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kBSTRACT 

Sawad.ats Haaniltonian is used once again to study the eigenstates 

of nuclear matter by adding a monentum dependence to the effective 

potential. It is shown that the condition for zero sound propagation 

in nuclear matter is very sensitive to the asymmetry as well as to the 

average strength of the effective potential between the colliding 

nucleons at the Fenni surface. And a calculation of the energy of this 

model Hamiltonian proves that the correction from pair interactions to 

the first-order Brueckner's expression of nuclear ground-state energy 

is small. 

1 
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I. ITTRODUCTION 

The methods developed by Gell-Mann, Brueckner, 1  Sawada, 2  and 

it 	 Wentzel 3  for a high-density electron gas system can be applied to a 

variety of problems involving Fermi systems. It is characteristic of 

these methods that a model Hamiltonian is used which accounts for 

the interactions between pairs (by a pair one means a particle with 

momenta p ± cl and a hole with momentum p). Because of its simple 

quadratic form, this model Hamiltonian can be solved exactly, and the 

procedure for solving it is quite straightforward. 

The first problem to which the method has been applied is that 

of nuclear matter. Glassgold, Heckrotte, and Watson, in their discussion 

of the hydrodynamic motions of nuclear matter, have used such a model 

Hamiltonian. The Coulomb potential between electrons is replaced by the 

nondiagonal elements of Brueckner's reaction matrix K for nucleons 

in nuclear matter. The internal degrees of freedom associated with 

spin and i-spin are also included in their considerations. As a 

consequence of the internal degrees of freedom, four modes of collective 

motions are found possible. They are simple compressional waves, spin 

waves, i-spin waves and coupled spin-i-spin waves. While the i-spin 

waves can be associated with the Goldhaber-Teller oscillations, the 

simple compressional waves are found to be unstable, which is of course 

a drawback of the method. 

Brenig has suggested that this instability is due to the 

impropriety of using the Brueckner's ground-state K-matrix as the 

effective particle-hole interaction matrix. Indeed, the general 

effective interaction matrix, written as a perturbation series, contains 

terms with not only particle-particle potential vertices but also hole- 



hole and other complicated potential vertices. In favor of the 

argument, Sawada has shown the importance of including the "other 

complicated potential vertices" such as 	 and 

in calculating the effective interaction matrix to obtain stable 

collective states. 	However, these treatments have all assumed a 

momentum-independent, effective interaction potential. Whether the 

situation will be modified by considering a momentum-dependent, 

effective interaction matrix we will attempt to determine here. 

The effect of the exchange terms, which give considerable 

contribution for nuclear forces and so should not be neglected, is 

taken into account by simply adding the minus exchange matrix element 

to each direct matrix element of the effective interaction operator in 

the Sawada's Hamiltonian. This procedure is justified at the beginning 

of Section III. 

In Section II, the ground-state energy is expressed as a power 

series in the effective interaction matrix. With this as a reference 

state, a model Hamiltonian which consists of a Sawada Hamiltonian and 

some constant terms, and which reproduces, at the high-density limit, 

the most important terms of this series, can be easily obtained. An 

example is given using Brueckner's matrix R as the effective 

reaction matrix. A similar procedure has been used. for the pair excited 

states using Galitskii's matrix, RG,  as the effective reaction matrix. 

In Section III)  the Sawada Hamiltonian is solved by assuming a simple 

but plausible form (with a few parameters) for the momentum-dependent 	
40 

effective interaction matrix. In the results, one finds that the 

stability conditions put definite limitations on the values of the 

parameters introduced in the simple form of the effective interaction 
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maltrix In Section TV, the Brueckner 1 s RB_matrix elernentsas well as 

l
h 	 the Galitskii t s RG_matrix elements'are calculated for a factorable 

potential with a.hrd core at small dista±ices By reducing these.inatrix 

elements to the simple phenoinenological :  form, and by comparing the values 

of those parameterswith the stability, conditions---sincethe RB' ' -  

matrixelements are functions of density,.the pi'ocess. of reducing and 

comparing, can be carried out at any particular density --- one. can 

determine the density intervals in which one. or both of the RB 	and 

RG_matrices yield stable collective states In these density, intervals, 

one can also calculate the ground-state energy, €0,. of the. model 

Ilamiltonian (as obtained in Section II) At densities outside these 

intervals,, one may try other, more appropriate, effective interaction 

.matrice:s.. Itis shown that because the equilibriumd.ensity; of 

nuclear matter is relatively small, the contribution to the ground-

state energy from pair interaction is less than .1 Nev. 
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II. ESTABLISHMENT OF 	'S HANILTONIAN FOR THE EIGENENERGIES 

OF THE NUCLEAR GROUND STATE AND PAIR EXCITED STATES 

A. Expansion of the Ground-State Energy 

In Terms of the Nuclear Reaction Matrix, R. 

Consider the Hamiltonian of A nucleons, 

A 	k.2 	A 
H= 	-+ 	 v.., 	 (i) 

173 

and expand the ground-state energy in terms of Goldstone's perturbation 

series. 7  It is widely accepted that the nucleon-nucleon potential has 

a high repulsive core at small distances, and the matrix elements of 

v.. are very large. 1Pherefore it is desirable to expand further in 
IJ 

terms of R the nuclear-reacition operator which is defined by 

R = v+vR 

and whose matrix elements are used to describe the "scattering" between 

the nucleons in the nucleus. The projection operator, Q, and the 

denominator, e, in the definition of R should be so chosen as to 

make the expansion converge as quickly as possible. To illustrate 

the procedure, we write: 
It 

1 

L 



H(g) = H0 + Ht(g ) ,  

A 	k. 

.4 	 H0 = 	( 	- + v1 ), 
i=l 

H(g) = 	v1 (g) - 	V(g) 	 (2) 

v(g) = gR -g v(g) 	R. 

V(g) = gV' + 2 II + 93 VIII + 	• , 	 () 

where V = V(g = 1) is the average single-nucleon potential which will 

also be chosen to make the energy expansion converge as quickly as 

possible. Here g is introd.ucedasan expansionparameter. At 

g = 1, H(g = i) is exactly the original Hamiltonian. We shall expand 

the ground-state energy in terms of V (g) ,.aôcording to Goldstone's 

perturbation expression. Then substitutingEq. (3) into the expansion 

and writing it in increasing powers of g, we obtain an expansion in 

terms of R. At the end of the calculation, g will be set equal to 

unity. 

To translate the Hamiltonian into second-quantization language, 

we use the complete set of eigenfunctions 2 
 of.the single-nucleon 

Hamiltonian as bases vectors, which satisfies 

2. 

( 	+ v) 2 
= E202  , 	 () 

where 2 represents momentum, spin, and i-spin indices. Defining 
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matrix elements of v and V by 

(tv(g)2) = 1 0t  () v(g) 02  () 

and 

(rsv(g)2) = 1[ør* 	 - 	 s (ri)] V12 

[øti ) 	 0t2 øri ) ] 	1 2 

we have 

H0  = 	E2 d2 d2  

and 

H'(g) = 	(rslv(g)lt) dr*  d 	d2 dt 
rst2 

- 	(tjV(g)I2) dt  d2 , 	 ( 6) 

with the usual anticonimutation relation for the creation and destruction 

operators d2 , d2  The vacuum state is defined for all £ by 

10)) =0. 	 (i) 

In carrying out a perturbation expansion for,a system of 

fermions it is convenient to shift the unperturbed ground state so 

that 10)) is the new vacuum and to introduce explicitly excited 

particles (a , a) and holes (b , 
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for 2 >2, 

a2 = 

0, 	for 2<2 o. 

0, 	for 2 >2, 

2 	d2
*
, for 2 	101 	 (8) 

a2 ! 0 )) = b2 1 0 )) = 0, for all X. 

Here I denotes the last single-particle state used to fill up the 

unperturbed ground state 1.0 )). In these notations, the Hamiltonian 

takes the form 

H0  = 	E + 	Ek  ak* ak - 	E b*  b 
n<20 	k>20 	 nd0  

and 

2 



	

HT(g ) = 	 (n1n2 v(g)n1n2 ) - 	(nv(g)In) 
 

T,.  
nn< 	 n 

	

+ 	[ 	(tnv(g).2n) _(tIv()I2)] (at*ab*btat*b2*a2bt) 

	

+ 	 (rsv(g)t2) Iar*aSbt*b* + bba2a 
t2rs 

+a b ba + a b ba 
r t s2 	s 2 rt 

-a b ba -a b ba r £ st 	s t r2 

* * 
+a a aa +b b bb 

r s £t 	Z t.rs 

+a a b a +a b a a 
r s 2 t 	r s2t 

* * * 	* 
-.a a b a -a ba 

r s t 2 	s r2 
a 

 t 

* * * 
+a b b b +b b b a 

r•2 t s 	'2 r s t 

- ab2btb - btbba2] 	(9) 

According to Goldston&s theory, the ground-state energy is 

E0 (g) 	
E n + 00 

	

[ = 	 ((OIH'(g) 
E0(°) - 

H0 H?()] 	lao)), 
n<20 	c=0 

(10) 

	

where the sum is over all connected diagrams, (E0 (o) = 	En)• We 
n<20  

have worked out this series in terms of v(g) to the fourth-order terms 

in Appendix A. 
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B. Expansion in Terms of Brueckrier s K-Matrix Elements 

We shall expand the series in Appendix A further in terms of 

Brueckner v s  K-matrix elements. In other words, we define the projection 

operator, Q, the denominator, e, and the average single-particle potential, 

V, in Eq. (3) such that the R matrix approximately equals Brueckner's 

K matrix: 8  

(rsv(g)lt2) = 

g(rsI(6)It2) - g  
klk2>PF 

(rslv(g) Ik1k2 )(k1k2 l()1 ) t2) 

Et+E2_E _Ek _61 
1 	 2 	(11) 

(2IIk) = 6(2 - k) 	(kn'I(6)Ikn'), for k>P 

(12) 
(2In) = 6(2 - n) 	(nn'lço)Inn') 	fo 	n F , 

VII =VIII = ... = 0 1  

where 

(rsIv(g)!t 2 ) = I Ø(r2)v(g) øt(rl) 02(r2) dr1  dr2  

Consequentl, we have 

(rs.Iv(g)1t2) = (rslv(g)1t2) - (rslv(g)t2t). 

Single-nucleon wave functions are assumed to be plane waves. 

This assumption is appropriate for an infinite nucleus (i.e., nuclear 

matter) and is often used in practical evaluations. In this case, the 

unperturbed ground state is the degenerate Fermi sea, and PF  is the 

Fermi momentum. 
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:Let us expand, for example, a few terms in Appendix A as a 

power series of g according to Eq. (ii): 

(1) 1/2 	(nln2 v(g)n1n2 ) = 	 ( fln2l) nIn2 ) 

(n12I(82) 1k1k2 )(k1k2  I(8) Inln2 ) 

2 	nln2F 	E + E. E, - EK  - 
k1k2>P 	"1 	

2 	1 	2 	
1 

+ 
2 n12F 	(E + E -Ek - E 	82) k1 	k2  

(k1k2 I( 81 )In1n2 ) 

(E 	+E-E. -E 	-6) n1 	''2 	
K1 	k2 
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(2) 	 I v(g) k1k2  ) (k1i  I v (g) I 
+ E -Ek 

klk2>PF 	
1 	2 	1 	2. 

	

l2F 	E + 	- 	-  
I
n  

	

kjk2>PF 	
1 	2 	1 	2 

- 	
(nln2(66)Ik3k)(kkIRB(6)Ikl1c2) 

	

lh12F 	(Ek +.Ek - 	- Ek - 8) 2 

• (k,k2 IR( 6 )In1n2 ) 

	

(a +E 	Ek -E n1 	'2 	1 	
Ic2 

l2 F (E + E 	- 	•- a ) 
'l 	r 2 	

K1 	K2  

(k3k4lRB( 6 ) I fllfl2 )  

(E +E 	-- 	-6) 
fl 	'2 	K1 

4
+g( 	).-. ... , 



1Z- 

() i/B 	
(nnv(g) 1k3k1)(k3n2 I  v(g) n3k2 ) 

n..'np' 	(E 

k1. . k3>P 	 ,, 	,, 	
. k, 

x 
'..(E 	+'," 	- E 	E. ni 	n2 	 2' 

n3n1 IR( 68)Ik3k1 )(k3nIR..( 59)In2k2) 

(E +E -E -E 
1 	3F 	n1 	n 	Ic 	'Ic 
k•k>P 

(k2IclIRB(lO)I n2nl) ,<  

(E .+.E 	-E, 	-.E1  
r 1 	n2 	'l 	2 

'g( 	)+• 

etc., where 	. records,the effect of previous interactions on 'a 

particular interaction vertex. For a matrix element (rsIR( 1 )It2) 

which appears in a given term, .we':set bi =  Ek + E. ,  +. 	- - 	- E 
a 	b 	 c 	d 

where k, kj. • is greater than, P 	n" , is less than 

and the sum is over all ka  kb 	 .which appear only once 

in the matrix elements to the right of, (rs IRB(5j) t.e) 	Therefore, 

in the example above, we have 5= 
	= 	

= .0, 

=5 	E. +E 	-E ..-E , 	 = 	=E 	+.E 	-E 	-E ., 

2 	' 	' Ic2 . n1 	n2 	3 	'6 	7 	k3 . 	k1 	n1 	n2  

= E k + E k - E 	- E , and 	=. E + E 	- E . .- E 	. In 
1 	3 ' 	l' 	

' 	9.. k1 	k2 	n 	n2  

this way the second term of pan'on (1) ' and the first term of 

expansion (2), cancel each other, as do the third, term of expansion (i) 
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and the second term of expansion (2), etc. As a result, the expansion 

of the ground-state energy in terms of powers of g no longer contains 

terms which correspond to diagraths.consisting of the so-called ladder 

• 

	

	parts. The parameter S in Eq. (12) can be chosen.differently for 

different purposes. Here we want to equate the first-order term 

in the g expansion of energy E0 (g) and the potential energy term in 

Brueckner t s model expression for the nuclear ground-state.energy. 

According to Brueckner and.Gaimnel, the off-the-energy-shell propagation 

is given by 

Ek(E) = 	.+ 	(n'kiK(Z)ln'k) 

(n'k(E)ln'k) = (n'ivin'k) + 	
(n'k.ivIy 2 )(k1k1K(Z)In'k) 

klk2>PF E 8.' - Ek1 (E)  .Ek (z) 	' 
 2 

where St is some .  average excitation energy ranging from 0 to .E . - Es,. 
F 

and E is taken.to  be E + E 	when. Ek(E)  is used in calculating 

	

fl1 	n2  

the matrix element . (n1n2iKIn1n2) by using the equation, 

(n1n2  lvi k1k2 ) (k1k2 I Ki 
(n1n2IKin1n2) = (n1n2 lvin1n2 ) + 	E. + E 	- 	(E) - E (E) 

klk2>PF n1 	n2 	1 

In order to make 

	

(nln2I( 0 ) Inln2) 	 (n12'iKln1n2 ), 
fllh12F 	 nln2PF 

a reasonable choice for 5 should be 

S = E, + E , - E' + 5' 

	

1 	fl 

( 

with 



= 	
( 	

+ E )[ 	. 	 (12) 

nln2F 	1 	2 L nln2F 

This definition of (kiVik),  of course, does not lead to complete 

RB(. 1 ) 

	

cancellation of diagams with vertices of the form 	p. It also 

causes difficulties in our attempt to represent the ring diagrams with 

RB(8.) as vertices by a Sawada's Hamiltonian which can have only one 

R-operator of some kind. To see this, we notice that for ring diagrams, 

the main contribution comes ~hen the momentum transfer cl is small, 

i.e. when all the particles come from near the Fermi surface. If we 

write lim (Ek - E 
) = dpF , we have, for a typical ring diagram 

k*PF . 

n-P1  

R(57 	2dP). 

k=n6fq.  

k5 =n5+q 
, 



15 

where 	can be any even number of dp. From definition (12') with 

= TO Mev, Z 	-100 Hey (Brueckner and cammel8 .), we expect that 

dp, d11 be 	25 Mev. It seems d.ifficul to establish an average 

among all 6. 2dp, with such a large value for dp 

• 	This difficulty will be removed if we.bave.atheory that makes 

dp = 0. Wecando this by putting E'= 0 and E'.= 2En_p in 
F 

definition (12'), or by simply replacing (12') by 

5=E. -E 
K 	n=P 

(12") 

Both definitions cause small variation in the first-order enerr) 8  

(0) nln2) 	 (n1n 1K I 1n2) - E, (13) 

'l2F 	 . 	l'2F 

although .the matrix element. (kI(0)1k, p) 0 has a singar point at 

k = 	because of the appearance. of a zero value in the denominator of 

Eq. (11). This singularity, has a very narrow region, and. its effect 

is negligible. In practice, we may define the matrix element 

(k = pIR.(0)Ik 	p = o) . by.the value extrapolated from those 

'computed.at, for instance, . k = .0.9 p and k 1.1 p, just as 

Bruecimer and his collaborators often did. In thisy, the matrix 

elements of RB(0) become smooth functions of momenta and can be used 

as the effective interaction matrix element; in stuying the effects of 

pair interaction. 

With Eqs. (11), (12)1. and (12") and the rule to choose 

we obtain then:. 



lWAIE 

	

E0 (g)= CO 	E1 	+ g E3 + g E+ 

	

• 	fl • •• 	 •• 

:( 'R (o) 

	

= i 	 ( n1n2 (°)1f1n2 ) ' 	)- C 
1 ifl2<PF 

RB(0) 	RB(2) 

E3= 	

coY 	Q:;:: 	O( 	
(5) 

i (0) 	R) 	RR ( 0 ) 	RB(5)  

0, 	00 	
+•.... 



C. Effect of Pair Interaction on the Ground-State Energy 

Brueckner's model, i.e. 

= L 	-+ 1/2 	L 	(n2n1 IK'l'n2n1), 
	

(15) 

has been considered successful in describing the nuclear ground state 

at low, densities. Therefore it is expected that the convergence is 

good in the low-density region.. The situation is not so hopeful athigh 

densities. In fact, in the expansion t1- re are terms that contain' higher 

and higher powers of P,, the paraneter that symbolizes the density of 

the system and that becomes inf,nity at the high-den,sity:..limit Therefor.e, 

the convergence of these expanspns gets worse with increasing density 

Following Hugenho1z s analysis, 
10  for any .R, vertex that . is nonsingular 

, inthe density, region under consideration,, the dependence, on P of a 

diagram can be estimated analytically at 'the high-deisity limit. It can 

be shown that when P, - 	.,. for each order. which is high,. the terms 

that contain the highest power of P, and so give the main contribution 

to that order at high density. are those 'which correspond to the ring 

diagrams with pairs (a.particle and a hole) as propagators. If we 

pick up all the most important terms'f or each, orer and .then.suni them 

up, we get an expression . H which gives approximately, the ground- 
m 

state energy of nuclear 'matter at the high-density limit. ....In the 

following, we shalL show that the sunmiation Hm(RB) can be 'written as 

a constant term 	L and a Sawada's.Hamilt.onian term H(B.). When 

the density becomes'small, the contributionfiom HS(RM) becomes small, 

and the sunmiation Hm approaches EB' - E, the Brueckner'.s expression 
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(approximately). Therefore, H can be considered to be a good model at 
M. 

both high- and low-density liinits We can also calculate H(K) at 

equilibrium density just to see how large the correction from pair 

interactions to Bruecicner's model will be., 

In Eq. (9), among sixteen vertices, only the first six are 

responsible for ring diagrams. They are: 

a 	a 	b 	b 	, b 	b 	a 	a 
P p+q 	p-q 	p' 	p 	p+cj p'.-q. 	' 

'o 	o. 	 X' o  Xo  

:_q P
: 
	 P ,

- 	: 
0 	 0 	 0 	 0 

-a 	b 	b 	a , 	-a 	b 	b 	a 	, 
pi-q 	p' 	. p'-q 	p 	 p'-q 	p 	- q. P 

(i6) 

where 7.'s are the spin and i-spin indices, and conservation of 

momentum has been represented explicitly. To exclude diagrams of the 

type 	k1 i_ 	(which is also from a Hamiltonian with the 

six terms above; but in which, on the other hand, the pair (Ic1, n1 ) 

is broken by the third interaction line), we introduce the following 

approximate conmivation relations, which guarantee that a particle 

and a hole will be always, associated. with one another: 

rXPO

a 	;b. a 	I 	=Ia 	b 	a 	 b 	-0 
p--q 	P' 	p. 1 +q' 	 .pi-q 	p' 	p t+q 	p 1 	- 

7 	xIo 71 	
j - 	L 	 l o - 

* 
[b 	a 	a 	b 	I 	= 	6 	6 	6 	 (1 

p 	pfq; 	p'+q' 	p 1 	 pp' - qq' XX' 2. X' 

LX0 	X. 	X' 	x'0J- 	
.0 0 

I 

$ 
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Let 

* 	* 
C 	= a 	ID 	, 	C 	ID a. 	 (i8) 

p,cj 	pi-q 	p 	 p,q. 	p p4-cj. 
. 

Then it follows that 

= 	= 0 - for 	> 	or 	+ l <P 

2'. 

and. 

Cpq  0 )) = 0 	for all 

Therefore, we obtain 

01, Ic 	; C , 1 	= Ic 	; C.  
I P,Q 	P 1 ,. 	 I 	I 	p,q. 	Clp, 

2'.' 	0 J- 	I 	'.'.0 	
' 

2"o 	- 

;C 	

] 	
=pp, 6 qq 	

(19) 

X7'.0  

Form the following interaction from the six terms above:11 
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z1 	 /p4-q p-q . 	P 	P")
H.t(R) .1 	\ 	' 

ppq 	 0 	0 

* 

	

C 	C 	+ C 	C 
x 	p,q. 	p', -cI 	pfqj - q 	p'-  qj cl 

o 	 ?\.o 	? 

	

* 	 * 

	

+C 	C 	+ C 	C 
p,c 	p'-cL, q. 	pt,-q 	p- q, - q 

b 	
71 	'o o 

	

* 	 * 

	

-c 	C 	 -c 	 C 
p,p' -p-q 	j*q,p'-p-q 	p',p-p t +q 	p'-ap-p+q 

o 	o 	X' 

	

* 	* 

	

-C 	 C 	 -C C 
p.,p-p+q 	p,p 1 -p-q 	p-q,p-p'+q 	p+q,p'-p-q 

Let cjt = pt - p - q be the momentum transfer of the exchange process. 

Then we can write 

I 
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H.t(R) 	 ( tR 	:> 

0. 

* 	* 
C 	-c 	C 

X 	p,q. 	p',-q. 	p ,+ cj' 	p.'  
X 	 'o 

* 
+C 	•C 	.- C 	C 

p 	q 	f 	q ',- 	pq- 	p' 	. 

0. X 
	7. - 	' O 	%0. '  

C l 	 C, 
p,q. 	p -q,c 	p,q.' 	p -q,q' 

	

7'0 	X'o 	
7'.' 	1 7'. 

+C 	C -c 	C 
pfq-q . p'- q,c 	.pfq',-q 	p'-Q',c' 

	

7'. 	X.' 	' 	7'.' 	X10 	7
0. 

In H. , all terms in the second column are. identical with those in the 
mt 

first except for - q•  - q'. If . q' is replaced by q and q by 

-:3 - q in-the second column, then we have 

H(R) =j 	 > 

- 
C 	C 	+C 	C 

p,cj 	p',-q. 	p.',-.cl. 	p4-q-q•  

	

0 	7'.'  

c 	. 
p,. pq q '-, 	j*qj -cj 	.p..q, q 	

(so)  
7' 7'0 	'b 	'%0- 	

7'.' 



This interaction and. the kinetic energy, 

(z E0 ) =  

'1 P 	 X 

make the sum H 	+ g H. a Sawada Hainiltonian; we call it H (R). 
kin 	mt. 	 S. 

If we apply Goldstone's perturbation theory on H 5 (R) with commutation 

relation Eq. (19) between the operator C, C , and on 

H t = 	 E a a - 	 E 	b 

 E
/ q t q ; 

  
•R 

X0 	qpp' 

xtt o  

* 	* 	* 	* 
a 	a 	b 	b 	+b 	b 	a 	a 
p+q p t -q p' 	p 	p-q p t -q p 	p 

	

o 	o 	 X' o  o 

a 	b 	b 	a 	-i- a 	b 	b 	a. 
p4-q. p 	p'-  q. p t 	p'-q. 	p' 	p1-q P .  

x 

	

7t . ?.to 	o. 

-a 	b 	b. 	a 	-a 	b 	b 	a 

	

p' 	p-q p 	p'-q. 	p-q p 

	

p. 	t 
7v 	7' 	7t. 	7 	?.t 	7'. 

0 	0. 	 0 	 0 . 1 	(22) 

with the ordinary anticoimnutation relation between a's and b's, we get 
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H 	 %isE + E 	- 

	
12 

E 	
' 	

+ 	= tI 	
tII 

PUPI I  

p R 	 R 

FO 

+ fifth-order terms + 

, kIIR1PtIPt)I 2  

HI s 	pp'P, 	?..ts E+ E 1 	E 11 E 111  

P"P l ' I >PF  

J_ +I  

+ fifth-order term + • 

(2) 
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Notice that as far as the ring diagrams are concerned, we have 

C 	= 
S 	

(Er, 
S  ) 
	+ ( E 	) 	 . 	(24) 

H 	H ring 	H 
S 

second-order term. 

Therefore, we can directly use H instead of, Ht,  with the correction 

about the second-order term, which is more origina but more complicated 

to evaluate. 

Now we are ready to write the model Hamiltonian H(R 3 ). 

From Eqs. (13), (iti),  (15), and (23), we have 

H(RB) = CE - A.E .+ H(RB(0)) - E2 (H), 	 (25) 

where 

EB 	 + 1/2 E E ( p P , I R 	% 
P<P 	 t  PP<P 

ppt 	
'7 	2 

E2 .(H) = .1/2 	 . 

E 	+ E,-.E 	-E 
p 	 777 

P 77 P'''>PX. 	?' 	?" 

p+p'=p"+p t7l  

and H(R) is given by Eq. (20) and (21). 

k 
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D. Energy of Fair Excitation in Terms of Galitskii's Reaction Matrix 

We can follow a similar procedure for the collective excited 

states. It is known that a study on the pair excitations can give 

information about the collective states. Let us assume that 

I 0 	)) and 	are the eigenfunction and eigenvalue of an 
p,g 	.p,q. 

unperturbed pair state, respectively, and 	r(g))) is the eigenfuiction 

of H(g) = H0  ± H' (g) with eigen value E(g) (spin and i-spin 

dependences are neglected in the following discussion). Thus we have 

10p,g 	
= ab 	Io )) 

a 	
(26) 

nd  

E + L ---+E 	-E 
p,q- nP 2M 	p.i-q 	p 

F
' 

where the other notations have the meanings defined earlier. If P 

is the projection operatoroff the state 10)). the Rayleigh-Scbr3dinger 

perturbation expansion can be obtained by iterating: the equation 

I(g))) = 0 	)) + 	p 	{ H'() - E(g) + E p,q] l))). 
E 	-H 

	

p,. 	0 	 (27) 

Thus,for the energy we have 

€: (g) 	C 	 + (( 0 p,q 	p,q, 
(28) 

The solution for E ' (g) can be finally written as a power series in • g, 

(i.e., a power series in the nuclear-reaction matrix R) by using 
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Eq, (3) again with .art1ciiar.:cho'ces 'for Q, e, and V. 

Suppose that the projectionoperator used by Ga1its1ii in.his 

calculation of effective sinlepticle enrgy is adopted for. 

(r'sv(g)tht)':= g(rsIRIm 2 ) -.g 
(rslv(g)!k2 )(k12 IRIm2) 

klk2>PF 	
E1'+ 	- E T k - Ek 

(rs.i.v(g)lk1k2 )(k1k2 IRjm2) 
+ g  

n n P 	E ±E' - Et - E t  

	

12 F 	m. 	£ 	n.. 	n 

(29) 

where 	,' denotes the omission of the terms when the denominator 

becQilies zero, and E' 	is the single-particle energy defined by proper 

choice of V. Then the, second-order term becomes 

2 	
(p p.+ 	I.RG Ikn)(knlRGIp. p.± ) 

g 	 - 
nF 	Et.+ Et 	-. E 1 	- Et 

F 	•p-i-q. 	p 	k. 	n 

k>PF 

which is exactly ., the result one would get if we apply the expansion 

process on H(RG), the Sawada's Hamiltonian with RG  as its vertex 

operator., This is' because terms such as 	 and 

are cancell,edexactly.by usg Galitskii's projection operator., For 

higher terms, the situation becomes more complicated. However, it 

seems safe to claim that the Galitskii's reaction matrix is the first-

order choice for studying pair excitations just as the Brueckner's 

reaction matrix is for studying ground-state energy. 

.1 
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We sball leave E 	undefined until Section IV, where we ni 

give an approximate solution for both 	and RG.  Then RB(o) 

will be used in calculating ((*01H 
S 

(R)ILr0  )), and  RG will be used in 

O estimating the excitation energy of nuclear collective excited states 

by solving the Sawada 1 s Hamiltonian HS(RG) for the excited states. 



III. SOLUTION OF H AND STABILITY CONDITIONS 
S 

A. Eigenvalué Equation for . H 3  

The commutation relations of Eq. (19) for the pair variables 

C, C lead to the following coutator for H s (R): 

* 	 * 
[H,c1= E. 	-E 	C s 	p,qj 	p-q 	 p,q 
I 	I 	Xo 
L :.110 -  

+ 
T T 	-.> -> -> 	 -> -> --> 

 (PP+R 	q :>(Cç ,q + C t+ ) 

fO 	 O 

H3, C 	= 'E 	- E 	C 

[ 	Xo 	 o) 	o 
p -qj  q 	p li-q 	p 	pi-Q,-q 

x 	 7\. 

(P p'+q 	p+q  p'
1 ) 

IC p 	+ i,q  

	

f 	pl 	
XO 	1 lB i2 	X0 	

tO 	
) .tO 	

() 

* 
These commutators are linear in pair. variables C, C , and.therefore we 

can find a set of new variables: 

I 
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* 	 () 	* 
A 	 G 	C 	- 	 G' / 	C 

pqn 	p,q 	 P.n pfq, - q' 
p>7 

7 O 
0 	0 	 0 

(28) 

such that 

	

* 1 	 * 

q 

	

IH,A q I 	= 	A 	. 	 (29) 
• 	

S 	nj 	cjn. 	n 

In Eq. (28) the numerical coefficients 	and G 	are so defined 

that 	p,q is zero for p1>0, or. pfql, < 0, and 	p, q is zero for • 

lk 0. or 	pi- q> 0, From Eqs. (27), 	 show 

that 

p,q• 	 P. 
%2\. 

0 

;f 	)P q  p 
 

-L 	G (t )  . T- R\ 	 +G ,. 

( qn 

	PQ) 	qn 	T 	0 2'. 	 3/(
qn PIC  in  

0 	0 	
\'o 	2'0 J 

(3) 

Equation (29), when pp1ied on the true ground state 	• of H5, 

can be interpreted as the eigenvalue equation for all the excited states 

Ivqn 	s 
) of H if we designate 

qn 	
= A q 1*0.  )) 	 (31) 
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and L 	as the energy of excitation from 1hr)) to I')). This 

designation imposethe requirement that the set Eq. (28) is a complete 

ôrthoflor.inall s;etL; 

Before we proceed to solve Eq. (30), let us calculate the 

commutators 

* 	* 
I H' , a 	 and r ' , t 	a 

S. 	p-q P 	 pq 
L 	 o 	1-01 

Using the ordinary anticommutation relation for the a s and b s we get 

H' , a 	b 	= E 	- E 	a 	b 

	

5 	p-i-q 	p 	p-i-cj 	P 	P1-q 	P 

o 	 o 

+R 	P:> a pi .q  b, + bpiq  a) 

' 	P' \o 	 0 	 ' 	
0 7l 

** * 
+ terms containing a b b b, etc. 

and 

[H 1 S  bqap 1 = . E q  - E 	b q  a 

7'. 	 7'. 

/p p'+q 	q p' \ * 
+ 	 I>  R 	t/(a p'+q b 	+ b

ptq  a1 ) 

Al 

+ terms containing .. a b. a, etc. 	(32) 
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If we neglect all but the pair terms, these. commutators are exactly 

equal to those in Eq. (27). From this, we can conclude that it is quite 

safe to simply add the exchange matrix element 

p'±qp 	p4-q p' 	 p•p'+q• 
- 	 R 	, 	toeach direct matrix element 	R.  

0 	 0 	 IO 

in applying Sawada's Hamiltonian to a syst.em for which the effect of 

exchange terms is not negligible. 

B. A SimDle Form of R Matrix 

Let us assume that the R matrix elements are simple continuous 

functions of the momenta involved. Then if we use symmetry conditions 

(rotation and reflection syimnetry), we can write the lowest-order term 

of Taylor's. expression of an R matrix element in the following form: 

- 	FRIPP') 	v0 
L•+ 

a2.+ b6p 2 + c 0 p.p 

+ d0 2 + e0p.q+ f0p' .q]. 

Further conditions suchas 

p qp (+' 	II') =•(' -qp+ 	IRIP 	) 
and 

IRI 	 iRl 	 -.) 

require that 

b0 =a0 , 

-=
=2a0 - c•-e 	so that •- 	

= e0  = 	(2a0 	c0), 



and 

d0 =a0 +b0 _c0 +d0 _e0 +f0,SOthatd0 =d0  

Thenwe have 

(+ t 	lRI') 

- 	 - 

=v0  [i+a (+)2 +a ( 	
)2 

	

2a0  -00 	2 
)q 

Accordingly, the exchange element is 

2d 

	

('- q+ 	R 	
t)= 0[+ 	

0.
+ C Q (+)2 

2d +C 	 -+ 	 -* 	 - 	2a -c 
0 	0 - 	2 	 - 	-* 	 0 O-2 

+ 	2 	 2 	
2d0  - 2a0 (p+2 )'(p' 	2 	

q 

which depends on p, p', and a exactly the same way as the original 

matrix element does provided we assume d 0  = a0  - c0/2 	The assumption 

d0  =a0 	c0/2 restricts the dependence Of, (pY 2  P' 1  IRI 2  

on momenta to a form (p'2 '1' IRI p2  p1 ) = Rf(p"2, p 1 ), f2(2, i] 

To simplify the resulting analysis, we shall . make this assumption, 

which is not a sere restriction on the form of R, since it is 

satisfied by all R matrix 'elements so far used in practical 

calculations. 13 

Under this assumption, we have 

.41 



-33- 

(+ 	' - c1iR 	') = (p' 	qp+ 	RI. .') 

=vo  [l+ao(;+)2+ao (,+)2 
	

C o  (+) (;-) 

2a-c 0 	0 -'2 
4. q 

C -2a o 	02 q)l 

	

+ I- !:p c+) 2 +aO  ( 	
)2 	

(;+)' -2J 
1. 	. 	c-2a 0 	0 2 

l--- 

This expression)  of course, is useful for small q only. For large q, 

we have to add to the above expression terms in bLgher orders of 

with more parameters. However, the above expression is in such form 

thatafactorthat gives the general features.of the large ci 

effect of nucleon scatterings can be easily introduced. It is done 

by replacing the factor 

c 0.-2a0 q?] 
y v0(q).= 	 ; 2a0 	

or 

= 	exp 	
C0  - 2a0 	2) or by other smilar functions of 

	

q. Correspondingly, the factor (1 - 0 
	0• 

q 
 2 in the denominator 

is also to be modified so as to make the over-all matrtx element a 

smooth function;  of q. For example)  we replace 



- 	 c 
0 	 0 1r a (q), c0 (q, respectively, 

c - 2a0 2 
	

c 0  2a0 2 	
0 

1- 	 1- 	.q. 

a0  
where a0 () = a0, c0 (qj, = c 0  or a0(q) 

= 	
0 

- 2a0 2 
1+ 

C 
0 

c0(q) 	
C - 2a 	

etc. A particular choice of a 0 (q), c 0 (q) 
0 0247- 

and 	means a particular way of fixing the parameters of high-order 

q terms. By means of thosearguments, we therefore take 

R 	 = 
 L 1 	2 

+ € 	+ € TT + € 	T.T] 

C;' ;+qlRI 	+) 

p-q p' 	p'+q p 

x 

	

	" 	 [C
+ . .€ 	 €. 	•r+ €.a'• 	'r'. 

lL 	2 

(•+:: RI p' + 	 (3) 

where 

( 	IRI 	'+ 	) 	= v) [1 ~ a() C; + )+ a(q): C;' + 	
)2 

.+ 	c(q) (p+ )C;' 	± 	
]:. (31) 
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This is equally well written as 

(t 	 + 	RI 	+ 	= v() [1+. c 	}, 	 () 

v(q) 	v0 (q) (i + 2a0 (q) 

c0 (q. ) 

= 1 + 2a0(q) PF 

	

because the matrix element '(p' p.+  q,  IRI P' +; 	) has its,maximum 

at q, 0 and drops, to zero as q becomes large just like, the Coulomb 

interaction does. Therefore we expect that the main contriution 

comes from small q's, and the dependence on p and p'  of R 

for large q's does not alter our final result very much. Consequently 

we have arrived at Eq. ( )-i-) by choosing a simple form which reduces 

to Jq. (34 1 ) for small q. 

C. Stability Conditions 

In the following, we substitute the above R matrix elements 

into Eq. (jo) and see what values' are implied for the parameter 

A. . We first introduce new notations. Let. 
qn 

p = I;a ,o• a 	t ,t t ; at .,a t '•a 
x y  z 	x . y' z 	x x x 	z z 

and 

with 

and 

= i 3  e2" 2' 2' 	3' 	IY e 41 
 e 
41• 

à 	€j •  •, 

corresponding, to 
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X = 1, 2, 3, Ii-,  7., 6,  7, 8,  9, 10, 11, 12, 13,  li-I-,' 15 1-6,. 

and let 

G 	G 	+ 

	

p Qn.p cjn 	.i qn 
x 
xo  

Thefl, from Eqs. (30), (33), and  (3) we have 

16 

G— 	=±• 	
(pf.p+q. ..i 	p1  +q.p) 

pqn 	 .. 	. 	pf 	. 	 x 
qn 	p q+ir 

7'. 
.0 

: 	 G, 

(37) 

The second term inside the braces is from the excbange R matrix 

element. This term will not cause much complication in decomposing 

Eq. (35) into that corresponding to. different modes, because we have 

assumed the same momentum dependence for the direct and the exchaiige 

R-matrix elements .and because we have 



G, 	(P)J}(P) 

= 	
tx0 

+ 	3 
€3 

+ 	I G  qn 	 for PK= 

+ 3 
€3 

3 €) 	G 	 for 	a, aqn 

= 	+ 62 	e3 3 for 	= 	, 	Z .  

0 

- 	- ) for 	= a 0. 

0 

Therefore, following the notation of GHT,.J, we write 
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G 
'pqn1 	= qn 

O 	
?'o 

F G 	(. pqn 

0  

F = LG 	() pqn111  p qn 

o 	% 

and 

(t) ' 	(t) 	•-+- 
F 	= (a'r) 

We have, from Eq. (5). 	Lpq 	= Lpq 	for all 	X 

p = + 	
K (p'. p + 	q 	IRI 	p' 	+ 	q p) 

pq - -L 	+iii 
qn 	p Cl 

Irp 
	+ p(7) 

], 	
(6) 

Pn 

where 	K = I, II, III, and IV, and 
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-(el + 	+ 	+ 9€) 	 as •K = I, 

- l -e2  + 3€3  - 3E) 	 as K II, 

= 	 (:57) 

- (€ + :s 	- 	- 	 as K = III, 

4e4 -(el 	- 3 
- €) 	 as K IV 

Equation (36) is the same as Ed. (6-7) of GKW except for the 

contribution to €' from the exchange term. And., as one would expect, 

this correction is the same as that obtained by Hatano, who used 

	

*. 	* 	li-i. 

	

H' with the original anticommutation relations for a ' 	and. b l  
5 	 S. 	 S 

To proceed, we write 

T 	= 	 + 	 .(-) 

''F 	
flk 	i;i >F 

IPfclI>PF 	I 

S 	= 	; 	
(+) 	+. . 	 (—) 

1> F 

and 



N0  (%() = 
- F 

(P+CiI>P 
F ) 

% 	- La,: + 1 

IP+c1I>P 	 .. 

N1  (% 	= 
I 	'F 	- F 	) 

- 	L, 	•71 q 

>PF IPf(lI>PF/ 

and 

Cici N 	(%) = 
-'F 	) 

- L, 	+ q 

(38) 

where 2 is the volume of the system. 

Therefore, Eq.. (36) becomes 

Tq .= e 	v(q) 	(N Tq  + .c N1  Sq ) 

and 

S 	=ct V(q) 	(N T. 	+.cN .S 	). qn 	K 	. 	1 	 2. qri 

FInally,, we obtain, for 



This eq'uatIon has '±oots 'from A 	0 to A 	L... 
qp 

for any set of ,  values of €K  v(q.) and c This is seen from the 

fact that FK(L 	) changes sign (from + cc to - a, or from 

-. oo to +cc),wheh 	passes thoughthe interval q.n 

ILpiq- + ,
O:L 	- . o ..Therefore a zeropoint of F;( 	) must exist 

j
. 	 K cini 

.ietween L 	and L 	.. When we take the JLmit £2 -' •oo, Ecj. (39) 

has a .contlnuôi s .séctium from 0 to L 	(the maximum value of 

L ) Thèse.are the scatterinsolutions. We labefthem.by 

7'. 

Corresponding.to each of these solutions, there exists .a scp.ttering 

excited state 
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I!p 	

G
qpK 	 qpK

'+ql>P?.0 	
?.' o 	?\.0 	X'O 

c 

''F 	: 	
q•K 	

0 

2.  
0.0 

=c 	I\r)) -I- I 
p, 	0 	I 	 p 	q pK c p , q•  q-   

% x 
0 	 IIP I +QI>PF o 	0 	0 	0 

(principal value) 

- 	 G 	 c  

IphI>?F,X' 	 qpK p+q
j q 	0 

IpIo 	 O 

(principal value) 

We can also call them pseudo-pair states. If the parameters E' 

v(q.), and c have values such that the equation 

	

F K L 1 qn = qK (a real value >L 	)] = :0 has!a solution, tn 

this solution correspond.s to a "zero sound" wave:: 

GPqK = 	XX0  pciK. 
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• )ç = ) = r 

	

pqK=I 	:p,q 

iPI>PF 	pqK=I .?'. 

•2. 

1' qK=II 	 I c q 

EPfcII>PF  

	

r (-) 	T 
 Cr 	

CpqJ I   *)), 

etc. If 	, v( q), and e are such that the equation 

FK { 	= ii' (an imaginary value)] 0 has a solution (t' is real), 

the methods we have used fail. There are cases; of course, in which 

there are no roots either for F (L 	= 	) = 0 or for Kqn 	qK 

• 	 K(Aqn = 	 =. 0. .• In these cases, the system.is stable although • there 

is no "zero sound" wave. 

Let us calculate N0, N1, and N2  for different types of 

L 	: 
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Case (i). For 	 L 	 + 	- q in •  pq 	 - 	* 

	

2M 	2M 

we calculate 

* 
- - MP 

N 
0 

- - 	• 	F 
2 •*• 

M 

-+ 	--* 
1 	pg 

- 	 -* 	-+ 	- P 	 -* 
[l+ 	

Fcl 	 p 	
-+ 
cj 

[ 	2 Pq 	 2- 

	

Nl 
(
p q) = F 	q No 

and 

	

- MP 	1 	
F -  + F2 	) N.. 	() 

	

Case (ii). For values of L 	that are realand. larger tban •L , 
F 

, webave 

* 

	

MP1 	i 	D:l1 
N0(D) = .22. 	

•2n 

where 	 * 
L\ M 

D= 

N1(D)= PFDNQ.(D); 

and 
* 
MP. 

N2 	- 2 2 F 
	F • ± P • D i 	(D) . 	 (Il) 



Case (iii). For L 	= II', where I. is real, wehave qnK -  

P 
N0 (iI') 	 [i._ itan 

2 

where 
* 

I'M 
' 

N1 (iI') 	IN0  (ii');. 

and 
*- 
MP 

F • .p 2 :12  N (ii). 	( 1 2) 

For Case (iii), FK (ilK) = 0. can be reduced to 

1 + C p 
=•I tan 	-,1 	Q(, 	(3) 

1 	2 	22 
1+cp, 7+CPF 

* 
MP 

where 7 	 e' V(q)c2. Theright-hand side is exhibited as a 
2r 

function of I in Fig. 1. We see that Q(I). takes values from 

0 to -1 only. If the left-band side does not fal1 into this interval, 

we sballhave norootsfor Eq. (43), which means no unstable skates. 

Consequently there are many chances for: attractive forces to escape from 

getting unstable states. For example, there are unstab1e states.: for the 

systemin which .c = 0 and. 	are all small and negative so that 

i/ 	'is less. than -1. 	. 



Q(I) 

I 

MU —23881 

Fig. 1. Q(I) as afunctionof I . 



For Case 

L l±c 
3. 

K+c 

the elgenvalue equation looks like 

2 2 	
£ 	 lt(D). 	() 

F 7j + C. 	D 

If we plot q1(D).  as afunction of D in Fig. 2,. we can see that. 

Q,' (D) takes all positIve values, for D > 1. Therefore,., the systern 

can have a "zero sound" waye, if the parameters give a positive value 

for the left-band side of.Eq. (li-li.). 

Because the left-had side of Eq. .(l)  and that of Eq. (liii.) 

have exactly the same form, we need only dicus one function, 

2 

	

1' 	l±3CPF 	H 	
22' 

	

f(x)ç 	
x 

he function f(x) is limited in the d'iffernt..régions in f(x)—x 

plane for different sets of values of. , 1 ± c pF2 ?, and 

c 
pF 	

(Figa 3)., For Case 1, .f(x), is entirely In the upper half 

plane, . When f(x) ,intere,cts with Q'() we sball..have,'.a .D.>l 

solution. For the second and third cas.es, f(x) enters into the 

(o, -1) zone. We expect..to have imaginary solutior if f(x). intersects 

with Q(x). For. Case k: there exists an imaginary solution 

for —..> -1... On the.other band, if . is weak enough so that 

<-1,.. we may even get a . D> 1 soiution provided the branch in 

the first quadrant intersects 'with Q. (x)..; otherwise we get no collective 

solution, but .the.sy.stem' is still stable. 
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Case 3 

X K  <0 

i+cp 

CP 2  >0 

f(x) 

x 
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Case I 	 Case 2 

IXK> 0 	 IXK> 0  

I+CPXK>O 

[cp>0 	(cp<O 	 cp<0 i  f(x) 	 f(x) 

I 	1 X k 
Case 4 

XK<O 	

3

IXK< 0  

I +Cp X <>0. 1 +cpX(0 

cp>0 	 cp>0 

f(x) 

: 

MU-23883 

Fig. 3. f(x) as a function of x for different values of 

1 + K' and c4 
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The types of solutions for different values of 	and c p 2  

are listed in detail in Table I. The inequality equations associated 

with the absence of imaginary solutions can be .cons.idered. as the 

stability conditions. 

In our example we have assumed the same. momentum. dependence 

(i.e. the same parameter c). for all four modes.. Therefore the 

stability conditions (Table I).require that C; 	>-- or. 

I I 
3 2 	3. 	3 	2 

> c p - 	or •  - - < c p , where X is the X . value 
IxI 	.i. 	i 

for the simple compressional mode, 	is the largest :and 	. is the 

smallest of the other three positive 7cs; If we assumedifferent 

momentum dependences . for the four modes, the stability arguments will 

in generaL follow. the rules liste& in Table I. 



Table I. Types of solutions. for different values.  of 	and c p 2  

• C p Types of solutions 

C 
2 - 1 imaginary, 	D > 1 

1 - lI solutions 

1 c p 2  < 3. aginary solution 
1.; 	I 	.I 21 	I 

c 2  
p < no solution 

F 

3c 2 
p 	• 

• imaginary solution 

c. p <- D > 1 solution 
l - 1J 

F < 
	 no solution 
2 II  

2 • 	 H 
< c p < ' 	 imaginary 

2I?,1 	F 

< C p,2 • no solution 

2 
c 3. < - no solution 

- 	<C p
F 	

< imaginary solution 

3 - 	< 
2 

2 C< 
F 

1 -. 
1 +: 

no solution 

1 	
< C p F 
	

D > 1 solution 
1+2 	 . 	. 
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D. Ground-State Energy of 

The ground-state energy€0 = 	 can be calcuted 

following the procedure of Sawada et al. 2  Or, if we use the fact that 

describes a system of linearly coupled oscillators, we can write. 

its expression:directly. 

Let us introduce 

0 P., C1 
= (2L 	

y1/2 
Rp q 

(c 	+ 
p,q.  

c p*qj  -q•  

1-0 

p,q 
l"12 

=IL 	/2 c  
py q. 

* 

p,q 
c 
pfq,-q. 

0 

where 0, i-t are canonically conjugated to each otheras a consequence 

of the commutation relations of c and c 's. In terms of these 

variables, H becomes: 
5 

* 
F 	=- 

. 2 
+L 

A* 0 
I 

-L 
kin 	2 	

'- 	 p, q p, q. p, q p, q p, q •p, q 

and 

and 
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H t 	
QPt' R 	

(•±•CI 

i 	

' 

n 	
pp l 	\ 	

I- 	
f0 

	

Lhu/2 	0* 	L'2 - E 
• ••p',q. 	flp,q 	c 

	

0 	2'. 0 	%0, 

where 

	

+ q, p 	
P + 

q  

	

C = " I 	E 

	

c2 	pkP 	
.XJRLO 

Ip± CL I>P 

The d.iagonalization'procedur.e we have.described is to transform bhese 

linearly coupled oscillators into their normal modes.. The ground-state 

energy is nothing 'but the zero-point •. energy of the normal vibrations 

namely 

¶(Hi ) 	. 	 L , 	- Eu .. 

1Pfcl>P 

The function FK(2) defined in Eq. (39) an be written, in terms cC 

• 	its zeros and its poles 

Kq 	= 	- 2qn ) 	- L2q )1 

'0 
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Hence we have 

	

£ (H) =i l/2d 	
2nFK() 

-E 0 	 u, 

where the closed contour in thecomplex 	plane is taken to encircle 

all zeros (A 	) and all poles,. (L p,q ). Integrating by parts )  and. 

11-0 

writing 	= A again, we have 

	

I a A 
	

in FKq (A2) - 

Where we go to the, limit £ 	0, £flFKq(A2) has a cut from 0 to 

L 	albn the real A axis and possibly a pole, at A 	> L Ppq 

on the real axis. Carrring the contour along both sides of this cut )  

and changiñg.vaiables to a new integration variable 	defined 

by A =p 	, we get 	 F (IL 	•+ i) • 	• 	 • :4K p,q 
I 

E 1 •'. 	
• 	T' / 

	
- 	_____.. 	• 

0 	= 	1 	" 	dp —_ . 'n 
s

. 
• 	 • ciK 	Ip I < F 	M- 	•:FqK(Lp,qi1) 

0 IPfqI>PF 	
• 

- i- ResfdA 	£n FK 2) - E 
qK 

We can substitute Ecis. (39)ad(4O)'iito the scattering part of the 

	

1 	F(L+irI 	• above expression. Then 7 in F(L - • 	
becomes an arc tangent. 

Replacing 	by 47Tf q  da and f dp 	by 27t P F .q f xdx, 

ci 	 IPI<PF 	 0 
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where x 	 C ' 	 + qJPq we have 	= 'scatt. 	zero sound 	c 

Then we have 	 . 

.2 	1 	1PF 
=3 -- Li fdxtan. 

scatt. 	Tit 2M* 	K• 	 . 

1+.c p2 (1+ 	 x2)(i+. 	2n.II) 

and 

Ezero  sound = 2 	 %K 
Ipq) 

2 T— - 41c f ci3dci [D ciK 
,. K(2t) 	M 

where 

. 

L 	
l+CPF 2 
	

.- 	DK+l 

F2 	
+ 	

.2 -. .2 	
qK - 1

ciK 

and 

-(2) 	
q2d.Q &V(q) 2Tc. P 	ci.; f xdx (i+.c:2). 
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IV. NUIVIICAL..CALCIJLATI0NS 

A. Evaluation of RB, RG for',a Fctorable Potential 

In Section III, we have' assumed the simple phenomenological 

form of "Eqs. (33) and (34), for the matrix .  elements of any nucleon 

reaction operator H. Here, we. try to determine, the values of the 

parameters, e, V0, a0, and c, such that Eqs. (33).and (34)  represent 

approximately the matrix elements of a particular .reacton operator 

such as Bruecicner's RB  operatoi and.Galitskii's RG . operators 

To calculate the RB  and HG  matrix elements, . we assume a 

nucleon-nucleon 'potential .which is 'charge-independent, even under 

inversion in both spin and configuration spaces, and factora1le in 

ninentum apace:., 

1 - o 1 .a 3 +T'T  
v=l 	 +3 	. 

v 	4 4 ' 	v even 	 ' 	. 	even. 

+ 	
3+ 

vOdd 	4 + vodd 

(-7) 

such that 
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(k'.,TMS',MJvtk,T,S,M3) = 

- 

2(kv. , 	k) 	for 	T = 1, S.= 0 
even 

2(i' 1 3v 	lit) 
even 	

for 	T 	0, S = 1 

x 

2(k' I VOd.djk) 	for 	T = 0, S = 0 

2(ktI3vddlk) 	f or T = l S = 1 

for I = 1 and. 3, and. 

Linax 	2 
• 

(kl 'V 	I) = 	 Y 	(') Y 	(2)(VI'v2 1k) even 2=even in2=-2 

Lrnax 	2 

• 	vOd.d.I= 	 Y' 	 (46). 
2=odd. m 

('l'v2I)= (2 
	[2f 	I2 	

2 'Ø(k) 

+ 	f2 	0 	(] •, 	 (7) 

wba'e T, •MT,  5, ana M.are.the eigenvalues:of the total and the z 

component of two-nucleon i-spin ana spin operators, respectively. The 

f1 ts ana f 
2 
 s are constants and. (k, T)  M, S, M5 ) means an 

antisyimnetrized two-nucleon state. Such a potential allows an exact 

solution for the RB  and.  RG  matrix elements. Furthermore, we may 

H 	 I 
treat.the scattering of each v 2  ind.epend.ently: 



- 

- 	 - 	
- 	 . 	 - 

D 	
- 	 •. 	3+c.1 	l-'t' 

J_\ - J. 	 + 	R 
even 	 4 . 	even 	4 	14. 

- -* 	- - 	 - -* 	- - 

	

1 - OT.C1 1 - 	 3R 	
• + 	± T.'.T 

+ 	odd.i 	4 	-, 	4 	+ 	odd 	14. 	 4 

 
L max 	.2 

(I even l) = 	 m(I)m() ,('cI'R2Ik,P). 
2=even 	m2=-2 

and 

= 
2' max 	

2rn(.) 
*m() 

 (k'l2Ik,P); 
2=odd 	in =-2 

 
and 

(k'I2Ik,P) = .(k'l'vIk) + 	J d. 	
1 	(k'.I'v2lk") 

	

(2) 	.m 2,,.-2 21 + 1 

x,y*2m(t,) 	
Q(It,p) 	

.rn (").(k"-I2Ik)P) 

or 

(k'I 2 , lkp) =(k!I 'v2 Ik)+ . 	f d 	(k'jv2 Ik") 

	

k" 	(k"I'R2jk,p).. 
	 (70) 

Equation (49) is possible provided we remove the coupling between the 

directions of 	and P-=.p 4 p 	s the total moñientum of the 

two co11idiig nucleons:) by replacing the real projection operator 

) and the denominator e(k' 	):by their angular averages -. 

Q(P)=l/4tfdp(k",P) and 

respectively. This approxation  



- 

is based on the argument that the effect of the direction, of 'P is 

small and can be neglected. From Equation (o) and (47), we can easily 

obtain. 

(k'l2!,'P). = 
() 	[ 120 (ks)  I2,  (k,P) 

+ 	f 	Ø(') I2Y(kP)]. 	 (5) 

where 

• 12x (k,P) 

- '2f2  

- 

 

[,-I le
f1  

(k,P)] 12Ø1 (k) + 	 (Ic,P)'2Ø2(k)
12 . 

1 (k, P)][i_'2f 2I22  (k, P)] _'2f12f [I2 	(k, p) ] 2  

and 

12 Y(k,.p) 

11-'2f1 2I11(k,)] '2Ø2 (k) +. '2f112I(k,P)Ø1 (k) 

- 

[1-U, f 1 11 1 (k,, P)] [1-i2f2 12 I22 (k, P)J _I2f1I2f2[I2I(k,  P)] 

with 

12
A  122' 

111 (k,P) = f.d" \Q(k",P) 	. 	
() 

Lft -,e(k",P) • ' 

f d" 	, 
(kP) 1 ______________ 

e(k",'P) 

and 

, 

(52) 

= f d " ' Q(k,P);h 	e(k't,P) 
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If the constants 	f1  and 	f and the .fmctions 

IL 	IL and 	are chosen properly,, the assumed potential v can 

reproduce most of the twonuc1eon. data such as the binding energy of the 

deuteron and.the total and the differential .cross.sections, of n-p 

and p-p scatterings.at energies from zero to  300 Mcv (see AppendixB).'. 

It is impossible, of course,, to explain the polarization experiments 

by means of a potential of this forni However, the expressions of 

Eqs (46) and (47)  can be easily inodifie& to include enough parameters 

to reproduce 'allthe'pbase shifts that give the best fit found in a 

phase-shift analysis of complete nucleon-nucleon data. We first expand 

the plane. waves into spherical harmonics: 

rn 
e i.Kr 

=-v_ 
!• (22+1) e12/2 j 2 (1) p() 5m  

: 1  
OD 	

' eim 2/2 	ym() *m
() 	ms 

00 	£ 	£+ s 	.J 	 / 
= 	 . 	 e iTC £2 

V 	2=0 	m..2'J=.I'2.l 	M=-J 	 . 

m(f) 
c(JM; £m2 Sm.)  

where the ' C's are Clebsch-Gordan coefficients, and the functions 

im 	 2 	2  are eigenfunctions of J, J. , L, and S. Now we take 



bMM, 	(k:l'v 	! 	) 
S S 	

even 

Mt I 
SS15  

	s Veven I 	) 

5MM K1HTocI 5 	 d I 1c ) 

M 1  Iv 	M 
S 	odd ' 

S 

forT=1, S=O 

for T 01  S = 1 

for T 0, S = 0 

for T = 1, 5= 1 

(M'l 3v 	I1,.M ) s even 	s 

2 Lmax 	2' 	2'+2 	J' 	niax 

£ '=even 	n'=-V J '=(2' -2) M'=-'J' 	2=even 

£ 	2+1 	J 
e"2 2-2 

M2=-2 J=(2-1) M=-J 

c(J'M'; £ 1 M' 2, 1 M' s ) C,(JM; 21'5 1 M) 

J'W 	J'M 	 M 
X

(k) fd' I di  j 1(kr)  j (kr) Y , (p') Y2  (p') 

X 	(J'M'2'1,' 	v 	I J M £ 1, 	Y. even 

This expression becomes Eqs. (46) and ()-!-'7) if we assume 

Iv 	J21,) = 	J' 	22' 	32g1(') 2g1()
even 

+ 2f2 	g2) 32g) 

, 



where gsare arbitrary functions of : 	independent of J. Here, in 

order to reproducedifferentphase shiftsfordffferent J states (such 

as 	2' J = 2 ± 11  35V  J 
=2 i), and those phase shifts with mixed 

Lts, we assume 

	

(JM'2l,'I3v2 1, ) 	JJ'5M'M 1 J349 f 	2g1 (r') 321 g1() 
even 

+ 	221 f2 	g(r') J2
1 9()] , 

where the g functions are different for different J' s.. Suppose. that 

the g.(F) function does not depend on the aziniutbal angle, 0. Then 

wecan write 

	

f er 
y ni ()  J32g 

() = 	
32hl.(r) 

and 

f rdr.j 2 (kr) 32h.(r) = d32O1 (k ) ,  

where i = 1 or 2. Substituting these functions into the long 

expression of (, M' s Iveyen jk M5 ),we obtain fia11y 

Lmax 	Lmax 2+1. 

(k',M'I dven 	M5 )= 	 , 	., 	(2J+ 1)e 	
/2 

£'=even 	2=even J=(2-1) 

• 	 .JM' 	H •. 	 JM 
xc(JM I ;  2I01M1 5 ) C(JM ; 2OiM)F2tiS  (): 	() (klI J3v2 ,Ik), 

• 	• 	 (1i.6) 
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where 

(k'Iy212Ik) 	
()31y, 

fl 
 J3 Y, 01(k')'Ø1(k) 

+ J22'1 	302(k') J3210 (k)] 0 	 (i') 

.
.
3v . 	J3 We can do the same thing for 	 Odd by introducing 	v2 , 2  with 

odd £ and 2'.. Now each. J3
V 	is connected with a phase shift 

through.the corresponding part, of the free scattering.reaction matrix, 

that is 

(k'1 3 	1k) =.(k'1 3 Ik)+ 	I 'dr"  (k':lv,. k") 	
. 

	

2 	' ' 	 k -k" 

£ max 
	

2. max 
x (k"l 3G212 Ik) (2J + i) 	37.

£"=even 
	'even 

or I  odd or odd 

/ 

2"0 B) 

	

*,Th1 	 im 
x'c(JlvI, .gti i. 	

jj ) :I' 	('t) U, 	5 	
() 

S 	 s Q2"2.  

and 	 . 	 . 

2  
(kl 3G2 , 2 Ik) = - 8 
	

, tan 	82,2 

Therefore,.by choosing, j3V2 , 2  carefu11r, we can fit all the phase 

shifts oVer a.large energy range. 
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This modified potential gives an analytical solution for the 

RB and  RG  matrix elements.. However, the solution, 

(it', M'13R Ii, M, 
s evenor 	5 

odd 

.2 max 	2 max 	19+1 

=.. 
2'=even 2' even J=(2-l) 
or odd or odd 

()2 (2J.± 1) .-i./2 (2'4). 

c(j M' ; 2.' 0 1 M' ) c(nvI; 2o lM 
5 . 	5 	 5 

*JM 
5 
 () (k'I 3R2 , 2 Ik,P), 

O. 2 'l 	0 21 
(14.9r) 

where (k' 3R212  1k; p) can be calculated from. (k' I 3v2 , 21k, P) 

accordingto an equation similar to Eq. (o), has a spin, dependence much 

more complicated than that inthe simple form of Eq. (33). Since our 

main concern is to see the momentum dependence of the R-matrix elements, 

we shall avoid this comp1icatior. and use. only the simpler nucleon-

nucleon potential of Eqs. (47), (46), and (47). 

In Appendix .B we have.reached.a plauib1e choice for the 

constants ' 2f1  and '2f2  and the functions. 

Ø(k) = 1'2ak 	, 	 (53a) 

and 

12Ø2(k) 	(k2 + I22)172 	
(53b) 

The potential parameters are given in Table II. 	. 



Table II. Parameters of the nucleoimnucleon pQtntial 

State 
Parameters Il(S=O), =2 1=3, 	1=2 All 

Z=O cthers 

f.M (l+a) 
16 

-O.96 -0.15 1.23 -o.18 	0 

tMl. 
00 0 + 00 0 	0 

B in 10c0T1 -. 	i.86 1.0 2.13 1.4 

oo 

-65 



66 

The odd- and even-parity, states for £ > 2 are neglected in order 

to simpliy the calculations.. The positive infinite value for 

10 and the negative value.for. 19f1  make the S-wave phase. shift 

change sign.  at a.certainerergy, a result  knornas the &iret. consequexce 

of a hard-core potential. Thdee&, if we alculate the expectation value 

of the partialpotential Y °. (k) YOP(k t ) v0 . forwave packets separated 

by a distance .r, we shall get an energy having a spatial dependence with 

a large positire icore.:at small r. For .D.wave partial potentials, we 

put. 12.f2.= 0. .This.isbecause the D-wave.stateare.usuallynot 

affected considerably by, a..hard core:at.a few.hundred Mev. 

The angular averages ofthepro.jectionoperatois Q and 

• are also different efroni each other in form.. . For Bruecicnert s 

def.initon,. the integration.over the interpiediatementum k" . is. to 

be :carriedout so that . k 	• 	. = P. 	Therefore, . the coiresponding 

cutoff: function . .QB(k",. p) . should take the form 

1:2 	2 1/2 

 f,- d k" 	.(kttp).+  4Tc 	k 1t2  dk0 	
2. J0 	. 	 . ;,2 	p , 2 

2 
p,.+ 2  

f kit
, 2 	2 1/2 

00 

+ .4Tr f 

rt-cos 	1 ft 
p 

f ' 	
2 	sin

k  2 p 	'2 
1  

cos 
k ly 

112 dkU . . 	. 	. 	. ( 4) 

For Galitskii 's definition, the integratio. .over the . intermediate 

_> tt  - i 	p 	, ornentuni k 	stobe carried:out so 11t for :  k 	= 	, a in  
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plus sign is inserted in front , of the integrand, and for 

1k" 	
= 	, a minus sign is inserted in front of the integrand. 

Thus we have 

fd3
It 
	

- 	- 	
k"2  dk" 

2 ,,2 	D 	2
PF  -1 k + 	- 2

' 	 cos J/2 
2 p 

f k" 
2 
 dk" ?t 	 sip 9" d9"

p 	 f 	2, 

	

F2 	 1 k!' +f 
l Py t-COS 	

k"p 

2 
+ 	- 2 -1 	! 

lt-cos 
kp 

+ 	

k"2  dk" 	2 f 	2 sin 0 11  d9" 

	

(;2 - 	)1/2 	 k" + 

+ 4  f k"2  dk" 	 () 

F2 

Before we proceed to discuss and make aproxiinations about the 

denominator e(k", p) of Eqs. (so) and (52), let us decide first which 

mabrix elements of RB and RG are to be calculated In the interaction 



1p1+cil> PF  

F 

p2q I> PF  

* 
Ct. 	C 
p1,q 	p2  T_ 

p1+qj> F  

P1< F 

>  PF  

C* C  

2 	
IP1I<PF 

JJ> F 	 lJ1 > 

Ip >F 	 I P I> PF 

* 
C 	C p1,q. p2 q 

C 	C p1+ q,-q  

* 
terni of Sawada'sHamultoniafl, because theoperators C 	and C 

- 	 p,q 

-vanish.unlesswehave 	P1 	and.ip±qd-,, the suniniation 

is actually a sum of four differentsumt1on: 

In thelimit 2 ->oo , these:suniniations hecomeintegrations over 

lirnitedregions -in momnentum space. For a-particulai q (< 	the 

four integrationareas are shown in Fig0 4. Froththe shape of the 

sbaded areas, we see thatfor inostof the contributing matrixelements, 

and P2  have either the same or: opposite directions.. Furthermore, 

themain.contributionto a Sawada's Hamniltoniancnes :when q is 

small. m ro,.( 1, 1 +lRI 1 ~ , p1) and 

l' 	1 	
IRI 1  +, 

-) 	
° 	F are two of the 

characteristicmatrix - elements and will be calculated. in.detail. In 

addition-to theae two, we shall also calcu1te. (O,O]RIO,O), which 

tells the strength when p1 2 0, and corresponds. to V0  of Eq. (3). 



I .  

MU —23884 

Fig. 4. The areas of integration for a particular value 
of q . 



By comparingthe calculated results of these three matrix elements with 

the corresponding forms. deduced from Eq. - ( 34),. we can .determne the 

values of. the parameters V0, . a 0, and c. 

For RE(o), we simplify the calculation further by neglecting 

the, selfconsistency. reaj4remerts and assuming the; effective• mass 
'2 	 , 	* 

approximation,. E 	
. 	

constant. For 'M we'adopt.the phenomenological 
2M.' 	

15. form ,of E iof Kaplus. and Watson, 

	

E 	A6OMev 110.21(+2 
- 	 ]' p 2M 	A 	I 	21 (270)2 

where Tj is the. conventional, radius parameter• defined by 

= 	
= 	

x( 	(1lx'IO 	cm) 3 '). 	 '(56) 

The density, of the system• is measured .(rec,procally) by ij, which is 

related to the Ferimentun"by'L 

	

p = 
	'//8 	= 	10 cth 	

,Mev 
F 	x1.1xlO 3  cm . 	 '. 	c 

Therefore, we have 

E - constant 
- -- 	+ 	 () 

M 	p2/2M 

tr 	 2- 	, 2. The. denominator .e(k , p). becomes. (k 	.k )/M . Now we are rea.dy 

to calculate. 	
It• 	12122  in Eq. . (52.) . and then the matrix 

elements (0I'2RB(0)I0,0)  (oI' 2R(o)Io, 2) and (FJ'2(0)IpF, 0) 
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The matrix element (k = pFIRB ( 0 )lk =p,, a) is actually obtained by 

exapIating the computed values at, k 09. and k . 1.1 p 	 For 

consistency, the matrix element (0I'2R:(0),I0, P = 21)F) is also, 

obtained, by extrapolating the computed, values 'at . P = 2(0.9 p,) '-and 

P = 2(1.1 F• The .resuJts are listed in Table III, 

For RG_matrix;elements, we first borrow E defined for 

calculatizig :R(0). as the single-particle energy E 1 . mother 

words, we still.use eG(k ", P) = ½ (k - k"2 ) with Mgivenby 

Eq. (57).. The calculating procedure.is the saweas before. The-results  

for Tj 1. are given in the first column. of Table IV. . The matrix 

element .(OIRGIO, 2p). is exactly equal to (0IRB(0)lO, 2p), 

.and the difference.between (PFIRGLpF, 0) an 	(p,lR(0)Ip,..0) is . . 

negligibly small. . If, on the other hand, we use a more consist.ent 

dfiniti:on forje 	 . 

+ 	 (npIRGInp), 	 (58) 

n<PF  

E. 	differs'from 'E mainly when .p is.sma'll,, and the eff,ect.is'to 

raise E ' to less.negative values. In.th.effectivTe-mass 
'p 	 . 	 - 

approximation this'means. a greater effective mass. .We.take 

ed(k)p) = 1/MI (k? - k t 2) and MIMI = 1 + 0.2/i . The result 

of; the calculation'at empirical .equilibrium..density (. =.l) is, giyen 

in the second column of Table IV. 
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I 	-- 

Table III. R(0) matrix eleinentsas;functipns. of 11 

2 	.*• 
i.units,of. 23/.MpF 

TI 

Matrix elethents States 0,8. 0.9 1.0 1.1 	. 112? 

(k=oI(0)Ik=o,P) 0 0 0 0. 0 

iS  
o.66 o.81 -1;0 -1.12 -1.16 

± :3 l.lO -1,34 -i.)I-O. 1.32 . -1.10 

a 
1 0.88 o.i o.8 0 .32  0.22 

(o.:I.R(o)Io,2p)' . 

0.60. o.li-o. .0.22. 0,14 0.10 

a 
1 S o.44 0,2.8 0.07 -0.11 -0.21 

.1 0.12 -0.17 016 0.16 -q16 
(k= 	I R (0) k=p, 0 ) 

0.20 -0.00 0.17 026 -o..i 

-0.12 0..13 -0.15 0 , 17 o.18 

a .;.Extrapolated.fromcomnpitedvaiusat0.9 P, and 1.1 P.. 



2 	* 
Table 	. RG Matrc elements in units of 2 /M p at. 	= 1 

Matrix elements States M/M>=l. 1  M/M 	= 1-2 

(k=o!RG Ik=O,.P) D' 	D 
0 0 

I -0.76 •0.88. 

(k=olRG lk=o,P=o) 
-o.88 

a . 

( 0 IRG I 0, 2pF ) 

I 	3  .0.22 0.09 

a l 0,07 -0.02 

1 D 
-o.16 . -o.18 

(kpFIRG(0)Ikpr0) 
-0.17 -0.23 

-0.15 _.21 

Extrapolated from computed values at 0.9 p, and 1.1 p 



B. Results 

From Eqs. (3), (37), and.-i.8) we can obtain.a sim1e relation 

between 	'K 	+qjjRjp + 	
and the corresponding matrix elements 

of 1Reven , 3R even .- We have,.for mode I, 

l, 	) 	3(I 3R 	•l, 	)1; 

	

p2  q) 	- L3' 	even 	 even 

for mode II, 

-+ 	-* 	 ->1 	 - 

	

q 	3(k'l R 	1k, p) +.(khl R 	1k, P)J; R(p, 	 2 - 	even 	 even 

for mode III, 

-4 	1 	-+ -* . 	 + -* 1 
R(p1, p2, 	L'l evenk p) 	3(k'I Rk, P)j;  even III 

and for mqde IV, 

-4 	-4. 	..4 	 i 	1 	3  
€'ivR(Pi,  p2  q) =.. i-(kl Revenlk p) - (k'l Reven tk) 

In addition we have, for k P 0, (k' = 

€KR(O,.O, O) =. 

for k = 0, P =2p 	(k .= 

&R(pF, p,.0). K  v0 (o) [1+.(2a0.+ c0)pF2] 

and for. k..= 	P 	01 . ( k.' = .k),.. 

eR(-p 	p 	a) = £Kvo(o).[1+ (a0 - c o )pF2 ]. 

With these. relations,. we can calculate tK  v0 (o),. a0, c0  for 
.2 

each mode. The . values are given in Table V. . Accordingly ? 	and CPF  

canbe easily obtained. . They are given in Table VI. 
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Table V. Values for the parameters K' V0, a0, and. c0, 

where :V0  is in units of .2r1 
2/2 M 

ModelParameters i=0 8 0.9. 1 0 J 1.1 1 2 1 0 1 0 

I £1V0(0) -26 -3.32 -3.66 :3..66  -339 -2.32 . -2.6. 

2a0pF -1,26 -1.0 -o.8o _o.8: -0.5.7 -0.66-0.52 

COPF -0 .59 -0,50 .. 	-0..9 	. -0 .52  -0,60. -0,82 0 .77 

€' 11v0 (0) 0 	liii. oo. 64 0 86 1 02 1 19 0 75 0 88 

II 2 p  -2,07 -i.i -.o.8 -0.79 70,67, 

C0PF2 -1.25 -0.93 -o. -0,62 -0.55.  

1.32  *158 1.8. •i..2. 1.07. 0.79. ..o.88 

III 2a0p 2  -1.00 .-o,83-0.-71 -0.59.-0.6 -o.14.  

-0.35 -0.32 -0,36  .-0. -o..6 .-o.6. -9.80. 

' 1 v0 (o) o.88. 1.-li .1.22. •. 1,221.13 0.77 o.88 

IV 2a0p -1.,26•-1.0 -0.80 -0 , 57 o..66 -0.52 

c0p -059 . -0.50  -0.52. 0.50 -0,2 -0.77 

M M .2 



Table VE. Values for 	and 	where 

2Mp 
= 	

2 	£ Kv0( 0 )( 1  + 2a0PF 
2ic 

and 

2 	2 2-1 
CPF 	..COPF (i.+. 2a0p) 

RB (0).  RG 

=0.5 1 0.9. 	j 1.0 1.1 1.2 	J 1.0 1.0 

0.70 0 -0.73. -1.17 -1.6. -0 .79. -1.26 .  

CPF2  2.27 '+r._2.5 -1.63 _1 1 O -2.2 -1.60 

-0,26 0,15-  0.21. 0..9. 0.10 :0.11.. 

CP 2  1.17. 2.26. -.35 .2.95 -1..67 7.38. -5.35. 

i 
0. 0.27 • o.1-6 0.78 o.8- o.li.o. 0.76. 

III 

CP2 +, -oo-1.88 -1.2 -1.07 -O.5 -1 , 31 0 .93 

0.27 0 . 	0.24 0..39 0.49 0.23 0-.142 

cp 2.27 :2.5 1,63. 1,0 . . 	2.2 . 	1.57 

M 	M -=1.2 
M 
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We see from Tables V and VI that when the density increases until 

r reaches a value between 1.1 and 1.0, i/ 	> -1, the simple 

compressional mode (K=l). has an imaginary, solution. At: ri=l and with 

large densities, the simple compressional oscillation appears. In the 

density region ri = 1.0 to 0 .9, the 	and cpF2 values of the other 

three.modes fall into Case 'Z in Fig. . Since (1 + X cpF/3)(cpF) 

Is smaller than one, the uper branch of function. f(x) . does not intersect 

with function Q'(x).. Thereare no zero sound waves for these three modes. 

On the .other hand, if .(l + 	cpF2/3) is lager.than / 

the lowel' branch. of f(x) does not intersect with Q(x), and the system 

is stable. We find an unusual situation that instead of the simple 

compressiOnal mode, the spin, i-spinand coupled spin-i-spin modes are 

missing. The stability of the system is, however, established at the 

nuclear-equilibrium density. The velocity of the simple compressional 

mode is approximately pF/M = 0.05 c. 

The Galitskii's projection operator makes little difference for 

the matrix element at the Fermi surface, and so does not significantly 

alter the general situation. It yields a slightly larger energy of 

excitation for the.simple compressional mode. The effective mass 

. 	 . 	 . 

(M * /M = 	+ 0.2) still does not provide spin, i-spin,or coupled 

spin-i-spin oscillations. Furthermore, it causes instability for the 

simple compressional mode.  

The Bruedkner'.s energy and the contribution of ring diagrams 

are calculated for i = o.8, 0.9, and 1.0 (see Table VII.) .. The 

ring-diagram contribution is of the order of the effect of the rearrangement 

correction to Brueckner's energy at equilibrium density, which tends to 

shift toward a higher density. 	 ,. 



Table VII. Ground-state nergy in Mev. 

Ground state. energya 0.5 	0.9 1.0 	1.1 

(EB + 	E)/A 	b 12.72 - 0.28 -12.96  

-EC/A - 	1.55. - 1o8 - o.8 

:0(H) Escatt/A o.66 0.026 - 0.05 

E zero sOund/ /A  
0.02 0.009 small 

0.67 -l.O - 0.89 

+ In, c + E0(H)]/A b. 11.85 - 1.32 - -13.85 

a Here we have V0 (q) = V0 (0)/(1 + q 2 / 2) 

b Here we have 

2 + 	

(nln2l(0)lnln2) 

= A 
[ 	

2 + 	

(2) 	
. 



V. CONCLUDING RHVIARKS. 

We have attempted to estiinatèr:the effect of pair interaction on the 

ground-state energy of nuclear matter by usilig a. Sawada's Hami1toiian 

It 	The effective interaction has been taken as the Brueckner
-
's reaction. 

S  

matrix, so that a calculation of the lowest energy of H gives the net 

contributiorifrom pair.interaction to Bruecimer's first-order ground-

state energy. The method is shown to be useful, there are no unstable 

states of H found in the neighborhood of equilibrium density, and 

the calculation is straightforward. 

On.the other hand•both of the two reaction rnatrice.s RB and RG 

calculate& in Section IV yield only simple ,compressionaJ. oscillations 

for a large nucleus, because a strong dependence of •  the (Fermi) surface 

matrix'eleiuents. of RB and RG  on the total mnentum P of the two 

colliding nucleons appears. The dependences. on P and on the relative 

momentum k of.the RB and  RG  matrix element'obtained in Section 

IV have an order of magnitude V[l 0.1 (2k) 2  -0.5 F2].  'Were the 

P and, the (2k) 2  coefficients exchanged, the parameter c 0  would becne 

'psitive while a0  would rmain the same, and the other three collective 

modes (K = 2,. 3, and li-) .would.appear instead of the simple compressional 

mode. 

It is possible,. of course that we have overemphasized the total 

momentum dependence by using the factorable nucleon-nucleon potential0 

Our including the D-wave potential. in Eqs0 (46) and (W) without making 

corresponding modifications on the spin dependence of the two-nucleon 

potential may'also be responsible for this situation favoritg one single 

mode. However, since the average; strength of the effective, interaction 

at the Ferini,surface is insensitive to the type of angular and spin 
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dependences, we may still conclude from this calculation that the 

nucleon.interactions at the Fermi surface are .weakenough to allow 

collective oscillations. 
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VI. APPENDIXES 

A. Expansion of the Ground-State Energy in Terms of v(g) 
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Ic1. . 

( 	 ) 
(E +E -E 
i 2 

-E k 2 -E k 3 ) ) 

(E +E -E 
n1  n2  k 	2 
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+ 	 )14F 
1c1 • 

(  
X 	

(k3n2 v(g)k
1

k
2 
 )(k2k1v(g)n2n1) \ 

	

(E +E Ek
2

Ek) 	 I 
"2 r1 
	

1 
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B. THE FACTORABLE POTENTIAL 

We conid' all even-parity states for 2 2, and neglect 

all odd-parity states. Let. us take: 

- 1 	l- 	3+'rT 	3 	3-ad l-'rt 

	

v-v 	I 	 + V even 	L 	 L4. 	 odd 

Then we have 

	

(it,Tt,m,S!,rn1SIvl)T,mT,S,nb) 	
5TT'8SS'5mTm'TrnSm'S 

- 

2(khl v even 1k) 	for T=l, S=O 

- 

2(k'I veven k) 	for T = 0, S = 1 

x 

O 	 for T=O,S=O 

O 	 for T=l, S=l, 

(' I 'V 	

= 2=0,2 	- 	
Y2m (a') y2m() (' I 'v 1k), 

and 

	

(k''v2k) 	(2) [12f ' 2Ø1 (k')'2Ø1 (k) + 2f2  12Ø2 (k') 120(k)] 

where, for I = 1 (s = 0), 2 = 0: 

	

10 	10 	100 	 ___ 

	

< 0, 	f2  = , 	
1(k) = (k2 + 1O2 ) 3/2 ' 

lO 	 1 k 
, 	

= (k2 + 102
) 1/2 ' 
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for i = i (s =0) 1  £ = 2: 

2 

fi 	
12 k 

< 0, 	f2  =o, 	Ø1(k) 
= (k2 

+ 102 ) 3/2 

for 1 = 3 (s= 1)2 = 0: 

2 
30 	 1-ak 

< 0, 30f2  = , 	

= ( + 302372 

50( () 	1 
k 

- (Ic2 
+ 302 ) 1/2 

and for I.= 3 (S = 1) 2 = 2: 

32f <o, 	0, 32Ø1(k)= (k2 
~ 322)3/2 

 

1 Existence of a Deuteron State 

The Schrödinger equation for a bound stae with binding energy 

B(= -E)of a neutron-proton system can be written as 

(-- B).) 	 I ( 	l 3 Yeven lk 	') 	 (A-2) 
(2c) 

for S = 1. For a factorable, potential given above, - the deuteron wave 

function must take the form 
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Jz1 MI 	 J=1 M=l 
= u(k) 	 () .+ w(k) 	 () 

.$=O S=1 	- 	 £=2 S-i 

= u(k)Y0°  () X11+ W(k)[Q  Y 2 ()X 1 	() X1° 

+y2 () x1'] , 	 (A-5) 

where u and w are the S and D wave.functions, resective1y. 

Sthstituting (A-3) into (A-2), we get 

(k.+ 2 )u(k) =- M 	f (1,1v0lkl) u(k') k' 2  d k 
(2) 

and 

(k2 
+ 

2) w(k) 	- M 	2 	f(kj3v2Ik') w(k') k12  d. 
(2 

f or BM .= 	These equations can have the solutions 

U(k) = N1  [k2 
+ 

o2] 
-1  ~300 (k) 	 2 (k)} 

and 

w(k) = N2  [k2•+ 82:]320 (k) 
	

(A-Li-) 

provided 

 -i 	
30 
f M 

( 	

2 

 ) 

and

32 
-1 =f M (iii), 	 (A-5) 



where 
S 

f. k2dk 
30Ø 2 () 
2 	2 
k.+8 

2 
11 	fkdk 

3001 (k) 	02 (k) 

10  2 
k+6 

30 	2 (k) 

1122 	= 	k2dk . 
• 

2 	2 
•k 	+8 

and 
32Ø2 ()  

iii 11 
1 	• 

Equation (A-7)  can be simplified as 

1 
= 30f 	TC M (i + 	

3O2)2 	
(A-6) 

• 
• TOT 

and ,• . 

M 
1 

- 	 [8 
- 	 • 

• 	 2 	[(3 
+ 

22. 	82) 	2 	
22 32 	- 	 22 

32 	 2 
+ 	 (A

-
7) • 	

• 

 

8(32 p 
	 62 ) 	2323   

2. Scattering Properties 

Following potentiaL (A-i); the scattering matrix T can:e written 

in a similar form: 
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= TT 5SS 	5  TmSm'S 

2( h I 'T 	k) 	for T =1,. S = 0., 
even 

2(d JT. 	for P ..= 	S = 1', even 

o 	 otherwise 

('I' eve ) 	 Ym. (.t)  ; ()(k.lIk), 	I.= 1, 3 
2=0,2 m=-2 

.Pt . 	(k'IIk).. 

By definition, we have 

1 2i 

(kl'T2Ik). 	k(M/2) 	2i 

Therefore the differential cross. sections of p-p and n-p .scatteris 

are given:byEqs. (A-8) and (A-9) We are dealing with.even-parity 

states.of two identicalparticles. Thus we have to put a factor 2 

in front of each.matrix..eleinent (kPTfk).  as a .result..of antisyimnetrization. 

The p-p state is a II, .T=l,.MT =i,S,.m) state.. The n-p state is 
a combination of two kinds, of states, . i.e. 



)- 

[lit T=O,mT=O, B, nib) + lit T=1,mT=O,.S,nlS)] (e=' .I=scattering.an1e) 

a (H) 
= 	 f 2 	l2(l'T 	l)l2 ( 	- k )  k' 2  dk t  

pp 	k 	 even 	M 	M 	- 	3. (2) 

[sin2 (') + 10 sin. *8 sin 8 cos (1816) P2 (cos e) 

+ 25 sin2 (15 )(P2(cos 8))2J 
	 (A -8)

2- 	[(k,' ~ T=10_,mT.O.,S,mSITI,k.,T=O,MT=O,S,ms). = 	f 21r 
s=o,1. 

8(k' 	- 	 ) X (k',, T=11  mT=O, S, mS 	k , T=l~ 	 m S)l 

=m.

I
S2(18) + 10 sin 180  sin 8 cos .(180-182 )P2 (.cos e)  in 

+ 25 sin2  (162)(P2(cos 8))2 

+ 	lsin2(380) + 10 sin 36 sin 82 cos ( 380-3 62 )P2 (cos e) 

+ 25 	 [P2 c 
 os 8)] 2  .. ... 	(A-9) 

Conseguently, the total cross sections are given by 

/ 



=
[.2 (i•8). 

5 sin2 	 (A-la) 

and 

np = 	
[sin2 

(is) + 
5 m2. (i] 
	

r2 	+ .5. sin2 (2)] 

(A-u) 

To express these phase shifts in terms,of our: potentialparameters, we 

calculate the matrix elements of the free scattering reaction matrix 

(k'PR2 Ik) from 

(hr 'v lkht)(knl IR 1k) 
(k' 	2Ik) = (k' ItIk) + (2) f k"2  dktt 	

k2  - k"2 	

£ 

using the potential from Eq . . (A-i). In phase-shift representation, we 

have 

(kjIR 	- M/2 k tan 

Therefore wecan write 

k tan 	E(kI1R0Ik) = 

l+ 10f1 	
lo 	

( 2 	l 	:)(1.+ lO2 
)3 

	

M 	(i a 	) (1 2 k
2  - 	k 	• k 

	

1 10 5 	16 	 - 102 	lOLk 	102 

(A-12) 



-1oo' 

- 	k 
tan 	E (kI'R2k) '= 

	M 12 	 - 

12 	tM 1 8k' 	0 

	

T 12 1 	122 

3 1 + 	f 	 '"°'122 	i7.)(l+:.2. ) 

(A-l3) 

k 
tan 36E(kl3R0Ik) = 

	(2 

1 	
3O22 	

2 k
2 	. 	 T 

+ f1 	
i6 	

+ 3O2 - 	 + 302 

x 	

30 	
M (1 + a.302)2 (i 2 	 )('i 	k2' 

- '3O2 ' 	'1O 	102 2 30 	16. 	
,,., 

(A-11i) 

- 2M72k 
tan 352E(kI3R2lk) = 

	()3. 

32rM 	1 	8k 	 , -3 . .fi 	 322 

1 + 	f 	 ( +.1° 322 + 15 322' 	322 )3 

(A-15) 

At low energy, we have , 

2 

- 	tan 6= jj
1 	k2 	

a a r0 
k2  + .. , 	(A16) 

where a is the scattering length,, and r 0  is the effective range. 
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3. Numerical Values for the f and L  Parameters 

Now we can determine a set of values for f's. and 	's from 

the nucleon-nucleon data through the relations we. obtained in l and 

2. We adopt: 

singlet scattering length = 23.,7: fiis; 

singlet effectie range 	: 1r0  = 26 feimis; 

triplet scattering length: 3 a= 7.4 fernhis; 

trilet effective  range 	: = 1.7 ferniis; 

from Eqs. .(A-12), (A-13)., an (A-16) we can determine lOt, 10 and 

30 	30 
f1  , 	 . Then by using 

• 	 .5 mb 	at . Ela •b 	75 Mev. 
CT 	

I  • 	(e = 9J cieg) = 
pp 	 3 , 5 nfb.at. E 	310 Mev 1b  

and Eqs. (A-12), (A-8),. and .(A-13), we can determine, 12f1  and 12 

Byusing 

4 nib at E 	90 Mev 
lab - .(e 	9odeg)=ç, 	. np 	 I 2 mb at E 	= 310 Mev 
'lab 

and Eqs. (A-1'2)', (A13) :(A_il), (A-9), and (Al7),  Ye can determine 

and 	The yalues:are listed in 'Table.II. The conditions (A-6), 

(A7), and the total 	Qs''séction.of p-p and p-n •scatterings can be' 

checked within' reasonable limits by using these results 
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