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ABSTRACT
It is shown that for particles of-spih'one orvlérger, Lorentz:
invériance, masslessness, and conventional,eleétromagnetic coupling

are mutually incompatible.
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A, Introduction

Of the mahy“particles thaf exist in naﬁufe only two, the
neutrino and the photon, are massless, To these we must add the graviton,
if it ékistse All three are electriéallyvneutfal, and it dis perhaps not
an idle question to aék whetherlthere is a deep reason for this. We .
shall show that for particies of‘spin one.of larger, Lorentz ihvariance,'

1

masslessness, and "conventional® electromagnetic coupling,” are
: /

incompatible., Our argument does not apply to'partines of spin zero and

A}

Spin %’o

B, Noninteracting Massless Particles

We shall lean heayily.on the,geﬁerally acceptéd'définition of |
a méésless pérticle as one whbse possible states beiong to an
irreducible representation of the inhomogeneous Lorentz group. In
particular, for discreté spin s % 0, we/iféat the massless‘partiCIé
‘states as beloﬁging to'the irreducible representation of the élass Ogs

2 yhich is characterized by only

in the notation of Bargmann and Wigner,
two independent pblarization states, This characterization is to be

contrasted with the (2s + 1) polarization states possible for a:
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particle with mass. If we use a representation in terms of fields
42” (x) - (we leave off the indices for fhé time being), then the
free field equations of motion will be
O P. (x) = O,

For s =1, i.ee 25+ 1> 2, thése equationé muist be supplemented by
subsidiary coﬁditions expreésing‘the cdnstraint to two polarization‘
states. Such constraints are genératéd by an édditiqnal invariance
property célled "gauge invariance of the second kind," Fofgexample,

for the photon field, the equation of motion is

O A 0= o, o - @

The subsidiary conditions are

2
5_[!* Ak(x\:: :O) - R (2)

together with those.generated by the requirement that all solutions

of Eq. (1) obtained by the transformation
At — AL = AL - A, T )

with

[jv/AL(XL) = 0 ) (2 )

désqribe the same physicél state. There appears to be.aﬁ'asymmetry-

in the two requireménts that.ére necessary to eliminate the two
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unwanted polarizations, but phie<asymmetry is only apparent; as can be
seen by the unified treatment:of this problem for the case of spin 1,
given in the appendix. We assume that such a unified treatment can
be'given(for ali‘spins As Z 1, and therefdre include the divergence
condition (Eq. 2) and its genefelizatioh in our definition of "gauge
invariance of_the~second kind."3 For higher spins‘we can.proceed in a
manner analogous to that for spin l,'"We_shell use ‘the following-representatibns:h'

1. Integral Spin s

For 1ntegra1 spin s, the field is glven by Ct) Ap. PO (x)

a traceless symmetric tensor of rank s -, obey:Lng the equation

’ D CPO( T (x) -'_ (3)

together with gauge ir'lvarierice of . the second kind, which includes. the.-

equation

o ,
g?d 'cb,,pmq. (X) : ‘O) (L)

and the statement of the phySieal'ecjﬁivalence of all solutions of Eq. (3)
generated by the transformation |

cPo(P..a' (X) - q)o:(s.,.a' (x) = cpe(fa..o' ()(3 + G«P.r. T (x)) (5)

where

/\.,('5“ g (X) AR Aa'f'a)?o_ /\dP:,f (XS

Gupoe () = 5% Npre® +

and /\(57!-.0' (x)  is a traceless symmetric tensor of rank s -1

obeying the equations



DAp.ec)=0, (@
and

.
SXp Npts

(x) = O. (8)
2. 0dd Half-Integral Spin (s + )

For odd half-integral spin (s + £), the field is characterized
by an additional spinor index A. The equation obeyed by CE‘F. T A (x)
: . 1 9y

is takeh to be

~ BA 9o CP (
aca A — O
'YP' SXIA ,(Fmo-n (X) e O) .
where the ’Xl‘ are the‘usuail Dirac matrices..
: L]
Repeated application of the operator Y g;r " yields the

Klein-Gordon equation
D"CF“P».O"A' (x)= 0, R (10)
The analog ‘o‘f E'q‘.-".(h‘) ig vthe ’eqivlvatio'n | | | o
A : : _
YO( -CF‘*F..‘O'A (X) = O) (ll)
which}_;as as its consequence the equations

3 N o (12)
sx. Tpooa (=0

Equ’atibn (11) is supplemented, as before, by a statement of equivélence _:of

a certain class of solutions. The main results of this section, which
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we shall use in proving our assertion, are that (a) the fields obey
the Klein=Gordon equation with no' mass term', and (b) the fields obey
" a divergence condition (Egqs. L, 12). These are necessary, though not

sufficient, conditions for the ciharacteriz_atioﬁ of a massless particle.

C. Interaction with the Electromagnetic Field

Invariance of the charged field under coordinatee-dependent
© gauge transformations of the first kind, i.e. invariance of the equations
of motion, when the field is transformed according to

¢qp.... (x) — CE:P(X)-_-. QXF[_LBX(,C)]_% (x)j- (13.)

leads in well-;k'nown fashion to an equafion of motion of .the fo'rm.

n : _
One would also e;xpect the sukb‘sic.liéry _conditions to be modified, but>
fortunat’ely'it' turns oﬁt that it is not neéessary to specifj} this
médification, becausé the incompatibi_iity_ be_tw‘éen the equatiohé of motion

with interaction, and the ‘free-,fi_e‘ld subsidiary conditions is sufficient

to establish the result that massless particles of spin s 7 1
cannot be charged. To see this in detai]:}, lét' us consider the interaction

of a massless particle with a very weak external electromagnetic fieid,

ext. :
A (x) - which we take to obey the Lorentz condition

r
2 A% ) =

The equation of motion is

D CE‘PM (X) =" j'dF"“ (X), - (15)

~



where

(16)
}dﬁl“(x)— “ZICA (x>ax ¢°(Pun (x>
If "onminimal® (i.e. arising from static moments) electromagnetic
_ interactions are included, de (X) will contain addltlonal terms, but

these will stlll have the property of belng llnear in the field CF l.(x) °

We now write the equatlon in integral form:

| CEfP--- () = 4’:;..‘(X‘)-+fax"DR(x—'x')j"dP...; (x), Gn

where D (x - x') is the usual retarded Green's funcfion‘for a massless.field
and ¢o(p... (x)  is a free field to which ,“P“"()Q reduces
asymptotically asvxb——o - 00 Although this form assumés an asymptotic
conditiop which clearly cannot be safisfied when the interaction has
Infinite raﬁge (as is indeed the éése for the elecﬁromaghetic field),

there is no difficulty if we consider a weak ektéfnal field'which may,{

for exémple, be a screened Coulomb.field; From Eq. (17) we may express

the outgoing field in terms of the 1ng01ng one by lettlng xo-——4> + oo 3

AN

_CPM K = CP;; () [dx Dix- ">3o<p - (16)

It is now clegr that if QQP“ (x\ represents a massless inpoﬁing particle
and obeys the necessary condition

2 b ()= 0
Ny HPu X)=C,

then
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260 (0= 2 [aDh-x) g () -

. “JAX']D(X'xﬁ)ééz j;F“f(w51

Now one can see by inspection that

2y ~ (20)
RS () # o. | |
The argumént cén be made more gé#éralg if 5%; QQP““ (X) had vanished,

it would be possible to constructfa-generalizéa ncharge!

- 3 1 |
@pxu- = L,r"l X Jypr. (%),
which should be conserved. Since, however, den\ (x) is linear in the

field “P'”‘(X)' no such conSgrvatioh law can possibly hold.s. Herce
Eq. (20) is generally true, and therefore it follows that
'3 . 4 out : oo R
QXd ¢dplnc (x) I O. . (21)
Thus the outgoing field no longer saiisfigs gauge invariance_of_thé
second kih@,'as defined.in"theblast section, and therefore the final state
no longer has only two polarization states, which contradicts the require-
ments of Lorentz invariance. |
It'is instructive to compare this with the case 6f a massive
particlé. For simplicity we consider the vector meson, whose equation

of motion is

3 p | | (2
g;rw—mich,:.—o | =



and

in the free field case, and

> - :
5§A 'ﬂ/\v - m”‘ ¢)v = "'jv ) (23)

when electromag‘netic couplings are introduced. The integral equation

takes the form

CPP (X) = CP: (X) + (gpv =

13 2 , -y (X'} (k)
mmm é-i-v >fclx JAYRS x;m)jv (x ).

One can thus see that the condition

2 — (221)
. <P,A‘(x) = 0

that follows from Eq. (22) is much more complicated in the presence of
an electromagnetic field., For the outgoing field, however, it follows

from

4>:“t(x)= ‘F'i“(x) ;(Sw n',ﬂ %, Sx )[dx D (x-x, m)JV (x) (25)

and

(O-m)ax-x,m) = o, (26)
that

out
N “ (X) | (27)
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if -
S Aoy . (28)

independently of the properties of the current. For the massless case,
it‘ié imﬁossible @olwrite the integral.equation in a form analogoué to
Eq. (2L) without intrddqciﬁg additional singﬁlarities into the Green's
fﬁnctién: changing the Green's function (in mémehtum space) from

SP‘V /ki  to (5";, - k.,‘ k,,/hl)/h"“:t«rhich would satisfyﬁhe divérgence

‘condition automafically amounts to introducing an additional massless

scalar field into the theory. This, howevér, vidlates the-réduirement

that irreducible representations of the lorentz group be used.

D, Physical Interpretation

The argument that there is an ;ncompatibility'between massléssness,
Lorénﬁz invafiance, and electromagnetic couplings, or in other wér@sg |
between gauge invariance of the first kind and gauge invariance éf the
second kind; may be ﬁisualized physicallyAif we considef the MaSSless
particle as a limiting case of a massive one, The (2s + 1) polarizatioh‘.
states go over into two in a contiﬁuous ﬁanner aé the ﬁass.gOes to zéro;" 
and the méghanism is one by which (2s = 1) of the polariéation states
"dedpuple" from the reméining ones,:with»a‘factof proportional to ﬁ,
the mass of the particle. An initial state that is transversely poiarized
remains so for admissible interactions. Our argument shows that the
electromagnetic interaction is not admissibles the final state is not
neceséérily £ransversely polérizédo This way of 1ooking g£ our-resuit

shows why we can make the argument for spihé s > 1:¢46n1y‘then‘iS'
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2s + 1 > 2 and an incompatibility possible.
Explicit calcuiaﬁions support this ihierpretation; Cbnsider for

example the formulae for the differential cross section for the scattefing

of massless vector mesons by a Coulomb field (in the limit of vénishing

screening)s We have

s =0
do _ (Zx)" | |
TAa : ‘ 9 d 29)
dl yw* sintes g g (29).

s'=:% | - | |
dao (EE¢o<)L | v | SR N-YR . o
— == | K (30)
4L 4wt sintér -(1 T s /2>), N |

both of which are well behaved. However, for

s =1

dQ. 4»(4) _Sm“'e/?_ m:; 1 sin* -

which is infinite, so that there ié a contradiction somewhere. ‘Thév
" separation of this cross section into the following termss

Transverse=transverse spin transitions

do o c -, ' | ;
<d—_§i )-,-T = &= s, (1+ cos*®) ; / (32)

4 w* sint6/2

Longitudinal-longitudinal spin transitions

do (Z o) | (33)

d'§7- L 4 Ww* ESirV445/l |

2N
aose)



]

11

and

Transverse-longitudinal spin.transitions

( E‘_O.: ) __: (ZO()L I L.'m {(w1+m1)2. S\‘ﬂ‘le }/’ (3&)
A JrL 40t sin?f mee U 4w |

shows that the singular;behavior oceurs in“juSt those transitions leading
to a final state that violates Lorehtz’invariance'fér a massless ﬁectdr'_
meson.. |
iﬁ\conclusiong we might point out that this argument can be used
to.forbid the coﬁpling‘of méssleés particles with other iﬁte}actionsa
the only condition for this is that the source of thé field not be-
divergencéless; An other "application® of ourrconciusions has to do with
ﬁhe Yang-Mills fieldé*because fWo of its components are chargea3‘they

cahnot be massless, and.because of "the charge symmetry among the three

'components, the same must hold for the third component, and it is not

possible to identify the neutral one with the electromagnetinfield.7



APPENDIX

We sketch a treatment of subsidiafy conditions for the case of
. o - o )
spin 1,in which there is no artificial separation between the divergence.
condition and the remaining géuse invariance conditions.

Spin 1: In order to describe a relafiﬁistid particle of spin 1’,
('l',O) - -'D(O,l)’)
/

we have a choice of using an antisymmetric tensor of rank ?)(D
i1 ‘ ‘ . .
or a f.‘c)u:r-wvec'bor-)(D(.2 2))3:-We choose to describe the particle by the

antisymmetric tensor :Tr\"* '~ which obeys the equation

T

The field has six independent components. We may reduce these to two

by requiring that'thebsblutions of Eq. (A - 1) of the form

/ 3 v S . o
Te = The + 2 Wa -2 W, (a-2)

+
M o :
Xy
Where‘W?Lis an arbitrary four-vector obeying the wave equation

O W?‘ = O,
are physically indistinguishable, ]
The number of independent components is thus G m'h = 2,
We cén check thatlfhe remaining two ébmpohents have indeed the correct
transfqnnation properties under £he two=dimensional rotation groﬁp

(the "little"'group)o8
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_:Hifif' Under the homogeneous Lorentz group the tensof belongs to the
representation D(l,O) ; D<o’1). There are, therefore, 2D(l)
representations of the 3;dimensional rotation grouﬁ; and so the
tensor splits up.ihto the following reﬁreseﬁtations of the
little group: 24(*1) 4 2a(=1) 4 24(0),

o - ) 1 e ;_‘ ’ . . .
The four-vector, belonging to oz z) transforms, under the
| (1), ;) "

5

3-dimensional rotafions'group‘like D i.e. like’

a*1) *;d(gl) *-Zd(o) under the two-dimensional rotation group.
Thus the difference transforms like d(*1) 4 d‘”l), which is

just what we want.

It is possible to construct a divergenceless field,-
. v _ie S u
A Mo

which satisfies the usual gauge=-invariance conditions, so_thatgthe
equivaleﬁce of the two methods is obvious, in this case; atkleast. Wérhave
carried éut a similar treatment for alépin_Q field, btut have not searched
for aJSystematic_way of unifying:gaugé invgriénéevof‘the'second kind, |

in general.
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