


-iii- 	 UCRL-9889 

ELECTROMAGNETIC PROPERTIES OF A CHARGED VECTOR MESON 

James A. Young.andSidney A. Bludrnen 

LawrenceRadiation Laboratory 
University of California 

Berkeley, California 

October 12, 1961 

ABSTRACT 

A. systematic study is made of the electromagnetic properties of 

charged vector mesons The various formalisms used to describe charged 

particles of spin 1 are compared, and a new first-order formulation of the 

Stuckelberg theory is developed For the most general first-order Proca 

Lagrangian, subject to the usual symmetry requirements we eliminate the 

redundant components to obtain a Hamiltonian forrnula.tion The theory is 

interpreted in the nonrelativistic limit, and the terms corresponding to spin-

orbit coupling and electric quadrupole-moment interaction are identified. The 

analogy to spin 1/2 theory has led us to consider classical spin equations of 

motion which agree with the quantum.mechanical equations to order 

This general form for the electromagnetic interaction is applied to a 

recalculation of the 	e + 'y decay rate through a vector meson intermediary. 

We conclude, that theabsence-of this-process is not necessarilyan argument 

against the existence of an intermediary meson in weak interactions. 



-1-. 	 UCRL-9889 
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L. INTRODUCTION 

The charged vector meson that has been proposed as a possible inter-

mediary field (B field) in the weak interactions must, if it exists, have a mass 

greater than that of the K rneson and a very short lifetime 	Against such an 

intermediary field, FeinbergZ  and Gell-Mann 3  have argued that, provided 

the two neutrinos in p. decay are capable of annihilating each other, such a 

B field would allow the decay p. e+ y in first order in the p.-decay coupling 

constant G with a rate considerably larger than that experimentally observed 4  

This rate depends very strongly on the nature of the vector meson electro-

magnetic coupling which we will investigate in this paper.  

The vector meson field theory differs from the Dirac theory by the 

appearance of redundant components in the covariant equations of motion, 

and by the necessity of defining expectation values with an indefinite metric 

We begin by demonstrating the equivalence of the various formalisms used 

for describing charge.dvectormesons In particular, we present .a new first-

order tre•atmet of the Stuckelberg theory. Invaiancearguments en3ble us 

to write down the most general Lagrangian for such particles from which a 

generalized Sakata-Taketani 6  equation can be derived The nonrelativistic 

form (to order m-2 ) of the theory is readily obtained by a Foldy-Wouthuysen 7 

reduction of these Sakata-Taketani equations As in the Dirac case, the 

electromagnetic moments are identified with various terms in the nonrelativ-

istic Hamiltonian for the vector meson interacting with an external electro-

magnetic field In a uniform electromagnetic field the equations of motion 
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of a vector meson of magnetic moment g e 	agrees to order 

with that obtained on invariance grounds for a classical spinning particle 

By way of application the rate for the unobserved process 	e+ 

is recalculated for a vector meson of arbitrary (constant) magnetic dipole 

and electric quadrupole moments. With a suitable choice of these two param-

eters the rate for this process, and for the also unobserved -e conversion 

in a nuclear field, can be made equal to zero 

fk 
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II. ELECTROMAGNETIC INTERACTIONS OF A CHARGED VECTOR MESON 

A. Comparison of the Formulations of the Theory of Spin 1 

1. First-Order Proca Equations 

A first-order form of the Proca theory 8  is given by the Lagrangian 

= 	U 	(a u -a u )+ !(a u - a ut) U 	 (2.1) 
2 	1..LV1V 	VL 	2..LV: 	Vp. 	p.v 

_ u + .0 + 2uu  

	

2 	p.v 	p.V 

for the case of free fields. In Eq. (2.1) U(x), U(x) are independent field 

variables, U (x).,  U+  (x) are the Hermitian conjugate fields, and m is the
11 

mass. The above Lagrangian gives the free-field equations 

U =au -a u, 
p.1/ 	 Vp. 

a u =m 2 U 
p. 	 V 

In the presence of an electromagnetic field we perform the usual gauge- 

	

invariant replacement 5  a - 	a - i e A , where A (x) is the 
p.  

electromagnetic four-potential, which yields the field equations 

u 	=Tr u -ir U,  

	

V 	V 

ir U 	=m 2 U 	 (2.3) 
p. 	 V 

The second-order wave equation 

• 	2 - m2  
( 	) u 

V 
- p. V p. 
 Tr 	 U = 0 	 (2.4) 

is obtained by substituting Eq. (2. 2) into Eq. (2.3). Since a four-vector field 

must actually possess only three independent components, a subsidiary con-

dition eliminating the unwanted fourth component is needed. This is most 

easily obtained from Eq. (2.3), 
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r ir•U 	Tr iT -rr)U 	=(ie/2)F .Urntr 	U 
V p. FlY 	2 	p. v 	v p. 	p.v 	p.v p.v 

or 

U = (ie/2m 2 ) F 'U  
V V 	 [IV ILV 

where 

• 	F =aA -a A 
11V 	p. 	V 	V 	p. 

The second-order wave equation (2.4) then becomes 

• 	(n- m 2 ) U 	.(ie/2m)iT(FU) +ie'F V  U = 0. 	 (2.6) 

2. Duffin- Kemme r; Formalism 

The first-order Proca equations (2.2) and (2.3) may be written in the 

matrix form (p ir+ m)qi = 0 by setting 

- l/mU 14 

- l/U24 :  

- 1/mU 34  

1/rn U 23  

- 1/mU 31  
qi= 

- 1/mU 12  

U I  

U 2  

U 3 •  

U4 



.1 

• -1 

• 1 . • 

• 1.. 

• 	. • 	. 	-1 

1. 

1 =  I 

.1 

1. 

-1 

-1. • 

• 	. 	. 1 

• 	1. 
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111 

• 	 ..,.., 	-1 

	

• 	 • 	• 	• 	 . 	. 	-1. 

• 	1. 	 . 

• -1 	• 	. 

• 	1. 	. 	. 

• 	. 	. 	-1 	 . 	. 	-i 	. 

-i 

• 	. 	1 . 	. 

These P's satisfy the algebra-defining equation 

PPvPX+ P x PV 
Pt,

= V x + 

The first order Proca equations are thus a realization of the Düffin-Kemmer 

formalism. 

3. Discussion of Second-Order: Field Equations 

In a first-order formalism, the subsidiary condition eliminating the 

timelike vector mesons either is one of the equations of motion or can be 

derived from them. When the equations of motion are of second order, how-

ever, the subsidiary condition must be separately assumed. The second- 

	

order equations obtained by the substitution 3-'r 	are then generally not
11 
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mutually consistent without the addition of suitable F terms. For example, 

equations 

m2 ) U = 0 and a U = 0 
i 

on a -* ir become 
F1 	ii 

- m) U = 0 , 	 (2.7) 

Tr U 	=0. 	 (2.8) 
11 41  

Since 	] 	0, Eq. (2.7) is inconsistent with Eq. (2.8). A. similar dif - 

ficulty arises with the conventibnal Stuckelberg formaiism in the case of 

electromagnetic interaction. For these reasons we have preferred to use a 

Lagrangian giving first-order equations of motion which after a - r, can 

be iterated so as to yield the consistent second-order equations (2.5) and (2.6). 

4. Stuckelberg Formalism 

There is one other dynamical form of the vector meson theory intro-

3 duced by Stuckelberg 5  which is well known in the neutral-meson case. The-re 

-has apparently been, however, no consistent treatment of the electromagnetic 

interaction of charged mesons in the Stuckelber formalism, The original 

Stuckelberg theory is a second-order formalism involving a four-vector field 

Z and a scalar field B. 	In the absence of intera ction, these fields are 

related to the Proca field U by the equation U = Z + m a B. By the 

subsidiary condition 

• 	 aZ+mB=O, 

the scalar field B cancels out the fourth component of the vector meson 

field. In the conventional formulation, when the electromagnetic interaction 

is introduced by the minimal substitution a -4. r. , this separatelyimposed 

subsidiary condition becomes inconsistent with the field equations. We will 
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consider here a new first-order formulation of this theory which is internally 

consistent automatically and turns out to be identical with the Proca theory. 

For free mesons consider the Lagrangian 

1/2 zjaz - a v  Z + 	' 	-ayB] 

 8 - a a )B]z 
j.IV 	V 	

(3 
jV 	V 

-i/a z Z +mZZ+  Z 	 a B+ma B+Z 
pV 	V 	 LFE 	 F.L•}.L 	 I-i 	IL 

+ a B + a B+ C - C+ C  

where Z. B, Z, Care independent field variables. On variation of 

we obtain the equations 

8 Z 	- m 2  Z - m3 'B = 0 , 	 (2.10) 
V V.L 

z = a Z - a z 
.LV 	}.L 	V 	V 	II 

a z + m a C = 0  
V V 

C = a B. 	 (2.13) 
L 	i 

By operating on Eq. (2. 10) with 8 we obtain, Eq. (2.12) on using Eq. (2.13). 

Substitute Eq. (2.11) into, Eq.(2.10) to obtain 

(D2-m2)Z 
Ii, 

-a 
i, 
I(a

V 
z 

V 
 +mB)=O, 

and, using Eqs. (2.12) and (2.13), we find 

(E2 - m 2 ) (Z + m' a B) = 0. 	 (2.14) 
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Set U 	Z +m 	a B so that Eq. (2.14) along with the condition 
Ii, 	 1.1 

a U = a Z + m 	M B = 0. (whichis identical toEqs..Z12 and 2.13) 

reduces to the Proca equations. Thus the internally consistent equations. 

a Z 	-rn 2 Z - m8 B: 0, 	 (2.15) 
V 	Vj. IL IL 

z =a z-a z 
1J  ,V 	.L 	V 	V 

together with (2,14), are equivalent to the Proca equations. 

The advantage of the above first-order formulation is the possibility 

of introducing the electromagnetic interaction consistently. Put a - ir in 

Eq. (2.9) toobtain 

= 1/2 Z 	Z - Z - ie/m F B] 
pV 	p. V 	V 

+ 1/2 [ 	 Z+ ie/m F B+]  2 
I_I 	V 	V 	p. 	 p.V. 	t.Lv 

1/2Z+ Z  +rnZ+  Z  +rnZ+ 	B+m Tr B+Z 
Pv 	1j,V 	 P 	 P 

.+C+.B +BC -CC  

From Eq.. (2.17) follow the equations 

Tr Z 	th 2 Z -m 	B 0 	 (2.18) 
V Vp.  

Z 	=iT Z -  ir Z 	ie/rn F 	B , 	 (2.19) 
p.Y 	p.V 	V 	p. 	 p.V 

Tr Z '+ m Tr C - ie/2rn2 F Z 	= 0 , 	 (2.20) 
V 	V 	 p. 	p. 	 p.v p.v 

C 	irB, 	 (2.21) 
p. 	p. 	 . 

as in the free-field case (if we use Eq. 2.21) operating on Eq. (2.18) with 

ir 	gives Eq. (2.20). Sub s titute Eq. (2.19) into Eq. (2.18) to find 
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:(T 22  r 	m )Z. -  rrirZ - mTrB - ie/rnTr (F 	B)=0. 
.L 	ViV 	 V 	V1.! 

When Eqs. (2.20) and (2.21) are used, this latter equation becomes 

(Tr -rn 2 ) (Z +rnB) + ie F(Z + m 	B) 

I 

	

- ie/2rn2 	(FZ) = 0 	 (2.22) 

on making use of the commutation relations 

	

[rr , 	= - ieir F, -• ie F 	rr. 

	

Ii. 	 Y 	 ,j.VV 

If we set U = Z + m ir B, then Z = U , and Eq. (2.22) becomes 
iJ. 	 F.LV 	1.J.V 

	

(2 - m 2 ) U - ie/2rn2 
i Xv Xv 	v1j. 
(F U ) + ie F 	U = 0, 

I-i. 	 v 

which is identical with Eq. (2.6) in the Proca theory. In addition,.the sub-

sidiary condition Eq. (2.5) in the Proca theory is readily seen to be identical 

to.Eq., (2.20). 

B. Most General Lagrangian for a Charged Vector Meson 

1. Diverence Transformations 

The theories we have just considered possess, as we shall see in 

Section D, a t?normaltt  magnetic rnoment, i.e. , their gyromagnetic:ratio 

g is 1. The Lagrangians we have been using are not unique, however. In 

the Proca theory the divergence 

a 	a U U -  8 U U ], 	 (2.23) 
V 	}.L 	V1.j. 	j. 	

jV 

* 
where ' is a dimensionless constant, may be added to the free field 

Lagrangian (2. 1). The divergence c'C will not change the field equations 

derived from the Lagrangian. However, the Lagrangian 	 will 

have, as field equations in the presence of electromagnetic interaction, 
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U 	iiU -irU 
11V 	1,LV 	V 

.0 -m2 .0 +ieF U =0, 
,L 	I.LV 	 V IJ.V 

(2.24) 

(2.25) 

The term proportional to ' in Eq.. (2,25) will correspond to an additional 

magnetic moment interaction. We see then that there are infinitely many 

free-particle Lagrangians leading to the free-field equtions but differing in 

the distribution of charge density. Thus the principle of minimal, electro-

magnetic interaction does not define a "normal" magnetic moment unless the 

free-particle Lagrangian is specified. Since, for any choice of 'y,  the theory 

is nonrenormalizable, this criterion too(unlike the spin 1/2 case) is not 

usable to define a preferred electromagnetic interaction. 

2. Electric Quadrupole MomentT Interaction 

Group theoretical considerations allow a particle of spin 1 to possess 

an electric quadrupole moment in addition to a magnetic dipole moment. We 

now proceed to show how an electric quadrupole-moment interaction can be 

added to the first-order Proca Lagrangian. We require that such an inter-

action be bilinear in the meson field variables U and U , and linear in the 

electric charge e and the derivatives of the electromagnetic field a . F 
X 	F-LV 

Since these derivatives are constrained by the Maxwell equations 

a'F 	-a.F 	=a'F 
V 	

,j, 	vx. 	x 	ii.v 

only the form 

= a e U+  U a F + a* e , U+ U 0 '-  F  I,1v 	XX 	v 	 X 	1j,V ). 	 j,V 

sat isfies these requirements aion.g with the requirements of Lorentz and 

gauge invariance. The multiplication factor •a is now determined by 

3 
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demanding invariance of this electromagnetic interaction under time reversal. 

We define the time-reversed fields (apart from arbitrary phases, 

which are the same for all terms in the total Lagrangian) by 

T- 	- 	 T - 	 -4.  
A. 	= A. (r, -t), 	 A 0  (r , t) = - A 0  (r, -t), 

T 	- 	 T-' 	 - 
U. 	= U. (r, -t), 	 U 0 	(r, t) = - U 0  (r, -t), 

= a. T * 
a 4  =-8 4 ,a =a 

Applying these definitions to. Eq. (2.26), we have 

T = 
	= a * e, U U 8 F + ae U U+ a F 

IiV ) 	}.IV 	 .LV 	X 	XIV 

and thus, in complete analogy to the n-decay Hamiltonian, all coupling con- 

2 
stants must be relatively real, and a pure imaginary. Choosing a = i q/4m 

where q is an arbitrary dimensionless constant, we obtain the electric 

quadrupole-moment interaction 

(ie q/4m 2 ) 	- U U] aF 
	

(2.27) 

We have been unable to introduce a term like (2.27) in a M norma llt 

way by suitable choice of a free-particle Lagrangian without going to deriv-

atives of third or higher order. The quadrupole moment is nevertheless 

subject to the same degree of ambiguity as the magnetic moment, since, as 

we shall see in Section D, the "normal' interaction(2.23) already implies a 

certain amount of quadrupole moment. 

Adding. Eqs. (2.1), (2.23) (with 8 -  iT), and. Eq. (2.27), we now have 

as the total Lagrangian 
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Tr = i/ZU 	(1J.V .L V 	V 
U - 	 U 

p. 
 ) + 1/2 (Tr 	

V 
Ut) U 

p. 	V.  

- 1/2 U U + m2 U  U + (ie /2) (U U - 

U U ) F p.V 	p.V 	 p. 	 p. 	V 	V 	p. 	p.V 

+(ie q/4mU .  U 	- U U.] 	F  
~Lv

Except for the possibility of letting -y  and q have form factor space-time 

dependence, this Lagrangiàn is the most general charged vector meson 

Lagrangian consistent with the ordinary invariance requirements. The vector-

meson theory tacitly used in the original p. - e + argument 2 ' corresponded 

to the choice ' = q = 0. As discussed in Section. II. B. 1, we know of no phys-

ical criterion justifying a particular choice of ' 

In the next two sections we investigate more fully the physical content 

of this theory.  

C. Generalized Sakata-Taketani Equation 

1. Elimination of Redundant Components 

The Lagrangian (2.28) furnishes the field equations 

Tr U 	n U +.ie U .F + (ie q/4m 2 ) U 	a F 	= 0 , 	 (2.29) 
p. 	p.V 	 V 	 p. 	p.V 	 . 	 p.XV 	1.iX 

U 	= Tr U - iT U +(ie q/2i-i 2 ) U 	F 	.. 	 (2.30) 
p.V 	p. 	V 	V p. 	 XX 	p.v 	

. 	 1' 

A meson field satisfying first-order wave equations is expected to have six, 

dynamically independent components, corresponding to the three independent 

field variables and their time derivatives, Equations (229) fid (2.30) must 

therefore contain four redundant components which we wish to eliminate. 

Since in Eqs. (2. 29) and (2.30) U. (i,j = 1,2,3) and U4  do not contribute to 
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the time development of the meson field, these are the four components to be 

eliminated After this elimination we will possess a Hamiltonian form of the 

theory. For simplicity, we consider the electromagnetic fields time-inde-

pendent, and the magnetic field spatially constant, in the terms proportional 

to q only. The terms not proportional to q can be consldereü completely 

general 

From Eq (2 29) we have 

U4  = (1/rn 2 ) ( it U 4  + ie y U1  F 4 ) 

Let m.E U 4 , so that we have 

U4 l/mir 4+(ey/m)U E, 

where E is the electric field strength. Also from Eq. (229), 

i.U..-m2 U.+Tr U.-ieyF..U.-ieyUF. 

	

33i 	i 	44i 	313 	44i 

- (ieq/2m 2 ) U43  8 F43  -( ieq/4m2) U jm  8  Fi m i 

which becomes 

	

a4 i 	 - 1-0 j.....€=e44.+mU;+m [vt.. x(irxU)].+iè'ym (UxH) 1  

- - 	2 2 -3-0 -0 - 	 -2 
+ e ym E1 (it 	) + e y rn E 1  (U E) - e (q/)tn 4 8 E3 , (2.31 

where qis  the scalar potential, and H is the magnetic field strength We 

wish to write this last equation in matrix form It is lngthy, but not diffi-

cult, to show that if one introduces the spin-i matrices 

	

0 o\ 	/0 0 	 /0i 0 

	

s 1 = ( o O..i) 	: 2 =(ø oo) 	S3- (i 
	

00 

	

i 0/ 	 \- 	0 0/ 	 0 0. o 
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,Eq. (2.31) can be written as 	 : 

a 	 -i--,. , --I.2 	- 	 - 	 - 	 -2 
i_eCQ++mUm (S.ir) U - eym :(S  H)U - em . S1SErr$ 

-2 - - 	 2 2 -3 - - 2 	2 Z -3 -2 
+eym (E)c-eyim(S-E);U+eymE.0 

2 
+ e(q/2)m S1S.&.E.4 - e(q/2)m (V E) 	 (2.32) 

• 

 

(~3)

41

and 
=  	

, U 
=

u 2 
 )

. Now Eq (2.30) becomes 

 uJ 
U4 . =iU. - ir.U4  +ie (q/Z)mU a. F4 ., 

which can also be written in matrix form: 

-1 - 	 - 2 	-'Z 	• -1 -. 

i.,ePU+m+m (Sr)-(i/rn).4-em(SH) 

-2 	 -2--' 	- 	 -Z 
+ e-ym S 1Sir.(EU) -eym 	 -- ir (EU)e(q/Z)m •S.S.(a.E)tJ 

- e(q/2)m (v E) U. 	 (2.33) 

	

Wenow define a six-component wavefunction 	(11)() so that 

Eqs. (2.32) and (2.33) take the Schrbinger form, 

i 	= fe+ p 3 m+ip 2 (S 	) 2/m-.(p 3 ±ip 2 )( 2 +e 	)/Zm 

- - 
	 2 	 -- - - 	 - - - 	- -

(ExTr 
a 

+ (e/2m2 )(l_p 1 )[( 	)(I 	) -iS (IT xE) 
- 

22 	3 -2--2 	 2 
-(e y  /2m )(p 3 -ip 2 )($ E) -E ]+(eq/4m )tQ 1 (aE/ax) - Z(aE1/ 8 x)I]  

• 	 (2.34) 

where Q..=S.S.+SS.. For =q = 0, Eq. (2.34) reduces to the Sakata-Taketani6 
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equation. The charge matrices p 1 ,.p 2 , p 3  are the usual 2 by 2 Pauli mati'ices: 

(0 	.. 1. 	 .1 9..1\ 	•. 	.... 	.. 	(1 	.0 
p 3  

.0/ 	. 	. 	. 	.\.0 -1 	. 

2. bperators and Expectation Values 

Since the charge is given by 

Q = e fd3x + 
	

e (qj p 3 ) 

expectation values °A of operaprs A. must be defined relative to the indef-

inite charge metric p 3 i. 

X=fd 3 xp 3 A. 

In order that thêsè expectation values  be real, the operators must satisfy the 

condition of pseudo Hermiticity, 

A = p A .p 	 (2.35) 

where A+ =  (AT) is the ordinarily defined Hermitian adjoint. Note that H 

is pseudo-Hermitian (H = p3 H+  p 3) so that its interpretation as the energy 

is consistent. For the canonical transformations (i = SJtt) between the same 

physical state in different representations, we require Q to be invariant, 

i.e., that 

S 	= p S p3. 	 (2.36) 

Such transformations S are called pseudo-unitary transformations. We 

find, as in the nonrelativistic case (p 3  

dA 	 . 	 . 	. 
—= i [H,A]. 	 . 	 ., 

ó 	. 	 In the following discussion we shall omit the prefix 'pseudo, always 

understanding Hermiticity and unitarity to be defined relative to the metric 

p 3  by Eqs. (2.35) and (2.36), 	. . . 	'. 
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D. Nonrelativistic Limit of the Vector Meson Theory 

To find thenonrelativistic limit of Eq. (2.34) we use the Foldy-

Wouthuysen method7' 
12  of successive unitarytransformations. The free-

particle Hamiltonian (e = 0 inEq. 2.34) isdiagonalized by the unitary trans-

formation 

exp((1/)ip 1 4), 

where 

tan (W2) = (2i/(E 2 +m2 )) 	1, 

so that we have 

r E+m 	 -(P2 -(5P2  
m 	

)) 
2(E)h/2 	 (E±m) (mE) 1  

I 	-(P2/-,(SP2))  

L (E+m) ( mE)
1
/2 	2( mE) 1 /2  

Thus, in the non-interacting case, H '  = U HU = p3  E, so that each sign of 

the charge (energy) can be represented by a three-component wave function. 

In the interacting Hamiltonian of Eq. (2 .34) we define "even" operators 

as those containing p 3  or 1, and "odd" operators as those containing p 2  

or p1  . For the nonrelativistic limit we require that H be free of odd 

operators up to some order in the inverse mass. Successive canonical 

transformations U, where U elS,  S = ip 3  0/2m, and the 0 are odd op-

erators of the Hamiltonian, will eliminate 0 from the Hamiltonian. An 

example of such an 0 is iç (S it) /m. The resulting wave equation is 

ia/at = (H0 + 	) 	; 	 (2.37) 

and 

	

- 2 	-~ 22 	3 H0 e'e,+m+1T /m-(1r 
) 

/8rri 
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- 	e 	- 	-* - g - 1 	-* - 
H 1  - - Zmc s gH+ Zmc .(Ex - xE)] 

-eQ/4 Q8 E/a x 	Z+ ie (Q/) V 	 0(m 3 ), 

where IT =P - eA and Q = -(g-1+q)(h/mc) . The three terms in H 1  are 

identified as a magnetic-moment spin-orbit coupling term, an electric-quad-

rupolecoupling term, and a (non-Hermitian) Darwin term. Except for this 

last term, the same Hamiltonian H 0 +H 1  is also obtained for spin-O(S.Q..0) 

and for spin- 1/ particles (that is, Si = 	Q.. = 0) of arbitrary gyromagnetic 

2 -  
ratio. The Darwin term is zero for spin 0 and [e h/Z (Zmc) I V E for spin 

1/2. Except for these Darwin terms, which vanish in the classical (h  0) 

limit, particles of different spin are thus found to obey the same nonrelativistic 

wave equation (2.37), once allowance is made for the possibility of arbitrary 

magnetic dipole and electric quadrupole moments in the higher-spin cases. 

This result suggests that, except for the obscure and specifically quantum-

mechanical Darwin term, the nonrelativistic wave equation is actually spin-

independent and that its form depends on classical invariance arguments 

only 

It is worth noting that a vector particle could have, except for g = 1, 

a quadrupole-moment interaction proportional to the anomaious momenta 

g - 1, evenif the specific form (227) had not been intr-oduced. Unless there 

are reasons (unknown) for preferring g = 1 theory, aterm (227) is not to be 

excluded. As we shall see later, such a q term apparently does not lead to 

any more divergent a form of electromagnetic interaction than does the ' 

term itself. 	 : 

The factor .  1/4 has been introduced before Q in H 1  in order to make 

our normalization of the quadrupole moment strength conform to that con-

ventionalized by Ransey. 	Consider the meson to have its spin along the 
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positive z axis, and also take as a very weak electric field 

= - (k/2)x, E 2 - (k/2)y, E 3  kZ, 

where k is a small constant. For a meson with spin up LP 
 

so that we write 

(tQQI 
3X 	

k. 

Ramsey defines the energy E of an electric-quadrupole moment q as 

E=(q/4)(aE/az) 0  

for particles with spin along the positive z axis. The quadrupole moment is 

usually divided by the charge and given in units cm 2 , and so the vector meson 

has quadrupole moment Q = - (g - 1 +q)(h/mc) 2  cm 2 . If we consider the spin 

~_ 1

o

projection along the z axis to be 0, then we have i 0and 
I

eQ 
(5 3 =0 	- 	 Q.. s 3 =o) =__ k, 

to give Q '  (S = 0) = - ZQ, in agreement with the group theoretical result 

Qm) = Q [3m 2 -S(S+1)]/S(2S- 1) 

where S is the particle spin and m the projection of the spin along the z 

axis. The charge distribution can be considered as having the shape of an 

ellipsoid of revolution centered at the origin, and thus 04/5 r R 2 , where 

= (C 2  - a 2 )/(C 2  + a 2 ), R = 	(a 2  + C  2  ) is the mean square radius, C is the 

axis of the ellipsoid in the z direction, and a is the axis perpendicular to 

the z direction. A positive quadrupole moment corresponds to a cigar—shaped 

charge distribution, and a negative quadrupole moment corresponds to a pan 

cake-shaped charge distribution.. 
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For g = 1, q = 0, our result (2.37) reduces to that obtained by Case. 12 

E. Classical Spin Equations of Motion 

In the preceding section we noted that spinning particles of the same 

4 	gyromagnetic ratiohave (except for the Darwin term) the same Hamiltonian, 

at least to order 1/rn 2 , This siggests the possibility of a classical spin-

independent descriptiOn of the magnetic-moment precession. Bargmann, 

Michel, and Telegdi 13  have recently given such a description, using a four-

vector s for the spin or magnetic moment. In quantum mechanics the spin 

has, however, more often been described as part of the angular momentum 

antisymmetric tensor S . We will here derive covariant classical equations 
II.LV 

of motion in terms of the more familiar S . While the equti:ns (2.40) we 
IJ.v 	 - 

obtain arè'apparently quite. different from the equations (2.42) obtained by 

Bargmann, Michél, and Telegdi, the two sets of equations are actually the 

same when s and S are related as they have to be. This ;will show then 
.LV 

that covariant spin-precession equations equivalent to those of Bargmann, 

Michel, and Telegdi can be derived from classical invariance arguments by 

using the more familiar S 	formulation for the spin angular momentum. 

We wish to generalize to an arbitrary Lorentz frame the equation of 

spin precession 

d/dt = (e g/ 2m) S x H 
	

(2:38) 

which holds in a rest frame, by using an antisymmetric tensor S
I.1 	

The 

tens or S 	 must have only three independent components, which in a rest
liv 

frame are s i , S ?
l 

s. This condition is expressed covariantly by the con-

straint 

V 

2 where u is the four-velocity (u = -1). 

(2.39) 

It is readily confirmed that the 

unique expression for the time variation of S 	consistent with the particle 
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equation of motion du/dT =e/m Fu 	and reducing to the form(2.38) in a 

16 
rest frame is 	 . 

dS /dT = - (eg/2) [S 	F 	-.5 	F .] 4LV 	 . 	.ia aV 	va c44 

- (e(g2)/2m)[uS 	- uS.] F 	u. 	 (2.40) 

Here T is the êigen-time. . 

Define a four-vector s by the relation 
CL 

s = - 
a 	 ap.v 

i/Z E 	
S v P 

u , 	 . 	 (2.41) 

	

. 	IJ.  

which then also satisfies a supplementary condition 

S U =0. 

The time variation of s can be obtained from Eqs. (2.40) and (2.21): 
CL 

ds /dT=-i/ZE 	.[u S +u S ] 
a 	 a1Lvp 	3 1.jv 	3 p.v 

	

= ie/4m e 	[gu (S F -S F ) 
ap.v13 	3 p.X Xv 	vX Xp. 

+(g-2)u F 
pX  
. u [u S 	- uS ]] 

	

X 	3 	pv 	v pj. 

	

-ie/Zm€ 	S F u 
aij.v13 	pv 	 . 

here A dA/d?r. Now use the two relations 

.s 	i e. 	u 	S 	 . 	. 	. 
p.V 	1.iVa.a 	P 	. 	 . 

EaPv 	= [8a ö pp 07 v 6 aX P. a 5pV 5 ap 8 VX 8 up 

+6 	ö 	6 	6 	] ap 13X cTv 	ao pX 	vp 	ao 	p Xv 

to obtain 	 . 

dsidT=e/m [g/2 F 	s(g/21) , s Fuu]. 	 (2.42) 

tli 
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13 
This is the result obfaned byBargmann, Michel, and Telegdi. 

We now show, in particular,. that Eqs. (2,40) and (2.42) both lead to 

the same coupling (spin-orbit coupling) between spin and momentum in an 

electric field, and thus to order 1/rn 2  For this purpose we express both 

equations in threevêctor form and keep terms linear in the velocity v' , : 

From Eq (240) we have 

d/dt 	 -e(g-2)/2rn['(' 	)-('')] 

= 

but 

- 	- 
Ex(s xv) =. 	s x(Exv).+rn/2e dv'/dt, 

- 2 - -- where v = s v - v (s ' v); and we have used v = e/mE, so that we write 

ds/dt 	 th/Zd /dt to terms linear in 

v. Now consi4er the case in which the spin changes slowly compared with the 

velocity, and the velocity periodically takes on the same values, so that we 

car drop the last term, 	
-2 

The spin precession result to order. m 	then be- 

comes 

ds/dt = eg/Zrn s xH±e(g-1)/2rn s x(Exp) 	 (2,43) 

for particles with a positive charge. Equation (2.42) expressed in the same 

way bcomes 

ds/dt 	e/m g/Zx+g/ 	(.')-(g/2-1)( 	)] 

= eg/2mx + e(g-l)/2rn'x(x') + m/2e d'/dt, 

where '= +(" v'). Thus, by dropping the last term in exactly the same 

way as we arrived at Eq. (243), we obtain the same result. Itis easily 

shown that (2.43) is identical with the result obtained from the Hamiltonian 

Eq. (2.37) through the relation ds/dt = i H, 	
- 
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III. Application to Decay: p.±_e±  + y 

A. (i -*e y ) Matrix: Element 

The Feynman diagrams for the process . - e + y  are given in Fig. 1; 

the matrix element for the process t - e with emission of a real or virtual 

photon is given by the expression 14  

= ie Ue 	- 5 )F uA, 	 . 	 . (3.1) 

where Uei  u are the electron and muon spinors respectively, and 

1P=-i(2.) 3 	if 0 (k V  Yk.)k2+fl/} k. 

Thus 

i F A = (2w) 	 ext./kZ+(f/Z) 	F 	. 	 (3.2) 
V 	~L V), 

Here k is the photon momentum, . the.muon mass, and 

F  
1. 	

=i(k A -.k A ), 
jV 	 V 	.L 	1L V 

ext 	
F 3 	=ik..  

V 	I.IV 

The form factors f 0  and f 1 , which are functions of k 2 , are responsible for 

monopole radiation (in the Coulomb 41,  ild of a nucleus) and dipole radiation 

respectively. The rate for .t - e + ' with emission of a reaJ photon is pro 

portional to 1  f 1  (0) J 2 and the rate for the coherent process i +n 	e +n is 

proportional to [f 0  4L ) *.f 1  4L ) ]: 

B. Branching Ratio 	
. . / 	.. 

e+,y 1xe+v+v 

If the 	e conversion proceeds through 	- v + B and v+Be, 

then the branching ratio between the unobserved decay 	-e+ and the 

normal decay can be written as 

__ = (3a/8)N 2 	 . (3,3) 

where a is the fine-structure constant, and N is a number independent of 
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the weak-couping constant. The amplitude N generãllydiverges logarithmically 

with A/rn, the ratio of cutoff to the B-meson mass. FeinbergZ  and Ge1lMann 3  

found (taciti' assuming unit magnetic, moment for the vector meson), for 

A nucleon mass, and m K-meson mass, Nz 1. Thisvaiue for 'N gives 

p 	10 , which is 10 times the experimentally measured upper limit for p 

Aside from the mild cutoff dependence there are two reasons in a 

one-neutrino theory as to why the above-calculated p need not be taken as 

evidence against the B meson. We have already pointed out that there is an 

infinity of free-particle B-meson Lagran.gians which differ in their definition 

ofnorri-xaP' magnetic moment. Also, if the B meson exists it must have 

a large mass (greater than the K-meson mass), and yet the gauge-invariance 

type of arguthent for its presencé 15 ,indicates that it should have a vanishing 

mass. This implies that the B meson must have a rather complicated 

structure, so that one should keep an open mind with regard to its electro-

magnetic properties. 	 . 	 . 

We. have recalculated the je . vertex as a function of magntic mo-

ment (1 +) e/2mc and electric quadrupole moment Q = - ( +q) (/mc) 2 , 

with the interaction Lagrangian given by Eq. (228). After a lengthy calcu- 

16 i 
	

. 
lation, the value of N obtained 	s 

N(l -- 2/8m2 ) f0+(l+2y+q/4m 2 ) f 1  . 

+ (3 -/ZmZ  + 1 l/6m 2 )I ± (22/3 + 4)(/m 2 )I' 3  + 1 

(3,4) 

where 	 . 	f Zn2 	4 	2 2 n+2
+im / 	d q./(q -m ) 

This result is correct to : order 	/rn 2 , terms of order (/m) 4  have been 

dropped, and the electron mass has been set equal to zero. The expression 

(3,4) for N is con,i,tent with. that obtained byMeyer and Saizman '7  and by 
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Ebel and Ernst, 18 
 who, however, did not calculate terms in p. 2 /m 2  or q. 

Because q was originally defined divided by the square of the boson mass 

m 2 , and the muon mass is the only other quantity of dimensions of mass in 

our calculation, q always appears in N multiplied by 2 /m 2 . 

C. Discussion of N 

In our calculation of n, y  and q appear only in the combination 

'+q2/8m2=(g-l)(l 	/8mZ)- Q/8. 	 (3.5) 

This means that the rate for p. — e+ depends only on this combination of 

moments. This result is apparently fortuitous, since in the monopole form 

factor f 0  this particular, combination does not occur. 16 

Finite N 

The integral 10 is logarithmically divergent so that, except for 

= 1, N is formally divergent. Since we have 

	

It = ()n/n( n+ 1) 	 (3.6) 

for y' = 1, we obtain 

7, 	7 

	

= l+2,i/9m. 	, 	 ' 	 ' 	 ' 	(37) 

which for any value of the boson mass leads to a branching ratio' p>10 3  

The cutoff independent calculation of N is thus in definite disagreement 

with experiment. 

Logarithmically divergent N 

N can be made vanishingly smal,l by retaining the integral I',, making 

it finite by the formal'  device of a covariant cutoff A. Consistency then 

requires that all integrals I be calculated with the same kind of cutoff. 

With the Feynman cutoff factor -A i-n /(q -A m 2 ) we obtain the integrals 

	

I = (irnZn/Z) f td4q/(q 2 -m 2 ) 2] Am 2 /(q 2 -Am 2 )] , 	(3.8) 

or 

10 = A 2/(1-A 2 ) 2 ] 1-A 2 +A 2  log A] 
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and 	
I 	(-I)A2/n(n1)(1-A2) 	 ml for n?i. 

By defining 	as that value of, y  which makes N vanish we find 

YO= A+BE, 	 (3.9) 

where 

A 	(Io+Ii+ 312)/(I0_ 2 Ii) ,  

B = 
	

- 2I
1

) 1  (11/6 1 
2 
 + 22/3 13  + 1014 ) 

- (1/212 4I 3 )(I0
+I 1 +3I 2 )(I

0
2I 1 )_ 2 , and e 	(/m)2<< 1, in 

fact, we expect the upper limit for E to be 1/25, since m must be greater 

than the K-meson mass. For two representative values of A, say A = 1, 

A2, we have 

1 0 	Ii 	12 	1 3 	14 
	

A. 	B 

A=l 	0.5000 -0A67 	0.084 	-0.050 	-0.033 	0.700 	-0.91 

A=2 	1.13 	-0 296 0.125 	-0 070 -0 044 	0.702 	-0 67 

This table shows that y0'  is insensitive to both the cutoff A and the square 

of the ratio of the masses E (as long as E is small). With E = 1/25, then 

for A = 	= 0.698 and for A = 2, 	=0:703. In the expression (3.4) for N, 

it is evident that we can write 

where 

R = 1 0 +1 1 +312 +e (11/6 I+22/3 1 3 +10 14). 

The term proportional to E in R will always be small in comparison with 

the other terms, so that in R we can neglect E. to obtain 

R = A/2(1-A2)4] {2A2(A4  -A 2  +3) logA2+(1 A2)(2A4+A2+3)} 

The branching ratio p. thn becories 

p (3a/8)R2(1 	
t/t)2 
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