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ABSTRACT 

The connection between Regge poles, bound states and resonances, and 

asymptotic behavior in momentum transfer is reviewed within the 'framework of 

the analytically continued S matrix, and a convergent iteration procedure 

•is given for calculating the position and residue of a Regge pole in terms of 

a given (generalized) potential. By examining the loxg-range potential in 

the iCIC system it is inferred that Regge poles should appear in the I = .0 

and I = 1 states, and 'that the latter pole may be responsible for the p 

meson while 'the former may well dominate high-energy behavior at low momentum 

'transfer in the crossed channels. The connection of this 'possibility with 

forward coherent (diffraction) scattering in general is explored, and a 

number of experimental predictions are emphasized. Finally it is shown that 

the short-range forces due to exchange of 4, 6, ... pions are likely to be 

repulsive and must be included in some form if a consistent solution is to 

be achieved.  
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I. INTRODUCTION 

In the S-matrix theory of strong interactions, dynamical resonances 

and bound states have been easily and naturally handled insofar as partial-

wave (one-variable) dispersion relations are concerned, but they have been 

a source of confusion with respect to double-dispersion relations. Froissart' 

showed that partial waves with J. 1 are completely determined by the 

doub1e-spectral functions; at the same time, as emphasized in the original 

paper by Mandelatam, 2  resonances or bound states require subtractions in the 

double-speôtral integrals if the usual convergence criteria are applied. The 

resolution of this dilemma was given by Regge for nonrelativistic potential 

scattering, where in fact all partial waves are determined by the double-

spectra1 function (even though inthe absence of a "crossed"channel,the' 

considerations of Froissart are inapplicable). Regge's explanation is based 
4 

on the occurrence of poles in the complex angular momentum plane and the 

association of such poles with resonances and bound. states. 3  

The point at issue Is essentially the asymptotic behavior of the 

scattering amplitude as cos 9 approaches infinity and the energy is kept 

fixed. This is a highly unphysical region but, as it is here that the double 
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spectral function fails to vanish, the question is of interest to us. The 

number of subtractions in cos e which it isnecessaryto perform depends on 

• the asymptotic behaviors As subtraction terms in cos S are just polynomials 

in this variable, they correspond to low partial waves, so that the number, 

of partial waves which are undetermined by the double-spectral function depends 

on the number of subtractions necessary. 

In Born approximation, the potential scattering amplitude vanishes 

asymptotically for large cos e, and it Is reasonable to suppose that the 

complete amplitude has this behavior if the potential strength is sufficiently 

smalL. It is evident, however, that such a behavior cannot persist as the. 

strength of an attractive force increases since, if there Is a bound state of 

angular momentum £ ., the scattering amplitude contains a pole term with 

resIdue P 2(cos e) , whose asymptotic behavioris (cog 	If we assume 

that the asymptotic behavior does not change suddenly when a bound state 

appears, we reach the conclusion that the asymptotic behavior becomes 

progressively more divergent as the strength of attraction increases Regge's 

results give one great Insight Into the nature of this divergence, and show 

that it does not in fact necessitate undetermined subtraction terms. 

.Although the existence of Regge poles in the relativistic S matrix 

has not been established, It appears plausible that they should occur, and 

we propose here to discuss 1C7C scattering on such a basis. In particular, 

we shall 'show that the' 1 = 1, J = 1 resonance can plausibly be associated 

with a Regge. pole. It will also be argued that in the I = 0 state there 

may be a Regge pole which, because of Bose statistics and the necessity for 

an independent subtraction, does not correspond to a resonance or bound state, 

but whiàh may be connected with high-energy diffraction scattering. 
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An important practical consequence of an approach in which Regge poles 

are recognized is that partial-wave calculations for J . 1 are no longer 

necessary. 9.omputational difficulties associated with nonzero angular 

momentum in the N/D method thus can be avoided. 

We list now those conclusions of Regge that are most important from 

our point of view. 

The elastic scattering amplitude at a fixed energy, if regarded 

as a function of £ , may be analytically continued into the complex 2 plane 

for Re 2 > -1/2 	The only singularities are poles that for positive 

(physical) kinetic energies are confined to the upper half plane (Im 2 > 0); 

these poles migrate to the real axis for negative kinetic energies0 

On the basis of the Sommerfeld-Watson contour representation 

In the complex 2 plane, the amplitude may be divided into two parts with 

different asnptotic behavior0 The first part is an inteal, along the 

vertical line Re 2 	1/2 , that vanishes as cop e.. -'oo. The second part 

consists of pole contributions that generally do n9t vanish at infinity, 

these being ofthe form 

• E 01/5mn i a) Pa 	cos 0) , i 	 I 
•( I 01) 

where a is the position of the ith pole, in the complex 2 plane. It may 

be described as a complex angular mOmentum for which there exists a bound state 

at the given energy. • Both a and . depend on the energy. As stated above, 

each a1  is real for negative kinetic energy but acquires a positive imaginary 

part for physical energies. (The Sommerfeld-Watson representation is, strictly 

speaking, valid only for positive kinetic energy, but the conclusions employed 

here about the connection between Regge poles, bound states and resonances, and 

asymptotic behaviOr can be justified by an analytic continuation in E 0) 
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If an individual (physical.) partial wave is projected out Of (1.1), 

using• the fornrla  

+1 
I P(z)  Pa(z)dz 	!  

2)(a + 2 + 1) 

for 2. integer, 2 0 , one finds - 

13 
(r. 3) 

I 	(a1 2)(a+2 ~.l) 	 . 	 . 

•a result that is irmnediateiy interpretable in terms of bound states and 

resonances. Consider a particular Regge pole and suppose that at some 

energy E = Em 	Re a is equal, to an integer in 	• In the neighborhood 

of E we may vrite 	 . 	 . 	 . 	 . 
in  

Re a(E) 	in + (E E 	Re a/dE)E 

Im a(E) 	urn a(E) 	 (1. 4) 

and 	 . 	 .. 	 .. 	 .. 	 . 	 . 

(E) 	
m"  

so the Regge pole contributes to the Lth wave. a term,, for E near Em 

(E )/a(E ) + 2 + 1 
- 	 - 	----------- 	

-', 	 (i) ' . 

rn 1 + (E 	E)( d Ie a/dE E 
' 

+ i liii a(E) 
m 	. 	 . 	 . 	. 

which, for 2 = in , has the familiar BreitWigner resonance form .wth a 

width 	. 	 . 	 . 

r = Ixn.a(E)/(d'Re a/dE)E. 	• 	, 	
. 	 . (.i•6) 	. . 
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For negative kinetcenergy, Im a vanishes and we have a bound state (i.e., 

a pole in E on the real E axis). 

• 	The above reasoning enables one to extend our previous result that 

if, at given energy, there existed a bound state of angular momentum £ , the 

scattering amplitude would contain a term behaving asymptotically like 

P2(cos e) 	We can now say that if there exists a resonance of angular 

momentum 2 (at a given energy), the amplitude will contain a term behaving 

asymptotically like Pa(cbs  e), where a is complex and Re a 2 . If the 

resonance is narrow, Im cx is small. 

Regge was able to prove that (d Re a/cIE) E  is positive for a 

bound-state pole, and gave qualitative arguments to show that the same would 

be true for sharp resonances--which normally occur at low energies. One 

may conjecture that when (d Re a/&E)E  is negative one is not dealing with 

a resonance but with the familiar h1,gh-energy return of the phase shift 

through 90 deg that always occurs in potential scattering. We add the remark 

that an analysis of the Born' series suggests that Re a 	-1/2 at sufficiently 

large IEJ 

For superpositions of Yukawa potextials all Regge poles are comieáted 

with bound states and resonances, and thus may be presumed to have the 

following general behavior in the complex £ plane with E. real: For an 

attractive potential a particular pole passes through a = -'112 at some 

negative E , and moves to the right along the realaxis as E increases. 

When E reaches zero the pole. moves into the upper half plane, perhaps 

continuing its rightward movement temporarily but eventually swinging back 

through the vertical line, Re £ = -1/2 . For weak potentials the pole will 

leave the axis before reaching even £ = O and there az'e  no bound states. 
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since it has been discussed in Ref. 8 and will arise again in what follows.' 

In the following section we review the S-matrix approach to'. 

nonrelativistic potential scattering,, showing how the Regge poles are to• 

be extracted and how they are related to the partial-wave N/D' problem. The 

final section discusses possible Regge poles in the relativlstic ,irit 

amplitude. . 	 . 	..: 	. 	.. '. 	. 	. 

II • CALCUlATION OF REGGE POLES IN 

NONRELATIVISTIC POTENTIAL SCATTERING' 

It has been shown by Blankenbecler et al.9  that, for nonrelativistic 

scattering by a superposition of direct Yukawa potentials, the double-spectral 

function.is determined by the following equation, first derived'in'Ref.2: 

	

2 	,, 	2 
p(q2,t) = 	, ff at" it" 	,q D(t ,g  2ifq 	. 	K /  

The integration is restricted to that part of the region t
1/2 	 tnV2  

for which  

K(q2 ; 	 ") 	t2  + t' 2 .+ t1?2  - 2(tt' + tt" + t't") - (tt't"/q2 ) 

2'  is positive. The function. D(t,q.) is the dIscontinuity in the amplitude 

in crossing the positive' t 'axis with q2  fixed: it is related' to the' 

potential and to thedouble-spectral function by  

= v(t) 	dq ' + 	f ''2 	 ' 	' 	' 	'(ii.)' 

where v(t) determines the configuration' space potential V(r..) through the 

formula 	' 

4/ 
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V(r) = 	fdtv(t) exp 
1/2

Jt 	r] 
 

2M 	•. 	r 

a 

Generally speaking there is some positive threshold, t 0  , such that v(t) 

vanishes for t < t0  We shall speak of as the "range' of the 

potential. 

As has been explained in Ref. 2, the pair of equations (11.1) and 

(11.3) uniquely determines D(t,q 
2

)  since the nature of the integration 

region in (11.1) ensures that n iterations give a result exact for 

t < (n + 1)2 t0  . In other words the Born series for ( -t,q2) certainly 

converges (although not necessarily uniformly in t) regardless of the 

occurrence of resonances or bound states. It is well known, on the other 

hand, 'that the Born series for the scattering amplitude A(q2,t) ' does not 

always conve'ge, a circumstance that at first sight is puzzling if one 

expects the unsubtracted dispersion relation 

2 
Df = 	f dt  

to' be meaningful. In Eq (i7) above., however, we have seen that when Regge 

poles occur with .Rc a ' 0. the integral (1.1.5) is not defined in the 

elementary sense but only through analytic continuation; so precisely when 

the first resonance or bound s't;atc appears the possibility of expanding 'D 

in a power series no longer implies that A similarly can be expanded. 

. Nevertheless, a knowledge of D(t,q' 2 ) implies a knowledge of 

A(q2,t)., as we sa1l.now,shw, so the iteration ofEqs. (11.1) and (11.3) 

actually forms the basis for a practical method of ca1cu1ation-w.ith or 

without bound states or ,  resonances. . The essential point is that, according 

3  to 1egge, 	,.., 	,. 	.. 	....• 	. 	.. 	' 	., 	" 	.., 	' 	. 	. 
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2 

A(q2,t) = A'(q2,t) + E 	 2Pa • ( 2)( 	- ) 
I sin t cx1 (q ) 	

q 

(II 6) 

where A • ( q2, t), is the backgound term that vanishes as t - co (we may 

also allow A' to contain Regge poles with Re O <0 ). Then by reference 

to ('.7) 

(t,q2) =, '(t,q.2) - 	1çq2) Pa(q2) (1 +L2q ) , 
	

(".7) 

with the integral 

A'(q2,t) = L f t •  
'C 	 t I -t. 	.' 

(ii.8) 

defined in the elementary sense. Thus If It Is possible to decompose 

2 D(t,q ) according to (11.7) --so that one has a separate knowledge of 

' (t, q2 ) , 	( q2,) ,• and cx1 ( q2.) - -then one can construct the amplitude 

A(q2 t) 

An elementary methd for determining a(q2 ) and 0 1(q2 ) may be 

based on the dominance of the Regge poles over the background term for 

large t 	Suppose that there is only one pole for. which Re a 0 ; then 

for sufficiently large t this pole will be dominant in formula (11.7), 

and one may calculate the position a( q2 ) . and the strength 	( q) by 

equating, at large t ,.the calculated (t, q 2) with .- Pa[1 + (t/2q2 )] 

One then subtracts out this pole term at all t to.obtain the background 

tem Bt (t )  q2 .) 	If there Is more than one pole, the one for which Re a 1  

is largest can be determined first and subtracted; the remainder will then 

be dominated by the pole with the next largest Re a , and the procedure 



UCRL-9925 

1l- 

an be repeated until-all poleparametersare determined. In an actual 

numerical calculation one may wish to use a more. elegant approach, but there 

seems nothing in principle to prevent, the extraction of the necessary 
10 

. 	2 information from the iterative so1utionfcr D( t 9  q ) 

Note that when the potential problem is approached, in this way there 

Is no need to treat any.partiai waves separate1y In:principlean alternative 

to separating and identifing the Regge poles Is to calculate individually 

by N/D met1d all waves for £ . (Re a)max 	When these low partial waves 

are subtracted out of formula (11.5) the remainder of the integral 

(containing all high waves) converges in the elementary sense. The necessary 

ingredient for the N/D partialwave calculation Is the discontinuity across 

the left4iand cut; this is given for the 2th wave by- 

2 

ImA(q) 	 f dtP2(l + —)(t,q2) , 

q2< 	 q 	 2q 

(11.9) 

and, presents nc diffiuity of p:rinipie. if, as canje lctured in Sec. I, the 

Regge poles all retreat thr '.gti the vertical line, Re £ = 	, for large 

21 	
In this case Im A(q ) vanishes sufficiently rapidly as q 	-co  

so that the N/D Integral equations are no.nsingular. In practice, however, 

for all £ > 0 , delicate cancellations must occu between the right and 

left cuts to produce the correct threshold behavior. A2(q2) oG (q•2)2 

near q2  o • The N/D equations then become awkward from a numerical 

Sfl ;  ixi áppróach that 'do no IFfarate  partial waves is preferable. 
o 	T1s 	efIeoI eiit 	{d wolsci 	sd 111w ztlud 	iwJ:leb 1LI 

.td3 3d h1ucrfs sw os ev!aIrgsi 1d&fqq 	J:aJoq 	eiøth sceii 

4.(1iI1) to s±sd e1 cxo ano±za(rp sv±1I3EJp 	 ot 
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III • REGGE POLES IN RELATIVISTIC it,t SCAT'IRING 

We now illustrate by a discussion of vo scattering our conjecture 

that Regge poles occur quite generally in the relativistic strong-interaction 

S matrix. Consider the three amplitudes A'(s,t) which represent pure I 

scattering (I = 0, 1, 2) in the s channel. Two of the authors have defined 

a "generalized potential, t' here to be denoted by v'(t,$), which is to be 

used in equations of the type. (11.3) and (iI.i) in place of the notrelativistic 

potential v(t). 8 The "long range" part of the generalized potential, exact 

for t < 16 rn 2  , Is associated with 2-pion exáhange, and is given by 

V29 
	= 	z PIII De21t(ts)  

I!=O,l,2 

11 
where the crossing matrix 	has the form, 

/1/3 	1 	5/3\ 

Pir
= 	

( 1/3 	1/2 	-516 
) 

1/3 	-1/2 	116 / 

(111.2) 

• and D g'(t5) is the elastic absorptive part for Isotopic spin I scattering 

in the t channel. As discussed below, the imaginary part of v 27 (t )  a) , 

which develops at large a , produces inelastic scattering in the s channel 

that is not properly bounded by unitarity. An approximation which replaces 

V1  by v2itI then leads to inconsistencies in the case of actual physical 

interest. Contributions from v 	, v', etc. must be added, to correct 

-this deficiency, but It will be argued below that the low-energy effects of 

these shorter-range potentials are probably repulsive, so we should be able 

to discuss qualitative questions on the basis of (II1.1). 
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If Regge poles in factonthateasmptoti behavIor 'in the relativistic 

amplitude, as discussed above for the nonrelativistic ease, then for the 

interval in s 'such that a small n'unber 'of poles are consistently to the 

right of all other singularities (ctnd within the region of analrtacity in £ ), 

it follows that  

A1(s,t) 	 F 
• 	 (111.3) 
t-oo 

if a1 (s) is the position of the pole farthest to the right in the £ plane 

'Ir 	 . and D (t,$) is the discontinuity in A I'(s,t) 'Ln crossing the positive t 

axis. An appropriate general definition of the tt strip" region discussed earlier 

12 in a qualitative way by two of the athcrs would be just this interval in a 

(The earlie:r definition oç the 'str1p was linked to the approximation 

I 	 We now wish to disolye.this link.) If 'the analor with 

nonr'iat1vistic potential scattering holds, we expect a 1(s) to increase 

with the strength of the generalized potential v 1(t,$) , when v1  corresponds 

'I'. to attraction; fur'theiore, we expect da ./ds to be positive for & < 4 

For a > 1 , ar(s) becomes complex, bu't'the real part is continuous.and 

should :reacth a maxüiium value at some moderate value of a , eventually falling 

'to a negative value for a suffic:iently iare. 

F:rom the elerhe'ts of the arossing matrli (iii.) one sees that all 

- 	 . rontribut tons to 	 'r attract1v and stronger thr ' 
 (or at least as 

strong as) in the other two i spin stats 7hu5 if any Rgge poles develop, 

the one standing fartiest to. the right in the 2 plane at a given, s should 

be in the, I = 0 state. If a °(s) Is still positive fOr some range of 

negative a then in the crossd chanieJ. (wnre t ccrresponds to energy 
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and. $ to momentum transfer) the high-energy behavior at fixed (ith) momentum 

transfer evidently will be controlled by the 1= 0 Regge pole. We now 

examine the connection between this possibility and constant limits for high-

energy total cross sections.  

From the optical theorem it follows that. 

D1(t, s=0) = (q th/2116 t) at(t) ., 
	 (111.4) 

where D'(t,$) is the complete absorptive part in the .t channel and 

CF 	is the total cross section, both quantitites for isotopic spin I in  
tot 

the t 'channel. Then, since  

:(t,$) = 	E 	13 	D'(t,$) , 	 (III 5) 

a glance at the elements of' 	in (111.2) . shows that no cancelation can 

prevent a behavior  

"-1=0 D 	(t,o) oC t , 	as 	.t-co 	, 	 . 	(111.6) 

if eachtotal cross section atot approaches a constant. Such asymptotic 

behavior, pointed, out in an earlier paper by two of the authors, 12  implies 

that  

	

= 1 	 , 	(111,7) 

At first sight this last requirement seems to predict abound P state of zero 

total energy, but symmetry requirements e1iiiinate all odd 2 waves with 'I = 0. 

Because of the presence of exchange as well as direct fóres, the potential 

determining even physical values of £ is different from that determining 

odd values of 1 . Nevertheless we must ask the question: Is it reasonable' 
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to expect a direct potential equal to v °  , if it were 'effective in both 

odd and even 2 states, to be sufficiently attractive as to bind a P state? 

We believe the answer to be affirmative because qualitative arguments have 

shown that a "bootstrap" mechanism probably can sustain an I. = 1 P-wave 

resonance in terms of itself 13  In other words, a potential 

v(t,$) 	D ='(tS)  

when D e2-  contains a P-resonance contribution, is attractive and has 

roughly the r.equixed strength to,. produce, the I = 1 P resonance In question. 

Now 13Ol : 2l, so the corresponding ontribution to . v °  is ttice as 

attractive as (111.8) and might well produce a bound P state 

The above argument Implies that 

	

a1 o) < 1 , 	. ' 	 . 	(111.9) 

which is consistent with the.experlrnental requirement that . Re a 1(28) = 14 

and the theoretIcal .expectat±on that for, s < 28 , 4 Re aids is positive. 

Since 0
2l = 	

, the potential v 2  is probably repulsive and no Regge 

pole will even appear in the I 2 state. Thus we expect 

 

'2(t,o) 	.> 0 
t'OD 

and In view of the relation 
4 

 

 

= (16 	t1'2) E tot  

there folláws from (111.5) the expectation that 
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1=0 	 1=1, urn 	a 	= 	urn 	a 	(s t) = 	urn tot 	 tot t-co 	 t-'oo 

1=2 
at 	(t) ot  

(111.12) 
'I) 

By such a mechanism, therefore, one expects to achieve both Pomeranchuk 

15 
conditions. 	- 

should depend on the detailed structure of the crossing matrix. When one 

realizes, however, that coherent elastic scattering is uniquely associated 

with-states in the crossed channel that have thequantum riumbers'of the 

vacuum, then a select role for I = 0 in asymptotic considerations is no 

longer surprising. Ponieranchuk's second condition,, after. all, is equivalent 

to the assertion that completely coherent elastic scattering predominates in 

the forward direction at high energy. 

We now remark on two consequences of the assumptiOn that d 0/ds > 0 

for s < ii. 	The first is that in view of (111.7) we expect 	to vanish 

at some negative value of s, a circumstanôe which would correspond to an 

unphysical bound S state of imaginary energy. Gell-Mann has pointed out to 

us that if the residue of such a pole were to vanish.there would be no 

conflict with unitarity. 	If the residue does not vanish we cannot determine 

the I = 0 S wave from D I=0. 	, but must use the N/D method. 

The second consequence of the positive derivative of a 	with 

respect to a is that the width of the high-energy elastic diffraction peak  

will shrihk indefinitely with Increasing energy--albeit only logarithmically. 

Since the first Pomeranchuk condition ensures that the real part of the amplitude 

near the forward direction is negligible with respect to the imaginary part, 

we have 
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do I 	D'(t,$)  2 , 	s = _2q 2(l - cos 
t - oo 

(111.13) 
1=0 

f(s)t 
a 	(s) - 1) 

If a 	is a slowly varying function of s , we may write for small Isi 

a °( s)  

and thus deduce the small momentum-transfer behavior 

) f(s)t 

	

ds 	. 	 . 	 . 

t'OD 

= f(s) éxp(s 2. € £n  

Integration of (iii.i) over the elastic diffraction peak yields the related 

	

prediction 	 . 

I 	 -1 

	

ae2 	
I 

tot 	 (€ £n t) 	. 	 . (iii. 16) 
t - cx 

Evidently, the rate of shrinkage is small; nevertheless, precision experiments 

at very high energy should detect such an effect. 17  It is pbssible to argue, 

as pointed, out by Ive1ace, 	that experiments already are giving support for 

the form (i:ri.i) through the observed exponential behavior of the tail of 

diffraction peaks. Such behavior is difficult tounderstand in any classical 

model but follows immediately from the Regge pole.hyothesis. . 

As discussed by two of the authprs, all forward .diffration peaks 

(iN, ,NN, iri, I, etc.) are contio1led by the Regge pole under discussion here, 

if any are) 9   The universal character of the slope € (and of course higher 
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derivatives if they can be measured) is another striking feature of our 

mechanism. One must keep it in mind, of course, that the diffraction peak 

may well be produced by a more complicated mechanism than envisaged here. 

Experiments to test the characteristic features of formula (111.15) are 	
fi 

therefore of crucial importance. The predictions discussed above are so 

startlingly nonclassical in nature that their confirmation.would provide 

convincing evidence for the Regge pole hypothesis. 

We return finally to discusd the inconsistency in the equations, as 

they are at present formulated with V1  =V, ., in the case where there is 

a P-wave resonance. The difficulty arises eciit.Luily from the equation 

	

Pe 2 5 t) = 	2 	1/2 H 	
" 

" 	'(t',$) 	(t",$) 

cq8 (q5  + 1) 	 2 ; 

(111.17) 

which is the relativistic analogue of (11.1). Here D is given by 

- 	I 

(t,$) = v'(t,$) + 	I ds 	
e2 	

, 	
(111.18) 

the analogue of (11.3),.  and V1  is in turn given in terms of D 21 (t,$)

1.  
by the crossing equation (111.1). Now, D e 21(t,$) will behave like 

a1(t)  
as s approaches infinity and, if there isa P-wave resonance, 

the a1  will be greater than 1 for some. values of s • We have indicated 

that the same may well be true for D . From (111.17) one may deduce that 

if D and D behave like s a(t)at large. s the contribution to the 

integral for p 	from .t' = t" = t will behave like 
5 (t1) - 	This 

value of t' and t" will contribute if t >Ii. t • If p (s,t) behaves 

	

2(t)-1 	
1 	e 

like s 	for t > 4t, , it follows from (111.18), even if subtractions 

are made, that D(t,$) has the same behavior for such values of t . On 
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putting this behavior of D into (111.17), we find that p 	 behaves like 
e 2  

when t > 16 t1 	The procedure can be repeated and, if 

p 

	

	 Be a(t1) > 1 , it appears that the asymptotic behavior of p and D as a 

function of s becomes worse and worse as t increases. 

It is unlikely that the oscillatory behavior of D will decrease the 

asymptotic behavior of p given by (111,17). The simplest way of seeing this 

is to make a Froissart transformation by which the integral in (111.17) is 

replaced by another containing a 5 function,' °  so that, for any value of t', 

only one value of t  contributes. The asymptotic behavior is unchanged by 

this transformation. Writing this functional relationship as t" = t(t') , 

and denoting a[t"(t')] by y(ti),  we observe that the contribution to the 

integral on the right-hand side of (111.17) from a particular value of tV * 
a (t') + 7(ti) 

behaves like s 	 , The integral of such a function over t 

will ordinarily be dominated by that value of tV  for which Re a + Re y 

is greatest, and cancelations will in general not occur. 

If one seeks the physical origin of the inconsistency of our equations, 

II. the most likely culprit is the ±ailu:re of the approximation v 	v2 	to 

put a unitarity bOund on inelastic scattering. The trouble develops as soon 

as the real part of any a' becomes greater than unity, and Froissart has 

shown that unitarity requires a' (s=O) . 1 , a constraint that is lacking 
I 

in our approximation. To remedy the problem one must take some account in 

the inelastic processes of nTultipion exchange. An exact treatment is, of 

course, out of the question, but it may be possible somehow to impose the 

correct unitarity bound. In tennsof our generalized potential, v1(t,$), 

the required unitarity damping in the inelastic part comes about through 

1, 6, etc. contributions; it seems plausible that such contributions 

appear as repulsive forces, since their effect has to limit the magnitude 
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of a(s) at low energy. One may speculate, in fact, that there may be a 

universal repulsive core in all two-body forces due to exchange of multiparticle 

systems with -the quantum numbers of the vacuum. It is for these quantum 	 S 

numbers that the Froissart limit is most closely approached, so the compensating 

• reaction of niultiparticle contributions should here be the strongest. 
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