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ASTRACT 

One of the techniques by which highly ionized plasmas can be generated 

in the laboratory makes use of strong. electromagnetically driven shock waves 

propagating Into a cold gas. U a magnetic field already exists in the undisturbed 

region these shocks will in general not be gasdynamic In character but the current-

carrying interface will coalesce with the ionizing front. The process has certain 

features in common with detonation waves, and differs from previously analysed 

hydromagnetic shocks in that the electric field in the undisturbed region need not 

vanish. If the initial magnetic field has a longitudinal component the gas must be 

permitted to acquire a transverse velocity. Moreover, since such shocks are 

almost always compressive, the plasma will usually also have a forward velocity. 

In closed-end tubes, therefore, the front must be followed by a rarefaction wave in 

which the longitudinal flow Is brought to rest again. 

In this paper the phenomenon is analyzed as a one-dimensional single-fluid 

hydromagnetic problem neglecting die sipation behind the wave. Zero conductivity 

Is assumed for the region in front of the wave, and thermodynamic equilibrium is 

required behind. The problem is not determined unless an additional condition is 

Imposed. We hypothesize that the rarefaction wave remains attached to the front. 

In the limit of essentially complete Ionization behind the front, the problem can be 
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solved analytically as long as the transverse magnetic field there remains small 

compared with the longitudinal fIeld. In this case the front velocity plasma 

density and temperature, and the electric fields—as well as the structure of the 

rarefaction wave—can be expressed as simple functions of the initial magnetic 

field, the discharge current, the ionization energy, and the initial gas density. 

It is of particular Intetet to note that in this limit the comprescion is found to be 

very modest [ p 	p 1  (y + 1)/y J and the trailing edge of the rarefaction wave 

propagates at half the speed of the front. It is also possible to generate non-

compressive Ionizing waves 1  provided that the magnetic field in the undisturbed 

region has a transverse component that is being appropriately reduced by the driving 
current flowing in the ionizing front. 
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INTRODUCTION 

In recent yoare it has become convenient to produce and heat highly 

ionized plasmas by means of electromagnetically driven shock waves. A 

great variety of shock tubes have been developed, and actually many pinch 

discharges and rapid- compres sion experiments fall into the same category. 

In the analysis of the dynamics of the phenomena it is usually assumed that the 

current-carrying region can be regarded as an impenetrable piston. This 

assumption is strictly justified only if the conductivity there is essentially 

infinite, and if no magnetic field exists in the undisturbed region. If a finite 

magnetic field is present ahead of the disturbance, however, in cases of interest 

some of the current will have to flow in the shock front itself. This is true even 

if the conductivity is Enfinite. and irrespective of whether the gas is already 

conducting or whether it is ionized by the shock itself. 

This means that the shock is a hydromagnetic phenemenon. and the first 

current interface does not represent an impenetrable piston at all. Moreover, 

if the initial magnetic field has a component parallel to the direction of 

propagation of the disturbance, no real magnetic piston can exist anywhere. 

The piston-like discontinuity, or driving interface, in that case Is replaced by 
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a continuously expanding region of nonateady flow, a rarefaction wave. In which 

the applied magnetic field spreads at a finite velocity through the propelled plasma. 

The flow pattern of plasma In a shock tube under these conditions has recently 

been analyzed for the case in which the gas ahead of the shock I. already highly 

conducting. In this paper we investigate the phenomenon for cases in which the 

gas ahead of the shock is not yet ionized, I. e. • where the undisturbed region has 

essentially zero conductivity, and the ionization is assumed to take place in the 

front itself. We will use the term h'ydzomagnetic ionizing front. 

From the theory of gaadynamics it Is well known that the speed of a plane 

shock, or the ratio in which the energy is diBtrIbuted between internal energy 

and mass motion, is not uniquely determined by the conservation laws alone. 

In addition to the state of the undisturbed gas, either the shock speed of the 

flow velocity or the pressure of the gas behind the shock must be specified. The 

energy driving the shock and heating the gas can then be considered as being 

supplied by the flow itself (or by the piston). If, on the other hand, the shock is 

driven primarily by an independent energy release in the front itself, as for 

instance in the case of detonatIons, neit4er the shock speed nor the flow velocity 

nor the gas pressure behind the shock can be specified as given condition. 

Therefore some other criterion must be found to render the problem unique. 

In the theory of gaseous detonations the Chapman-Jouguet hypothesis is used,, 

* 	according to which the gas leaves the combustion zone at exactly sonic speed. 

In hydromagnetics the electromagnetic energy driving a shock is likewise 

released in the front itself. In these phenomena either the flow conditions or 

the magnetic field behind the shock, but not both may be considered as specified. 

The additional constraint needed to determine the hydromagnetic shock flow 

uniquely. In almost all analyses to date, has been the requirement that the 

electric field must vanish in the frame of the medium ahead of the shock as well as 

behind it. In other words, the gas has been assumed conducting in the undisturbed 
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as well as In the shocked region. A very complete discussion of all the different 

types of shocks that may exist under these conditione has been given by Bazer 

and Eric son. 3 

If, on the other hand, the undisturbed gas has negligible conductivity, 

the electric field there may be finite and cannot be specified aori. We conclude 

thtt In the analyses of hydromagnetic ionizing fronts, just as in the theory of 

detànations, another criterion must exist that aeterminea the phenomenon uniquely. 

We repeat: hydromagnetic Ionizing fronts differ from ordinary hydrornagnetic 

shocks not only because some energy must be lvested in ionization (and perhaps 

dissociation of molecules), but primarily because the electric field in the un-

disturbed region cannot be diTectiy related to the shock velocity and the magnetic 

field. The last statement Is equivaleüt to pointing Out that the un-ionized medium 

ahead of the Ionizing front does not permit any propagation of hydromagnetic 

signals. It is theser latter features, and not the energy conversion in the Ioni-

zation process, which make the phenomenon similar to gaseous detonations. 

In this paper, then, we limit our dicuslon to magnetically driven 

ionizing shocks under the condition that a magnetic field exists In the undisturbed 

region ahead. Moreover, we focus our attention on cases where the field is 

414 

	

	
not parallel to the plane of the ionizing front. It is certainly possible to devise 

experiments In the laboratory in which a hydromagnetic driver is constrained to 

move In a direction with a component parallel to a magnetic field existing ahead 

of It; 4  in some experiments the propagation is exactly along the magnetic field 

ahead of It. We will show that such an Ionizing wave may provide a unique and 

very useful way of producing a magnetized uniform plasma if certain require-

ments are fulfilled. In fact, this latter aspect has motivated the present 

investigation. 
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THE MODEL 

In the analysis we restrict ourselves to a simplified one-dimensional 

model. The geometry is beat explained with the help of Fig. 1. The gas is 

considered to be confined between two Infinite conducting planes, both parallel 

to the xa piano. The Initial magnetic field Is also parallel to the xz plane, 

the applied electric field Is always parallel to the y a'ds, and everything is 

assumed to be independent of both the y and z coordinates. This means we 

are looking at plane wave motion and are choosing our x coordinate along the 

direction of propagation. It also implies that we ignore the viscous drag at the 

flow boundaries, and any variation of the fluid properties, such as the electrical 

conductivity, that might appear in the neighborhood of the surfaces. 

The gas ahead of the wave is aseuned to be at rest. In equilibrium and 

nonconducting. Furthermore, we assume that immediately behind the shock the 

gas Is again in thermodynamic equilibrium, so that it obeys an equation of state 

and so that its relevant physicat properties such as composition, electrical 

conductivity, etc. can be computed from equilibrium considerations. This means 

we are limiting ourselves to densities high enough to ensure sfficieritly rapid 

equilibration rates. We need not make any assumptions concerning the shock 

structure In this case, other than requiring that the shock thickness Is finite and 

constant. The exact mechanism of Ionization is not under dicuseion here. The 

requirement of equilibrium behind the front implies that the current there is zero 

if the flow is steady. This means that the electric field must be zero in the 

frame of the moving gas behind the front even if the gas has finite resistivity 

there. Therefore, the shock Jump relations are always automatically independent 

of the transport properties, such as the conductivity. 6 
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It is not immediately obvious that a steady wave should propagate In a 

shock-tube experiment in which, for Instance, the current input Is kept constant. 

Because shocks are usually compressive, the front must ordinarily be followed 

by an expansion wave with its ñonsteady flow, unless a suitable additional driving 

piston is provided. However, it has been shown that in the limit of negUgible 

d.issiption, I. c1, isentrèpic condition& in the expansion region, the flow there 

can be described as a centere4 rarefaction wave. 11  This means that, in this 

e. 	 approximation at least, the entire flow pattern spreads at a uniform rate and 

draws constant total current, so that a steady shock can indeed be driven ahead 

of it. Accordingly, we treat the problem in two steps. First we di6cusa the 

shock relations under the aesumptionof steady flow. tere we include the effects 

of dissociation and ionization and point out the conditions under which vtea4y 

propagation ould be poseible. Then we look at the expansion wave, assuming 

negligible resistivity, viscosity, and thermal conductivity. Finally we combine 

the two regions to describe the entire phenomenon. The model is depicted 

schematically In Fig. Z. The situation and the analyses here are therefore very 

similar to those treated by Kemp and Petachek, the only difference being that the 

latter assume complete dissociation and ionization ahead ofthe wave, whereas we 

require negUgible electrical conductivity. 

I 
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SHOCK RFLATIONS 

In accordance with Fig. Z, we distinguish quantities in the regions R 1  

and R ahead of an behind the shock by the aubcripta 1 and Z, respectively. 

Since we assume the shock to be steady, it is most convenient to start out by 

describing the flow in a frame of reference In which the front,is stationary (see 

Fig. 3a). The baeicquatious are then independent of time and, in our one-. 

dimensional problem, may be integrated inmiodiately to give the familiar 

symmetric jump conditions connecting the quantities in regions R 1  and R. 

It is easily shown that these relations do not depend explicitly on any of the 

irreversible processes occurring in the transition as long as no energy is lost 

by radiation; i. e., they are true conservation laws. Thsee are then readily 

transformed to any other frame of reference in uniform motion with respect to the 

shock. It is instructive, and in fact algebraically economical, to express the shock 

jump conditions in a coordinate system fixed in the undisturbed un-Ionized gas. 

which we shall call the laboratory frame. If we denote the speed of the shock in 

this frame by U and the velocity of the plasma by V. I. e., V 1 = (0,0.0) and 

V 2
4,

(v 2 , 0, w2), (see Fig. 3), where all speeds are assumed to be small compared 

to the speed of light, these shock relations are 

HX 	11x2 	x' 	 (1) 

p 1 U p2 (U-v2), 	 (2) 

p 1 Uv2  p3-p1  + } (H2 	H51 	 (3) 

-p 1 Uw2  a iH x (H - H) , 	 (4) 

p 1 U + V + . w22) + . 	 - H51 2  ) 

+ E2H52 - E 1 H51 . 	 (5) 

+IiU(H - H) i(v2H 2  - w2H) . (6) 
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We have retained the symbols E 1  and E for the electric fields on 

purpose, because these may be observablee and because we want to point out 

the relsuonehip to ordinary hydromagnetic theory. We have also written e for 

the internal energy per unit mass so that eI = p1/(yl)p 1 . Since the gas is 

being ionized in the shock transition we propose the following equation of state 

for the gas in region B'2 : 

e 2 =e0 + [p2/(y2-l)p2J . 	 ( 7) 

1. 	

This means that we are acewning we can describe the plasma as a polytropic 

ideal gas with an additional 'frozen.in" internal energy e0o  as, for instance, 

stored in dissociation and ionization. In general, both V. and a will be 

functiona of p 2  and p2. of course, and the system (1) through (7) must be 

supplemented by a set of equations which determines these relations. This 

requires numerical means, 8 
 and does not add any profound Insight into our 

problem. In the analysis discussed here we simply consider both e 0  and y2 

as given fixed quantities. The latter is, in fact, a valid appro'imation U the gas 

in B 2  is hot enough to be practically completely dissociated and fully ionized. 

In that case we simply have e = e + ed. the total energy of ionization and 

dissociation per unit mass, and y 5/3. For hydrogen the approximation is 

good if, for instance, p 2  is less than one atmosphere and the temperature 

exceeds 30 0000K, I. e., p2/p2  is greater than 5X108m IC2• 8 

Equation (5), In the form given here, is most readily derived from the 

complete energy equation as given by I'ai. The form is interesting because it 

states that the work done on a unit volume of the undisturbed gas, including the 

energy change in the magnetic field, has to be provided by both a piston moving 
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with the gas velocity v 2  and the negative divergence of the Poynting vector 

in the tube. It is the divergence of the l?oynting vector which, at least in part. 

takes the place of the chemical energy releaaed in a detonation wave. The 

piston, of which either p. or v2  may be specified as the additional datum 

mentioned before, is necessary to ensure the assumed steady flow. We shall 

show, hOwever, that here, as in the case of detonation waves, the flow is only 

maintained uniform by such a piston if its speed equals or exceeds a certain 

minimum. 
2 
 If no such piston is provided, or U the piSton is too slow, a region 

of nonsteady flow in the manner of a rarefaction wave appears between it and 

the propagating shock front, and the quantity p2v2  in Eq. (5) is not determined 

by the piston but by the dynamics of the expansion wave; i. e. • the energy is 

taken from the expanding gas itself. 

U we set E = 0, e0 = 0. and y 2  = y1. the system of equations (1) 

through (7) is identical with the one derived very elegantly by lAst for ordinary 

nonrelativistic hydromagnetic shocks • 10 the solutions of which have been 

adequately studied. since we have to abandon the condition E 1  0 for our 

ionising fronts, it is obvioua that the set of algebraic equations (2) and (7) is 

insufficient to determine the solutions completely. Just as is done in the die-

cue sion of gaseous detonations, we can derive a relation between any two do-

pendent variables —eliminating all the others with the help of the shock equations. 

This yields the locus of all possible solutions, thus affording us considerable 

insight into the nature of the phenomenon. 
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SIMPLZE'IED SOL4UTION 

In the treatment of detonations, relations between p 2  and 1/p2, the 

so-called Flugoniots, are usually derived for purposes of discussion. In our 

case it is more instructive and convenient to find the relationship between U. 

the shock velocity, and v2, the x component of the flow velocity behind the front. 

We use Eqs. (2) to (7) to express U. w, PV Pit E Z I and hence also E, as 

functions of 	 arzdof 	and e0. as well as of v 2. 

Physically, this means that we are specifying the conditions in the undisturbed 

gas, and the current—but not the electric field. U we ellminate in Eq. (5) the 

quantities WV  e2. p 2, p 2 . E 2  and E with the help of Eqs. (2). (3), (4), (6), and 

(7), we obtain a relation of the fourth degree which is cubic in U and quadratic in 

v2. We could solve this for v 2, and study the behavior of v 2(U). Algebraically, 

however, it turns out to be much more convenient to introduce a met of new 

dimensionless variables which simplify the expressions considerably, and permt 

a much more direct inspection of the character of the solutions. 

L1et us define the following new variablea 

AH Fi52 	0 	 (8) 

p 1 Uv2 	
(9) 

4H) 

p I uz 	
(10) 

pUw 

(AH) 

TN  
H) 

p 1 e 0 

 p 	 (13) 
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Zia 	
14 

I al 	zZ 

We are not intereeted in the case A1-L = 0 because this is the ordinary gaadynarnic 

shock. The parameter 0 can have any value, in principle. In particular. 

1 impliesHZI  0, B 	1 means 	0. and 	0 refers to HZ2 - Ri. 

In analogy to the nomenclature introduced for ordinary hydromagnotic shocka, 7  

we shall call these cases magnetic "switch.4n," "switch-Off. ' and "traiisverse" 

ionizing fronts respectively. With the above substitutions, the eolution takes 

on the form 

+ l)XZ + ('- 1- A + 2'y Z TT )%X + ('y 2  - 
 

2X + 	- l) + 	- 

 

= Y/(Y.x) 	 (18) 

1r2=x-p/z+-fl1 	 (19) 

	

+ 	(1+)X 
UAH = 	

+ .1 	 . 	 (20) 

Although this form is still implicit. since X contains the dependent variable U. 

many features of the solutions are eaaily demonstrated. When E 1 ,€, and 

- 	
are all set eqttal to sero, these equations are again reduced, of course, 

3 
to the ones investigated by Baser and Ericoon. In particular. It is readily shown 

that in such a caee X cannot be negative if the entropy is not supposed to dirflinish 

across the shock. Also, it is easily seen that Under those circumstances X 



-11- 	 UCL-9971 

	

can only be zero If A = O and then we have Y = a, and ff 	1; i.e. • the 

noncornpressive so-called symmetrical or Alfvn shock. 

None of theec inferences can be drawn from Eqs.. (16) to (20) if E is 

allowed to differ from zero. This Is the first important conclusion. 

We shall now point out some of the general features of Eq. (16), which is 

plotted for various a's in Fig. 4. Of.course we are only interested In the region 

2 + 1/2(1+)x so that E 1  zever vanishes 

(a) Equation (16) describes hyperbolas in the x-y plane. The asymptotes 

are: 
I 	 Yz_i 

X 	(l + - 	) - (y - 1) e + 
	

-1-1T 1T, 	. 	(Zia) 

Y 	(y2 +1)X+1.(!y2 _I)(1+_y2)_ 

+ 

	

+ (y2  - 1) 'y 1 -1 
	

71 	 (Zib) 

I. e. • they do not depend on the parameter a. 

When X Is very large compared to a, 0, , .c, and TF,, we have 

'I '  ('y2+1)X. This Is the ordinary gaod3rnamic strong shock. We should 

expect this property because it is clear that the piston In Eq. (5) is doing 

practically all the work In this case. 
ri 

The curves Y(X) have minima. The minima have as loci the 

straight lines 

	

YmZ+X_ 	(i+y2)+'y2 y 1 . 	(22) 

'2 
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These are seen to be independent of both a and €. The fact that the 

Y(X) have ixtnima means that for each set of given condttione p 1 . p, AH P  etc. 

the resulting relation U(v 2) has a minimum. Again, this feature is reminiscent 

of the behavior of detonation waves. One night, for instance, be tempted to 

identify the minimwn with the familiar Chapman-Jouquet point in the theory of 

gaseous detonations, although the analogy should not be stretched too far.  

The analysis of gaseous detonation waves shows that at the point of 

minimum propagation speed the flow velocity of the gas behind the front relative 

to the front is always exactly sonic. That is, at that point the rarefaction wave 

follows the front immediately. Moreover, the entropy behind the front is 

minimum when compared to values of entropy on other points along the U(v 2) 

curve. The analogous conditions are generally not fulfilled for the propagation 

speeds Y in  of our hydromagneticafly driven ionizing fronts. However, in the 

special case 	- 1, the magnetic switch-off wave, we can show that the analogy 

is almost complete. This is the second important conclusion. 

The proof is elementary. Wmnere1y have to expresS the relative velocity 

(U-vs ) in terms of our new variables: 

2 pu 
(2) 

4AH 

Substitution from Eqs. (19) and (22) yields for the relative gas speed at the minimum 

of U 

2  (U 2 )m  = (U_v2) rn  (l/p)  12p2+ •: (1+) (y_1)IL(AH)23. 	(24) 
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If die aipation can be neglocted, the propagation speeds c 2  along the x 

direction for small disturbances in the plasma in region P are given by the 

relation 7 ' 1 ' 

c22 L' 	(H 2  + H 2) e 22j 	( -. H, - C 22) . 	(25) 

Obviously for H2 = 0, we have = 1. and hence 

2 	____ 	2 

(u2)= p2 

IAkewiee, it can be rthLT shown that the change of entropy per unit mass 

ds c(1/T do + pd(1/p)] a taken along the curve Y(X at the point where 

dY = 0, Is given by 

(T2ds2) = 
	

(i+) (Hz2Hzi)2 
dX  . (26) 

which again is aero for 	- 1. We shaU therefore call this point in this special 

case the C-S (Chapman-Souguet) point, and the mode of operation of the ionizing 

front at this point the C-S tonizing process. 

This result Is not too surprising because here the magnetic field has no 

transverse component behind the front, so that the gas flow in the x direction is 

purely accuetic. The entropy produced ma switch-off ionizing wave can be shown 

to be a maximum at the C-S point rather than a minimum; it&is therefore not 

clear whether the phenomenon is stable at this point. 

In the theory of simple gaseous detonation, as pointed out before, it is 

usually argued that the C-i process must occur whenevcr there is no piston added 

that moves with a speed '> 	the gas flow velocity in the x direction 
2 corresponding to the C-S point. The same can be demonstrated here. It is 
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easily verified that, in the case of f3 - 1, we have 'y2p2 > p(U .v2) 2  for 

v2 > 	This means that any rarefaction wave existing behind the shock 

will catch up with and weaken the shock reducIng both U and v2 —elther 

until the flow behind the front is uniform, or until v 2  equals (vi), whichever 

is reached first. In that case, therefore, the situation vZ  <(v2 ) 	is never 

obtained. 1eaides, situations with v 2  <(v2), 	1 are believed to be 

unstable, because they involve supersonic flow normal to the front on both 

sides of the shock. As a result, we can Use Eq. (U) for 	- 1 to express 

the additional condition for the C-I process. Hence we can eliminate either 

Y or X from Eq. (16) 'so that the problem of the switch-off wave is 

completely determined provided the C-J process Itself Is stable. It should 

be noted that White fl  has recently observed turbulence lnC-J detonations. 

In order to extend the Ejolution to the general case - co <f3 <+ , 

we shall postulate here that the relevant phystcai condition determining the 

mode of operation according to the arguments in the previous paragraph is 

U-v2 =c 2 . 	. 	 (27) 

2. in F1g. 2 Is assumed always to be 	 to zero length. 

Here c 2  is given by the smallest positive root of Eq. (Z5), because a 

magnetosonic expansion it a slow wave. 

It does, of course, seem possible that the actual propagation of ionizing 

fronts is governed by the ionization rate rather than by the magnetosonic 

conditions analyzed here. In particular ,  it may be argued that E must be 

øuificiently small so that no electric breakdown occurs In region R 1 . In that 

case, however, a steady phenomenon can only result if v2  is equal to or 
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smaller than given by condition (27), because otherwise the expansion wave 

will overtake the front, causing a nonsteady or nonequilibrium flow. 

Equation (27) can therefore be regarded as a limiting condition on v 2  for 

steady propagation. In experiments where steady ionizing w1tch-on fronts 

have actuaiiy been observed, one of the two electrodes (conducting lates) 

shown in Fig. 1 does not extend into region R,, so that the electric field 

is, as it were, convected along with the speed U. and attenuates with 

increasing distance from the front. This means that the gas in region R 1  

is exposed to electric fields of the magnitude of E 1  only for a very short 

time and a finite ionization rate Is consistent with a steady propagation speed. 

Since a completely self-consistent calculation of ionization rates, and hence 

of the structure of the liydromagnetjc front, is an exceedingly complex 

problem, we keep this diecussion simple by assuxning that condition (27) 

can be used as a good approximation for all cases of interest. 

Equation (27) can be combined with Eq. (25) and rewritten, with the 

help of our new variables (8) to (15), to read 

(Y_X)[c 2 + 	(l+3) 2 -Y-Xj 	i 2 (o 2 -Y+X). 	(28) 

because of Eq. (19), and after some rearrangement, we finally obtain our 

general subsidiary equation 

(l+P)2(Y_X)4(iy2X+X_y_ 	y213 +y2 1y 1 )(a2 +x-y). (29) 

The algebraic solution of the simultaneous equations (16) and (29) is still 

cumbersome unless 13 = - 1 or a = 0. 

First we examine the case where a = 0, 1. e., H 
X 

= 0. In this case 

the srnaUeet root of Eq. (25) vanishes and C 2  = 0. This means that 

oo, and Y = X; I. e., we get a so-called "snowplow" solution and, of 

course, there is no expansion wave. In particular we find, neglecting p1, 
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U V2 (250)1/12 9 	 (30) 

p2  2p 1 e 0  - 	(l-1 	 (31) 

E2 = H2U, 	 (32) 

These results differ from previous snowplow solutions, because in the 

earlier treat'neflta the energy equation was not used. We obtain the 

conventional form of the plane snowplow  solution if we eliminate 

between Eqs. (30) and (31), andarbitrarlly set p 2 0. Inviewofthe 

predicted inftnite density and the poeib1e negative pressures, according 

to Eq. (31), it is quite clear that our model Is not any better than the earlier 

one. In fact, we must conclude that an ioniaing front Will not be steady if 

0 and Eq. (27) applies. 

U Eq. (27) is abandoned, steady solutions are possible of courSe. 

Since there cannot be an expansion wave when a = 0, the flow Is similar to that 

driven by a conventional impenetrable piston. This situation has recently 

been studied In more detail by Lyubirnov and Unlikoveldl. 13, 14. 15 who 

decided that they had to supply information concerning the shock structure 

and dissipative effects In order to arrive at unique solutions. It in interesting 

1. 	

to note that they found conditions under which current-free, I. e., ordinary 

gasdynamic ionizing shocks should propagate ahead of the current-carrying 

Interface. The question of stability was not yet considered, however. 

Clearly, the special case of 	= 0 and 	+ 1. i.e.,=Hzl0, gives no 

trouble if the conductivity is sufficiently Mgt behind the front, because in 

that case E 1  is certainly vanishingly small and the usual model of the 
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idealized flow in a magnetically driven shock tube should be valid. The 

eipressione for the velocities, pressures, and electric fields in all these 

cases differ somewhat from those given in Eqs. (30) to (33), of course. We 

shall not discuss these here, but rather limit the treatment to the range of 

values 	> a 	 for which the speed of the expansion wave is fast enoughcrit 

to rule out the po&stbility of purely gasdynarnic shocks even if the con 

ductivity were infinite. In this case Eq. (27) can certainly be used as a 

limiting condition. 

For simplicity we examine the important case where 

>> (1 + f3), 	 (34) 

so that we can use as a good approdmatian 

= 	•i 1) X - 	 (35) 

A plot of Eq. (35) is also included In the example on Fig. 4. For 

- 1, both Eqs. (29) and (35) are identical with Eq. (22). and then Eq. (35) 

is valid for all a > 0. Certainly for experIments in which H >> H 	 and21 

HX 
>> H 	Eq. (35) is adequate We may, moreover, always neglect 1r1 . 

because we will certainly need 7i 1  <(1 in ioniaing hydromagnetic waves, TT I  

was only carried in our equations for the sake of comp1etO. The subscript 

of 'y may then also be dropped. U we now use Eq. (35) to eliminate X 

from Eq. (16) we obtain the solution for the wave sped 

Y = (A+32) 2_B , 	 (36) 

where 

and 

= (2 1). + 	(y - 1 - 
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The terms containing P in this expression are strictly justified only for 

0 3)2 <<1, because of condition (34). ForA >> B. i.e., HAH>> p 1 e0, we 

find 

2 /pi ) H 	('y 2  U 	 l-I 	- 1)I'2 	 (37) 

For B2 >> A, on the other hand, we have 

k{ AH 
UZ 

x 
liz- p 1 (2e 0) / 

(38) 

In Fig. 5 we show a plot of Y as a function of a for 	. 1, y = 5/3, 

and a variety of values for 6. 

The other quantities of iziterest—v 2,p2,P 2 , and E2—arernost easily 

expressed in terms of U, the wave speed, by using I!qs. (35), (18), (19), 

and (20). In these, too, we shall ignore p 1  everywhere and drop the sub-

script of y2. From Pqs. (35), we immediately obtain 

v2 = 	.(1+-f) 	 . 	( 39) 

and, by using Eq. (18), 

p 2 p 1 (l+1/'y)(1-) 1 . 	 (40) 

According to ij. (19), p2  is given by 

2 PU 
P2 =  

This also determines the temperature behind the front as 

2 = 	= U 2 (1 	4..) . 	(42) 
2 	(+1) 

Finally, the electric field in the region B 2  is determined from E. (20) 

TWIM 
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H I 	.2 	(1 + ) U 	1 	 43 
Z 	LpHx 	iy+ U l) 

SPECIFIC CONCLUSIONS 

We have shown that marty of the previously drawn conclusions con-

cerziing bydromagnetic shock Jump properties cannot be carried over to the 

important case where F, is allowed to differ from zero. Also we have shown 

that the magnetic switch-oil ionizing wave is almost in complete analogy with 

Chaprnan-Jouguet detonation theory. 

From the st of relations (36) to (43) further conclusions concerning 

these hydrornagnetic ionizing fronts may be drawn Immediately. First of all, 

it is easily demonstrated, with the help of Eq. (16), that c2 >> Y >> 1 if both 

>> (1 4 P) and cL >> 1 are fulfilled. Equations (36) to (43) therefore show 

that under these circumstances v 2  p2'  p, and Y do not depend strong.y 

oh A. Also, we see that in this case the difference between conditions (22) 

and (35) is negligible. In other words, if the longitudinal magnetic field H. 

Is much stronger than both 	and Flu . Eqs. (36) through (43) can be expected
ZI  

to describe the phenomenon rather well, even If the postulate (27) is not the 

• 	 correct one. This is the third important conclusion. 

Furthermore, certain interesting features pertainin g  to the extreme 

case mentioned above are worth pointin g  out. Equation (40) in this limit states 

that 	is remarkably insensitive to changes in the independent variables, 

the value being surprisingly low. For exaznple., for y 5/3 we have 

1.6. 
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Substitution for U from Eq. (36) in Eq. (43) shows that E varies 

only slowly with iH. In fact, for pH,H <p 1 e0  Eq. (38) applies, and we 

have 

(44) 

which is independent of the current and gas deneity. Equation (44) as well 

17 
as Eq. (30) resemble the findings by jWvnIó and Fahleson, althoigh the 

experiments described by them apparently did not involve distinct fronts 

producing full ionization, as assumed in our model. Equation (38). when 

combined with Eq. (4), can also be written 

w 
2 =2e0 . 	 (45) 

Actually, when LEq. (38) applies, the ternperattire T 2  is often too low to 

justify th original assumption of complete ionization. 

In FIg. 6, i:q. (43)—kr the case of 	+ 1— is plotted in a non- 

dimensional form, i.e., expressing the quantity r/pJI (2e 0) 	as a 

function of Alli [/(p 1 e0)] 	for various values of H,. [/(10)i 

The solid curves are fair approximations also for 13 1, provided that 

2 	2 
0 + 13) <<ci . The prethctions of Eqs. (36) through (43) may be compared 

with the experimental findings of Wilcox et al., in which 13 + 1. Although 

their geometry is not one-dimensional but cylindrical, their observations 

agree fairly well with some of the major conclueions arrived at here (slow 

uniform propagation speed of a distinct front, voltage regulations, etc. 

More extensive comparison between theory and experiment is planned for 

the near future. 
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Whereas the magnetic "switch-on" wave is of particular interest 

to the ex'perirnentallst iause of the simplicity in uistrumentation, the 

"switch-off" wave is more attractive from the analytical point of view. In 

addition to the close correspondence to gaseous detonation waves, in the 

switch-off case, we note that both Eqs. (16) and (20) beèome simplified. In 

particular, it is interesting to see that, for P = - 1. Eqs. (36) through (43) 

are exact, the only restriction being i> 0. 

Finally we investigate under what conditions v 2  can be zero I. e., 

p2 p 1 . As pointed out before, Eqs. (16) through (20) do not restrict X 

to values greater than zero if f3 is permitted to take on values less than 

zero. In our model of a closed input end of the tube, V 2  can never be 

negative. If conditions in the front call for v, <0, a precompression 

shock is Set up, violating the assumption of gas at rest in region P . if  

the precompression shock is strong enough to ionize the gas, the front will 

change its character so that v is greater than zero. In a very similar 

manner, deflagratione are changed into detonations in the case of closed 

gas-combustion tubes. We certainly may set X = o in both Eqs. (16) and 

(29), and obtain two simultaneous equations in Y, f, and a: 

y 	 (46) 0 	2(y-l)ri + 
and 

2(2Y0 + y) (a2 - Y 0 ) . 	 (47) 

We use the symbol >to allow values of c 2  >U In Eq. (27). If we eliminate 

between 1Yqs. (46) and (47), we find the minimum condition for -3 as a 

function of a and e that makes v 2 = 0 possible. We shall not do this here, 



- 2z.. 	 U C L -9971 

because it is lengthy and not particularly instructive. However, we may 

also ask what can be the maximum a for which a switch-off wave, 

= - 1, does not yet bring about a compression. This means that after 

imposing IS + 1 0 in Eqs. (46) and (47), we solve for a. The result is 

I E + Z(ly-1J J • 	 (48) 

We may, of course, eprees this relation as a condition for the mininim 

admiesthie value of F! 71  if H, e, p, and y are all given: 

) (Z/) (-1) 1 HX 2  - (v/) pe0 J. 	(49) 

The propagation speed of the front is then given directly by Eq. (46). The 

transverse velocity becomes independent of 

w 	Ze0 ' 	 (50) 
(v-np 

The expression for the pressure is simply 

:--  

which imposes a required minimum on H to ensure adequate iOfliZSLtlOfleZI  
The electric fields are 

= - i'w2 H, 	 (5) 

and 
z pU 

LH 
x 

The situation Is particularly simple for 	>> ype. In that case, Lq. (49) 

reduced to 
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(53) 

for y 5/3. Moreover, both U and the impedance -P/H 1  become in-

dependent of current (the minus sign refers to the £act that, for <0. E 

is negative if H 1  it pO8itiVe); 

(y- i) 	H 2 , 	 (54) 

r , 	1/2 
yE1 	

j 	
IHH5i 9 	 (55) 

whereas 

2 _ 	2 2 YP2 
(y-1)p 	 .-_. . 	(56) 

We feel that such a switch.oli ionizing wave would be a very suitable 

means of generating a uniform magnetized plasma. After the plasma is formed, 

the resulting transverse motion is easily arrested by shorting out E 2  through 

a suitable resistor so that a simple Alfvén-wave relaxation will take place 

without disturbing the state of the gas. It would be interesting to try to 

realize this situation experimentally, and to test the various conclusions 

arrived at in this analysis. 

For v 2  > 0, however, the front must be followed by a rarefaction 

wave. A very brief discussion of this phenomenon is presented in the next 

section. 
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EABEFACTION WAVE 

In the treatment of the rarefaction wave we must assume that 

dissipation is negligible. This was already necessary when Eq. (25) was 

introduced; otherwise 0  the analysis becomes extremely complicated. Even 

so 0  in general the quantitative description of one-dimensional teentropic 

rarefaction waves requires numerical integration because they are nonlinear 

phenomena. Such computations have been carried out for a number of 

examples by Kemp and Potechek' and, in principle, their results could be 

used in conjunction with our shock solutione to describe the entire flow 

completely. We shall not go into such detail here. The equations of motion 

for the centered rarefaction wave become very much simplified, however, if 

the value of 	is large. In that case the ettuation can be approximated 

by the £armliar isentropic acoustic solution, and analytic treatment is possible. 19 

In particular, it can be ehown that in region B 4  (see 11g. 2), where we require 

that v4  = 0, the speed of sound c 4  is given by 

= 	I - (fry/ZY)j. 	 (57) 

if v2  and c 2  obey Eqs. (39) and (27), respectively. This means that the 

tail of the expansion wave moves at roughly hail the speed of the front. The 

density p4. accordingly, is 

•(+i \ 2/(y_1) 
	

(ky+1)/( .y_1) 

(58) 

where the value of p 1  was substituted from Eq. (40). For y = 5/3, this 

yields p4 m 0.8 p1 
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Therefore it appears that the expansion produced by a hydroxnagnetic 

ionizing wave Is very mild, and about half the length of the generated plasma 

is uniform and without longitudinal motion if HZ ii much less than H. 

Pressure and temperature in region B4  may also be computed. 

The results are 

( 	2y/(y-1) p1U2 	/ 1\(y+1)/(-1) 

(59) 
and 

(RT) 4 vs(RT) 2  2tL 	 (60) 

vihere the values of p2  and (RT) 2  are substituted from Fqs. (41) and (42). 

Finally we calculate H and E4  (or w4) In this approximation. 

We find 

JH 2  dH - HzdP 

so that we have 

(61) 

[1 + 

HX 

Similarly, we deduce the approximate solution 

w4  = w2 - 	z'1  

so that we have 

E4  = - jxw4H 
X z 

E2 . 	 (62) 
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For large £4/H54. the net impedance of the shock tube, which we may 

express as E 4  (H54.Hi)'a is then essentially computed from Eq. (43), 

where U must be evaluated from Eq. (36). That is, the expansion wave 

does not contribute appreciably to the electrical behavior. In retrospect, 

this is fortunate because large current deneitieB at finite conductivity in 

region 1( 3  would certainly 9onlid1 violently with the assumption of isentrEp 

flow there. We conclude that the major deviation from this idealized model 

will be caused by the finite viscosity of the plasma. which must definitely cause 

considerable dissipation. It is therefore essential that the channel in which 

such a plasma is generated is not too narrow in the direction of the electric 

field. 

This discussion may suffice to outline the principal features of 

hydromagnetic ionizing waves and of the plasma which can be generated by them. 



-27- 	 UCRL-9971 

FOOTNOTES AND REFERENCES 

*Work done under auspices of the U.S. Atomic Energy Commission. 

tpresent address: SChOOl of Engineering, Columbia University, New York. 

N. H. Kemp and H. E. Petachek, Phys. Fluids 2, 599 (1959). 

B. Courant and K. 0. Friedricha, personic Flow and Shock Waves 

(Interecience Publishers. Inc., New York, 1948), pp. 204-232. 

J. Bazer and W. B. Ericeon, Astrophya. J. 129, 758 (1959). 

B. M. Patrick, Ph. Thuds 2, 589 (1959).  

J. M. Wilcox, A. W. DeSilva, and W. S. Cooper 11!, Phys. Fluids 

4. 1506 (1961). 

H. W. Liepmann and J. D. Cole, SME2slum of Plasma Dynamics, edited by 

F. Clauser (Addison- Wesley Publishing Company, Inc., Reading, 

Massachusetts, 1960)p. 199. 	 - 

K. 0. Frledricha and H. Kranzer, Notes on Magnetohydrodynaxnjcs VIII, 

Nonlinear Wave Motion, U. S. Atomic Energy Commission New York 

Operations Office Report NYO-6486 (unpublished). 

R. A. Gross and C. L. Eien, Some Properties of a Hydrogen Plasma, 

Proceedinge of the. Third Biennial Gas Dynamics Symposium 

(Northwestern Univority Press, Chicago, 1959), p.  15. 

S. -1. Pái, Phys. Rev. 105 0  1424 (1957). 

B. Ljet, Z. Naturforach. 8a, 277 (1953). 

B. Zumjn, Phy. Rev. 108, 1116 (1957). 

D. R. White, Ph. Fluids 4, 465 (1961). 



-28- 	 UCRL-9971 

0. A. Lyubimov, .Doklady Akad. Nauk S. S. S. B. 126, 291 (1959) 1  trans1ation: 

Soviet Phys.—Doklady4, 510 (1.959)]. 

A. G. Kulikovskti and C. A. Lyubimov. flokiady Akad. Nauk 129, 

52, (1959) Ltranelatiou: Soviet Pbys.—Doklady 4, 1185 (1960)1. 

A. G. Kulikovskii and G. A. Lyubimov. Dokiady Akad. Nauk 129. 525 

(1959) [translation: Soviet Phys. —DoIclady 4, 1195 (1960)] 

H. Mfv6i, Revs. Modern Phys. 32. 710 (1960). 

U.V. Fahieson, Ph. Fluids 4. 123 (1961). 

J. M. Wilcox (Lawrence Radiation Laboratory. University of California, 

erke1ey), private communication. 

B. Gourant and K. 0. Friedriche, Supersonic Flow and Shock Waves 

(Interecience Publishers, Inc., New York, 1948), pp. 92-95. 

FIGURE LEGENDS 

Fig. 1. Idealized experiment with plane hydrornagnetic ionizing waves. 

Fig. 2. Model for analysis of hydromagnetic ionizing waves. 

Fig. 3 Schematic for shock conditions. Note that in this example the 

current is in the +y direction so that the velocity w 2  is negative 

( -z direction). 

Fig. 4. Plot of ?(X), Eq. (16), for various values of 52.  This includes 

plots of Eqs. (21) and (35). 

Fig. 5. Plot of Y() for various values of € and 3. 

Fig. 6. Plot of E 2(A}i), Eq. (43), for various values of 

(made nondirnensional). 
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