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THE VOLUMETRIC AND THERMODYNAMIC PROPERTIES OF FLUIDS VI
. RELATIONSHIP OF MOLECULAR PROPERTIES TO THE ACENTRIC FACTOR
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THE WMIG AND TEERMODYRAMIC PROPERTIES ( |

by
| F. Davon and Kemmeth 8. Pitzer

———

!iem:m of Chemieﬁry and Lwre’nce Radmtiun Iah@mmry,
University of Californis, Berkeley, Californis

ABSTRACT

‘Iﬁze acentric famr, & third parameter in an exteaﬁea camapertamg
atatses treamam: af fluida, 48 related Lo chavacteristics of the inters.
molecilar potential. The Kibara core modsl 1 congidered first end relation- '

' shﬂ;ps m*e derived betwaen the acentric factar and the core eize for several

‘a,, The resulting cores for cHy, CFy, e(en, )h' C4Hg and N, ave reason-

a‘ble dn view of gemi~guantitative theamtieal expectatm, ‘zmt tha core for

o,

" vhith conbines the Kiba

e core caleulated for 60,

of & reasondblé eive.

on tms model inéludin

is scmhat lavger than expocted. An agpros;imte tmatmn‘t .-iss g,i»venj
4 ¢ore mofel with an electric qualrupole interaction.
the quadrupole moment is



A series of mcent pamm pmseaw 2 numerical equation which mpre-
sents the vaimtric and ﬁhermﬁymie pmp@ﬁies of noymal fiwids in terms
of the usual reduced variables of corvesponding a%tes ta@ther with the
acentrie fa&sor. Paper II1 of the serfes gives an empirical second virial
coefficient m %heae terme.

The eatisfac’tory reaults cbtaimd 3.n the eveluation of tshsmdyxzamic

gmpex-ties of normal fluids by this emgirieal sehem 14 us %0 study further
the amntric factor in an awenm to correlate 1t with molecular properties.
- The msul‘ha are given in Yhis papex*.

Paper I includes an extensive discussion of the nature of intemmlecular

forces between the molecules of normal fluids end mentions severel msthemati-

-gal mm vhich may be expected to yield good epproximstions te taixe-se

forces in parueulw ema.?"

1 Papers ia the series will be cited by the roman nunbials as follows:

‘1R.8; Piteer, J. Am. Chem. Soc T7 3 3427(1955); II K.8. Pitser, D.Z.

, R.P. Curi, Jr., C.H. .mtsgins and D.B. Petersen, ibid 77 3433
(1955). 111 K.B. Pitzer and R.F. Curl Jr. fbid ? 2369(195T); 1V R.F.
Gurd Jr., and K.S. Pitzer, Ind. Eng. Chem. 50 265(1958); V K.8. Pitser
and G.0. Hultgrem, J. Am. Chem. Soc. 80 4793 1958 o

g 0. Kimmh:&‘em@r, P.7. MeClure and I.P, Hee&m, J. Chem Phya 10 201
9*42); J.8. Rowlinson, Trans. Pareday So. 45 a7k (19!»9)



' Mozt of these ympmm eve limited in mar spplication to & pmmumr
" uaasa of mml flums, such aﬁ t!mse wﬁ.ﬁa mriwl mplecules, ?m% ﬁbe

core model of &&m@ 48 quite general in patwre. Kihars ascwmes s core
~ of any shaye within eseh molecile and tekes the imtemblecular potentizi
‘ | 0 be the mmmﬁgmma ynmﬁiai for the shortest digtance betveen the
 uter urfaces of moeoular — ‘I’aua the zammm ig |

oo [

st distance baWeen cores and p, 16 this distence for

1)

where *ﬁ is the sho

the pafea'ti&l mitidsun,
I mham 8 Me%oas for t.hia mi vere rediced @a tha Mi&e ‘

, tiom . for the s@wnﬁ v:mam awm‘ﬁniem. un@mm
& e@a@aﬁmn of ﬂwm eqmmns mm ot the cove model with the empirical
‘_@e@aaﬁ virial eneﬁ‘tieian% of ;mmz- Ix gmvﬁaaa 8 ‘conveniant vay mf mw
. ting the mmrm me%r to $his woleeulay model.
| : @ur msui%s :méies&e im xmwt asamaa smlx@r cores than those mﬁam&ﬁ by
mmra m ml,ew amwm &a@omﬁien and thio @@mlmian finds
| smor% in weems inﬁ@pemiem m“mm o] b&emmh and mm@ as wxl s the

abtalilnpaper I

gonernl considerations of the tatermisoular potent

3, Kikara, Rev. ma. Phys. 25 839(1953) end refevences given thoreis.
. Comnolly, .A. mm@, Phye. of Fluids 3 463(1960).

> g . Tromales, ﬁ&m, 187 229 (1960)
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Tue equation for the second virial coefficiente given im IIT in dimension-
31 B '
BP, B p s(,% P o (2)

(2a)

whare 3(9)?,_' o 0.330 01385 0.0121
e S 40,1845 o o -
T el ‘i‘

A . 0.k 0.5 - 0097  0.0073
CBTR Lgors ¢ PR S0 L PR L T
) e | r D ¥ r

Camd e ',.m mv-lrm? axmﬁm B (2e)
vhere T, 18 ’Gha m&ueea tenwam&m '3.'/2 and P, in equatim (2e) 18 tm re-
duced vapor pmwnre ?/P at T, @ %‘;3.?. Iﬁ i ceaveatem m eramfom eqmtian _
{2) from m eri‘bieal paint basis m the Boyle poiat Mais whereupon the
result may e eempamd with equations (15), (15a) and (15b) of paper I. A%
"f'":"tﬁa &;yle-_ _;mﬁsnﬁf,.ﬁ, =0, T =T, aod ve ‘define the Boyle volume

VB‘S[T%}TH% | o (3).

. In this special case of zeio asentric ‘factor éqaﬁm (2a) readily ’-
yields the result T, = 2.656 &t ‘the Boyle poim‘» and v = 0,1651 B ?.‘c/Pc
{(with o a_@u) Mﬁtitusioa m‘? ‘bhes& resnits giwsa _ ‘

“V;"”' s 6.8736 0. ’rﬁm (Fﬁ‘"/ 8. .uBis (“T) - 0. 0@39 ;o (4)
The valuss for TB ond ¥y for ® = 0 may be mba‘hitnmﬁ into equatimn (%),
but we find then that %he general equation for nem»mm values of the

_atentric factor ind&aataa that 'IB and ? éepemﬁ on ® a8 well 28 *.:m criticad

Hence the ériterion for the Boyle point must be respplied to the



' general equation (2) and yielﬁs
. 2,656 ‘I‘

B " end Yy "( ‘ c) (0.1651 + 0.19818)
| | “'n‘ TET-02) p = (£2) (0263 -
fiow the second virial coefﬁcient is
n - B(e) HJLB(Jk) . s | - )
g(1)

th-v--- =~eae87*1.11769<%) 0.5299 Ta) meﬁé(%)
a*rw:.o*(%)a - - ©

The last ter;m in equation (6) iz negligidle except at low temperature and

can usuall,y be mﬁ'.ted- In these transformmtions anly limﬁr‘tema in ®
were rotained. | ' o

- We now wish to compam equations (4), (5) end (6) with the cormsponding
. equationg for the core mael whieh vere expressed in paper 1 as

*v*L ”‘%‘(‘T’)]me o (7> 

where x is a paremeter relsted to the core sige. E@uations (15a) ana (15b)
- of I give the expressions for the two terms es functions of (’i‘s / T). The
first term is Just'the ugual lemmard-Jones function since x = O corresponds
to éero core size. The empirical equatioh for zera acentric factor, i.e. for
Ar, Kr, end Xe, ié very similar to the Lennard-Jonss function but & digtinetly
better £it is obtained vtith equation (7) if x = 0.24. The agreement is then
within 0.5% over the rangs of validity of the empirical equation.

If the core model s in satisfaetory agreement with the experimental data,A
-the aeeond term :m equation (7) must equal 3(1)/ Vy given by eguatwn (6) for
aome value of x. Table I gives this comparison for x « 7. &a and ghows gooé

'agremnt over the mnge ai‘ interest. »



. TARLE I

)

A e~ R (Y

: \648 | ocwemr 0.026
10 .| o0m | 0,002
lus | oas8 01:66 .'
le.0 0.690 - 0,690
les | aen 1.625

la0 -] dowe | 300
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 This comperison of equations (5) and (7) hes resulted in agreement

provided N . ' R
xe 7.08 + 0.24 : | (8)

Kihara' a ganeml expressian for the second Virial ccefficient is

| B‘é-egw E(Z)*MQ.QO (z)+<so —;‘-—e)p.l‘l(z)q-(v ¢;ug-9->

 Vhere Z w= E% Eo m the surface integral of the mman curvature af the core,

8@ and Vo are the surfece area snd the vohnne of the core regpactively; F. Fy?

FE’FB are functions given m Kihara's pa»;pfer3 and heve recently been extended

by Connolly snd Kanda,.lic.u consL&ering only first order deviation ve obt.ain

- for all shapss of cores

Bn g-oo[ﬁ’(z)**x.?(z)]

with _ B
S % N (10)
Y
| From equations (8) and (10) we obtain
a;’%oj.ommau o S :(‘u)
This result together with the fact that V. and 8§, ere expreseable in tema of -

0 ¢]
My for a mrtieulax‘ shape of core ensbles us to write Eq. (9) depending para-

metrically on o. By comparison beween this function (9) and the experimantal

values of'B = B{T) & new set of parameters for the lenmnard-Jones type potene

tial function can be obteined. | |
. B‘o:r each particular eubstence with fixed ®, equation (9) depends on

'ﬂe / k and poyoniy. ' By plotting this»theoréticai expression. for B(\'f') versus

- log -%2— on trangparent paper for different giv'en' valuas of P & femily of

-0 : ,
curves is obtained vhich can be superimposed over & greph of the experimental

curve B(T) versus lcg T, This gives pq and U0/f1€.
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This cri'cerion vas appliea to the particular mlemles uaing valieg

.of o wbulated in paper 1.

The varﬁous tmnsfemtions which led up to equation (8) were carried

out only through e £irst ordey in o. we *:»em@ﬁ the adeguacy of equation

(8) for lerge o va:ima by diz'eet comgaris‘en af tha ealeulmted @eewtl virial

mmfamm cuma for particular coree corresponding to large x m\nes with

the curves from caleulated equation (2) by use of the corresponding o While

this teet was not extremzly precifie, 1t showed that the linear development ves

adeguate in the m@a of ih valued bere cansmemd and for the present acouracy

of ex@crmenﬁal ﬁa‘-bm

e consider ﬂm‘& mlecules with zerd or negily

ible dipole or quadzrupole

. 1ectrw mnta.

1) ’I*etrmeaml cores:
ﬁ I@ngth o.‘k’ om} e&ge of the tetrahsdron

© My =5.733 8
SG = 1.732 3 = W pr ‘25 & T.0 0.+ 9‘-33}
V= O 178 43 |

3
The distance 4 from center %o vertex of the tetraheﬁmn is given by

o B &n 3{ ‘
AING re) « o (z)eas&ozxa?(zh@sgmj

&s & &ds H.GHibond angle in methans. Reculte of the caloula-
2 gin (g-) “ ‘ ‘ :

tions toaether tdth Kﬂmra. & values are given in ﬁ!a*ble IL i?ar cumparisan
O-Hdistanwinm‘bhane is 1093mme G-Faiamoe in 6P, is 1.32 &.



m,@mm} | | Precent Work

% |378 226 D 175 |

“la® lios | o | o

,.
st

.32

3.08

. 350

1.0

' o % Rafemnm (3)

B~ T. Kihara aml S. xoba, J. Phys. Soc. Japaﬁ :m aw?, (1959)

' Figm 1 shovis. the curves for mothane eomspanding to our paremeters

L of Table IT and to those of Kihmm AJthotgh Both cuives P2t the a&m

’ fabove 273%;

the curve hebed xmon the aca Sacmr agrees much
bettar uith the recent éxperinentel data of 'th:.aas st Lover tenporas "

turas.
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8 mf one side of the hexng:
o My=3mh
8, = 5@ z?
2 - &x

| 3mﬁe [f; @+ £ v any(a) + 0.6057 x"’rl(znoona&éj

At the time Rihara's work was published (1953) there were not eafﬁeien‘ﬁa

 observed values of the second virial mt’ﬁemm for bensene %o deterulne

 both Yy emd Pye Hin value mf P 18 taken from the lattice constant of mghite.

6

Retently, howeves, &x&&m a‘a al mpear«ba@ e ements on the second virial

coeffioient &"or bengens bebveess 67.1 and 164.6%, By use ai’ their results
'mgether with the older values of Francis abd mmm" we bave calculated

 both pg and U t“mm gecond vi-z’ial voafficient data only.

Bebults a¥e given in Teble III. For eonparison the U-C distance in

anm 18 1.3973 _ S | ,
6 R.J.L. Andon, .m. Go:&, E PF. Herington and J.F. Martin, Trense¥

Soe. 53, 167T4(1957); 4.D. Cox and a.z.. Andon, 1bid, 2_,1&2&(19%)_ "

T 2.G. Pronsie, M.L. MeGlashan, 8.D. Hama
Phys. &0, 13h1(1952).




Presesit York
' BCEC X 3
|8 354 3.04
O |ugk | 8% 990 %
. S 0. o
r | 1934 1.16 A

() Prom the lattice conutant of grephite .
(b}, From second virial cosffictent-dsta
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ii:i) spherwai core.

If we aseign spherical core for ("?Hh, which is a permiasible
appmmmon eonsiﬁering 1% repid end relatively free votation, we
obtain for the radius of. the spherical core .a = O. 21 ﬁ |

" We algo consider the globular-type molecule, neopentans, and
assume a &pherical core. | ' |

. gt radfug of the sphem V&.l%s: é pex

Ba ""%[ (Z)+xF2(Z)+ x"%(zh—?J

Thevre rezaulta‘.
Py = 3.96

2

0  Gean Op

i—-nSQQK | -
=L 088 g€ bond length = 1.536 &

A iv) 'I:hin rod shaped cores

We donsider in this case N, and €O,

M, =, 4= 2 gy (7.0 @ + 0.24) wheve # ts the length of the rod.

3P A
B ?’” [ P (2) + xﬁe(z.) v 2%, (2) J B ¢ I
he resulbs cbtained eve 1isted in Table IV, For comparison the N-
digtance 18 1.095 R.in W, end the 0-0 distance in €O 18 2.32 R, The
cores (:f'orv ﬁa and €O, sgm, peculiarly lerge, particularly so for CGE.

The fact thét equation (11) gives non-zero coxée constants for w = O
indicates that there is some small core effect eﬁ'en in the simple fluids

(Ar, %o, ete.). I is then reasonsble to consider cyundrical cores in

I, and €O, with the Tadius of the cylisder s obtained from the relationship

‘between a and 907 for simple fluids.
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From (10) aud (11) for o = 0 ong @@%. & spherical core radius & = 0.04 By

- Thig relationship for g enters the expressions for a cylindrical core which

My (s 5)“‘%‘7’( %0 B, = 2 a{a + 8)
| B g KPgr B = = 88

One then cbtaings
B = 3 %o l' FB(Z.) ‘ @.0101?3“(2) 0.0003 + [_Fa(z) * Q. Fl(z)].x

L gE(e) 00133 ) ::BJ |

The results considering cylindrical core are &iso given in Table IV,



»344-

Cylindsiehl core

{2.09
0.00

130

1.19

3.40

: 0. _“ v

3.30
125

0.73
*0-.1:-3f

3,36
279

2.20

i 3T

3‘29

2.72

2.6
W5
.82
R T

© & Reference (3) -

1 0.00

. Q.00

. 0.00

b, Kihave, T. J." Phys. Sve. Japen 6 289 (1951).
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rupole momente. The

Theee two linesy mwml@s have electric quad
omr af aa@imﬁe of gmdmalewmaﬁr@@la interaction emrgy is by Bo
ed to pure lLondon éisg&raﬁm energy. The cobtridbue
y from qmoleﬂm&m@h

%m mgli@iblﬂ ‘9(6.*:

tion to the second virisl coefficient comin

m'bemetiam emu:w. algo be m@m}em&*

An attam@% a8 mﬁe to exbend 'tha sare m@a& for angulsr &emizdmﬁ:

potentials rigorously Yo ineclude the duadrupole effeo:b, but the mxthematical

m:l.ty of the problem inmlvmg mm«-ﬁpheﬁe;@}, cores makes an’ exact and

An ostimate of the electrostatic ¢ adrupole effect was

drupole-g
made for lisest molecules in the folloving meuner. The distence between
' \Wwam@, vwhich are &Mm@é to be at mlsem};ar centers; is x and thig
ﬁ&smnce miiat be related to p. Strictly, this mlaﬁiamhip involves the
orientation of each mol.eculey but for linear moleculee one con Ehow t}mt
the eguation _ ‘ o ,
| rww-”/ém- | o (b)
should be & @ad aypmxim%i@n.. This eguation coma@on&s to the oriammmm
mmnﬁ %e st hegative ai"‘-‘»tmﬂ akrupol
able m'am@ for all ammam m m‘i’faetim spherically gymnetrical

jmergvammmarm

po%e&‘cml funotion for § ST, inteme’%‘aim obtained by & n‘c&ﬁaﬁﬁ.mlly

vwes.@ea average W the angles with ml&ﬁm&hﬁp {114) above wRs | cosbined.

wﬁ.ﬁh the wmré»ams wye Kiharn potential to yiam & function of P that
was m%gm%ﬁ gmyhimm to @bwﬁ.n B, The result of this integration was

'a for 'me Kihara pw’mmsml alone, The corre-

comm& with the am ov

gponding viria,l coefficients at S%QK for GG& differed by a@pmximtaly 15%.

-

Fo:r mm&a of the uveraging process see: J.0. HirschPelder, €.F. Curties
and R.B. Bird 'olecular E‘imury of Gages and Liguide” John Wiley exnd Song.
Hew York 3.9519 p. £27.



‘i’he numerical velue of the quadrupole momsnt for 00 was taken from the

measurement ‘by Smith ahd Howard.g

¥With this estims.te of the quadrupoley iateraction contribution to the

o virial coefficient we then studied this effeet in conneetion with the core

10

s’izé» The results ohﬁained by Pople” allow one to write the virial coeffi-

cient . for molecules with permanent Quasdrupale nments a

B = § m 52| 7) - (ﬁ--s) mmj
where Ty is the intemolecular distence at which the non-angular p&rt of

t;he potential energy function venishes. Bo is the most negative value of
_the same part of" the potential,

V“(;)

@ is the quedrupcle mamentn and B (y) is’ & function expressable ss &
. . 12

series and kuown in tabular f’om.

9 s@m, W.V. and Howard mv Phys. Rev. 12 132(1950).
mPérple, 3%5% zzréc.. aoy. Soc. Aaalthgfa(lgsu) and mé. Az‘a'ai 56,8(195&).
u‘l‘he quadrupole moment definition used in t.his paper 1s

] e Z; e, (Z - %, ) where Z is measured along the molecular axis

12Tables f‘or H (y) are given by A. D. Buakingham and a’w&. I'ople, Trams.
Faradsy. Socn. 2.. 1173, (1955).
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We fitted a third
and by trengfon

degree polynominl to the tsbulated velues of ‘&ile(y)
Wion to our set of verisbles cbtained I

E{E) = meg - 0.789152 = 0.05
if ve define the dimsmsicnles

o1 22 - a.&mm zg ) (15)

ﬁapen&ms on G gquadrupole mmm, we Gan mta for the second virisl
irupols Bfﬂ&ma

soefficient including firet order core and Quald

am%% (a)«.,mznsa(mj I ¢ )

‘or in reduced form

2. ['E ) »..:g[ *D - [& & J@ - (180)
Ad W vant to compare equation (16b) with the empirical equations (1) and (6 R
we reduced the function H(Z) to Boyle point basis using the definitien of

" Boyle voluse givem by (3). The vesult 45 -

ng‘ (w) | o - f» 0.1020 + @‘ms (QB )4‘ 0. @3&@(%) " @ 0932 ('_E%/ (17)

mparing mﬁim (L‘f} with the correeponéing equation for xy eqmtim
15% 4n paper I, one finds that in the low temperature rwge, wnem t‘m guadru-

pole effect is ma‘h mr!wﬂ tha wla%iamhip

(18)

, Wtitutm of @mtiea (3.8) in (3&) and use of equation (n) yields

£+ 3.26 = Tu00 + 0,84 | (a9



B

fﬁemeén core size, éﬁamal& noment and acentrie faa@?r.
ensbles ue to wﬁm eguation (16a) '1‘%1 ;ﬁ‘emm‘iéﬁ‘ @, 'Ac the pavemeter s
dependa on ”e am‘t Ué, by defmitian, 8 sumzesaive approximetion metha& is
. For cza

BSCLLBETY fa;* *t&e evaluatian of 99 and !!06. m regulte obtaine:
an& Iia 13 are us‘&e& in Table V. %ae
pole efﬁeaﬁ 18 eazzsi&mred the siee ef m cores are again sualley than the

tﬁ shov that vhen the guadru-

. ones mma by m&am Mm moletular stmatum mamtm A fow yeaz'e

O after Bihera's wm'ak waa published & neasurendnt. @vf‘ the second virial .

mﬁ'ﬁeien% for %2 at low temmtume was. wyoﬁteﬁ. % These mmes, _'

- tega‘bi:er with the aa.é@r results mgam& by s&m@@r and MacCorm _ck am

a _ l-sma;emz‘lé are ahnwn in ﬁgm 2. & &istiaetly mmr ﬁ's to tms -

. -
¥

--' ﬂﬁ%& iz obtalned from the gammtam of Table ? of 'tahm

’"p@er than ‘Trom ’hhc mmsiw given by ihare.,

13 uspwicsd; value for the quadrupole mement of B, 1o ‘taken from W. Gordy, -
W.V. Smith and R. @rmaz'ula "Microvave ﬁpeﬁtmgeapy ,me Viley and Sons,
. Ine. ’ Fov York 1953 p.345. ,
' 1& bﬁ %@k, ﬁaﬁ. :fﬁ‘w- of m 3&_ 359 (1%7)
5y, Sthfer,s. Phys. Chem. “3;6; 85 (m’r)

. 1‘6 K‘E. mmmak f}ﬂﬁ .G, ﬂﬁhﬂ’mmr’ Jl n Pm l@ 1%9 (1950)




- «18a

115 - jo.86

C @essiB. 1 B

8, a.uaam‘% | 9.0

co, | 31220% o33 |3k | e 1.73

20, Pist. B = 1.095 R, 0-0-0 = 2.32 R
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Discusaion

in paper I the intermolecular potential to be expected for s globuler
molecule was considered and it vas concluded that $he Kikara model core
should ba mammmy smaller than t&:m polarizeble electyon ¢loud of the
nara model core was fount to be only
of 'hha mﬁim af an equi
A e:l.ec‘%mn ﬁlmads

mhm "

one half

wiew of ﬂms& msultg the cores fwm above #eem qui%a

feasonabis. mas in CF, ond cwﬁ )u the cores emna abcm 2/3 of the

- way $o the F or ¢ (methyl) nuslei, respectively. - has & very el
ove Simee all of the polarizable electrons are
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Figure Le génds

Fig. 1. The second virial coefficient (& 3/molecule) for methane.
The curves are theoretical" the points expérimental Solid
circles show the experimental values (Michels and Nederbragt ) -
available to Kihara. Recent measurements of Thomalesbv are

shown as Open_circles.

2A. Michels and G. W. Nederbragt, Physms 3. 569 (1936)
bG Thomales, Nature 187, 229 (1960).

Fig. 2. The second virial coefficient (&£ 3/molecuie) for COZ‘
" The curve is calculated using the results of this paper. Solid

circles corresponds to MacCormack and Scheneider measure-

men_ts,uf}) tr1angles to Cook( 2) and squares to Schafer. (13).
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