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ABSTRACT 

A general shape-independent approach based on partial-wave dispersion 

relations is presented. This approach does not make any specific assumptions 

on, or approximations of, the unphysical discontinuity, and involves only 

approximations of functions that are already known from the general frame-

work of the theory. The method apprDximately reproduces the 1 S 0 state in 

the 0-to lOO-Mev range, with two parameters determined from the low-energy 

data and a third from a phase shift at a higher energy. 
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I. INTRODUCTION 

The usual approach to the construction of effective-range formulae in 

dispersion theory consists of replacing unknown unphysical cuts by a small 

number of simple poles. Such a procedure is certainly justified for a physical 

energy range that is small compared with its distance from these cuts. This 

is often not the case in actual applications,however. The only way of justifying 

the pole approximation in such cases has been to solve the dispersion rela-

tions exactly for several simple assumed forms of the unphysical discontinu-

ities and comparing these solutions with the pole formula. This also gives a 

rough estimate of the possible error associated with the approximation. 

The main defects of the above approach are that it may involve a 

large amount of computation in solving dispersion relations exactly, and 

that one does not see in any natural way why the approximation works in the 

way it does. Indeed, it is comparable to the early work on low-energy nucleon-

nucleon scattering, in which the problem was solved accurately for a number 

of standard potentials to establish the fact that the low-energy region could 

be characterized in terms of only two parameters per angular-momentum 

state. As in that problem, so here also, it would be desirable to find a 

shape-independent approach in which the approximate formula could be justi - 

fied in a natural way, without the consideration of specific examples. 
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In the present method this is attempted by making certain approxima-

tions only for functions that are already definitely known from the general 

theory. These are made in such a way that we are left with an expression 

depending on only a small number of unknown constants, which may then be 

determined experimentally. No approximations are made for unknown func-

tions as in the pole approach. Thus our results are independent of the specific 

shape of the unphysical discontinuity. Moreover, the accuracy of our approx-

imate formula in any given energy range, or, equivalently, its range of valid-

ity, can be easily estimated in an a priori manner, even before we have any 

knowledge of the orders of magnitude of our phenomenological parameters. 

Finally, some (or all) of these constants can be calculated in a fairly simple 

manner from part (or all) of the unphysical cut if it is known, provided that 

we make our approximations suitably. 

II. THE SHAPE-INDEPENDENT APPROXIMATION 

If the partial-wave dispersion relation in any particular angular-mo-

mentum state is solved by the N/D method, using nonrelativistic kinematics 

for simplicity, the phase shift 5 will be given by' 

11 	
2 1 + J0 dy G (q , y) R (y) E (y) 

q cotS = 	1 (1) 

f o dyH(q2,y)R(y)E(y) 

Here E(y) is determined by solving the integral equation 

1-  1 
E(z) = 1+ J 	dyK(z,y)R(y)E(y), 	 (2) 

0 

where: 

R(y)=-Imh.(q 2 )/wy, with 0 < y< 1 or - 	>q 2  >- 00 
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I 	 2 	ib 
h(q ) = e sin 6/q 

q = momentum of the nucleon 

y = - 1/4q 2 , if the pion mass is unity 

	

G(q 2 ,y) 	= 2 q 2 	/(l4q2y) 

	

H(q 2 ,y) 	= 1/(1+4q 2 y) 

	

K(z,y) 	= 

In principle, the interaction function R(y) can be determined from field theory, 

but we assume it to be unknown. The above results also hold for scattering 

by a superposition of Yukawa potentials. 2 The generalization using relativistic 

kinematics 3  does not affect our general approach. 

To obtain a shape-independent formula without making any specific 

assumptions about the unknown quantities that come into expressions (1) and 

(2), we shall make approximations only for the kernels G(q 2 ,y), H(q 2 ,y), and 

K(z, y), which we already know. Suppose we have a finite set of functions 

F.(y) such that,, toa good approximation in the energy range of interest, we 

may write 
N 

G(q 2 ,y) 	E A.(q 2 ) F.(y) 
i=l 

and 

H(q 2 ,y) 	B.(q 2 ) F.(y). 	 (3b) 

Where the A.(q 2 ) and B.(q 2 ) are functions such that, at each value of q 2  

in our range, the approximations are as good as possible. The reason for 

making these approximations will be obvious presently. The simplest accurate 

(3 a) 
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way of making them would probably be to use some kind of polynomial inter-

polation through N carefully chosen points (whose positions may vary with 

z 	 2  
q ) at each value of q . The resulting approximations would then have the 

forms of Eq. (3), even if we use different polynomials in different regions 

rather than a single polynomial. In general, neither the F. (y), nor the 

A.(q 2 ) and B.(q 2 ) have to be continuous. However, one should choose the 

F.(y) in such a way that N is as small as possible for the desired degree of 

accuracy. Since G(q 2 , y) and H(q 2 , y) are known and are quite smooth func-

tions of y, there should be no difficulty in doing this. 

Substituting the approximations (3) into Eq. (1), we have 
N 

	

l+ 	A.(q 
i 	

)a. 
= 	1 	i qcotö= 	N 	 (4) 

where 

a. = 	dyF.(y)R(y)E(y), 	 (5) 

The reason for making the approximations (3) is now obvious, since 

we have a shape-independent formula [namely, Eq. (4)] depending on only a 

small number N of unknown parameters a., which could be determined from 

experiment. A bound on the accuracy of this formula can be easily estimated, 

being of the same order as the accuracy of the approximations (3), which we 

can obtain at once since we know what G(q 2 , y) and H(q 2 ,y) actually are. 

Equivalently, the range of validity of Eq (4) is of the same order as the 

corresponding range of validity of the approximations (3). An additional 

advantage of this approach is that it is always much easier tomake approx-

imations of known functions than of üiikñown ones (as in the usual pole ap-

proach), since no guesswork is involved. Finally, we do not have to make 

any very special assumptions about R(y), although a knowledge of some of 
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its more detailed features could certainly be used to improve the accuracy 

of our results. For instance, if we know that R(y) E(y) is comparatively 
I 

large in some region, it would certainly be desirable to make the approx-

imations (3) particularly accurate there. 

In states with orbital angular momentum I > 0, .Q of the a.. can be 

determined from the condition that the phase shift goes to zero as 21+1  for 

small q 2 . 

A particular way of obtaining the approximations (3) would be to inter-

polate through N fixed points y, at each value of q . Then, no matter 

what type of interpolation we use, we always obtain expressions having the 

forms 

	

N G(q 2 ,y.)F.(y) 	 (6a) 
i=l 

and 

	

N H(q 2 ,y.)F.(y). 	 (6b) 
i=l 

This means that Eq. (4) becothes 

1+ 	G(q 2 ,y.)a. 
qcot6 

H(q ,y.)a. 
i=l 

which is identical with the result of applying the pole approximation. This 

time, of course, the positions of the poles are not free parameters. 

Perhaps the most familiar interpolation formula is Lagrange's for-

mulä for polynomial interpolation. (One may, of course, use different 

polynomials in different regions. ) In this case one has (in any region) 
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F.(y) = [ 71 (y - y.
33  

)] /[ 77 (y-y.)] . 	 ( 8) 

j  
(j:y'j) 	 (ji) 

III. DETERMINATION OF THE a. FROM R(y). 

Suppose now that the interaction function R (y) is known- -perhaps in 

some approximate form that we may wish to check against experiment. Sup-

pose, also, that we had chosen our F. (y) in such a way that, to a good ap-

proximation, we may also put 

N 
K(z,y). 	C (z)F (y), 	 (9) 

1=1 

where the C.(z) are functions such:that, at each value of z, the approximation 

(9) is optimum. [This approximation, once again, does not depend on R (y) 

and can thus be made before R (y) becomes known. However if R (y) is in 

fact known, it may be desirable to choose the F. (y) in such a way that the 

integrals in Eq. (11) will be simple to evaluate without further approximations.] 

We may then calculate the a. from R (y). 

To do this, we substitute the approximation (9)  into Eq. (Z). 

This gives 

N 
E(z) = 1+ > 	C.(z)a. . 	 (10) 

1=1 

Inserting this into expression (5), we obtain 

N r [11 	 1 	f a = 	I dyF.(y)R(y) + 
	

dyF.(y)R(y)C.(y)j a., 	(11) 
j=l 

which is a set of N linear equations with known coefficients, and may be 

solved for the N parameters a.. These, in turn, give the phase shift 

14 

St  

' 1 
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through Eq. (4), as well as the solution of the integral equation through Eq. (10). 

In practice, only part of R (y) can be calculated with present tech-

niques. 5,6 Thus we may take R (y) to be known only for y>a, where a = 1/4 

if only the one-pion contribution is assumed to be known, and a = 1/9 if the 

two-pion contribution is also assumed. Suppose one chooses the F.(y) such 

th a t 

F.(y) = 0 for y >a, with i = 1, . . . N' 	 (ila) 

and 

F.(y)=0forya,withi=N'+1,...N. 	 (lZb) 

Then all the coefficients in the last (N - N') of the equations (11) will be known, 

even if we make the approximation (9)  only for z>a. We may thus use these 

equations to eliminate (N - N') of the a., expressing them linearly in terms 

of the remaining N'. In a sense, we have thus eliminated the parameters 

describing the outer forces (nearby singularities) and are only left with those 

describing the inner forces (distant singularities). 

IV. APPLICATION TO THE S 0TSTATEIN.THE - to lOO-Mev RANGE 

Consider the S 
 state in the 0- to 100-Mev range. From Fig. la 

we see that, for y >y2(= 0.35), we may approximate G(q2, y)/ZqZ]  by a 

straight line passing through its values at y 2  and y 1  (=0.85), and for y < 

by the sum of this same line and a parabola in such a way that this sum passes 

through the value of G(q 2 , y)/2q 2] at y 3 (=0.06). In other words, we have 

____ G(qZ, 	1(y1-) G(qZ, y1)+ (y-y1 	G(qZ, 	)j 

/y-yz \Z ~Q'(q 32 G(qZ y 1 )+( 	1 )G(q Z
y 2 ](yy) 	

,y3)- LYly2/ 

(13) 
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We can make exactly the same approximation for H(qZ, y) (see Fig. lb). As 

can be seen from Fig. 1, the over-all error associated with this approxima-

tion is of the order of only several percent. This accuracy begins to deterio-

rate after 100 Mev, and so we shall not go beyond this energy. 

Now the approximation (13) is an interpolation through fixed points, 

and so we obtain just Eq. (7). Since we can neglect Coulomb effects only for 

energies 	40 Mev in p-p scattering, the a. were determined by fitting this 

formula to the n-p scattering length and effective range, as well as the p-p 

phase shift at 68.3 Mev, The results are shown in Table I. 

V. EXACT TREATMENT OF KNOWN OUTER FORCES 

In the last paragraph of Section III, a simple approximate method of 

treating known outer forces was given. We shall now give a method of treat-

ing these forces exactly, using a. generalization of a method developed by 

Noyes, whohowever, used the usual pole approach in describing the inner 

forces. 

Let 

	

R(y) = R 0 (y) + R '  (y) 
	

(14) 

where R 0  (y) is the known part and gives the entire contribution to R (y) for 

y>a. If we substitute Eq . (14) into expressions (1) and (Z), and make the 

approximations (3) and (9)  only within the integrals containing R '  (y) (which 

means that these approximations have to be made accurately only for y < a), 

we obtain 	

N 
1 + 	dyG(qZ, y)R 0(y)E(y)+) 1  A.(q2)a.' 	

(15) q cot6 	I 1 dyH(q 2 ,y)R 0(y)E(y)+ 	B.(q 2 )a. '  
J 0 	 . 	. 
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with 
(1 	 N 

E(z) = 1+dyK(z,y)R 0 (y)E(y)+ 	C.(z).' 	 (16) 
JO 	 i=1 

where 
(a 

a •  = 	dyF.(y)R ' (y)E(y). 	 (17) 
0 

Now if we knew the a.', we could solve Eq. (16) for E(y), whicI would 

give us the phase shift through Eq. (15). However, since the a must be 

determined by experiment, it would be desirable to have to solve integral 

equations that do not contain any unknown parameters. This may be accom-

plished by writing 

N 
E(y) = f(y) + E g.(y)a , 	 (18) 

i=1 

where the g.(y) are defined such that 

- 1 
C.(z) + I 	dyK(z,y)R 0 (y)g.(y). 	 (19) 

•- 0 

Thus it follows from Eqs. (18) and (16) that f(y) must obey the equation 

(

O  

1 
f(z) 	1+ 	dyK(z,y)R 0 (y)f(y). 	 (20) 

J 

Inserting expression (18) into Eq. (15), we obtain 

l o

N  
1+ 	dyG(q2,y)R0(y)f(y)+ 	J dyG(q 2 ,y)R 0 (y)g.(y)+A.(q 2  a. 
 =iL 0 

qcotô= 

f

1 	 N 	1 
dyH(q 2 , y)R0(y)f(y)+ 	[j dyH(q2 	

2 
, y)R 0(y) g.(y) + B.(q)]a.I 

O 

(21) 

Thus, if we solve the integral equations (19) and (20) (which do not contain 

any a. ' ) we obtain g.(y) and f(y) which, when inserted into the expression 

(21), give an explicit expression for the phase shift in terms of the a.'. 
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VI. CONCLUSION 

We have shown that it is possible to set up shape-independent formulae 

which can be justified in an a priori manner, and whose accuracy can be easily 

estimated. Such a formula was found to approximately reproduce the 'S 0  

state in the 0- to 100-Mev range. In addition, if part of the interaction func-

tion is known, its contribution can be explicitly calculated, and only the un-

known part need be expressed in a shape-independent manner. 

The above methods can be applied to any problem in which unknown 

functions occur in integrals containing known kernels, and, specifically, to 

any partial-wave dispersion relations. (For an application to ordinary poten-

tial scattering, see Appendix B.) They should be particularly useful for treat-

ing inner forces, which cannot be calculated with present techniques. In many 

problems, however, the outer forces themselves are not given explicitly, but 

must be calculated self-consistently. 7  In other words, in Eq. (14), R 0 (y) 

itself depends on 8 and so we have nonlinear integral equations which must 

be solved numerically (say, by iteration). Alternatively, we may use the 

method given in the last paragraph of Section III. This time, the coefficients 

of the a. in the last (N -N) of the equations (11) depend on the a. (although 

in a known way). This means that we have nonlinear equations in the a., 

which can be solved by standard numerical methods. In either case, at the 

same time we must put in the experimental data for determining the constants 

that represent the incalculable inner forces. 
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APPENDIXES 

A. Effect of Oscillations 

For small y, it appears that the well known repulsive core exhibits 

itself as strong oscillations in the function R(y), 8  and hence in the integrands 

of Eqs. (1) and (2). In general, we may expect that, even if the oscillations 

grow rapidly for small y,  the nearly exact cancellations would contribute 

little to the integrands compared with other contributions. This would be true 

whether or not we made the approximations (3) and (9).  Let us assume, how-

ever, that the oscillations are so large that even the small remainders after 

an almost exact cancellation are large compared with the other contributions. 

At first sight, it may appear that in such cases the errors introduced by the 

approximations (3) and (9)  would be large compared with the contributions 

themselves. We shall show, however, that if both the value and the slope 

are well approximated by Eqs (3) and (9),  the errors will be small compared 

with the contribution, no matter how violent the oscillations become. 

To show this, we first note that the accuracy of the phase shift is de-

termined by the errors in the integrals compared with the values of those 

integrals at all energies in the range of interest, and not just these values 

at one energy. For instance, the mere fact that the value of an integral vary-

i-ng with energy passes through zero at a slightly different energy than it 

would if it were given correctly is obviously not going to affect the phase 

shift by much, although it is technically true that at the point where the inte-

gral passes through zero the relative error is infinite. 

Suppose next that we have two successive oscillations which exactly 

cancel each other at some energy in the range of interest (see Fig. 2). If 

this never happens, we can always divide our integrand into an oscillating 

part for which this does happen, and into a nonosciliating part, which does 



13- 	 UCRL-9834 

not cause any difficulties. Dividing the two oscillations at that energy into 

infinitesimal strips of equal area A, we see that at the second energy of 

Fig. Zb, the total contribution of the two nth strips of each oscillation will be 

A(D1/D1 - D2/D). This is large compared with the error A( 1 ./D1 /D 2  

no matter how small (y' - y) is, if both the slope and the value are well 

approximated by Eqs. (3) and (9).  Thus the error is small compared with 

the contribution. Since this is true of all such pairs of strips, it is also true 

of the oscillations. 

B. A Potential Theory of Shape-Independent Perturbations 

If a simple approximate potential V 0 (r) is known in a potential 

scattering problem, the above techniques can be applied for expressing the 

deviations from the resulting zeroth-order solution in a shape-independent 

manner. Such a shape-independent approach does not depend on any special 

conditions of a problem (as is the usual low-energy shape-independent theory, 

for instance), and can be applied over wide energy ranges in a large class of 

problems. 

Suppose u0(qZ,  r) is the radial wave function in the S state for the 

zeroth-order potential V 0 (r), normalized such that u 0 (q , r)-'- sin(qr + 60) 

as r approaches co, where 80  is the zeroth-order phase shift. If the correct 

potential is V(r) = V 0 (r)+V 1 (r), then the phase shift 8 is given to first 

order by the standard perturbation-theory result 9  

00 

66 0 -tanZMq' 	drV1(r)u0 2 2, (q r)] . 	 (B-i) 
Jo 
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Since u 0 2 (q 2 , r) is known, we may make the same type of approx-

imation as in Eqs. (3) and (9).  That is, we put 

n 
u 0 2 (q 2 ,r) 	a.(q 2 )f (r). 

i i=1 
(B - Z) 

'I 

Here the approximation need be accurate only in the region that is not too well 

approximated by V 0 (r)--for instance, the region r < 2X10 13  cm in high-

energy nucleon-nucleon scattering, if V 0  (r) includes the one-pion exchange 

potential. In this latter problem u02(qZ,r)  should be well approximated by 

the product of a normalization factor that depends only on q 2  and an expansion 

in powers of q 2 , since the shape of u0Z(qZ,r)  varies slowly with energy. 

Such an approximation has the form given by Eq. (B-Z). 

Substituting Eq. (B-Z) into Eq. (B-l), we obtain the shape-independent 

expres sion 

n 
6 	-tan 1[ZMq 1 	

a (qZ)p] , 	 (B-3) 
1=1 

where 
00 

=fo drV
1 (r)f.(r). 	 (B-4) 

We can evaluate the P i  at once if V 1  (r) is known; otherwise they can-béde-

termined from experiment. If n' parameters of V 0  (r) were also deter-

mined from experiment (say, from n '  phase shifts), we would have n t  add-

itional conditions on the 1. [namely, that 	is zero at the corresponding 

energies] 

The above method can be easily extended to perturbations in higher 

waves and tensor forces. Hard-core perturbations already involve only one 

parameter, namely the perturbation in the core radius, and are, to first 

order, independent of the other perturbations. The method can also be applied 

without decomposing into partial waves. 
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Table I. The 1 S nucleon-nucleon phase shifts calculated from Eq. (7) with 

a 1 = -6,78, a 2  = 23.10. and a 3  = 0.43 (which give a scattering length of 

-13 	 -13 
Z3.7XlO 	cm and an effective range of 2.66X10 	cm), 

Energy 	 Phase shift (deg) 

(Mev) 	 Calculated 	 Experimentala 

39.4 	 41,9 	 44.0 

68,3 	 34,6 	 34.5 

95 	 30.4 	 27,0 

a.These values are taken from a recent phase-shift analysis made by 

H. P. Stapp, M. Moravcsik, and H. P. Noyes, Lawrence Radiation 

Laboratory, (unpublished), 
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Fig. 1. Plots of (a) 	/(l +4q 2y)] and (b) [l/(l +4q 2y)] (solid 
lines) compared with the corresponding approximations having 

the forms of Eq. (13) (dashed lines). 
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(a) 

Yn 	
/ Jn 

MU -24526 

Fig. 2. (a) Two successive oscillations at the energy for which 
they cancel. The nth strips are shown in each case.. (b) Values 
of the kernel (solid lines) and of the approximate kernel as given 
by Eqs. (3) or (9)  (dashed lines) between y n  and y at two 
widely spaced energies in the range of interest. On of the 
energies is the same as in Fig. 2(a). There is no loss of gener-
ality in taking this to be the energy for the upper curve in this 
diagram. 
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