥,

pi (ArL2)= T - 23R, = (12)Y,

The results we get for the kinetic energy and the potential kernels, doing
the method given in the I'Appendix. are given in the Tables Il and 1II (also in the
Appendix), which can be uéed as follows, _ ' _ _

A. The general form ¢f the kernels given in Appéndtx 1 is adopted so zthat o
F,D, a, = [pP?«], o, = v, Ay, A,, B, and E have the same' definition t'hrougli.o.ut. :
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B. B 0 inan potential kezjnel gives the encergy-dependent kernel V{/D,

C, In the following table it must be noted that-A' = A+l, By making
A=y one gets the kernels of an elastic scattering problem.

Then if we make A = 2,3,4 one gets the corresponding kernels for n-D,
nHes. and n-He4 respectively,

D. The kernels occurring in AA and AB can be calculated in the same
way as the previous ones, using Table I for the change of variables; results given
in Table 111, | 5

 E. Tables Il and I are given !‘m Appendix {1I.
4, The Coefficients of w, m,b, h in BB |

We consider now the elastic case only. From the foregoing sections and
for a given value of the total spins of th A+] nucleons, and after integration over

the internal variables, we get

vl,A-l-l

. 2
o= "%fvﬁ* k2] F(V)+ (wwpm+pbtth) F‘(V)[ & (A, 2Z) dr

t}{Yfo.?(k)M + (A DA-2) (rwaptmeproren) KA1 A4 (uws umetbipn) Kl""_"

+ (w'twt p."'m+p"b+t"h)[Klz*KA“'z]} F(r) dr',

2 gy & A
with k= s E(N) -
no(A+

= IR

)
| | % (k) = E(A, Z) + E(N).

It is possible to give a general formula for w, u, B, and t and, atleast
for the others, to say that they only need to be calculated for a single couple:
(A-1, A) for &', p', p', and t', and (12) for o'!, p'', A", and t'’,

Consider first the single kernel Kl. A“.
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Using the multiplication table (p. 7) we see that p and t are now the
coefficients of w and b, |
Therefore = - o S(At1; 1,2,°*"A) * 0 _*(1; A+l, 1,2,0+" A),
where asa'a are the spin function of the (A+1) nucleons before and after exchange.
Also y = p, |
From the definition of the Bartlett operator, we have

{

Bpsy, 1%, (13 Atl, 1,2,000A) = o M(A+111,2,004A),
and t= - p if there isa p exchange involved in the total wave function.
~The nﬁmber of such exchanges in N-(A, Z) problems corresponds to the
number of nucleons of the same nature of N contalned in (A, z),
l t.e., p=1 form-D, n»Hez. p-T |

p=2 forn-T, uHe4. etc,

Because of the {-spin dependence of the Heisenberg operator, we seé
that for a giveti problem this coefﬁcient is the same for distferent valueas of the
total o-gpin, | |

Consider now the direct potential term. |

' »We have seen that the contribution of each VA”. | Wwas the same fc:r
i=1, 2,7+ A,
As | w A+l 1 is an identity opefator. we obviously have ws= A,

1 - -
Now we have BA“"w z(lﬂ-o'A“ . o't).

where & A+l is the spin of the incident nucleon and '&.1 the spin of one nucleon of
the nucleus,

As we deal with the direct term we have

. S . LRI 1 - 70 s LI
21@8 (A1 1,2, A) |0y, o] og (AL 1,2, A))

A ' o
- 1. S
= <asS(A+1; 1.2,-..A)| Oasl " 12;'1 ‘o?i | o (A+]; 1,2, -.-A)> s E, |
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A
where E is the eigenvalue of the scalar operator (?A+l° Z ?;i)'
. ' i=l

A ‘ } .
Now 2 '51 is by definition the total spin s of the target nucleus.
=l v .
As S=s+0 Lys and o = 7!- for a nucleon, we have
A+l A+l 2 v

E =2[S(S+1) - s(at]) - 21,

and finally, B =2+ S5(5+1) - s(S+1) - 3.
As o- and {-spin spaces are different, § is the same for two states of same

o-spin states but different i-spin states (i.e. different charge), e.g., n-He33 and nT,

Values of p for a £§w values of 8 and S with UA+1=21-

B
8 = 0 8= 5 7 A
1 . 1/2A41/2
s = 1/2 5 =10 1/24-3/2
. o 3 . : 1/2A+ 1
8 = |} ] ={2" -
1 : 1/2A-2
- | T -

The formulation in this Chapter IV is valid for a central nuclear two-body |
potential of any shape (Caussian, exponential, YukaWa, etc. ) and nuclear
sﬁace-part wave functions invariant with respect td permutation of the nucleons.
The results of calculation given in Tables II and IIIl are restricted to Gaussian -

forms for the potential shape and the nuclear space-part wave functions,
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V. Solutions of the Eguations and Calculation of Cross Sections

When we are left with the variables r and r' (after integrating over the

other variables) the integration over the angular variables is carried out as usual}

F(r) = Z 1 +f (r) P (cosG),

- 204

K(r, ") = gﬁf‘ﬁ% K (ro ') P,(n),
%1

and consequently K(r,r') = 2urr' f K(r, r') F;(p.) djp,
-1 ,

where K(r,r') is any of the kernels and F any scattering function,

0 18 the anéle of scattering in the center-of-mass frame,
pogiivs |

n -
and B = T

The systems then obtained for each value of S are easily deduced from the previous
ones with fé(r) instead of FG).‘ and Kl,(r, r') instead of K(;".?). and are,; of course,

valid for the corresponding 4 value;:only. They are of the form

dr r

2 e ,
{9__2, J-‘z’!-‘)-»fk }ff(ﬂ: us%(r) tl“(rnfo K, %!z, r0) £ (r') ar
+j!{‘“z(r,r’) f‘z(r') dr'+_j(;K‘°'3(r.r') fls(r')dr'.

where a =1, 2, 3 is the channel index.
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Using finite-difference approximations, Eqs. (4.1) are represented as a
set of linear simultaneous equations, the unknown being the values of f ‘a(r) over
'the,range_ of r required."" For the three-channel case, for insta.ncg, it is necessary

to find three. inaependent aolu‘tione_ such that

£ o z--L-[A “’r-na"‘jrs() a
4 (r) 4—\7; 4 (r l_ r

for a = 1,2,3 (three..channéls),'

.3 = L2,3 (tﬁree independent solutions),

where Fla(t)n, G‘a(r) are the regular and irregular wave funcuonzo for the
corresponding channel a.

Then the reactance matrix is
-1

R = BA ",

and the scﬁttering matrix is 8 = {-—f—%% .

The scattering amplitude f“. :(9) corresponding to the total spin S can

= be written

‘fu.q“(e) ® - ‘2‘1112: g(zzm P‘(goa 6) [%'a - .sa.:?] .

and the corresponding differential cross section is -

N U PRI T

Then the differential cross section i{s the appropriate weighted sum

1 > . 5
%0l prETEL T G 38 00 (0,
where I1 and 12 are the spin of the colliding particles and s the spin of the whole
' system, (211+1)(212+1) being the total number of spin states and (2s+1) the number

of states with spin s. 13a
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V1. Conclusions

To appreciate the true value of Wheeler's method, it is useful to quote

Blatt and Weisskopf, 21

It ia useful to divide the target nuclei into three categories

A - Light nuclei 1 <A g 25

B - Intermediate 25 <A §80
nuclei

C - Heavy nuclei 80 < A g240

The light nuclei (group A) must be treated individually. It is -
almost impossible to apply any general rules describing nﬁclear
reactions ia that group, .., The assumptions made in the pre-
ceding chapter about the interior of the nucleus are not applicable
to group A, since there are too féw nucleoﬁs in these nuclei for a
wéihdeﬂned interior region, All nucleons are at the "surface"

of the nucleus.

Two cases that are beyond the scope of this paper have also been treated,

namely the elastic scattering of six nucleons (t-t reactiond by Bransden and

23

Ha.milton. 22 and of eight nucleons (a-a reactions) by Butcher and McNamee = and

Schmid and Wildermuth, 24
In each case, numerical results have been obtained and compared with
expérimental data;zs the relative merits of different types of forces have been

investigated and conclusions have been drawn.
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The main point of this conclusion is that the resonating-group structure

. can well explain all the experimental’vresults obtained on the few-nucleon scattering
experiments. As pointed out by Bransden, 16 it is & means of cox_-relé.ting data with
just a few paiametein. namely the range and depth of the potential aﬁd the exchange
type of force, Although in particular cases one type pf force can fit better than
another one, it is remarkable that the Serber type fits all cases reasonably well.

The central two-body potential with central forc\es can be criticized, but
the inclusion of a noncentral force and particularly of a tensor force makes the
problem enormously complicated.

Also the Gaussian shape adopted for the nuclear wave function can be
criticized as being too rapidly cut off, but it is posgeible to apply the same general
method to any other type of wave function, and particularly the Irving type, 26 to
build up general formulae fof kernels and direct terms in terme of the number of
nucleons A jnvolved in the target nucleus.

Finally, it is also suggested that the work be extend to cases A>4 by
using wave functions of the appropriate symmetry, and to the cases (A'Z')(A, Z) by
using‘the general form of the wave function, both for the i{ncident and the target

nuclei, to include, for instance t-t and a-a reactions.
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Appendix A The Nuclear-Part Calculations

Consider first the kinetic energy operator, Tha difficulty arises from ;he,
term { A (v, x'), Vr,z ¥F(x') ), because F(r') is not yet known. But, as Vr,Z is
an Hermitian operator, the result is the same when {ts adjoint ‘ia.applied on the
left-hand side (which in other words is Green's theorem). Noww r' is {nvolved in

a change of variables of‘-the type

U = ar' + by,
V = br'v+ av,

and we have

2 2,2 22 -
Ver 28"V " 4+b ¥ T+ 2ab A
with ,
z L I J “ . - -..
vpz exp (- Np 4pep) {4)‘?.’2 . 4);:0.; + “Z- 6\} exp( Ap“+p ) .

Then we have to consider the intergration over internal variables.
For the direct term, it is only a matter of applying as many times as is

necessary, the general formula ‘

- 2, - L2 - «\3/2
(As BE-v + c) expl™he 2w etll |y 6—’%‘- +B LY CJ(") exp(p? /ar+1).

Using the spherical harmonic expansion given at the end of Chapter 1V, one

is led for the kernels to the form
+1

Kl( ‘zf, r') s 2urr! }l K(T'. ) P, (n) du,

bl
with e -—-;-i-'-‘ =z co0sd,
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: -
In the present formulation, the two forms met for K(¥,r') are

podiis TRNPTS -Drr'p .
Kir,r) =fr,x') e =0 7 both with D >0; . (A-1)
Ve . ? :

K, )= (e, r)pe D TTH . | (A-2)

the second form occurs in the kinetic énergy terms,

Consider the well-known expansion

g . \1/2 ‘
eikr cose _ 20 (22+1) i Pl(cose)(-zﬁ‘) J{.Hl/?. (kr)

If we write kr = {x, multiply both sides by P,(u), and iategrate over p, then owing

to the prbpertiea of the Legendre polynomial,

+1
S P B wdn= g 8y (A-3)
S . | |
w}e get
+1
~ 1/2
f exp(-xp) P, (1) dp = 24t "1/2 ('z“;) J 11 /240x) = ;'i‘ ZH/Z (x).
! (A-4)
Defining
1/2 o -
7 1+1/2 (x)= (=172 ("”:Z“) Ypa1/248x) (A-5)
g0 that |
' ? 1/2(") = ginhx, ?3/2( x) = Binhx - cosh x, {A-6)

Deriving Eq. (4) with respect to x we get

+1
) | o
I  explexg) By () oy —?‘-"j,,,,/z 0 -5t A
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defining
/ .
?ul/z (x) = '&’i‘{ ?ux/z ("’} . | (A-8)

For the sake of the d-d elastic case, some more detaila must be

emphasized.

First of all, some kernels occur with simply D= 0
K(;a ;?) s f(r, r'),

and using (3), we have
: +1

k,(r, 2') = Zorr! jd flr,x') Pla)dp

= 47rrr' flr,x') 8, . | _ (9)

So that in the following tables, for D = o, the quantities occur only for £ = 0 but
not for other values of {.
’ Secondly, some kernels occur with D < 0.
The parity of the hyperbolic spherical Bessel function }is then involved,
and we have |

. / /
/ 1+1 7' " ) ? Y | %
7/14-1/2("‘) = (-0 1172820 TSV AN A S B A PSW AL

Thirdly, although the following tables are given as usual in terms of

: / A/
%U-I/Z(x) and ""%HI/Z(X)' in practice it is better to replace . ¢ “1/2(::). using
the recurrence relation

1/ 241 j/

4 14172892 =5 J ) - 0 gasntx)
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so that (7) becomes
+1 ?
-XH s 2 - _ _ 2t ?’
Be TR ude = 270,52 =z 14124
-1 :

Therefbrvc finally the two basic formulae, used as many times as needed, are

Kl(r'.'rb')> = %’- f(r,z') ?I-H/Z (D rr'). | | in cae (A-1);
Kl(r.r') " f(r.r ){ ?“3/2 (Drr ) - “_"g/n_-lh (D rr')}. in caae(A—Z).

| Fbi Any‘ kernel--in d-d, for lnstance--we have the forms

A K lr'v) s 2y {x‘°+z ck} + 2 ¢k, +zc3xl3+c4xl4};
1 ' 0 2., 2
D¢ |
BC; K,(r'v) "‘xv'l'N‘ K, (', v)
, $ n
For convenience.. K‘n & % ‘Kln .
The Kla and Kl4 kernels as well as ( Il K, ) AB Bre deduced respectively

1

from Kl . K and( IK! ’AB by interchanging a and B,

For the kinetic energy kernels of the different elements, we have the

forms
AA;
2 2 2
Kln(r'v)m- _f\m(F)S/; %r_ e (-ay7 “-a,v7) x

;-
{[Alr.z + AZ vz - E+ -g] —-7“_1/2(01"1/) - Br'v i'/.HI/Z (Br'v)}

/
H1- 6 e, A A ) e 5T Z ZﬂAzr"'+A_1V2'E+% %H/Z(Dx’v)-Br‘vjlﬂ/l(Dr'v)} H
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)
AB or BC:

| /
e > ,
K, )=-.f.(r)/'34“ o, #%a, {Al'“+A2v2-E+%}4:_l/,‘(Dx‘v)-Bx‘v‘ ALY

The BB, CC, and AC kinetic energy kernels are deduced from the ones givén by

suitable ché.nges for \and y. _
For the potential kernels A, = A, =B=0, wehave E= V., 2%,
1 2 0 ;2
Using these notations, we need only to give the following tables for the
kinetic energy kernels.
N.B. The energy-dependent kernel for a given eclement is obtained by putting p = 0

in any of the potential kernels of the corresponding élement.

Appendix B, The Coulomb-Part Calculations

The Coulomb potential, owing to the presence of the two protons, leads us

to consider some other types of integrals, In the direct term, {n particular, we have

the type

2 '
..hz h
I=/d; & s ZT a " 2% ¢
|E+mE] 0

where & (x) is the error function, defined as

X
¢ (x) = Z f exp(-tz dt).
. No# 0
A very easy program for Mercury can be written for tabulating Uz.4c at thé
pivotal points used for this whole problem [0.3 (0,3) 4.8, then 5.4 (0.6) 19,2 ], and
adding the results to the corresponding nuclear part to get the complete tabulation

of the direct term.
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Fér the Coulomb kernels we meet expressions of the form

+1
K‘(r. r')= 2w ry! ‘[l K(';. ) P‘ () dp,

a2 2
e"ﬁkr ‘Ykr.

where K(7,r?) = (B-1)
'J r2+ r'z +2re'p
A “B, r'- vy r'" ¢+ Drrip
and K(Ff)= 2 P LS (B-2)

J;Z_" 4 2rr'p

We have the well-known expansion

o0 ' rl
1 = ,;L z (-l)u tn Pn(p,). with ¢t =;—-<— ’
- Jrzw'?%zrr'p > n=0 " >
- 80 that in case (B-1), again using
+1 | 1
2
/ P‘(M) Pp‘ﬂ) dp = 551y 51!0 ’
-1
- we have o o
1 ' ~§krz-y r? n? | 4 ‘
v Kl(r..r')u -;; 4urr' e k 1‘—}-%1- (t) Bol“;

ry being greatest between r and r',

In cage (B-2) we have the form

+1 = n
- 1 -Drr' (-0 P (p) dp .
=5 [ ° "*’z"";o nt 1 EH

-1

The practical way we have used to deal with this integral has been to

consider each particular phase separately, express lc in terms of the. ( 241/2 7
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and stop the infinite expansion when the contribution of the terms is too small to
be taken into account by the machine; we have checked that this happens at n= 5,
therefore we have taken the terms up to n = 5 inclusive, The cases of the £ = 0,

1, and 2 are given explicitly hereafter.

For 2 =0, Po(p) = 1, we have ' R

1= %‘—' ‘3‘){%1/2(91'1‘)- t 1’3/2(Drr')+t3 7/5/2(13”') ----- ¢> 7 “/Z(Drr‘)+---- } .

For Lrl, Pl(p.) = 4, and using the recurrence formula

® Pn(“) ‘??T?EI‘L pn+1(p‘) + 2‘37—'1 Pa- l(“')'

we get

1= o ‘!;; {- 3t ?:I/z(nrfmug ¢2) j’S/Z(Drr') -G ‘?it7¢5/z

3.2 . 4.4 : 4 3 5 5 5 4,6 .6
Hgt +gt) 7/2"7”n‘)js/z”§”r3"jﬂx/z"f‘ }

For { = 2, PZ( p) = -z?— pz- zl-. and using the recurrence formula

| _ 3(n+l) . -1)
FUOER TR St T SR T oLt I MV 1S3 B M

we get

2 2 4
1/t | 2,,9 .3 2t° 2t g
F>{ 5 7’1/2“’"" gty ’? VA mii b APV

Lol
#
< FY

C

3 5 4
3t , 4t 1
L3t At *Ot)¢7/z+(18t2+20 4, 45 tb)jrq/z

-(%‘1)‘9*«% t5+z;-"5! t7)?”/2+.-. } .
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Modifications to tho standard kernel program were made by P. G, Burke
to build up special program for Coulomb kernels corresponding to £=0, £=1, and

1=2,

For the Coulomb kernels of the second kind we have

e-kz'z -£{E)

K(?.;')a —
|§ +mz'

where 2 is an internal variable.

The integration over "z is dealt with as seen for the Coulomb potential,

giving
h ,2 .2
n [ g o2 8 6D
0 m

Now there {e no denominator, and all subsequent integrations are of at‘}p_e previously
met {particularly for the angular integration), giving again an ?/Iﬂ/z(mr').

The integration over the dummy variable t is left for the last step and
done numerically, using, for iﬁstance. a six-point Gaussian integration formula
(Ref, 19, p. 577), One gets an appropriately weighted sum of six terms, each of
them with the same form as for a nuclear vpotential kernel, and the tabulation of
this éocond kind of Coulomb kernel can be carried out by using the standard kernel

pr;:gram.

Appendix Il

Table 11
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the infprméhion contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report. ' E

"As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.



