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ABSTRACT 

A displacement of energy levels has been observed in the K=O band of 

odd-odd deformed nuclei. It is shown that this shift is due to a particular 

type. of scattering in which the final state is obtained from the initial state 

by arotationof 1800.  This circumstance allows one to state certain select-

ion rules on the parts of the n-p residual interction responsible for the 

shift. The Wigner component of the force cannot contribute to the shift. In 

certain cases the contribution of all central forces will be strongly damped 

allowing observation of the tensor force scattering contribution. Numerica.1 

results are presented. 
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'SCATTING IN THE K=O BAI'l) OF ODD-ODD 'DEFORD NUCLEI 

Neal D. Newby, Jr. 

Lawrence Radiation Laboratory 
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Berkley, California 

I. INTRODUCTION 

One of the striking successes of the nuclear collective :mol has been 

its prediction of rotational states .  in deformed nuclei. At the present time 

many examples of rotational bands are knom and their energy level structure 

is found.. to agree.exeflentlywith.the theoretical prediction. 'If we neglet 

for the moment the cases with K= 1/2 (ic is the projection of the total spin, 

I,on the nuclear, symmetry axis) thei.the redictionis 

2 

	

E(I) 	1(1+1) 
22 

 
Eff. 

where 2 
Eff 

 can..be termed the '"effective inoment.of inertia T' and is defined by 

the above expression. This formula is valid .,for even-even, ,odd A, and odd-

odd deformed nuclei. Deviations from Eq. ('1) due to higher order effects, 

such as rotation-vibration .interp.ction for examle, amount, at most, to a few 

percent. 

Recently evidence has begun.to accumulate which indicates that.. in odd-

odd nuclei Eq. (.1) is not always. correct and may require important modification. 

In these cases we find levels, which are members of a rotational band but have 

a level structure completely at variance with the prediction of Eq. (i). In 

the cases under study the deviation from the expected level structure is large 

enough to change the level ordering from that implied by Eq. (i). As an 

illustration of this effect we refer to Fig. 1 which shows the experimental 

166 	. 	' . 	. 	. 	. * 

	

tuation.in Ho 	as, determined .by.:J. S. .Geigera.nd co-workers atChalkRiver. *- 
- 1 am.atefu1.to  J.S..Geiger, R.L. Graham andG.T. Ewanfor permissionto use 
.this illustration. Several conversations with. Dr. Geiger were mot. helpful. 
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The three.lowest levels are determined'.to be members of a.K=0•rotationalband. 

From the energy difference between the 1=0 and 1=2 states.one uses Eq. (1) 
2 

to find 2 	
= 9kev. Thus one would.expect the .1=1 state to lie at .18 key. 

JEff. 
Instead one finds 1=1 at82 key. It appears that the 1=1 state has.been 

shifted upward.from its expected position relative to 1=0 and 1=2 by 64 key. 

mother cases, to be discussed .later, one finds shifts in the opposite 

direction. In Am 242 , for example,..'we apparently have.a K=0 band in which the 

1=1 state has been shifted downward so that. it' lies below the 1=0 state. 

We may ;  briefly summarize the experImental data, in the following way: 

states belonging to a .K=0 rotational band have been observed in several odd-

odd .deformednuclei. .Thee states do not have.the'expected.level spac:ings 

The 'observed level spacings may:  be accounted for by superposing an energy 

shift on.the xpectedI(Il) level spacing. This energy shift may be described 

provisionally as a'displacementof levels of odd I relative to those of even 

I within.the rotational band. .110w can we understand this T'odd-even shift? 

II. .TEEORY 

A. recent paper1  has suggested an explanation. This explanation, in 

effect, placesthe "blame 1' for the odd-even shift on the residual. interaction 

between the odd neutron and odd proton. It is our purpose in what follows to 

examine this proposal in some detail. 

We.may writethe wave function' of an odd-odd deformed nucleus as 

1 	[21+1 	
C C 	 I 	 2Xl 

	

- 42 	l2 l 2 [x(l) 
2 	

D +(-l) 	4l)X(2) 

(K=+K). (2) 



-8 - 	 UCRL-976 

In this expression the single particle states.of the odd.nucleons (particles 

No.1 and No.2) are written in the body fixed coordinate frame. The D func-

tions.describe the orientation of the deformed nuclear potential well .in.the 

laboratory fraine and are functions of the Euler angles which specify that 

orientation. The total wave function has the required syninetrie. - (a) 

invariance under rotations around the nuclear symmetry axis and (b) invariance 

under a rotation of 7r about any axis perpendicular to the nuclear symmetry 

axis. 2  If we now turn on an interaction, V, between particles land 2 and 

evaluate the diagonalmatrix €lement we find 

/ 

I 	?P~) = A+ (-l) B 
	

(3) 

with 

c. (1)0. (2) C. ,(l) C. 2) ( -i) 
1 2 L 2 'l 	. 	 1 

(xl)..x2IvIl 	 (4) 

The matrix element (Eq. 3) has been written so that its dependence oil .1 is 

explicitly displayed. In the expression for B we have made use of the fact 

that this.term. contributes to the matrixclement only if K=K 1+K2=O and so 

K2= -L The four radial wave functions are omitted for the present 

Already we see that in an odd-odd deformed nucleus a.residual n-p 

.interactibn may cause a shift in ergy within the members of a. rotational 

band. .This displacement. is to be expected if and. only if K=O. The shift. 

takes the form of a relative displacement of the odd I and even I. members 

of the band and its .inagnituUe is 2B. The physical model under scrutinty  here 
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says that an experimental determination of the odd-even shift is a.measure-

ment of the sign and.magnitude of B. Thus it is worthwhile to examine 

Eq. (i.) more closely. 

B is an off-diagonal matrix element. The initial and final  states 

may; be very differep±. In cases of interest Kl,.is often large (Kj=7/2 for 

Because K1  is the projection of the total angular momentum of one 

of the particles on the nuclear symmetry axis this.implies large total 

angular momentuni.for each of the particlesl and 2. The large angular momen-

turn and angular momentum projection means that one can conveniently think 

of the particles as . classical particles traveling in orbits around the 

priphery.of the nucleus; in the region of the nuclear equator.... Bis a.surn: 

of ontributions from various scattering processes which connect initial and 

final state. . If we ignore, for the moment, the fact that the interaction, 

V, may contain some space exchange components we may visialize the .scattering 

p'ocesses which contribute to Bin.the following.way. In the initial state. 

before the iscattering we have particle 1 .travaling around the nuclear surface, 

in.the region of the equator in a. cpnter-cloc1wise t  direction. Particle 2 

is traveling. in the same plane but in a .' T clockwlse" direction. . The particles 

meet head-on in a catastrophic collision. . The final state which they rnust 

scatter into is one in which each particle is in.the same orbit as before 

the collision bvt. is now traveling, in the opposite direction. .Thus we have 

a backward scattering, in the center of rnass of particles 1 and 2. Although 

particles 1 and 2 will undergo a wide•var1e.t of sc.tterings only those of 

the above type involving angular momentum transfers greater than 2K1  can 

contribute to B. . The above picture requires some modification when Vocontains. 

a spaceexchange component. Our purpose here, however,, is simply to emphasize 

the specialized.r]ature.of the scatterings which are.contributing to B. 
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The interaction .V will in general be a mixture of a number of 

11 

	 components--centräl and non-central forces with various exchange properties. 

Due to the particularity of the scatterings . measured by B it is clear that 

the components .of V. will differ in their ability to produce the type of 

scattering.needed. We suspect, in fact, that the contributions of certain 

components of V may. be  highly damped out thereby allowing other components 

to manifest themselves more clearly. Hopefully this selective effect might 

prove to be a rather sensitive probe of the n-p'residual interaction between 

peripheral. nucleons. 	 . 

The preceding, discussion becomes more meaningful if we recall a. fact 

not meitioned thus.far. Some of the nuclei of interest will be those haying 

large equilibrium deformations. .. The. intrinsic single particle states in such 

nuclei are often. close :to their asymptotic forms. In the asymptotic limit, 

in addi.tion,to K1, we have two more good quantum numbers, A 1  and.1. A1 
and 	are.the projections on the nuclear symmetry axis of the orbital 

angular momentuniand intrinsic spin, respectively. Tbat.is, K±=A1+Zi. 

In ,the asymptotic limit, then, the types of scatterings contributing to B 

.are.even more: restricted tban"befqre. In this limit the four single.particle 

states.in  Bare states of lpO%polarization,of intrinsic spin. Only those 

components of V which have the capability of linking such polarized states 

can contribute. 

In order to investigate this matter further let us rewrite Eq. ( )i-) 

in the asymptotic limit of large deformation -- this time expanding the 

single particle states in their orbital and intrinsic spin components. There 

are now two cases to consider. ither 'the intrinsic spin projections of 

particles .1 and 2 are anti-parallel or parallel -- that is, either 	2 0 

or'+= 1. 
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Case I: 

B= ()1 2 	
( 	( i) :x(i) Y (2) X(2)jVj Y (1) :.x(i) Y (2) :x(2)\, Y -A  7-1 £2l 1 	1 i 1i i 2211 / 

 

Case II: 	
2 1 

£ +.e+i 
 

(ll 

1 2
y(1) Y (2) 	2)IVjY (1) x(i) y ( 2)

"i 	
£2(+A"1) 	

'11 1 £2 1)1 / 

 

Here theare the spherical harmonics and the 	are the intrinsic spin 

functions. It is un.erstood that the above expressions are to be summed 

over 2 122 . 1 t .e2 ' with the expansion coefficients appropriate to the asymptotic 

single particle states. For the present we omit these sums -- as well as 

the four radial wave funcons -- as immaterial to our discussion. In each 

of the two cases we verify. that both initial and final states have K=K 1+K2=O. 

In both Casesl and II we observe that particles 1 and 2.xnust flip 

theirintrinsic spin in going frominitial to final state.. It is clear, then, 

that only spin-dependent forces can contribute to B in the asymptotic limit. 

owever, examination of Case II reveals a much more drastic restriction. 

Here the spin space of the two particles has experienced a change of two 

units of angular momentum projection. (This change' has, of course, been 

balanced by a corresponding change in the angular momentum projection .in 

the orbital space.) A moment's reflection reveals that no central force 
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regardless of its exchange character can produce such a scattering. Central 

forces are scalars in the orbital, spin, and isotopic spin spaces separately. 

Thus they conserve angular momentum independently in all tbree spaces. Only 

a tensor force is capable of transferring angular momentum between spin and 

orbital spaces as.required in Case II. * 

The above discussion can be sunnitarized in the following selection 

rules. 

(Asymptotic) Only spin dependent forces can contribute to 

the odd-even shift. 

(Asymptotic) If 	2= 1 only a tensor interaction can 

produce an odd-even shift. 

A Wigner force cannot contribute to the odd-even shift inde_ 

pendent of nuclear deformation. 

The third rule (proved in Appendix I) is true for all non-zero 

deformations. The effect of rule (3) is to remove a degree of freedom from 

the problem thus simplifying considerably the task  of arriving at an unani-

biguous n-p residual force. 

The first two selection rules are rigorously true only in the asymp-

totic limit of large nuclear deformation. Their approximate validity in any 

given nucleus will depend on how close the single-particle wave functions are 

to their asymptotic forms. Or more precisely -- how effective the deforina-

tion has been inpolarizing the intrinsic spin. In a particular case pre-

•liminary examination of the single particle states.may reveal that they 

contain only smafl admixtures of non-asymptotic amplitudes. In such a 

case selection rules (i) and (2) may be employed, as uefu1 guides.in under-

standing which parts of the n-p interaction are most effective in producing 

the shift. 	.. 
* 
We note that a to-bodyspin orbit force is also incapable of producing 
the required scattering. 
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In addition to the shift due to a residual n-p interaction, the 

members of a K=0 rotational band will also be perturbed by the Coriolis 

coupling. It isnecessary to understand the effect of this latter pertur-

bation in order to disentangle the shift due to the residual force. In the 

special case that K=+K2=0 with Kl= 1/2 the Coriolis interaction makes a 

first order contribution to the energy. An expression for this contribution 

is given in Appendix II. 

In all other cases (K 1/2) the Coriolis interaction will enter only 

in second order -- that is, mixing between rotational bands. The Coriolis 

interaction only mixes bands which differ by one unit in .K value. Therefore 

if there is a:K=l band near the K=O band then the energy levels of the K=O 

band will be perturbed. However, if the effect is weak so that we may use 

nd 	 * 
2— order perturbation theory, then it can be shown that the energy shifts 

in the K=0 band areproportional to 1(1+1). Therefore these shifts can 

be taken.into' account by simply renomializing the moment of inertia. 

183  
Kerman s study of the odd A nucleus W 	provides an example. 

Deta.iled analysis showed that although there was a substantial amount of 

interband mixing. the effect on the energy levels could be essentially 

completely accounted for by renornializing the moment of inertia. . Thus, 

even in the presence of the mixing, the energy levels within the band were 
2 

given by E(I)= 	i(i+i). 
Eff.,. 

The procedure for measuring the odd-even shift is just as before. 
16. 

One determines the renormalized moment of inertia from the 1=0 - 1=2 energy 

spacing, for example. This contains the effect of interband mixing on. the 

energy levels. This value is used..to predict the location of 1=1. The 

deviation of 1=1 from this predicted .position is then interpreted as the 

* 
This follows from a simple generalization,. of the derivation for the . odd A 
case. . See, for example, reference 2. 
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odd-even shift due tothe n-p residual interaction. (An exceptional case is 

discussed in Appendix III.) 

III. CALCTJLAIONS 

In carrying out the numericalwork the single particle states for 

finite nuclear deformation were taken from the tables of Nilsson and Mottel-

son and Nilsson. 5  

These wave functions are 

~K 	
=Za2 	

nl2l 	
Y2 (l)4(l) 	 (7). 

(2) 	
22 	

22 	Y2m•(2)X(2) 

The expansion coefficients a2m are tabulated in references 4 and 5 for various 

nuclear deformations. Using this representation for the single particle states 

we find 

2 ±2 +1 
B= ( -i) 1 2 	

~K( 2 ) lvi +K 	K(2 	 (9) 

We . note that the factor preceding the matrix element is just (-i) times the 

nuclear parity. The central force part of the n-p interaction is written as 

(a 

V= U(r) [U-,P,4+ 2 	
+ 	. 	 (io) 

* 
R is a. harmonic oscillator radial wave function. We have chosen to define 

T 	K(2) where T= cK is the time reversal operator. Cr is the 

Pauli spin operator and K indicates complex conjugation. This choice leads 
to the phase factor included in Eq. (8). The final results are, of course, 

independent of this phase. 
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is the space ecchange operator. U(r) is the well shape factor and 

U1•  U2  U, and U are the well depths for the various copore nts of the 

force as indicated. Having shown that the Wigner interaction does not 

contribute B is written 

.B=Ul(PM) + U2  ( 	2))+U3 1 22 M ) 	 (ii) 

where 

A(112221 1 22 1 k)IB1(212221 '22 1 k) 	 (12) 

1122 

2 10  
12 

k 

= (i) 	
£2 

A( 1221 1 22 1 k) B2(212221t22!k) 	(i) 
12 

12 
k 

	

= (-i) p 
£2 

A (122211221kB (2 122 21 ?22 1 k 	(i) 

12 
2 '2 12 

k 

with 

A212112210 [+1)(+1)(1'+1)(222t+1) 1/2( 

	

2 1 'n2 '2 2 ') 	(15a) 



-i6- 	 UCRL-97611 

(212il22t)= 	
1/2 

121n222n1 2 1 112 2 2 ) 
	

(15b) 

2 
i (2 12 	2 = _ ___ 

	
a2 K 
	

2
2 K+ v 

a2 
 'K+ 

a2 
 K-v 

2 22 1 tk 	 2 12 2 tk 	2 22 1 1 k 

x C_K+ K-v -v CKV -K-p 
-+ C0 0 	C0 0 0 

(i6) 

	

B2(2 12 1 '2 2 'k)= 2') 	Z a2K 	a1K+ a2 TK 	a11K, X 

i2i 	222k 

CKKI 	 C_K_v 	 Qoo 0 C00  0 

Ch/2 :1/211  C1  1/2 1 

(17) 

	

it2tk) 2+) 	a2 	
a2K+ 21'K- 	a.2?K 

VW 

22'k 	 22' 	 °°'k no'k 
(1)IL+V 	.12 	 . 0 2lk 	 1'2 	L2..1 

x - 	CK 	(-K+v±+')('+v -K-v K-p' (-'-v) C0 0 0 
C0  0 0 

c1/2 1/2 1 
C 
1/2 1/2 1 

(i8) 

Yw 
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p= nuclear p'.ity = ±1. The C's are the usual Clebsch-Gordan coefficients 

and Fkand Fk are the radial integrals 

- 	F= (+i)f 	r12dr1r22dr2  R(r1) R 2 (r2) R ,,(r1)R 2 , () 

l 	
U(r)I() 	(19a) 

Fk_ (2k+l)ffr12 	2dr dr1r22  R 	(r ) 21 	
n222 

 R ,21 (r1) R, 2 ,(r2 ) 

+1 
f 	u(r) Pk 	(19b) -1  

where Pk(L)  is a Legendre polynomial 6  One can show, as eected, that 

1 2M> 	 and 	0 in the limit of a zero-range force. 

In Sectionil it was pointed out that a space exchange type interaction 

would destroy the picture of "catastrophic collisions' t . This is observed 

above in that both 	and 	2 	involve sums over all angular momentum 

transfers k, whereas ( l 2> contains only those k for which k 2K-1 as 

is seen inthe Clebsch-Gordan coefficients. It is clear the results will be 

sensitive to the amount of Majorana exchange in the force. 

In carrying out the numerical work we have used for U(r) the gaisian 

2 

	

U(r) = e 	 (20) 

with -1/2 = 1.6 x lOcni. 

The nuclear radius entersthe problem through the parameter v in the 

radial wave function. This parameter is fixed as follows. One examines the 

single particle states to see what is the highest orbital angular momentum 

involved. Call this number 2. (In the cases of interest here 2 = 4 or 5 or 6.) 

This component of the wave function will have a radial dependence 

r1 . e2. 	 (21) 
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The classical turning point of such a component will be at a radius R where 

	

R2= 2.e+3 	 (22) 

v is now fixed by setting R = 12 x A1/3x  io 	cm. Using these values, of the 

parameters the dimensionless quantities ( IVi) 
 9:l2:2 9:19:2M will be presented 

in each case. The reader may then use Eq. (11) to examine the results arising 

from various force mixtures. 

In order to have a definite number to compare with experiment a 

particular choice was made for V. As will be apparent later, this force 

is in no sense a "best fit" but merely serves as a convenient standard of 

comparison. The experimental data is, as yet, too limited to make adjustment 

of force parameters very meaningful. Our choice is 

V= U0 : e 	 I 	9:2 21 	] 	

11+ 	 . 	. 	( 23) 

with U0= -60 Mev and 	1,6 x lO 3 cm. This interaction.is  similar to 

those used in other caicuiation.' 8  It yields a singlet and triplet effective 

range and scattering length comparable with. those obtained from low-energy 

nucleon-nucleon data. . The use of a Serbe'r mixture seems a reasonable first 

choice for the space 'eçchange  character. 

	

166 	 , 
67lb99 	The single particle states seem quite certain. They are neutron: 

7/2+ [633], 71= +6 and proton: 7/2- [523], q= +6. The asymptotic quantum 

numbers nclosed in brackets) and T1 which is related to the defo'ination are 

defined in references 4 and 5. Here we have used Eq. (22) with 2=6 to specify 

v. We find 	+ 0.00215, (' 2= + 0.0079, and 	 +0.02222. 

* 	, 
See reference 1 for further details on the single particle states.involved 

166 	2!.2 

	

inHo 	andm 
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- The approximate validity, of selection rule 1 can be seen by comparirg' 

and.(. 	. The introduction. 	. causes the matrix element 

tO increase by an order of magnitude. 

= 	"UinV:dëfined.by Eq (23) w.find.that B = - in. kev. Refering 

to Eq. (3) shows that the 1= 1 state should be moved up. in energy relative 

to 1=0 and 1=2 by 222 key. This is to be compared with a. shift of .6.1.. key 

indicated by experiment (Fig. 1). It is possible that the choice of 2=4 

rather than 1=6: is more reasonable in this region of the periodic table. 

If we use 2=11 in Eq. (22) we can estimate the .effect.on the energy shift. 

With 2= 11. the 1=1 state is moved up relative to 1=0 and 2 by 150 key. 

Therefore, using V as specified by Eq. (23)  we find a shift which is of the 

correct sign but too large. 

By decreasing the percentage.of Majorana exchange we can, of course, 

fit the experimental shift. 

242 95Pm 7  : The experimental evidence . is reviewed in reference 1. The ground 

state seems to have 1=1, K=0. This is surprising: . If the ground state is 

a--member Of a K=0 band one would expect it to bave...I=0. A possible inter-

pretation is that there.is an odd-even shift, in the K=0 band .which has 

pushed the Il state below the 1=0 state. Although th'1nagnitude..of the 

shift isunknown at present, it is of interest to see -if we can accountfor 

the sign of the shift. Themost likely single -particle states are neutron: 

• 5/2+ [6221, q= +6 and proton: 5/2- [523], Tj= +6. v is fixed by setting 2=6 

in Eq. (22), A preliminary . examination of the wave functions shows that the 

intrinsic spins of both neutron and proton are highly polarized. This toge- 

ther with the fact that the situation is in the category covered by selection 

rule 2 -leads us to expect that central force effects will be highly damped. 
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Calculation yields 	-0.00022, 	= +0.001111 ( i 2 	= 

± 0.00320. Using V as specified by Eq. (23) we find that B= -2 key. 

(Each of the three contributions is 6 key or less in magnitude.) This is the 

central force dampIng which was anticipated. The effect of a tensor inter-

action is discussed below. 

172  7lL'iOl : There is a group of three levels which may be members of a K=0 

excited rotational band. The levels at 6.6, 109.7, and 191. key are 

assigned spins of 0, 2, 1, respectively.9  (The interpretation as a K=0 

band must be considered as tentative. The 0-2 spacing is anomalously small.) 

Applying Eq. (i) we expect to find the 1=1 state at 17 key above the 1=0 

state. Instead it is 126 key above 1=0. Therefore it seems that the 1=1 

state. has been pushed up relative to 1=0 and 2 by 111 key. 

The most reasonable choice for single particle states seems to be 

neutron: 7/2+ [633], Tj= +6 and.proton 7/2+ [10] 	5,10 Examination of 

these wave functions shows that the states are strongly  polarized. Since 

the configuration is of the type discussed in delection rule 2 we expect 

central forces to be damped and the tensor force to make a crucial contri-

bution. The parameter v is fixed by using £=5 in Eq. (22). Calculation 

yieJ4s M>= + 0.00096, 	2> = - 0.09070, and 	2 	
-0.00355. 

Using V from Eq. (23),  B = -19 key. [Comparing this with the result obtained 

166 
for Ho 	- a nucleus of the same size - one sees that the central force 

contribution has dropped by a factor of about 5.] Our central force result 

is, then, that states of odd I will be pushed up by 38 key relative to states 

of even I. This is in the same direction as the experimental shift but only 
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* 
about 1/3  as large. Next we turn our attention to the tensor force. 

In Am 	and to a lesser extent in Lu172  it was found that the
242  

catral fbrce contribution to the odd-even shift was damped. This was 

expected since the single particle states in both cases made selection 

rule 2 applicable and inspection of the single particle states showed that 

the intrinsic spins were highly polarized. It was felt, therefore, that 

in these cases a calculation of tensor forte effects was. in order.. 

The calculation of tensor force effects in spherical shell model 

states is rather laborious. 7  Here the labor is compounded since we have 

a four-fold sum.over spherical states. It was found in calculating the 

central force matrix elements, however, that the dominant contribution 

to the sum came, in each case, from the tern where both particles, initially 

and finally, were in their component of maximum orbital angular momentum. 

This was expected since the highest orbital momentum component in the single 

particle wave functions was either the largest or comparale with the 

It was suggested (S. G.. Nilsson, private communication) that in Lu 172 

we might see the proton state 1/2- [7111] coming down from the 5th oscil-

lator shell. AK=O band was constructed by coupling this state with the 

neutron state: 1/2- [721]. A calculation using the standard V defined by 

Eq,(2) revealed that even I states would be shifted upwards relative to 

odd I states by 74 key, Further, each central force tern contributed with 

tIn same sign. Next, the tern discussed in Appendix II was evaluated (deter-

mining 2  /22 from .the 0-2 energy spacing). It was found that this term moved 

even.I states down.relative to odd I states by li- key. Thus this rotational 

tern is bucking. the shift due to the residual n-p interaction but is only 

about 1/5 as large. The conclusion. is that this choice of single particle. 

states cannot give agreement with the experimental level scheme. 
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largest component. More importaaitly, these highest angular momentum 

components always have a nodeless radial wave function thus guaranteeing. 

the best possible radial overlap. It was found in Am2 2 for example, 

that the central force term 2= 21' = 5, 2 2= 22 = 6 dominated the sums. 

Therefore the tensor force matrit element was calculated with A and 

as good quantum numbers assuming that the above mentioned term would give 

the dominate contribution. A method was developed which gives an exact 

swer in the limit of a short range tensor force. The nuiIierical value 

attained by this procedure is not expected to be significant beyond indicat-

ing. the sign of the tensor force contribution to the odd-even shift. 

211.2 
In Am 	such a.calculation showed that an attractive tensor 

interaction (pf such sign as to give the deuteron quadrupole moment) would 

raise states of even I and lower those of odd I. This is in agreement with 

the.iimitéd experimental data and consistent with the implication of the 

selection rules - - that the shift in this case should be decided by the 

tensor,  interation. 	
. 	 . 

172  
A similar calculation for Lu 	yielded the result that the tensor 

force would raise states .of odd I and lower those of even I. A shift of 

such a sign when added. to the previously calculated central force shift 

is such as to move the calculated value of the shift closer to the experi-

mental value. 
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IV. DISCUSSION 

The point of view taken in the preceding section was to calculate 

only central force effects when .the configuration did .not tend to emphasize 

the tensor force contribution 	In such. cases it was believed that the 

effect of the tensor interaction could be taken.into account by simply 

making adjustments of the central force parameters. Only in those cases 

where the configuration was such that central force contributions were 

strongly damped was it deemed necessary, to make an explicit.tensor calcu- 

2i.2 i 
lation. Am 	s such a case. 

The effects which we are calculating are small and depend sensi-

tively on the overlap of the wave functi. ons involved. However, the results 

are dominated by terms,in which.21= 21 and  22= 2 2 t . Such terms involve 

the same radial wave functions in initial and.final state. Thus the radial 

integrals are TTdiagonai" and the resii]ts shbuld not be especially sensitive 

to the particular choice of radial functions (barmonic osciflatofunctions 

here). 

The matrix element B is non-diagonal in a very special sense. 

The final state is simply the initial state rotated through 1800. This 

symmetry is supplemented by the symmetries imposed on the single particle 

states due to the nuclear deformation. These symmetry conditions combine 

to impose grave restrictions on the types of scattering which can join 

initial and final states. The Wigner force contribution is completely 

damped. As one approaches the asymptotic limit the pure Majorana contri-

bution goes to zero and only 'spin dependent forces can contribute to the 

shift. For certain configurations, the effect of all central forces becomes 

damped at ]arge deformation and the shift is due to the tensor interaction 

alone. 
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It is felt that the present preliminary calculations substantiate 

the physical model under study here. More importantly, we have tried to 

show why the odd-even shift in the K=O band is a rather sensitive probe 

of the residual n-p interaction between surface nucleons. 
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If we calculate B (Eq. 9) using a pure Wigner force for .V we find 

.B= E E.a2K .. a2K+  a2t ~ a2,K 
	x 

[(:+1 ( 2 2+1) (221 '+1)(22 '+1)] 1/2 Fk( 212221 '22 
i)(1)+V 

(Tk7+)2 

2121 1 k 	92221k 	 21211k 222!k 

CKK+  2KC.K -K+v -2K 	0 0 0 	0 0 0 

Next we re-expess B as 

t  B= Z a2K+  aK 	 c tv  
2.2 

[(222+1)(222'+l)] 1/2 :z 	G(212221 '2') H(21222!22 ') 

£i2i T  

with 

1/2 
(-a) 	[(22i-i)(22t.+1)J 	:Fk(l222lt22t): 

22'k 	£2'k 
H(212221 t22 t) a2K  a2 'K+ 	 +2K C  0 0 0 

The indices 2 and Li!  range over the same set of values which are either 

1
afl even or all oddintegers. .i=±.1/2. 
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Observing that 

G(2122t12 1 ) = +G(.112221221) 

H(212221t2t)= fl(2T4t) 

it is clear that 

G(212221122t) 
.( l222l tT )= 0 

and therefore 

J3O 

Thus tbe Wigner interaction cannot contribute to the shift. The result is, 

of course,independent of force range and nuclear deformation--assuming the 

latter is non-zero. If one first expands the single particle states in eigen-

states of j and then evaluates the matrix element it becomes clear that the 

above result is due tothe rotation properties of spinor particles. 
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APPENDIX II 

For an odd-odd nucleus with K=K1+K2=0 and K1= 1/2 there is a first.. 

order contribution to the enerr level structure due to a term in the collective 

rotational part of the Haniiltonian. The ilamiltoniam can be written2  

1 2 
11= Intr 	' ) ±  Rot 

where Hintr(r. 
 1 
,r  2 

 
. 

) 
is. the:Hamiltonian for the motion of particles 1 and 2. in 

the body-system and TRot is 	 . 

	

Ro/2 	
[- 

'r*) 	.(,3- j)- 	(2))2J 

2/2 j2(1)±2(2)- (13- j3(1) 

	

~ 2/2 	[-2(I.(1)+..IJ2)+ 2(1)(2)} 

Evaluating, the diagonal matrix element of 	j(1) j(2) we find 

10/) j (1) j dvji 0) = constnt + (.l) I+12/2al .a2  

where a1,a are the decoupling parameters for particles 1 and 2 defined by 

j-l/2 	 2 
a =. ( -1) 1 
	

(i+l/2)cjI 

Here the C. are the expansion coefficients of the single particle states in 

terms of eigenstates of j. The energy, level formula now becomes 

	

2 	 1+1 
E(I) =i /2(I+l) + (_l) 	a1a2 3K0 5IIcj,l/2' 
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The situation here is, in a sense, simpler than the analogous situation in 

odd A nuclei with K= 1/2. Because the I dependenceof the above expression 

enters only.tbrough (_l)I  we can use the 0-2 energy spacing to find 

immediately. Then the above term may be calculated to find the predicted 

position of 1=1. The deviation of 1=1 from this position is interpreted as 

due to the odd-even shift arising from the residual n-p interaction. 
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APPENDIX III 

There:is a special case where the effect on energy levels of interband 

mixing cannot be taken into account by renormalizing the moment of inertia- - 

nd 
even though 2 order perturbation theory may be valid. Consider rotational 

particle mixing. between=a K=O band and aK=l band. TheK=O band i to e 

constructed from the single particle states 

?J/  
id 

(2) = Z. 

Cj(l)K1 (1) 

c. (2).2() 
2 	. L 

and the K=l band. from 

Vj  K1+1 	
= l 1 

ii 	(2) 	= 	C. (2) 0 	(2). 
i 2  2 	K1 

That is, in the K=l band we have promoted particle 1 to a state with projec-

tion K1+1 whereas particle 2 is still in the saziie state. 
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Examination of the Hazniltoniai in Appendix II reveals that the matrix 

element connecting the two bands is 

	

(1 L2C ()+ 	
(2)1$): 

Calling this matrix element a we find 

	

i2 
c C 	

. C. 
	j+K . +l)(jK h/2  + (l)12

J2 	 d. 
:1/2 

x
[(j l+Kl+l) (j 2

-K, 

In 2 ad order perturbation theory the energy shift due to the mixing is 

nd 
proportional to a2 . Thus, provided the 2 term inide the brackets does not 

contribute, the shifts are .proportional to 1(1+1) and can be absorbed by re-

normalizing . However if K 1= -1/2 the 2 term will contribute. 

It is clear that we can absorb the energy shifts by renormalizing 1-

separately for even I and odd I states. 

We may illustrate the situation by the following case of practical in 

terest. Suppose we have a neutron and proton state each having a projection 

of 1/2. We can couple these single particle states to form a K=O state and 

a K=l state. The K=O rotational band will be perturbed by the K=l band. 

Both the 0-2 energj spacing and the 1-3 energy spacing of the K=0 band will 

be independent of the odd-even shift discussed in Appendix II and the resid- 

ual np force shift. The moment of inertia derived from the 0-2 spaëing will, 

however, differ from that derived from the 1-3 spacing due to the fact that 
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above is no longer simply proportional to 1(1+1). 
) 

An extreme example of. this I-dependent interbandniixing is found when 

the isotopic spin, T, is a good quentum number. Suppose neutron and proton 

are in the same single particle state with projection 1/2. In the K=O band 

the states with I=even have T=l and I=odd states have TO 12 . In the K=l band 

all states have T=O. It is clear that only the I=odd states in the K=O band 

will mix with the K=l band. The I=even states will not mix The matrix 

element between the two bands is now 

=(i [I(I+lJh/ 	
(il+l/2)lcji 	

+(-i)J 

Lwhen T is a good quantum number it is of course clear what the sign of 

the shift due to the residual n-p force will be. The odd I stateB (T=O) 

symmetric in space and spin will feel the effect of V more strongly than the 

even I states (T=l) Thus the odd I states will be shifted downward in energy 

relative to the even I states.J 

I 
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