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Abstract 

We study the effect of ellipsoidal nuclear deformation in odd-mass-

nuclei rotational band structure, the magnetic moment, and electric-quadrupole 

reduced transition probabilities. Also, we study the relationship between the 

rotational bands of an ellipsoidally deformed nucleus and the vibrational and 

rotational bands of a spheroidally deformed nucleus with -y.-vibration-rotatiofl 

interaction in the limit of 'y approaching 0 or 7T. Equations for the asymmetric 

rotor motion are derived. By using T. D. N ewton t s  single-particle eigenvalues 

and eigenvectbrs, we then present numerical calculations showing rotational 

spectra associated with an odd nucleon in an ellipsoidal well. The calculations 

for the N=-i- and N=2 shells were done on an IBM 709 computer. Numerical results 

are discussed in terms of the and y deformationparameters required to give 

127 	157 
the known spins of the odd-A cesium isotopes Cs 	to Cs 	. The rotational 

energy spectrum, magnetic moment of ground state, and various E2 transition 

probabilities are calculated for Cs151  for several deformations, with best 

energy spectrum fit at =0.28, y=58 deg. 
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1. Introduction 

The Davydov-Filippov model of an ellipsoidally deformed nucleus with 

three unequal .pincipalaxes has been applied extensively to even-even nucieil) 

For small values of the asymmetry parameter y the rotational spectra correspond 

closely to those of the symmetric rotor with 7-vibrational excitations added. 

Perhaps the greatest utility of the model 1as been in th regions of nuclei 

outside the regions of definite spheroidal deformation, where the energy of 

the second. excited.2+ state may be only about twice the energy of the first 

excited state. We felt that it would be interesting to examine the model for 

odd-mass nucleit. 

At a.late stage in our cajculationwe learned of similar work by 

Hecht23), who treats the rotational energies of asetric odd-A nuclei with 

essentially, similar results, except that his results are for the spectra of 

nuclei with A around 190. Filippov has recently made calculations and 

general examinations of the problem of stability of the asymmetric nuclear 

shape. From his results it appears that noncylindrical shapes could possibly 

be of lowest energy in some cases, where one kind of.nucleon has nearly completed 

Theoretial. Physics Division, Lawrence Radiation Laboratory, Berkely, 
California. 

tt Now on leave at Universitets Institut for Teoretik Fysik, Copenhagen, 
Denmark. 
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tt Based on a Ph.D. the4 (by LWP), University of. California, Berkeley, 
California (see ref. }1). 
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a shell closure and the other kind is just beyond a closed shell. The region 

of the neutron-deficient cesium isotopes possibly satisfies these requirements. 

It is instructive to consider a trivial extension of the Davydov-

Filippov model to odd-A; namely, the case where the odd nucleon is in a pure 

j = state, and hence completely uncoupled from the rotor. In such a case 

we have just the even-even spectrum but with a ground state spin of and all 

excited levels doubly degenerate, with spins differing by ± from the spin 

in the even-even nucleus. We see that in the rotational band there will be 

I 	 7 
only one state with I = , two with I = , three with , and generallyI ± 

states of a given spin I. 

The sequence of ground-state spins of the odd-mass cesium isotopes 

qualitatively suggests a possible explanation in terms of an ellipsoidal 

deformation which sets in as the neutron number departs sufficiently from 82. 

The measured spins for neutron number 72, 7, 76, 78, 80, 82are, respectively, 

, , , , 21,2 .. The expected g7/2 spherical shell model spin appears near 

the closed shell. Ellipsoidal deformation of the nuclear potential would tend 

to quench the orbital angular momentum of an odd particle so that for suffici- 

1 
ently large deformation, spin should lie lowest. 

The quantitative testing of the model involves considerable mathematical 

complication. Fortunately, nucleon eigenfunctions and eigenvalues for an 

ellipsoidal harmonic-oscillator potential had been calculated and tabulated by 

T. D. Neon' 6 ? through the fourth oscillator shell. The Hàmiltonian he used 

was more appropriate for N=4 neutrons than for protons, and we are deeply 

indebted to him for recalculating, at our request, the fourth oscillator shell 

by using a proton parameter. With his eigenfunctions we have attempted to 

calculate rotational spectra of even parity for some odd-proton nuclei in the 

50 to 82 shell. 
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2. Theory of Odd-Mass Nuclei with Fixed Ellipsoidal Deformation 

The Hamiltonian of the coupled system. of nucleon and asynmetrical rotor 

core is as follows: 

4 = p +i1. 
mt 	R 

+T ,  

where the terms on the right-hand.side are as defined later. 	- 

The rotational energy of the general rigid rotor may be expressed as 

T 	
3

7-B2 
	-1, 	 -(2) 

R 2 
K=l K K 

where R denotes the components of angular momentum along the principal axes, 

and we assume, in accordance with the hyodynamic model, 

	

22 	2 	 - 
=. B 	sin (y-KT)

. 
 , 	 ( 3) 

where P and 'y are the usual parameters specifying a general ellipsoidal defor-

mation, and B.is the inertial parameter for quadrupolesurface oscillations. 

The single-particle Hamiltonian4 is given by 

= T + V (r) + C £ 	5 + D2 	 - 	 () 
p 	p 	p  

where 

- 	T= V? 
	

(5) 

and 

1 	, 	.2 	2 
v=o1 x1 +w2x2 +x

3 ), 	 . 	 ( 6)
1 1 

where M is the single-particle effective mass of a nucleon in the nucleus, 

Xi ,X2 ,X3  are •the Cartesian coordinates' of the nucleon in the body fixed 

system, 	. 	 . . 

yyull -°2 	
are the corresponding quantum energies along the three 

principal axes, and they satisfy the conservation pf nuclear volume conditions 

	

1 	
- 
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2 are the infinitesimal pseudo rotation operators, 

and C isa spin-orbit potential strength parameter. 

The 	operator in eq. (7) is evaluated in the body fixed coordinate system. 

The D22  term in (L)  is a correctionwhich depresses high-angular-momentuni-

orbitals, equivalent to the effect of a nuclear potential more square than 

pure harmonic. The term N 	 represents the interaction of the particle with
int 

the nuclear deformation. However, in N ewtonTs6)  calculation for ellipsoidal 

nuclei the energy eigenvalues Es include both the single-particle energy and 

the interaction energy. 

We shall not consider nuclear shape vibrations but consider the shape 

fixed. In the case of nonaxial nuclei, if the moments of inertia are sufficiently 

large, the particle motion will follow nearly adiabatically the rotations of the 

well, and the wave function will be a linear combination of Nilsson's wave 

89) 
fction ' 	in the following y: 

• 	 J•J3 

(êL)1 	+ 

(8) 
where: 	is as defined by Newton's6  eq. ; the summation over j runs 

N2J 
3 	

3 

only over alternate half-integral values between Jand -J; and 1 3  is summed 

between I and -I on alternate values such that 13  -13  = 2v. Here v=O, ±1, 

±2, ..., ±N— which is due to the symmetry requirement of invariance with 

respect to a rotation through Tr of the 1 and 2 axes about the 3 axis. By con-

vention, b1/2 and 112  are always taken with a positive sign. 

4 
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Theare the mixing amplitudes which are the eigenvectors of 

Newtónts Table 6), and b 	are the mixing amplitudes of the rotational states 
3 

with different I 
3
values and the same I. Therefore b11  arethe eigenvectors 

 1 
of the rotational spectra that \  we calculate. For axial nuclei ey- 	N7r), 1 3  

and J3  will be approximately constant, and their elgenvalues will be K and . 

The adiabatic-rotation assumption may not be a good.one for the cesium isotope,s 

we later treat, since rotational energy spacings are not much smaller than the 

sing1e_partic1e-lerel spacing. We have neglected the effect of the coriolis 

interaction in mixing different Newton eigenfunctions 

2.1 ROATIONAL ENERGY IN THE STRONG-COUPLING APPROXIMATION 

The rotational states may have energies much smaller than the single-

particle energy and the phonon energy, so in eq. (i) we only have to consider 

1 	2-1 
the rotational energy term TR = 	KRK K 	

If we use the representation in 

which i2 , I 3 .12 , and 1 are constants of motion, then we write Tj in the 

following form given by BohrP: 

TR = TDR + TOR , 
	 (9) 

where 
(2 	?\r 	 1 	 2 

= 	
+ 	

•('+') - 2 + j(j+i) - J3 
2 J + 2 	

(13-13) 	
(10) 

Here TD is the diagonal term which is the same as the rotational-energy term 

in.the nucleus with axial asetry, excluding the case of J = 

TOR = 	'1 l + 	
12 J2) 	

) 	

- 

	

r 1 2 	2\ 2 	2 1 
- 	

1 - 12)j 	
(11) 
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Here T0 .are the off-diagonal terms that vanish in case of axial symmetry, 

except for J= . The nonvanishing natrix elements of e. (ii) will be 

governed by the following selection rule: The first term will connect states 

of LK = ±1 and A= ±1, and the second and the third terms will connect states 

of zK = 0 and A±2, or LNK = ±2 and AQ=0. 

Substitution of eq. (8) into the rotational-energy equation TR= Et'V 

1 
gives a secular determinant of dimension + 1 by I + to be solved to determine 

the eigenvalues and the coefficients b11  
13 

All three terms in TDR contribute to the diagonal matrix element. Of 

the three terms in TQR the second contributes a constant amount to the diagonal 

matrix element, and can— for our purposes— be ignored. The first and third 

	

terms provide.the off-diagonal matrix elements•for: 1 	and 
3'3 

Therefore the secular matrix is separable with only even values of 1 3_1 13 t  

coupled. 

The general formula for diagonal elements of rotational energy is 

3 3 	 J2 

JJ 	J(j  + 1) J3 

+ 
_  

_Lf3 	
3 

JJ3, 	J3 

4 
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+*) 	S 1 1(If)( 4 +) 

- (1+ 

 

4-J) 

X CL 	a[s+J3 ( - + 1)] 2  
J3 _(Jj 1) j' j3' J J3I 

4- 	432  J2 	
J_ J3J33 

I 

J 
(/2) 

Due to the symmetry of the wave function, the other two matrix elements 
givethe same numerical result, and so are not written out. 
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The general formula for off-diagonal elements of. TaR is 	 i 

	

I3(I31) 	I
2 

	

4- 4J) L(H 
	 -

(JT) 
Jj 

XCt  " Jj~ jj31(j --j3) (J+j3 I UJ 2  

+( 1t  	
' 

Si 

 J-  J-  
and 

[(±J3 )(j 1)J 	(13) 

13  13 t2 
	

J2- 

13 )( I ; i.i)(i L3  
Due to the syimnetry of the wave function, the other two matrix elements 
give the same numerical iesiflt, and so are not written out. 
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2.2 MAGNETIC M0MKT 

10) 
The magnetic-moment operator is 

= 	
[ 	

± g) + 	R11 + g R 2 2 + 	R3]. 	(15) 

If we assume that the three collective g factors are equal to a value 

then we may use Nilsson's expression 20: 

< S  

14 

	

where 	
; 

= 
( 	

5 

	

J 	

3  + 
	

2  f 
J- U13' 	J 	 22 )  

4(PI3)(II 3~ i)(j+j3 )(Jj3 ~1) 2  

	

I 	I I1) 	 ) 

	

~ + T3 	3 Y 	+1) UT 
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For the calculation of the matrix (s I) it is more convenient to 

work in the representation of KNA), where Nilsso&s expansion coef-

ficient a. is related toin the following way 

then 

Fcc
-.  

im L- 
33 	3 J3 L 	 . 

x( + 	H) 	
'3 

k, 
IJ3  

1 

/\ c1 (. - -2 1 C!)1(1+1, )   - ) 	 OF- 

DTI L T  (I3 f1 
-3 	3 

x a1
i-(:3 +)- (?'rJ3 (I*I 

(18) 
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2 .3 ELECTRIC-QUADRUPOLE REDUCED TRANSITION PROBABILITIES 

The transition probability for electric-quadrupole radiation is given 

by 

T(E2 IIf) = 	() B(E2; I.If), 	 (19) 

where B(E2;I. I f) is the reduced transition probability between rotational 

states I. and I f 
 It can be writteLas 

1  

2 

B(E2;I4If) = 16T(2I+1) 	t.t 	
(fIQ 	i) 2  

f 	

• 	 (20) 

By using the model of a nucleus as an incompressible classical liquid 

drop with a uniform charge distribution, the nuclear quadrupole-monient operator 

Q2  can be written asl2) 

Q2 = eQQ {D2O cos 	+ (D22  + D2 2) ( sin )(2) 21, 	 (21) 

where Q0  is the intrinsic quadrüpole moment of an axial nucleus and is related 

to the deformatIon parameter P by Q0 = ZR2(7) 2• 

After simple algebraic manipulation, and assuming that there is no. 

change.in the internal state of the nucleus in the transition the reduced 

transition probability can be expressed in terms of the average value of 

and y.as 12)  

B(E2;I f ) 

= 	e2 	. 	b11  b1 I 	
(cos 	 . 

	

II 	i 	f 

X (1, 21 0 I i I)+ 	sin7)(2) 	. 	. . . 

x ( 1 2 1 ± 2 I i Aj 	 (22) 
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2.4 ELECTRIC-QUADRUPOLE MONT 

The formula for the spectroscopic electric quadrupole moment can readily 

be derived by a specialization of the formulas cf subsec. 2.;. that is 

spec = e 	20 M=I' 	
(2) 

where 

tD 2 = QOO cos ' + 	+ D 2 )[(sin y)(2) 	 (24) 

Substituting eq. (2) into eq. (23),  we get 

spec= Q0  I 2 I 01 I I) 	7, b1 13 ID1 
 13 

x [co s 	(I 2 13  0 	I I) 5i' i 

+ [(sin )(2) 23((  I 2 1 2 	I I+ 2) 	+ 2 

+ (I 2 I3 	2 I I I - 2) 5,31 I - 2
)1 

= (I+l)(2I+3) 

QO 	
ID

[3,,2_,(,+,)] 

+ (sin 7)()2 I 
	

ID11  ID11' (:I+I+1)(I+I+2)(II1)( 

I3   

+ 	II 3+1)(II3+2)(I+I3 1)(I+I 3 )] 8I 	1 3 2} 	 (27) 
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5. Numerical Studies and Comparisop with Data 

We haveused Newton's elgenfunctions and eigenvectors
56)  for our 

calculations of rotational spectra; other nuclear properties were calculated 

by usingthe formulasof 'sec.2. 

5.1 ROTATIONAL SPECTRA 

In the low-lying rotational-energy calculation, we assumed that the 

odd-nucleon state of motion in the nuclear well is not changed for different 

states of rotatibnal motion. We also neglected possible vibrational effects 

and the collective rotation-vibration interaction. The rotational energy ER 

andits associated eigenvector b11 - which are obtained by diagonalization of 

1 	1 a (i+ .) by (I+) matrix for a state with nuclear spin I - were calculated 

by means of an IBM 709 digital computer 
15) 

Both the caYculated values of the rotational energy ER and the mixing 

coefficient b11  for each value of the single-particle energy ES[ES=E 5-(N+ )] 

1 	 1 
are tabulated in Appendix B of ref. 	from 0 to 3 

iT in steps of 72 7T. By 

symmetry, the states with deformation parameters P and 'y, and the states with 

deformation parameters - and 1—Tr - are equivalent. Curves fitted through 

the calculated values of and7 were used for interpolation. 

Curves showing the total energy E = ES+ER for the lowest single-particle 

state of the N2 shell, 	= 0.2 T2 = 77.25 MeV 1 , are plotted as a function of 

in fig. 1 for the first rotational band, in fig. 2 for the second rotational 

band, and in fi-g. 5 for the third rotational band. For comparison, the rota-

tional energy of even-even nuclei 	with the same values of P and B are plotted 

as,a function of in fig. -i-. From these four figures we can clearly see the 

analogy between the rotational spectra of an odd nucleon in an ellipsoidally 

deformed nucleus and the Davydov-Filippov even-even nuclear rotational-energy 

specr 15) . This is expressed chematically in the correlation diagram in 

fig. 5. 
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As discussed in the Introduction, in the limiting case of a pure 

J= odd nucleon, the nucleon motion is completely decoupled from the 

collective surface motion. Also, one gets a system of levels with the same 

spacing as in even-even but with a doubly degenerate state of spin .1 ± 

in place of each level of spin I in the corresponding even-even nucleus, 

except that a spin .0 goes to a spin level. The existence of the nearly 

degenerate states is clearly seen in fig. 6, where the energy is plotted 

against for a single-particle state of almost pure 

3.2 NUCLEAR PROPERTIES OF Cs 131  

Of the light cesium isotopes with ground-state spin less than Z , only 

CS131  has enough known even-parity excited states for significant comparison. 

The rotational energies are calculated for B 2/ 2  = 13,87 MeV' and hw=8 . .07 

MeV. The results are tabulated in table 1 together with theoretical spins and 

17) the experimental energy values 16,17). Interpolated energy values for optImum 

parameters P = 0.28. and = 38 deg are given, along with the energy levels 

calculated for neighboring values of deformation parameters. The value 

used in table 1 is rather close to the value required to fit levels of the 

J50 f 
 130 

	

neighboring even-even nucleus Xe 	. The ratios of rotational energy o Xe 

1 
are

8) 
 

E1 +) 	E1(7+) 	 E1(6+) 
= 2.25, E1(2+) = 4 . 43, and E1(2+) = 3.66, 

 

which corresponds to a deformation = 37 or 27 deg in Day and Mallmannts 

tablel9). The decay scheme of Ba131  in fig. 7 is taken from the recent study 

by Bodenstedt et al. 20  . They propose and justify spins of and for 

excited states at 12 11 and 133  keV, respectively. The locations and spins of 

these states—.- together with the spin of the ground tate—essentia1ly fix 
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the parameters and in our calculation. Tne energy match with four 

additional higher levels test the model, and the agreement is good. The 

theoretical spins are not inconsistent with the observation of all the gamma 

transitions in the experimentaldecay scheme shown in fig. 7 except for one 

transition; namely, there cannot be a transitionJC because of a spin change 

of three by our assignments. We suggest that there is enough uncertainty in 

the experimental energies so that the reported 917 keV transition could fit 

as transition JD. The experimental literature is somewhat contradictory with' 

respect to multipolarity assignments. It is clear that our spin assignments 

could be tested by multipolarity assignments. Transitions CA, GC, ID, and JE 

must be pure E2, since jzi= 2. A search for the unobserved higher spin levels 

predicted here could be valuable. The experimental level at 703 keV does not 

seem to have a counterpart among the theoretical values. We are also somewhat 

concerned about the difficulty of populating a + state at 1039 keV, presuming 

131 	 1 	3 Ba 	to have a - + or - + ground state. 2 	2 

The reason for not seeing the two + states and higher spin states 

could be that the high spin itself and the predominance of high-K components 

in these states inhibit population by P decay from Ba' 31  or by transition 

from higher energy states. 

Before presenting the calculations of the ground-state magnetic moment 

and some relative transition probabilities, we list the eigenfunctiofls of. 

the states involved, the fifteen 	Newton coefficients used, the three 

3 
b5/2 

K 
 values, and the four b7/2 K values. 
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For N=4, P =  - 0 .I3, 	and 	y = 22.5 de 

OJJ3  £ J J 

2 9  O.04129 

_ 0.14200 

0.01109 

-0.28351 

.1 . o.006o4 
2 2 

2 -o.i)4io)4 
2 2 

2 - -0.519)4)4 

- -0.01793 

2 . - -0.24832 

2 - . . 	-0.05)451 

2 0.61698 
2 2 

0.02807 
2 2 

2 0.35165 

2 0.0)4707 

0 0.18867 
2 2 

For I= For 

K bS/2..K K b 7/2 K 

-0.87287 -0.)4)4320 

3 o.)4)42 - 3  -0.78613 

0.11491 OJ42070 

- 0.09263 
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We calculated the magnetic moment of the ground state ofCs 131 by 

setting collective gR yalues equal to Z/A, g=l and first setting g for the 

odd proton equal to the "quenched' t  value 14.0 found generally applicable by 

Chiao and Rasmussen2. A second calculation sometimes follows in parentheses, 

using free-space g=5.585. We feel that the quenched values are more appro 

priàte, since they take accoi.mt of a general tendency by the odd nucleon toward 

polarizing the spins of neighboring nucleons in such a way as to reduce the 

intrinsic-spin contribution to the magnetic moment. 

The experimental magnetic moment of Cs 	is +3. 8 nm 	. Table 2 

gives our theoretical moment at several values of P and y near the optimum 

(0.28,38 deg). in units of the nuclear magneton. The interpolated moment for.  

=0.28, 	=38 deg is:.2.82 ..(unquenchedvalUeiS 3.1140 	Forpurpose Of .com 

parison, the spherical shell model with quench'ed g factor gives =14.0 for 

Table 2 

Theoretical magnetic moment 

= 30 deg 	= 37.5 deg 	y= 145 deg 	= 38 deg 

= 0.2 2.35 2.66 2.79 2.70 

= 0.3 2.88 2.86 .714 2.85 

d '2 (unquenched 14.793) and =1.68 for (g 	
)3 	(unquenched, 1.225). 

8 	
7/2+ J=5/2 

Nilsson's model ' 	for a pure g712  proton with projection = gives =l149 

(unquenched )  1.18.). 

The agreement is not good for all the model and the experimental 

magnetic moment. lies ii between that of asymmetric-rotor and single_particle 

models. The magnetic.mornent is probably not a good test of the model, since 

the moment will be quite sensitive to the precise amount of g72 vs d 512  

configuration mixing. 
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We have used our formulas of subs:e.c.  2.3 to calculate reduced E2 

transition probabilities for a number of .  transitions. In most cases the 

experimental data are at present not sufficient to test the calculations 

carefully, since Ml-E2 mixing ratios are-not well determined. Evidence seems 

good that the prominent 122-keV transition is E2, and of course it may not 

have admixture of Ml if the spin assignments + - 	+ are correct. Its 

measured half-life is 3.77X 10 sec (ref.2). We estimate the total 

conversion coefficient to be about 0.9 from Shy's K- and L-shell calcula-

tions2, The mean life for photon emission should thus be 7.l6Xl0 sec. 

This corresponds to a reduced transition probability B(E2) of 1 .) 050  e2cm.  

The single-particle B(E2) value as used by Kerman 
ii) for a-(0-2 transition) 

is 2.OX10 50e2cm for A=ll. Hencè,.the transition rate is 15.7 times the 

single-particle reference value. 

Note from fig. 8 that our theoretical estimate near. 	= 8 deg over- 
N 

estimates the experimental value by about a factor of 1.5. In retrospect it 

would have been more realistic to use an inertial parameter B considerably 

larger than the irrotational value. Since we used such a small B, we were 

forced to a deformation-value of =0.28 in order to fit the energy spectrum. 

Certainly the experience from the spheroidal nuclear region would lead us to 

believe that a P value about half of this is more realistic for Cs
ll 

 . Such 

a modification of our calculations away from the hydrodynamic moments of 

inertia would lower the predicted B(E2) value, since they vary roughly as 

We find a serious discrepancy in trying to compare experimental and 

theoretical transition rates for the l-keV transition presumed to be I + 

to + and predominantly Ml. Its lifetime is 15.Xl0 9  sec (ref.20))  and, 

allowing for a conversion coefficient of 0.5, this given an upper limit 

B(E2) < 7.OX10 50 e2cm. Our theoretical calculation (fig. 9) for B(2) is 
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5.4 times this limit. If future experimental work firmlyestablishes the 

position and spin associated with the 15.5X10 9-sec state according to the 

proposal of Bodenstedt et ai.20), then it will be clear that we should not 

have fitbed that state as the + number of the ground rotational family. 

It may be that the 15.3-nsec state belongs to a different intrinsic Newton 

proton state than the ground state. 

We have also calculated the relative B(E2) values for three transi-

tions each from the first two excited states of spin 2  (i.e., at 216 keV and 

620 keV). The ratios to the ground transition are shom in figs. 10 and U. 

Points at 0 deg and 60 deg are calculated in the spheroidal limits through 

squares of Clebsch-Gordan coefficients with K= for I equal to., , 	on 

the prblate side; and K = for 15/2; K= for I 7/2 17/2 on the oblate side. 

Experimental data on Ml-E2 mixing ratLos are presently insufficient to test 

any of these calculations. They are presented here in part to illustrate the 

drastic differences between + and + states, whereby there appears clearly 

an approximate selection rule from the iimiting model of y vibrations of a 

spheroid (see Appendix). In this latter model the 
2 + and 1  + states have 

no phonons of gamma vibration, the + and + have one phonon, and the 

+ 1  has two phoñons. This can be seen from the top curve of fig. 11. 

24 
5.5 GROUND STATE SPIN22,,27) 

We have determined the lowest state for a variety of P and 'y values 

for nucleon numbers of 51, 55, 55, and 57; and have plotted the deformation 

regions where a given spin is lowest. This map is in polar coordinates, where 

is the radial coordinate and y is the angular coordinate. All shaps of 

cjuadrupole deformation areof àóurse represented within the 60-deg sector. 

Fig. 12 represents the 5t:' leve1of the proton. in the N=4 shell, fig. 15 tbP  

55rd level, fig. 14the 55th level, and fig. 15 the 57th level. 
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The lowest spin state along 'y=O in these four figures should cor-

respond with the lowest Nils son state for that proton number from the diagram 

of fig. 3  of Mottelson and Nilsson, One sees from all figures except 

fig. 12 that our intuition about the stabilization of spin 1  states in 

asymmetric wells is borne out by the calculations. 

Note that at the Cs 	reference point (=0.28, y=8 deg) on fig. l 

the 5  + spin is lowest; for the Cs127  and Cs129  only a shift of y of 2 to 

5 deg toward a smaller -y value brings spin lowest. The spin area for 

the 57-proton nuclei does encompass the 7=0 line out to =0.2 and is there 

designated by the Nilsson model as the + (20) state at prolate deforma-

tion. Some experimental knowledge of excited states of Cs 127  and Cs129  

would be most desirable, to test between predictions of the spheroidal and 

the asymmetric nuclear models. 

3.4. MAGNETIC MOMENTS OF SPIN t MJCLEI 

There is one region in which the approximate calculation of magnetic 

moments for spin nuclei is especially simple. This is the region of 

nucleon number 65 to 81, where the g 712  and d512  orbitals are presumably 
filled, and even-parity states will generally consist of configurations 

involving the close-lying d5/2  and d5/2  orbitals. An examination of the 

Newton eigenfunctions of the top two states in the fourth oscillator shell 

for 7 < 30 deg shows that these states consist mainly of s 1/'2 _d3/2  admixture 

in comparable amounts. 

Likewise, Nilssonts highest Q= state number 51 in his two sets of 

calculations shows the same admixture . The relative mixing ratios do not 

depend strongly on deformation. If a Nilsson-type calculation is made with 

only degenerate s112  and d /2  orbitals considered, and if the radial matrix 
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elements of r2  between 3s and 2d and between 2d and itself are considered 

equal (Nilsson's eqs ha and llb have them differing by oniy 
%)8), 

then 

the eigenfunctioi of. the top c= 1 state for piolate (next to the top for oblate) 

has 
1 
2 

a = ( 
2 
 •) and a 	= (j•) 

S 	) 	 U3/2 

independent of deformation. 

The predicted moment is two-thirds of the simple s 1/2 nucleon value 

plus one-third of the moment resulting from a d 3/2  nucleon coupled to a core 

angular momentum of 2 to a resultant . The magnetic moment of the 

plus phonon coupled to is hL=_ J . If we use the quenched g factor of. 

-2J for an odd neutron and a g factor for collective motion of about oJ, 

the magnetic moment of a pure s 112  neutron state is about -1.2, and the moment 

of the d 12  plus phonon is about zero. Thus, thenucleus with an odd neutron 

in this state should have a magnetic moment of about -0.8 rim. 

Likeise, the second from the top = state in the prolate spheroid 

(tap onoblate) is one-third of s1/2 character and two-thirds of d /2  plus 

phonon. An odd neutron in this state should give rise to a magnetic moment 

of -0J rm. 

Intuitively, we would expect that models with a stable nonaxial 

deformation or with quadrupole oscillations about a spherical equilibrium 

shape might give rise to intermediate theoretical values for the odd neutron 

in either state. 

Table 3 lists nuclearmoments of those spin nuclei to which the 

model might possibly apply. The tin isotope is in obvious disagreement, but 

the other isotopes are consistent with some sort of quadrupole coupling-

mixed s-d thódel, as discussed gbbve. A reduction in the collective g factor 
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Table 
1 

Magnetic moment values of certain spin nuclei 

Isotope 	 Experimental i 
(nm) 

8Cd 	 . 	 -.59 

ll 
L8Cd65  

119 50Sn69  

T 123  
52 e7 

T 125 
52 e73 

x 129 e75  

-0.62 

-1.0 

-0-73  

-0.88 

-0.77 

for tin, corresponding to the proton closed shell, could explain its deviation 

in terms of the coupling scheme here proposed. The magnetic moment of spin 

nuclei does not give much help in deciding between the nonaxial model and 

other quadrupole deformation models. 

We. shall examine Newton's eigenfunctions for the three highest states 

in the fourth oscillator shell in order to be able to understand more quanti-

tatively the predictions of his model. If much d 3/2  - d5/2  admixture is 

involved in the wave functioii, theie will be serious shifts in the calculated 

moment away from the simple formula. At 13=0.1 and y=0 deg, for example, the 

Newton wave function with the most s 1/2 character, is actually 28% s
1/2' 	- 

55% d,,2 , '8.3% d5/2  and 9% higher. It has the second from the highest eigen-

value. 
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We calculate a magnetic moment of about o.. 8 nm, but here the 

d 12—d 2  cross-term (ca1clated with eq. Ap .11.5 of ref. .26)) contributes 

almost half the value. Therefore, the basis of the ,previously derived simple 

approximate formula (t= J.2X fraction s 1/2 based only on s 112- d512  ad-

mixture, is clearly violated, and may be trusted only at deformation parameters 

well below =0.l for asymmetric shapes. For prolate (y=0) symmetric shapes 

the validity goes to somewhat larger P . That is, for 7=0, =0.1 we have 62% 

s112 , 131% d312 , and 13.8% d5/2  and the d /2—d5/2  cross term contributes only 

-0.17 nm shift to the magnetic moment. 

4. Conclusions 

We have attempted serLous and detailed testing of the fixed asymmetric-

rotor,model for odd-A nuclei. Certainly the large E2 transition probbility 

in odd-A nuclei somewhat removed from closed shells yet not within the regions 

of spheroidal nuclei are strong indications of collective motion. The avail-

ability of nuclear eigenfunctions for an asymmetric well as calculated by 

Newton make various calculations feasible. Our attempt to fit all the well-

established levels of Cs 	as a single rotational bahd gives encouragement 

but is inconclusive. Better expereflta1 information is much needed. Also, 

our difficulties with the E2 transition probability of the 1313-keV transition 

suggests that the theoretical calculations need to be repeated to include 

perhaps two or more Newton intrinsic states with rotation-particle' coup1ing--- 

a coupling we have completely ignored for the sake of simplifying calculations. 

The magnetic moment of spip nuclei ranging from 65 to 81 neutrons 

agrees with predictios of a model involving coupling to a core angular momen-

turn, but do not distinguish to any degre the core shape or magnitude of 

deformation'. 
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Successful results with this model do.:noi:necessarily prove that the 

nucleus literally has fixed asymmetric deformation.. We show in., the Appendix 

a spheroid with vibrations gives quite similar results at small y values. 

The asymmetric rotor model does provide a prescription for calculations and 

a point of attack on nuclei in regions not yet very amenable to theoretical 

interpretation. 

12 
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Appendix 

RELATIONSHIP OF A SYMMETRIC ROTOR PLUS y VIBRATION WITH A 

SLIGHTLY ASYMMETRIC ROTOR 

It is evident that at y=O and 7= 1 7T, the first rotational band has 

the same 'structure as that of a spheroid; and the energy values of the 

higher rotational band become infinite, with hydrodynanhic moments of inertia. 

However, in the cases of y= 	or 	the computed spectra of the ellip- 

soidally deformed nuclei (see Appendix 'B of ref. 15)) show the general 

features of the rotational - 7-vibrational spectra of a spheroid. .In this 

section we shall see that in these limits it is possible to reproduce the 

properties of the ground, second, and third rotational bands of an ellipsoidal 

nucleus by considering the yvibration-rotatiOn interaction between rotational 

bands, and the one- and two-phonon y-vibrational bands of a spheroidal nucleus. 

Since it is 'impossible to write a simple expression for ellipsoidal 

nuclei in the general case, one specific example will be explained in detail; 

the bther cases are quite aflalogous. The illustration is for an intrinsic 

state with projection Q= 

K 

+ 3 2 
2 2 

+ 3 2' 
2 2 

2 2 

1 + 
2 2 

+ 1 
2 2 

+ 0 
2 2 

+ 
2 2 
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The Hamiltonian 	for y-vibration - rotation interaction may be 

derived from the lat term of eq. (u) when 7 is sma27)ll 

= - 2(I2 - 12)7 	
(A.l) 

In the 7-asymmetrical model the energies of the hands are determined by 

the P and 7  values. In axially symmetric nuclei the energies of the rotational 

and the vibrational bands depend upon the phonon energy and the moment of 

inertia. If the adiabatic approximation holds and if the 7-vibration phonon 

enrgy 	= (C7/B7 )] and the moment of inertia P = B7 2 ) are the same for 

all the bands, the energy of the nth highest energy state with spin I is 

expressed as 

E(I) = 	[I(I+l)K2] - ()IJ( 
	)(i+ 	1/21/2} 	

, 

(A.2) 

where 

Q=n 1 for I ? 

and 

Q=n 	for I = 	for the first tIiree bands. 

Since the mixing amplitudes and te BE2) values for different bands are 

proportional to the term ( B C7 )2 ,  which is approximately equal to (m), 

we define an energy-difference ratio 

- 

	

(A.3) 
- E. () 

which is related to the (BC)2 in a linear way, and we will express the 

mixing amplitudes and the B(E2) ratio in terms of p by second-order pertur-

bation theory. For comparison, the values of P are tabulated in column a 
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of table A-i and the values of the mixing amplitudes 

(7 5.. 	1  
a¼2, 2' 2' 

l 

and 

B[E 	(2) 
ratio 

B[E2 	(2)  - j(i)] 

are in columns b, d, and f for the spheroidal model, in c, e, and g for the 

ellipsoidal model. The notation a(I, K; I, K') signifies the mixing amplitude 

of the angular momentum projection K? in the state of spin I and predominant 

component K. The p values for the spheroidal model are calculated using the 

results in Appendix B of ref.l  for 7= 72.7 deg. 

Table A-1 

Comparison of mixing amplitude and B(E2) ratio 

for ellipsbidal and spheroidal models 

a 	b c d e f g 

B[E2 	(2)- 
1 (1)] 

a ( 	
5. 1 3 	3 a, 3 	1 

2' 2 2' 	2' , 2'2. B[E2 

spheroidal ellipsoidal spheroidal ellipsoidal spheroidal ellipsoidal 

0.1 	0.00278 0.00276 -0.00238 -O.00O9 2.93X109  1.59X107  

0.2 	0.00287 0.00226 -0.00270 -o.0006 2.70 X109  4.82X 10 

0.3 	0.00318  0.003O -0.00273 -0.0009 1.87X 109 
 1.75X107 
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From table A-i we see that both models yield similar results, and 

that the B(E2) ratio shows the effect of the forbidden transitionwf Ln2, 

although the magnitudes are not equal. We believe that as y  goes to smaller 

values the two models will approach identical predictins. Note that in the 

B(E2) ratio calculation the denominator contains two terms of opposite sign 

and nearly equal values, which will cause the B(E2) ratio to be very sensitive 

to the a values. 

Acknowledgments 

We wish to express again our gratitude to Dr. T. D. Newton for per-

forming a special set of N=4 eigenfunction calculations at our request. 

One of us (jon) wishes to acknowledge fellowship support of the 

National Science Foundation, and the hospitality of the Institute of 

Theoretical Physics in Copenhagen during the writing of this paper. 

LIM 



UCRL- 9876 

References 

A. S. Davydov and G. F. Filippov, Nuclear Phys. 8 (1957) 237 

K. T. Hecht and G. H. Satchler, Rotational Energies of Asyimnetric Odd-A 

Nuclei and Nuclei with A Around 190, The University of Michigan Reports, 

ORA Project 0114, August 1961 (unpublished) 

5. K. T. Hecht,, Bull. Amer. Phys. Soc. 6 (1961) 78 

G. F. Filippov, Soviet Phys. JETP II (1960) 949. 

T. D. Newton, Can. J. Phys. 38 (1960) 700 

T. D. Newton, Energy Levels of aCompletely Anisotropic Oscillator, 

Atomic Energy of Canada Limited, Chalk River, Ontario, CRT-886, January 

1960 (unpublished) 

Aage Bohr, Kgl. DanskeVidenskab. Selskab, Mat-fys. Medd. 26 (1952) 14 

Sven G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd, 29 (1955) 

16. 

B. H. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab. Seiskab, Mat.-fys. 

Skrifter 1 (1958) 8 

R. J. Blin-Stoyle, Theories of nuclear moments (Oxford University Press, 

London, 1957) 

J. M. Blatt and V. F. Weisskopf, Theoretical nuclear physics (John Wiley 

and Sons, Inc., New York, 1952 ), p. 595. 

A. S. Davydov and G. F. Filippov, Soviet Phys.-JETP 8 (19 60 ) 305 

- l. L. W. Person, Theory of Odd-Mass Ellipsoidal Nuclei (Ph.D. Thesis), 

Lawrence Radiation Laboratory Report UCRL-975, July 1961 (unpublished) 

B. H. Moore and W. White, Can. J. Phys. 38 (1960) 1149 

A. S. Davydov and V. S. Rostovsky, Nuclear Phys. 12 (1959) 8 

W. C. Beggs, B. L. Robinson, and R. W. Fink, Phys. Rev. 101 (1956) 149. 



-.3.0- 	 UCRL-9876 

J. M. Cook, J. M. LeBlanc, W. H. Nester, and M. K. Brice, Phys. Rev. 91 

(1953) 76 

B. S. Dzhelepov and C. K. Peker, Decay schemes of radioactive nuclei 

(Academy of Sciences of the USSR Press, Moscow, 1958) 	 * 

P. P. Day, E. D. Kiema, and C. A. Mallmann, Table of Energy Levels of 

Asymmetric Even Nuclei with Beta-Vibration- Rotation Interaction, Argonne 

National Laboratory Report ANL-6220, November 1960 (unpublished) 

E. Bodenstedt, H. J. (8rner, C. Gi1nter, D. Honestadt, andJ. Radeloff, 

Nuclear Phys. 20 (1960) 557 

J. 0. Rasmussen and L. W. Chiao, Concerning the Magnetic Moments of 

Deformed Nuclei, in Proceedings of the International Conference on Nuclear 

Structure, Kingston, Canada.(University of Toronto Press, Toronto, 1960) 

646  

E. Bellamy and K. Smith, Phil. Mag. 44 (1953). 	3 

L. A. Shy and I. .M. Band, Coefficients of internal conversion of gamma 

radiatibn (Academy of Sciences of the USSR Press, Moscow, 1958) 

2. J. E, Mack, Revs. Modern Phys. 22 (1950) 64 

W. A. Nierenberg, H. A. Shugart, H. B. Siisbee, and R. J. Sunderland, 

Phys. Rev, 104 (1956 ) 1380 . 

A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab. Selskab, Mat. -fys. 

Medd. 27 (1953) 16 

T. Tamura and F. Udagawa, Nuclear Phys. 16 (1960) 460. 



UCRL-9876 

Table 1 

Energy levels, experimental and theretical energy values for Cs 131  

Level 
¼theo) 

\a E 
exp heo 	2 

E 	C(l385)(Neon  state no. 	27) 

label 
(key) (keV) 

0.28,38
0 

 0.3,30
0 

 0.3,37.5 0  0.3,5
0 

 
0.2,37.5

0 
 

J 1039 1022 1682.7 1106.7 1873.7 122.O 

I 620 644 10 650.7 171.7 1023.1 

H 448 722.9 462,6 684.9 822. 1  

G 373 380 899.7 452.1 458.8 575.2 

F 264 531.7 260.2 419.1 731.2 

E i 216 22 780.6 276.3 377.3 166.9 
2 

D 133 136 529.2 196.7 183.9 478.9 

C 124 122 717. 8  183.8 3 1 1.9 1 32.6 

B LQ 330.8 0 3O4L1 6o6. 

A 0 0 383.5 2.61 97.4 373.9 

a Underlined spins have been experimentally determined or inferred. 

b See ref. l6) for compilation of various determinations of energies. 

C Interpolated energy values of this column are mostly subject to an uncertainty 

of about 8 keV. 	 ' 	' 
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a, 
C 

I 

0 	 15 	 30 	 45 	 60 

;y 	(deg) 
MU 8-7 53 

Fig. 1. Energy diagram of the first rotational hand for the 
lowest single-particle state of the N=2 shell as a function 
0 f y. 
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52 -  
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A E2 (11/2+) 
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0E 2  (3/2+) 

UE 2  (5/2k) 

I 	 I 

II 	

I 

I' 	

•I 
I 

0 	 15 	 30 	45 	 60 

)' 	(deg) 
MUB-755 

Fig. 2. Energy diagram of the second rotational band for 
the lowest single-particle state of the N=2 shell as a 
function of y. 
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62 

61 

60 

59 

58 

> 57 

a, 
C 

56 

55 

54 

53 

A E 3  (11/2+) 

• E 3  (9/2+) 

L E 3  (7/2+) 

1% 	 II 	 Si 

I 

a 	 / 

\• \\ 	
/ 	,0 

• 	
Lx 	 / 

/ 
. ------0' 

0 	 15 	 30 	 45 	 60 

Y 	(deg) 
MUB-754 

Fig. 3.  Energy diagram of the thir.d rotational band for the 
lowest single-particle state of the N=2 shell as a 
function of y. 



-35- 
	 IJCRL-9876 

SE2(6+) 
0E 1  (5+) 

AE 2  (4+) 
iE 1  (6+) 

•E 1  (+) 
0 E 1  (4+) 

•E 2 (2+) 
o E 1  (2+) 

> 7 
4, 

6 

4, 
C 

LU 

4 

2 L 
	\\ 

Ii I 	I 	I 	I 	I 
4 	 0 	 15 	 30 

Y 	(deg) 
MUB-751 

Fig. 24.  Rotational-energy diagram of an even-even nucleus 
ER (in MeV) as a function of '• 

II 

10 
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Energy levels of 	Energy levels of Energy levels in the 
an 	even -even 	an odd nucleon limits of a pure 	s 1/2 
asymmetric rotor odd nucleon 

I,7T I,7T I,7T 

5+-.=- --- 11/2+ - - --- - -- 	11/2+ 
9/2+-- --  9/2+ 

4+------- 9/2+ --------_ 9/2 + 
7/2+- -  7/2+ 

3+= 7/2+----------_ 7/2 + 
5/2+- 5/2+ 

2+--- 5/2+- -----_  5/2+ 
3/2+— 3/2+ 

13/2+-----________ 13/2+ 
6+ 

 ll/2+- 11/2+ 

9/2+--__. 9/2+ 
7/2+---- -  7/2+ 

2+- _ 5/2+----- ______ 5/2+ 
0+_111T1: 

MU -24201 

Fig. 7. Relation of spectrum between an even-even asymmetric 
rotor and an odd mass nucleus of ellipsoidal shape. 



6 

64 

6 

6 

> a 	6 

, 	6 

w 
C 
w 

-37 - 	 UCRT- 9876 

5 

3 	A E(II/2) 
E(7/2) 

a - 	. E(9/2). 	 - 
o E(3/2) 
• E(5/2+) 	 - 

I 	- 
 

0E(I/2) 
O Es 

0- 	2T- 

-S 

8- 

16 

I 	15 	30 	4 
	

60 

y (deg) 

MU -25774 

Fig. 6. Energy diagram of a nearly pure l/2 tae as a 
function of y, for th N=2 shell, with 3=O.l and 
B/h2  = 77.25 MeV-. 
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Ba 
131 

(T112:115d) 	 - 

EC 
1039 

703 

620 

373 

216 

124 

EO 
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240 	

ii2 (13.305)nsec 

33 

(3770.05) nsec 

a 	 I I b 

MU. 2 5775 

Fig. 7. Decay scheme of Ba 11 
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Fig. 8. Comparison of the experimental B(E2 72 	+) value 
with the theoretical values as a function of 'y,  with  =0.13 
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Fig. 9. Comparison of the eerimenta1 B(E2 7 + 75Z +) values 
with the theoretical values as a function of y, with = 0 .15• 

k. 
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o 7.5 15 22.5 30 37.5 45 5Z.5 60 

7 (deg) 

MU —24195 

Fig. 10. 	Thoretica1 ratios 

B(E2 	+ B(E2 	-+ _+) 

B(E2 	+ 
and 

B(F2 2 + 
- 

5_ + ) 

as a function of y, with p =0.3. 
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Fig. 11. The logarithmic theoretical ratios 

B(E2 	+ 	+) 	B(E2 ++) 
and 	- 

B(E2 	+ 	+) 	B(E2+ 	+) 

as a function of y, with 
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I - . 

S 	 0 
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0 

• 

MU -25778 

Fig. 12. Plot of the ground-state spin of the 71st level 
of the prton as a function of P, y; with B 2/h2  = 
9.41 MeV and iu=8.l6 MeV. 
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Fig. 15.  Plot of the ground-state spin of the 7rd level 
of the proton as a function of P , 'y with B /n2 = 
9J1 MeV -  and icn=8.l6 MeV. 

/ 



-45 - 
	 UCRL- 9816 

y(deg) 

f,OZP 'PP 

I -.  

.2 
/3 

MU -25780 

Fig. 1. Plot of theground-state spin of the55th level 
of the proton as a function of P, 	with B2/I 2  = 

9.1 MeV and no=8.i6 MeV. 
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Pig. 15. Plot of the ground-state spin of the 57thleve} of 
proton as a function of P, y; with s 2/i 2  =9.41 MeV 
and hcn =8.16 MeV. 
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