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A general formula for the "second Clausius-Mossotti coefficient" is 

obtained from elementary considerations of statistical mechanics. 
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The static dielectric constant of an imperfect gas in thermal 

equilibrium can be expressed as a function of density n and tem~erature· 

e· as follows: 

K-1 

K+2 
= + (1) 

In another publication1 we have applied linked-cluster techniques t~ the 

grand partition function, and have derived explicit expressions for 

a
1

, a
2

, etc. In this note we present an elementary derivation of the same 

result, lacking in rigor but appealing to intuition. 

We begin by considering a monatomic gas, such that the excitation 

energy of an atom is large compared to the temperature. For an isolated 

atom, the polarizability tensor is
2 

~1 = (2) 

where p is the dipole-moment operator, E is the energy eigenvalue for 
"' 

the eigenstate J~), and the subscript zero refers to the ground state. 

Similarly, for two (interacting) atoms with fixed nuclei an interval r 
"' 

apart, the polarizability tensor is 



-3- UCRL-9697 

where 
(2) 

p 
"' 

2 2:: (3) 
A' 

is the total dipole-mom~nt ,operator, and£ is the energy 

eigenvalue for the eigenstate lA) of the two-atom Hamiltonian with fixed 

nuclei. We note that t=_ and lA) depend upon t parametrically. 

The polarization I: , or mean dipole density, may be found by 

calculating the mean dipole moment v~ of a spherical volume v, large 

compared to the volume of an atom but small enough so that nv is much less 

than~. (Such a v can be found only for a dilute gas.) To terms of 

order 2 n , the probability density that a pair of atoms (with the line of 

centers ~) is in v is 

1 
2 

n2 -f3¢(r) v e , 

where the interatomic potential energy is 

To the same order,_ the probability that just one atom is in v is 

( 4) 

(5) 

(6) 

with suitable integration limits. The mean dipole moment of v is thus 

(7) 

where the effective field in v is3 



,, ,, 

E+_!±1LP 
3 .~ 

Using formulas ( 4) and ( 6),. we obtain 
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4 
(~ + 3 1L ~) 

(Since ~(oo) = 2~1, the integration may be taken over all r). 
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(8) 

(9) 

The coefficients of n and 
2 

n in Eq. (9) are scalar tensors: 

(10) 

and 

(ll) 

where I is the unit tensor. Using the definitions (10) and (ll) in Eq. 

(9), and introducing the dielectric constant . K: 

41L P = (K - l) E (12) 

we obtain the form (1). (In this case a
1 

is independent of temperature.) 

4 The Jansen-,Mazur result can be obtained -from ours if, i'n evaluating 

~ (;) from formula (3 ), one finds C and lA) from a second-order perturbation 

treatment of the two-atom problem, using the dipole-dipole approximation for 

the interaction energy, with the interaction strength a9 the perturbation 

expansion parameter .. The Kirkwood approximation5 replaces the two atoms by 

harmonic oscillators and also uses the dipole-dipole approximation. 
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With intuitive concepts, we may generalize our formulas to apply to 
' . 

a molecular gas, for which the excitation energies are not large compared 

to the temperature. Formula (2) is replacedby2 

5_ (e) (13) 

with 

cx1 (r..).= 2 2:: (A. I P I A.'> <r-.' I P I r.> /(€' - €), 
- f.' - -

(14) 

and formula (3) by the analogous form: 

~ (r; e) = 2:: 
A 

(15) 

with 

(If expression (14) -or (16) involves matrix elements _between degenerate states, 

one may introduce_an artificial perturbation2 to rempve the degeneracy, 

and then in the result (13) or (15) take the limit of vanishing perturbation.) 

The interaction potential energy ¢(r) is replaced by the interaction free 
. 6 

energy <f>(r): 

-()<T>(r) _ " ~~E. (r) /" -~c(oo) 
e = ~e ~e (17) 

A A 

Thus Eq. (11) becomes 
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J 3 [1 ( . ) ( )J -~<P(r) . cx2 (e) I _ d r 2 S2 r; e . - 5_. e e , (18) 

as found in the rigorous approach of reference 1. Various treatments of 

molecular gases7 (quadrupole interactions, permanent dipole interactions, 

etc.) can now be obtained by making suitable models or approximations. 

We acknowledge the benefit of a discussion with Dr. M. Mittleman. 
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