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ABSTRACT

| VA displacément.of'energy levels hés been observed in the K=0 band of;

" 0dd-odd deformed nuclei, It isishdwh that this shift is due to,a.particuiar
type. of scattering iﬁ which.fhe final statevis—ébtained from the iﬁitial sﬁate
by“a'rgtatipn'of_ISOo. This;circumétance allows one to‘sfaté certain seleét-.
ion rﬁles on the pérts of the n-p residUal ipteractioh'responsible for the
shift° vThe Wigner componént of the force éannot contribute to the shift,‘ In
Vcertain cases the contribﬁtion of all,cénfrai_forces will be\strOngly dampéd

: i

allowing observation of the tensor force SQattering,conﬁribution, Numerical

results aré presented.
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'I. INTRODUCTION:
One 6f‘thé striking successes of the nﬁclear collective model has been -
its.prediction of rotatiohai states. in. deformed nuclei. _At‘thévpfesent time
many -examples 6f>rotational bands are»known'ahd-their enefgy level structure
. is found. to agree excellently with the theoretical prediction. If we-negleét
for the moment the cases with K= 1/2 (K is the pfbjection:of:the totalrspin,.
I,fon.the'nucleér symmetry axis)‘thenntheApfédictionnié
h2v | | |
=

23

CEB(I)=
-~ SVEff.

I(4)  (&E1/R) " (1)

where %Eff can be termed the "effective moment of inertia"” and is defined by

:the above -expression: This formula is-valid .for even—even,,bdd A, and odd-
~0dd deformed nuclei. Deviations from Eq. (1) due to higher order effects,
such as rotatioh-vibration‘intergctiOngfor examﬁle, amount, at most, to a few
. percent. | | | |
| ,Reéently evidence -has begun.to accumulate ﬁhiéh'indicates that. in odd-"
odd nuclei;Eq. (1) is not always‘cofrect and may'feqpire=im§ortant modification.
i . ‘In these cases we~find_ievels,which are members of aarotgtional band but have
a.level struéture~cdmpleteiy at variance with the prediction of Eq. (1). In
G - athe'cases-under-study,fhe deﬁiatién,from:the éxpecﬁedrleQél Struéture is large
- enough to:changé:the level ordering from that implied by Eq. (1); As an

r'iliustrationfof this effect we refer to Fig. 1 which shows the experimental

- situationzin_Hol66‘as determined by J. S. Geiger and co-workers at Chalk River.

-1 am grateful to J.S. Geiger, R.L. Graham and G.T. Ewan. for permission to use
‘this illustration. Several conversations with.Dr. Geiger were most helpful.
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-0odd deformed nuclei. These states do not.haveAthe-expected.level.spaeings;

- The observed level spacings.mayvbe accounted for by superposing an. energy

7= . UCRL-976M

. The three lowest levels. are determined to be members of a K=0 rotational band.

From .the energyrdifferenee»between.the I=0 and I=2 states one uses Eq. (1)

ﬁ?

. to: flnd 56— = 9 kev. Thus one would expect the I=1 state to lie at .18 kev.

=
23 Eff

Instead. ohe finds -I=1 at 82 kev. It appears that the I=1 state has. been

shifted upward.from its expected.position relative to I=0 and I=2 by 6k4 kev.

In other cases, to be discussed later, one finds shifts in the opposite
| ol |

.direction. . In Am , for example,xwe’apparentlthave‘a,KEO band in which the .

~l=l state has been shifted dewnward'so that. it lies below the I=O.state.'

We may. briefly summarizelthe experimental data.in the following way:

states belonging to a K=0 rotational band have been observed in several odd-

t

. shift .on.the expected I(I+l) level spa01ng . This energy shlft may be descrlbed

prov1s1onally as a’ dlsplacement of levels of odd I relatlve to those of even

. I within.the rotational band. .How can Wevunderstand'this "odd-even shift"?

II. . THEORY
A<recent paperl has suggested an explanation; This explanetion, in
effect, placeS\the-"blame"lfor-fhe odd-even shiftponlthe_fesidual_intepactioh
betWeenuthe‘odd neutfon and edd proton;”.It is oﬁr purpose in What,follows to

examine thls proposal in -some detail.

We may write. the wave function of an odd- .0dd deformed . nucleus as

I [ar+1

Y 5 ZZZ C. C
Mg N6m

| 1795 9y,
1%, %0 ot i g o0t 0

| Dfa-K]Q (ko8 15) - (2)
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- In. th1s expre551on the . 51ngle partlcle states of the odd. nucleons (partlcles

No.l and No.2): are wrltten in the body flxed coordlnate frame. . The D func-

tions.describe the orlentatlon of the deformed nuclear potentlal well in the

* laboratory -frame and are functions of the Euler angles which . spec1fy that

orientation. _The total wave function has. the required symmetries. - (a)

invariance under rotations around the nuclear symmetry axis:and (b) invariance

under a .rotation of m about any=axisvperpendicular to the nucl ear symmetry
axis.'2 If we now turn on an interaction, V, between particles 1.and 2 and>

evaluate the diagonal -matrix élement we. find

(had i) = me (D 3oy e

with

B- 235:32 J_L 32 ch(l) <, (2) ¢, (1) c, (2) ( 1) e

i

/3 j_ i oy
<X;‘:Il{£l)x_-§§2)|V|KKi(l) 7;_12{](L2)> ., (k)

‘The matrix elemeni (Eq. 3) has been written so that its dependence on I is

'explicitly;displayéd. In the expression .for’ B.we have made use of the fact

that this term. contributes to the matrixelement only: if KbKi+Ké=O and so

1:Kée -Ki. eThe four-radial:wavé.funétions are omitted for the present.

B

Already we see:that-in an odd4odd_deformed nucleus a.residual n-p

»interaction may cause»avshiftain énergy within the members of a-.rotational
‘band. .This displacement. is' to be~expebted~if and.only if K=0. The shift

-takes.the-fdfmaof a“relative»displacement of the odd I and even Iemembers

of the band and-its.magnitude-isi2B. The physical model under scrutin& here



&

-9- . UCRL-976k4

says that an experimental determination of the odd-even shift is a. measure-

.ment of the-sign and-magnitude of B. -Thus it is worthwhile to examine

Eq. (4) more closely.

“«Bais an off-diagonal matrix element. 'The initial and final étatés

-may. be very differ?pt. In cases of interest-Kiais oftenllarge'(Ki=7/2 for

H9166)

. - Because Kﬁ.is the projection of the total angular momentum of one
of the particles on the nuclear symmetry axis this:implies large total

angular momentum for each: of the particles.l and 2. .Theslargé ahgﬁlar'momen-

tum and angular momentum projection means that one can conveniently think

of the particles.as.classical.particles,traveling in orbits around the

-periphery,of the nucleuévin;the region of the-nucleaf equatome B is a .sum

;of'oontributibns from-various scattefing‘proqeéseé wﬁich connect initial and
. final state. . If wé‘ignore,_fér»the moment, the fact -that the inferaction;
',V,-mayvcontain some space exchange componenﬁs ﬁe:may~visualize.the.scattering

,processes whichicontribute~to B:in .the following way. In the initial state:

before. the /scattering we have particle 1 traveling around the nuclear surface
: : . : /

in the region of the equator in a‘"co@nter-clockwise" difection, Particle 2

is traveling. in. the same plane but in‘a."clockwise"'directibn}‘.Thé particles

‘meet head_on.inva,catastrophic collision. . The final state which they must
.scatter into is one in whiéh each particie;ié in .the same orbit as‘before
the collision but. is now traveling.in.the»opp03ite direction.  Thus we have
»a:backwarduscattefing,in.theicenﬁer~of mass,df partiélés.l and 2. A;théugh»
particles 1 and 2 will ﬁndergo aiwidecvariétf of scétterings only those of

'_ the above type involving angular mpmentﬁmttransfersﬂgreater-than.EKi can

. contribute to- B. - The above picture requires some modification when V. contains
. & space.exchange coﬁponent.'.Our'purpose here, hoWeYer, is simply to -emphasize

the specializeduﬁature.of_the scafterings which are.contributing to B.
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“The interaction V will in general be a mixture of a number of
components--central and non-central forces with various exchange properties.

Due to the particularity of the scatterings measured by B.it is:clearnthat

.the components -of V.willidiffer in. their abi;ity to'produce.fhe type of
scattering needed. We suspect, in fact, that the.confribufions of certain
.components of V;mayﬁbe highly damped ou£ thereby allowing:other components
to manifestethemselves more;clearly.. Hopefully-this_selectiﬁe effect'might
.préve:to be a.rethef~sensitive-probe of the n—prreeidual.interaction between

.peripheral nucleons .

. The preceding,discussion becomes.morefmeaningful if we recall .a fact

not‘mentioned_thus:far; Some of the nuclei of.interest will be thbse having

. large equilibrium deformations. .The. intrinsic single particle states:.in such

nuclei are often. close.to their asymptotic forms. In the asymptotic limit,

~in addition.to Ki, we have two more good quantum.num.bers,_‘[\1 and,zlf A1

and_uZl are-the projections on the nuclear éymmetryvaxis of the orbital

angular momentum and intrinsic.spin, respectively. vThat-is, Ki=_Al+'zl.

In the asymptotic,limit, then, the types of.scatterings;contributing to B

are.even more: restricted than befare. In this 1imit the four single particle

states in B-.are states.of 100% polarization of intrinsic spin. Only those

components of V which have.the capability of linking such polarized states

. can contribute.

In order to investigate.this matter further let us rewrite Eq. (k)

'in the asymptotic 1imit of large deformation -- this time expanding the

b.single particle'state3~in their orbital and intrinsic spin components. There

are now two cases to consider. Rither the intrinsic spin projections. of

particles.l and 2 are anti-parallel or parallel -- that is, either > +-22= 0

1
or‘21+>22= 1.
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Case 1: Zi+ 22= 0

21+, | |
B= (-1) <Y (1) :x(1) Y (2) x (2)|V] Y (1) x(1) ¥ (2) :,x(2)> )
oy By Ry 43 B ) LA B

Kf A+ 2 (5)

Case II: Zl+ 22= 1

2.+0 41 . : :
B= (-1) 1*2" <Y (1) x (1) ¥ (2) A2)|vlY (1) x(1) Y (2) 'x(2>,
/zl-Al -zl 12(+A1‘+22‘.l) '.zl zl'z_\l +zl 12‘(-1\1-221) +Zl

K = A1+ z - " (6)

Here the ka are the spherical harmonics and the X&,are»the intrinsic spin

-functions. It is understood that the above expressiohs are to be summed

over'zllazl'ﬁe' with the expansion coefficients appropriate to the asymptotic
single particle states. TFor the present we omit these sums -- as well as

the four radial wave functions -- as immaterial to our discussion. In each
of the two cases we verify. that both initial aﬂa”final states have K:Ki+Ké=0.

In-both CasesI and II we observe that particles 1 and 2 must flip

their. intrinsic spin in going from:initial to final state. It is clear, then,

that only spin-dependent forces can contribute to B :in.the asymptotic limit.

ﬁowever, examination of Case II revaals a much more drastic restriction.

- Here the spin space of the two particles has experienced a change of two

units of angular momentum projection. (This change’ has, of course, been

. balanced by a corresponding change in. the angular momentum projection in

the orbital space.) A moment's reflection reveals that no central force



% *

&

-12- “UCRL-976k4

- regardless of its-eXChangevcharaqter can produce such a scattering. Central

forces are scalars in the orbital, spin, and isotopic spin spaées separately.
Thus they conserve angular momentum independently -in all three spaces. Only
a tensor force ié capable of transferring angular momentum between spin and
orbital spaces as.required. in Case-II.*

The above discussion can be summarized. in the following selection
rules.

(l) (Asymptotic) Only spin dependent forces can contribute .to
- the odd-even shif't.
(2) (Asymptotic) If 3+ 3,= 1 only a tensor interaction can
produce -an odd-even shift.
"(3) A Wigner force cannot contribute to the odd-even shift inde-
pendent of nuclear deformation.

The thifd rule (proved. in Appendix I) is true for all non-zero
deformations. The effect of rule (3) is to remove a degree of freedom from
the problem thus simplifyingvconsiderablynthe task of'arriving at an unam-
biguous n-p residual force.

- The first two selection rules are rigorously true only -in.the asymp-

totic limit of large nuclear deformation. Their approximate-validity in any

given nucleus will depend . on how close the single-particle wave functions are

- to their asymptotic forms. Or more precisely -- how effective the deforma-

tion has been. in polarizing the intrinsic spin. In a particular case pre-

liminary examination of the single particle states may reveal that they

contain only small admixtures of non-asymptotic amplitudes. In such a
case selection rules (1) and (2) may be employed as useful guides.in under-
standing which parts of the n-p interaction are most effective in producing

%he;shift.:, w

We note that a two-body spin orbit force is also incapable of producing
.the required scattering.
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Tn addition to the shift due to a residual n-p: interaction, the

‘members of a K=0 rotational band will also be perturbed by the Coriolis

coupling. . It is necessary to understandvthe effect of this latter pertur-

bation .in ordef to disentangle the shift due to the residual force. 1In the

- special case that K#K1+K2=O with K1=11/2 the Coriolis interaction makes a

first order contribution to the energy: An expressionvfor this contribution
is given in Appendix II. | | |

In all other cases (Klf 1/2) the Coriolis interaction will enter only
in second order -- that is, mixing between rotational bands. The Coriolis

interaction only mixes bands which differ by one unit in K value. Therefore

- if there: is a;K#l band near the K=O band then the energy levels of. the K=0

band will be perturbed. - However, if the effect is weak so that we may use
229 order perturbation theory, then it can be shown* that the'energy shifts
in the K=0 band are proportional to I(I+l). Therefore these shifts can
beitaken.into‘account by simply renormalizing the mément of inertia.

183 3

Kerman's study of the odd A nucleus W provides an example.

Detailed analysis showed that although there was a substantial amount of

~interband mixing the effect on the energy_levels'could be essentially

completely aécounted"for'by renormalizing the moment of inertia. Thus,
even in the presence .of the mixing, the energy levels within the band were
5 .
given by E(I)= —%-h—— T(1+1).
Eff..
"The procedure . for measuring the odd-even shift is just as before.
One determines: the renormalized moment of inertia from the I=0 - I=2 energy
spacing, for example. This contains the effect of interband mixing on.the

energy levels. .This value is used.to predict-the location of I=1. The

deviation of I=1 from this predicted position is then. interpreted as the

* N : : ' L, .
This-follows from:a simple generalization. of the derivation for the odd A

~ case. .. See, for example, reference 2.
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odd-even shift due to', the n-p residual interaction. '(An exceptional case is

discussed in Appendix TIT.)

IIT. CALCULATIONS

In carrying out-the numerical’work the single particle states for

finite nuclear deformation were taken. from the'tables of NilssonlL and Mottel-
son and Nilsson'.5

: . ¥
These wave  functions are

K%m

¢+KK1) =+§lm1§zlml 33111(1),Y11@1‘1) Xﬁgigl(}) - (7):
o2 = (e R )Y, o ()% 2 o). (@

The expansion.cbefficiénts alm.are<tabulated.invreferences 4 and 5 for various
nuclear deformatibns. Using this representation for the single particle states

we find

- Lt AL :
B= (-1) * 2 ;@_'K(l) & ,x(2) 1V] ¢,4(1) ¢_‘K(2>- (9)

We note that, the factor preceding the matrix element is just (-1) times the

nuclear: parity. - The central force part of the n-p,interaction“is written as

g

\ U(r) [? P+ U’ 7 92);}U5(91“ 95 PM) + U;] : (10)

R , is a harmonic oscillator fadial wave function. We have chosen to define
b . (2) T R (2) where T= oyK is the time reversal operator. o_ is the
Paull 5p1n_operator and K-indicates complex conjugation. This choice:leads
to the phase .factor included- in Eq. (8). The final results are, of course,
independent of this phase.
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P, is the space -exchange .operator. U(r) is the well shape factor and

-1’1U2’ U5’ and»Uuzare-the well depths for the various compopents of the

- force as. indicated. - Having shown that the Wigner- interaction does not

‘contribute, B.is written

B=UKPy) + U, {gy° gp)/+ Us (21' %o Py !

C (1)
where
P V- Y s 1 t : t t
(Bp=P lzll B (2yp0 0,7 %) BUL 4,00 1 05'0) (12) .
1*2
1 1
hids
k
» O.°- 0 L= —'l P Z A {1 ' 1 Iv . 1
{gy7gp) = (-1) 2, Aty Ty k) B2(8 200, 10, ) (13)
“1%2
-t 1
2,
k
-~ & ‘ v= - . N P t ' s t ¥
(gpe goPy) = (-1) P 2 A (42,0 '8,'K) B3 (24,0, "8,"%)  (14)
1.2
| F1%2
1 t
84
with i

A(zlzezi'zé'k)= Kzzi+1)(212+1)(2zl'+1)(212"+1)_'_| l/eFk(ﬁlzlngzgnl' :

{
' 3

' | _zl'ng‘ZQf) - (1%2)
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B (120 '0p"0= [(2240) (22,41) (22, 1o1) (ot )] /2
. Fy(n2nton ', 'y e ,") (150)

. _ 5 ’
. YIRS 1
Bl(zllzxj, 22 k) <2k+l> uzv ) K-u ) K+v Jz 'K+u z K-y
2.4 L 2 I L2
2 k o' 1 k 12 k 271 k

X Cgip K-v p-v CK+V K- =gV CO 00 CO. 00 (16)

‘ . 2 .
' 1 k) of —1 .
B2(£l£2£l 12 k)= 2<2k+l> “VZH' allK—u a£2K+v a!ll'K-u' ale"K-V-u-lJ-': x

L4k 2,0, - /z/z'k;zzk

* CK;p.K-u' 2K =i - ! C-K-v ( “Kevpu ') (- 2K+u+p, ) o o o %o o 0

ol/2 _1/211' Cl/2 1/2 1

poutwt o v (evepept) (p-pt)
(17)
B5(£l A5 211:): 2(..2_1]?__*.]) > 8 xon ¥ Ky 2 Ken! 2 Keyopep! ¥
VARV T Ho Sty lH EVHH '
B2 e . 1
(<1 g S ’12”1 X Jite k St
Ku (=K )(p +v)--K-vKu (-p'=v) OOO 000

1/21/2:1 . 1/2 1/2 1
oot (ptat) Cv(-v-u -p') (-p-p')
(18)

C
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P= nuclear parity = *1. The C's are the usual Clebsch-Gordan coefficients

and Fk-and Fk are the radial integrals

w0 D 5 . .
, Fk;.(2k+l)g"g' r)"dr r,"ar, Rnlzl(rl) Rn2£2(r ) R n 't (ry )R 2 ,(r )
C +1
[, B o) e ) (%)

© o o :
= 2 2. ' >
F,= (2k+1) [ [ r.“ar.r,“ar, R, (x.) R_, (r,) R ,, +(x.) R, (r))
k og 1 1 2 T2 nlgl 1 pgﬁz 2° "n, 12 1 nl'zl 2

S ’ | f - U(r) P (n)  (190)

where P (u) is a. Legendre polynomial.  One can show, as expected, that

‘<01 o5 M> = <9i ~Sp ) and (P. ) = 0.in. the limit of & zero-range force.

In Section:II it was pointed out that a space exchange type -interaction

would destroy the picture of "catastrophic collisions,. This is- observed

above -in that both (PM) and <§l' 0o PM) involve sums over all angular momentum

transfers k, whereas (01"02> contains only those k for whichiké? 2K-1 as

_is seen in.the Clebsch-Cordan coefficients. It is clear the results will be

sensitive to the amount of Majorana exchange.ih_the force.

- In carrying out.the numerical work we have used for U(r) the gaussian

_ﬁre :
U(r) = e } (20)
wvith p~2 = 1.6 x 10" em
The nuclear radius enters:the problem through the parameter v in the

radial wave function. This parameter  is fixed as follows. One examines.the

- single particle:states to see what.is the highest orbital angular momentum

involved. Call this number £. (In the cases of interest here f= L4 or 5 or 6.)

A This- component of the wave function will have a radial dependence

Cry, o oA1/2hre  (a)
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The classical turning point of such a component will be at a radius R where

2 2443
=== .

R (22)

&

/3, 10713

v is now fixed by setting R = 1.2 x A cm. Using these values. of tﬁe
parameters the d;mgnsioﬁless gquantities (Pﬁ>.(gl'§2Xj<glig23M>'Will be presented
Ain gach”@asé.x The reader may then use Eq. (ll) to exémiﬁe the results arising
. . i

from various force mixtures.

In o;der to have ‘a- definite numberAto cbmpare with experiment a
pafticular choice was made fof_V. As will be épparent 1afer,‘this force
is in no sense a;"besf'fit" but merely serves as a con%enient standard of
comparison. The experimental data.is, as yet, too limitgd to make adjustment

of force parameters very meaningful. Our choice is

LT N |
V= an e E + _1_691 (;{2] 5 {l+ -PM] : (25)
e -1/2_ -13. s e s
with UO= -60 Mev and B = 1.6 x 10 -em. This interaction is similar to
: . 7.8

those used in other calculations. it-yields‘a singleévand triplet. effective
range and scattering .length comparable with<those obtained from low-enérgy
nucleon-nucleon data.  The use of a Serber mixture seems a reasonable firét
choice for the space-exchange»character.v

166

. *
67H099 : The single particle states seem quite certain,»"They are neutron: -

7/2+ [633], n= +6 and proton: T7/2- [523], n=+6. The asymptotic quantum
numbérs Enclosed in brackets) and n which is reiated to the deformation are
defined in references 4 and 5. Hére we have used Eq. (22) with £=6 to specify

v.. We find (B )=+ 0.00215, (g, - g,)= + 0.00479, and (g )= +0.02222.

19PN

See referencevl for further details on the single particle stdtes.involved

in Hol66 and AmE”Q,



-19- . “UCRL-976k:

- The approximat%-validity,of selection.rule 1 can be seen by comparing-
(BM).andV(gl- géEM). The introduction. of:gl .~2.causes_the.matrix~e1ement
-to increase 5y an order of magnitude. _
“Using V:défined by Eq-.. (23) e find that B = -111. kev. Refefring

.tn Eq. (3) shows that the I= 1 state.should be moved: up- in energy relative
to I=0 and I=2 -by 222 kev. This is.to be compared with.a.shift of 6l kev
-indicated by experiment (Fig.. 1). Tt is poséible' that -the choice of g=k
rafher‘than 1=6: is more' reasonable in this region of the periodin table.
If we use [=L4 in Eq. (22) we can estimate the.effect.on.the energy shift.
With £=h»the I=l state is moved up relative to I=0 and 2 by §15O kev.
Therefore, using V as specified—by Eq. (23) we find anshift»whiqh is of the
correct sign but too large; | |

‘- By decreasing the percentage-of Majnrana exchange we can, of course,
it the experimental shift.
. 95Amii$ :.%The~experimental_évidence-is reviewed,in'refengnce.l. The ground
_ state:seems to'havé I=1, K=0. This is sufprising@ - If the grbund state - is
a: member of a K=0 band one would expect it to have I=0. A possible inter-
-pretation is that there-is an odd—even shift in the K=0 band which has
"pushed the I=1 state below the I=0 state. Although the‘magnitudelof the
.shift is- unknown at present, it is of interest to see if we can account for
the sign of the shift. The: most likely 51ngle partlcle states are neutron:
- 5/2+ [622], n= +6 and proton:. 5/2- [523], n= +6. v is fixed by settlng 2—6
in Eq. (22). A preliminary examination of the wave functions shows that the :
intrinsic'spins of botn neutron and_prbton are highly polarized. This toge-
ther with“the fact that the situation is in the category covered by -selection

rule 2 leads us to expect that -central force effects will be highly démpéd.
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Calculation yields (PM)= -0.00022, (gl.gz) = +0.00111, (gl- 95 PM) =
+ O. 00520 Using V as specified by Eq. (25) we find that B = -2 kev.

(Each of the three contributions is 6 kev or les$ in magnltude ) Thls is the

mcentral force demplng wh1ch was ant1c1pated The effect of a tensor inter-

‘action is discussed below.

112, : There is a group of three levelk which may be members of a K=0
Mo .

excited rotational band. The levels at 65.6, 109.7, and 191.4 kev are
assigned spins of O; 2, 1, respectivelyu9‘(The‘interpretation as a K=0

band must be eoﬁsidered as tentative. The 0-2 spacing is anomalously,small.)
Applying Eq. (1) we expect to find the I=1 state at 15 kev above the I=0
state. Instead it is 126 kev above I=0. Therefore 1t seems. that the I=1
state has been pushed up relative to I=0 and 2 by 111 kev.:

The most reasonable choice for single.particle states seems to be
neutron:. 7/2+ [633], 1= +6 and. proton 7/2+ [UOk], n= +h.5’lo Examination of
these wave functions shewe,thatvthe stetes are Stfenély-polarized. Since
the configufation is. of the type'diseussed in gelection ruie 2 we expect
central forces to be damped and the tensor force to make arcrucial coﬁtriu

bution. The parameter v is fixed by using £=5 in Eq.(22). Calculation .

yields (PM); + 0.00096, (g,° gp) g -.o.oqo5o, and (g,* g, By)= -0.00355.

Using V. from Eq. (23), B = -19 kev. [Comparing this with the result obtained

_for-Ho166 - a nucleus of the same size -.one sees that the central force

contribution has dropped by>a factor of about 5.] Our central force result
is, then, that states of odd I will be pushed up by 38 kev relative to states

of evehrI. This is in the same direction as the experimental shift but only
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' : *
about 1/5 as large. Next we turn our attention to the tensor force.

2ho 172

In Am and to a lesser extent in Lu it was found that the

central force contribution to the odd-even shift was démped. This was
expected since the Singlé-ﬁéfﬁgéié séétés iﬁ both‘cé;ééjﬁ;éé.ééléétign
rule é applicable»and.inspection-of the singie particle states showed that
the intrinsic spiné weré highly polarized. It Was‘felf, therefore, that
in these cases a calculation of tensor forte effects was in order..

.The calculation of tensor force effects in spherical shell model

7

states is rather laborious.' Here the labor is compounded since we have
a four-fold sum.over sphérical states. It was found in calculating the

central force matrix elements, hoWever, that the dominant contribution

.to the sum came, in each case, from the term where both particles; initially

’

and finally, were in their component of maximum orbital angular momentum.
This was expected since the highest orbital mementum cémponent in the single

particle wave functions was either. the largest or comparable with the

It waS'suggested_(S, G. Nilsson, private communication) that in Lu172

we might see the proton state 1/2- [541] coming down from:the 5th oscil-
lator Shell; A.K=0 band was éohstructed by coupling this state with the
neutron state: 1/2- [521]. A calculation using the standard V defined by
Eq.(23) revealed that even I states would rbe shifted upwards relative to

odd I states by T4 kev. Further, each central force term contributed with

.the same sign. DNext, the term discussed.in Appendix. II was evaluated (deter—

mining ﬁ2/2$ from .the 0-2 energyfspacing). Tt was found that this term moved

"even.I states down relative to odd I states by 14 kev. Thus this rotational

term is bucking,the shift due to the residual n-p interaction but is only
about 1/5 as large. - The conclusion is that this choice of single particle

states cannot give agreement with the experimental level scheme.



22 | UCRL-9764

largest component. More. importaptly, these highest angular momentum

components always have a nodeless‘radial wave function thus guaranﬁeeing

242

the best possible radial overlap. It was found in Am , for example,

that the central force term z 5, £2— z =6 dominated the sums.

1

. Therefore the tensor force: matrlx element was: calculated w1th_A and.z

as good quantum numbers assuming that the above mentioned term would give

- the dominate-contribution. A method was developed which gives an exact

gnswer in the limit of a short range tensor force. The nuperical value
attained by this.proeedure'is»not expected to be significant beyond indicat-
ing the sign of fhe tensor force contribution to the odd-even shift.

oo

In Am such a.calculation showed that an "attractive" tensor

s interaction (Qf suchlsign as to give the deuteron quadrupole_moment) would

raise-states'of even I and lower those of odd I.' This is in agreement with
the limited experlmental data and consistent w1th the. implication. of the

selectlon rules -- that the shift in.this case should be dec1ded by the

-y
tensor'lnteracﬂlon.

1772

A similar calculation. for Tu yielded the result that the tensor

- force would raise states of odd I and lower those of even I. A shift of

such a sign when added.to the .previously calculated central force~sﬁift

- is such as to move .the calculated value of the shift closer to the experi-

mental value.
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-IV. DISCUSSION
-The point of view taken in the preceding section was to calculate
only central force effects when the configuration did not tend to emphasize

the tensor . force contribution.ll In such. cases it was believed that the

~ effect of the tensor interaction could be taken into account by simply

making adjustments of the central force parameters. Only-in those cases .

where the configuration was such that central force contributions were

strongly damped Was.it deemed necessary to make an explicit tensor calcu-
2l '

lation. Am is such a case.

The effects which we -are calculating are -small and depend sensi-

- tively on. the. overlap of the wave functions. involved.. . However, the results

are dominated by terms.in which’f.= £ ' and L= 12‘. ‘Such terms- involve

1 "1

the same radial wave .functions in initial and.final'state. Thus the radial

integrals are "diagonal" and the results should not be especially sensitive

to'the particular choice of radial functions (harmonic oscillator functions
here) .

. The' matrix element B 'is non-diagonal in a very special sense.

-The-final state is simply the initial state rotated through 180°. This

symmetry is supplemented by the symmetries-imposed on the single particle
states due to the nuclear deformation. TheseAsymmetry conditions combine

to impose -grave restrictions on.the types of scattering which can join

initial and final states. The Wigner force contribution is completely

damped. As one approaches the asymptotic limit the pure.Majorana contri-

bution goes to zero and only spin dependent. forces can contribute to the
shift. TFor certain configurations. the effect of all central forces becomes
damped at large deformation and the shift is due to the tensor- interaction

alone.
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It is felt that the present preliminary calculations substantiate .
the physical model under study here. More importantly, we have tried to
~ : :

show why the odd-even shift in the K=0 band is a rather sensitive probe

.of the residual n-pinteraction between surface nucleons.
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APPENDIX I

.

If we calculate B.(Eq. 9) using a pure Wigner force for V.we find

£o+h
: 172
7 a 1_.("1), X
4y K+ 22 K v‘ '

> 2 a - .a,. a
L. 22 oy ziK-u ‘ng}v
£ 22
k-

1/2 Bty

+ ! ! .

[(2/& +1)(2,z 1) (28, +1)(2z +1)] F, (£2:8,"2, )( -1) 2k+]>
o . : . e 1 '

4,k Loty 'k by ARtyTK

CK-u.K}quK‘ -K-v -K+v -2K QO 00 CO 00 °

: Next we re-express B as

B ., 2 A0,k 4.0,k
. B= - ’
Z 8 gy 5 K-V (-1) Qk+D ..K-v -Kiv -2K Co o o *

kv , :
[(222+1)(2)z2'-+1)] 1/2 5 G820 "0y") H(L 20 1 2,")
\e% , ,
. !
with
6(e,0,0,00, )= (= N (22, ) (22 '+1)] “r (08,0 00,0)
120212 100 ")
80,k 2,8, 'k

C

1 1
iH(zl oy )= 2 (‘l) 2 K % 'K CK-p K +2K 0 0 0

1

-The indices 21 and ﬁll range over the same set of values which are either

vféllveven‘or,all odd integers. _u=:i_l/2.
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Observing that -

N Gg(s. 2

1 1
) 1 2 l 2 ) = +G(£l totydy")

2712

i H(£121 2 ”'. lz""g')

it is clear that

z 1
zi’ (2121&1 2)H(1’,
171

1 2 l 2

and therefore

BEO

Thus the Wigner interaction canmnot contribute to the shift.

")=0

UCRL-976

The result is,

of course, independent of force range and nuclear deformation--assuming the

latter is non-zero. If one first expands the single particle states in eigen-

states of j and then evaluates the ﬁétrix element it becomes clear that the

above result is due to:the fotation‘properties,of spinor particles.
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- APPENDIX II

- For an odd—ddd'nucleus-with K#K1+K =0 and Klﬁ.l/Q there is a first-

.order contrlbutlon to the energy level structure due to a term in . the collective

rotational part of the. Hamlltonlan The Hamlltonlan can be wr1tten2

' Ee | - | o
b= HIntr(_rl. )+ Trot - - _
) 1 .24 .. . o i . , .
wher€ HIntr(E ,E_).1s~the;Hamllton1an,for the motion of partlcles 1l ard 2 in

Rot ~°

T;Ro't:. ﬁ2/2§5 (I‘ QQ}?7Q(2))2 = ([5- 35(1)- »J3('2))2]

-

| o,
=10/eS ((12432(1)432(2))- (15- 35(2)- 35(2)) ]

-/ [ -2(T-3(1)+ 132+ 25(1) '4(2)]4

Evaluating. the diagonal matrik élementvofih2[% Q(l)‘i(E) Wé find

| QiK:O\éE/ @ 3(1)g (é)leﬁK:O): consthnt + (-51)I'+l @2/2@ al..ag

where’al,a‘

a, are the decoupling parameters for particles 1 and 2 defined by

A
2=z ()2 / (341/2)|c;|°
J b

Here the-ijarefthe éxpansion coéfficients of the single particle‘states in

terms of eigenstates of j.  The enefgy;level formula now becomes

E(1) ='h2/2?5 E(I+l) + (_~l)1+lala;é SKO SIK:LI ,1/2]“.
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The situation here is, in a sense, simpler than the analogous situation in
odd A nuclei with K= 1/2. Because the I dependence of the above expression
enters only - through (-l)I we can use the 0-2 energy spacing. to find.hE/E%
- immediately. Then the above térm,may be calculated to find the predicted
position of I=1. The deviation of I=1l from this position. is interpreted as

due to the odd-even shift arising from the residual n-p interaction.
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APPENDIX IIT

- There’is a special case where the effect on energj levels of interband
mixing cannot be' taken. into account by renormalizing the moment of inertia--
even though 22‘2 order'perturbat;on:theory may be valid. Consider rotational
particle mixing between-a K=0 band -and a K=1 baud. ' The K=0 band’ is to be

constructed from;the'single particle states

wK15(1.> =3 c,

- J
(1) ¢ " (1)
3 a

1

2 (3)

zvig(e) = 3 032(2)"?1%

.32

and the K#l_band from

_ _ J
Tg () =2 T (1) @K;_LJ,l(;)

1 gy 1

| s
,w,&(e) =§2\5032(2).¢K1 (2).

That is, in the K=1 band we have promoted particle 1 to a state with projec-

tidn.Ki+l whereas particle 2 is still in the same state.
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‘Examination of the"Hamilioniép in Appendix II reveals that the matrix

’ 'element-connecting the two bands is

r/ \
HCEEDES

Calling this matrix element & we find . T ' v .
2\ ! | ’ ' I ShES
, * ¥ 12
o= - ﬁg I(I+1) 1/2 - Cc, C, C, C, ( +K +1) (J |2/2 +
25 R J J J J 1 l
‘ ‘ JlJ2 1 2 1 "2 |k

1/
. : rO f . 6 - -

)

In 222 order perturbation theory the energy shift due to the mixing is
2
proportional to & . Thus, provided the 2-—g term inSide the brackets does not

contrlbute, the shifts are -proportional to I(I+1l) and can be absorbed by re-

normalizing ¥. However if K = -1/2 the 2—2 term will contribute.

1

‘It is clear that we can abéorb the energy shifts by renormalizing I~
separately fof even I and odd I states. |

We may illustrate the situation by the following case of practical in-
terest. OSuppose we have é neutron and proton state each having a projection
of,l/z. vWe can couple'these,single particle states to form a K;O state and
a K=1 state. The K=0 rofational band will be perturbed by the K=1 band.
Both the O-é energy spacing and the 1-3 energy spaciﬁgvof the K=0 band will
be independent of the odd-even shift discussed in Appendix IT and the resid-

uval n=p force shift. The moment of inertia derived from the 0-2 spacing will,

"however, differ from that derived from the 1-3 spacing due to the fact that
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az above is ho longer simply proportional to I(1+1).

Y
An extreme example of this I-dependent interbandmixing is found when

‘the isotopic spin, T, is a good quentum number. Suppose neutron and proton

are in the same single particle state with projection 1/2. In the K=0O band
the states wi%h'I=even have T=1 and I=odd states have T#Olz. In the K=1 band
all states have T=0. It is. clear that only the I=odd states in the K=0 band

will mix with ﬁﬁexK=l band. The I=even étates will not mix. The matrix

element between the two bands is now

1/2

. 2\ .1/ | |
a=,<§§. [;(Iﬂ_)]ff’— z (’g.l,+1/2)

E;+(_1)I+ijv
; :

cjl

‘LWhen T is a good qpahtum numbér it is of éourse clear what the sign of
the shift due to the resiéual n-p forcé wili be.’ The odd I states (T=0)
symmetric in space and spih.will feel the effect of V more strongly than the
even I states (T:l). Thus the odd I states will be shifted downward in energy

relative to the even I states.]
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