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ABSTRACT

Jne of the techniques by which highly ionized plasmas can be generated
in the laboratory makes use of strong, electromagnetically driven shock waves
propagating into a cold gas. If a magnetic field already exisft.s in the undisturbed
region these shocke will in general not be gasdynamic in character bﬁt the current;
carrying interface will coalesce with the ioﬁiaing front. The process has certain
features in common with detonation waves, and differs from previously analyzed
hydromagnetic shocks in that the electric fisld in the undisturbed regién need not
vanish. If the initial magnetic field has a longitudinal component the gas must be
permitted to acquire a traneverse velocity., Moreover, since such shocks are
almost alwaye compressive, the plasma will uéually also have a forward velocity.
In closed-end tubes, fherefore. the front muat.b-ve followed by a rarefaction wave in
which the longitudinal flow is brought to rest again. |

In this paper the phenomenon is analyzed as a one-dimensional single-fluid
hydromagnetic problem, neglecting dissipation behind the wave. Zero conductivity
is assumed for the region in front of the wave, and thermodynamic equilibrium is
required behind. The problem is not determined uﬁleasv an additional condition is
imposed. We hypothesize that the rarefaction wave remains attached to the front.

In the limit of essentially complete ionization behind the front, the problem can be
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solved analytically ae long as the.traneverse. magnetic field there remaine emali
compared with the longitudinal field. In this case the front velocity, plasma .
density and temperature, and the electric fields—2s well ae the structure of the
rarefaction wave—can be expressed as simple functione of the initial magnetic
fie;d. the discharge current, the ionization energy, and the initial gas dénslty.

It is of particular interest to note that in this limit the compression is found to be

very modest | p, = g, (y + 1)/y ], and the trailing edge of the rarefaction wave
Yy 2 1 g

' propagates at half the speed of the front. It ie also possible to generate non-

compressive ionizing waves, provided that the magnetic field in the undisturbed
region has a transverse component that is being appropriately reduced by the driving

current flowing in the fonizing front.
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INTRODUCTION

'In recent years it has become convenient to produce and heat highly

ionized plasmas by means of eléctromgnetically driven shock waves. A

great variety of shock tubes have been developed, and actually many pinch

~ discharges and rapid-compression expertmenté fall into the same category.

In the analysie of the dynamics of the phenomena it is ueually assumed that the

' current-carrying region can be regarded as an impenetrable pieton. This

assumption is strictly justified only if the conductivity there is essentially
infinite, and if no magnetic field exists in the undisturbed region. If a finite

magnetic field is present ahead of the disturbance, however,in cases of interest

some of the current will have to flow in the shock front itself. This is true even
if the conductivity is fnfinite, and 1rres‘pective of whether the gas is already
conducting 'or whether it is ionized by the shock itself. |

This means that the shock is a hydromagnetic phenemenon, and the first
current interface does not represent an impenetrable piston at all. Moreover,
if the initial magnetic field has a component parallel to the direction of
propagation of the disturbance, no real magnetic piston can exist anywhere.

The piston-like discontinuity, or driving interface, in that case is replaced by
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-a continuouely expanding region of nonsteady flow, a rarefaction wave, in which

the applied magnetic field spreads at a finite velocity through the propelled plasma.
The flow pattern of plasma in a shock tube under these conditions has recently
been analyzed for the case in which the gas ahead of the shock is already highly
conducting. 1 In this paper we investigate the phenomenon for cases in which the
gas ahead of the shock is not yet ionizged, i. e.'. where the undisturbed region has
essentially zero conductivity, and the ionization ie assumed to take place in the
front itself. We will use the term hydrormagnetic ionizing front.

From the theory of gasdynamices it is well known that the epeed of a plane
shock, or the ratio in which the energy is distributed between internal energy
and mases motion, is not uniquely determined by the conservation laws alone.

In addition to the state of the undisturbed gas, either the shock speed of the

flow velocity or the pressure of the gas behind the shock must be specified. The
energy driving the shock and heating the gas can then be considered as being
supplied by the flow itself (or by the piston). If, on the other hand, the shock is
driven primalfily by an independent enaergy release in the front itself, as for
instance in the case of detonations, neither the shock speed nor the flow velocity
nor the gas pressure behind the shock can be specified as given conditions.
Therefore some other criterion must be found to render the problem unique.

In the theory of gaseous detonations the Chapman-Jouguet hypothegis is used,
according to which the gas leaves the combustion zone at exactly sonic speed. 2

In hydromagnetica the electromagnetic energy driving a shock is likewise
released in the front itself. In these phenomena either the flow conditions or
the magnetic field behind the shock, but not both, may be considered ae specified,
The additional constraint needed to determine the hydromagnetic shock flow

uniquely, in almoet all analyses to date, has been the requirement that the

electric field must vanish in the frame of the medium ahead of the shock as well as
behind it. In other words, the gas has been assumed conducting in the undisturbed
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as well 2s in the shocked region. A very complete discussion of all the different
types of shocks that may exist under these conditions has been given by Bager
and Ericson. 3 .

1f, on the other hand, the undisturbea gas has negligible conductivity,
the electric field there may be finite and cannot be specified 2 priori. We conclude
that in the analyses of hydromagnetic ionizing fronts, just aé in the theory of
detonations, another criteridn must exist that determines the phenomenon uniquely.
We repeat: hydromagnetic 'ion.{aing fronts differ from ordinary hydromagnetic
shocks not only bec.ausa some energy must be invested in ionization (aﬁd perhaps
dissociation'of molecules), but primarily because the electric field in the un-
disturbed region cannot be directly related to the shock velocity and the magnetic
field. The last statement is equivalent to pointing out that the un-ionized medium
ahead of the ionizing {ront does not permit any propagation of hydromagnetic
signals. It is thead latter features, and not the energy conversion in the ioni-
gation procege, which make the phenomenon similar to gaseeﬁe detonatienst.

v In this paper, then, we limit our diecussion to magnetically driven
ionizing shogks under the condition that a magnetic field exists in the undisturbed
region ahead. Moreover, we focus our attention on casee where the field ie
not parallel' to the p.lané of the ionizing front. It is certainly possible to devise

experiments in the laboratory in which a hydromagnetic driver iz constrained to

.move in a direction with a éoinpcnant parallel to a magnetic field existing ahead

of it;4 in some experiments the propagation is exactly along the magneﬂc field

ahead of {t. 5 We will show that such an fonizing wave may provide a unique and

very useful way of producing a magnetized uniform plasma if certain requiré-

ments are fulfilled. In fact, this latter aspect has motivated the present

investigation.



1Y

a

b . UCRL-9971
THE MODEL

In the analysis we restrict ourselves to a simplified one-dimensional
model. The geometry is best explained with the help of Fig. 1. The géa is
considered to be confined between two infinite conducting planes, both parailel
to the xz plane. The initial magnetic ﬁelé is also parallel to .the xz plane,
the applied electric field is aiways parallel to the y axis, and evei-ything is
ass@ed to be independent of both the y. vand & coordinates. This means we
are looking at -plane wave motion and are choosing bur x éoordinate along the
direction of propagation. It also implies that we ignore the viscous drag at the
flow boundaries, and any variation of the fluid properties, such as the electrical
conductivity, that might appear in the neighborhood of the surfaces.

The gas ahead of the wave is aeauzﬁed to be at rest, in equilibrium, and
nonconducting. Furthermore, we asgsume that immediately behind the shock the
gae is again in thermodynamic equilibrium, so that it obeys an equation of state |
and so that its relevant phyai@ai} properties 'auch as composaition, electrical
conductivity, etc. can be computed from equilibrium considerations. This meaﬁs
we are limiting ourselves to densities high enough to ensure sufficiently rapid
equilibration rates. We need i\ot mazke any assumptions concerning the shock
structure in this case, other than requiring that the shock thickness ie finite and
constant. The exact mechanism of {onization is not under discussion here. The
requirement of equilibrium behind the front implies that the current there is zero
if the flow is steady. This means that the electric field must be zero in the
frame of the moving gas behind the front, even if the gas has finite reailstivityﬁ
there. Therefore, the shock jump relations are always automatically independent

of the transport properties, such as the conductivity. 6
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It is not immediately obvious that a steady wave should propagate in a
shock-tube experiment in which, for instance, the current ixiput is kept constant.
Because shocks are usually compreseive, the front must ordinarily be followed
by an expansion wave with ite nonsteady flow, unless a suitable additional driving
piston is prmnded However, it has been shown that in the hmit of negligible
dissipstion, i.e.,. isentropm conditions in the expamion region. the flow there
can be deacribed as a ''centered rarefaction wave, nl This means that, in this
approximation at least, the entire flow pattern spreads at a uniform rate and
draws constant total curreat, so that a steady shock can indeed be driven ahead
of it. Accordingly, we treat the problem in two steps. First we discuss the
shock relations under the aasumpﬁor;__a{;of steady flow, Here we include the effects
of dissociation and jonization and point out the conditions under which steady
propagation él;ould be poseible. Then we look at the expaneioxi wave, ascuming
negligible resistivity. viscosity, and thermal conductivity. Finally we combine
the two regions to describe the entire phenomenon. The model is depicted
schematically in Fig. 2. The situation and the analyses here are thereforé very
similar to those treated by Kemp and Petschek, 1 the only difference being that jthe
latter assme complete dissociation and ionigation ahead of the wave, whereas we

require negligible electrical conduétivity.
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SHOCK RELATIONS

In Accordance with Fig. 2, we distinguieh quantities in the regions Rl
and R, ahead of an behind the shock by the subscripts 1 and 2, respectively.
Since we assume the shock to be steady, it is most convenient to start out by
describing the flow in a frame of reference in which the froat is stationary (see
Fig. 3a). The basicequations are then independent of time and, in our one-
dimensional problem. may be integrated immediately to give the familiar
symmmetric jump conditions connecting the quantities in regions Rl and Rz.
It is casily shown that thege relations do mot depend explicitly on any of the
irreversible processes ogcurring in the transition as long a8 no energy is lost ;
by radiation; i.e., they are true comservation laws. These are then :eadny
trangformed té any other irame of reference in uniform motion with respect to the
shock. It is instructive, and in fact algebr‘aicauy economical, to express the shock
jump conditions in a ‘coordinate eystem fixed in the undisturbed un-ionized gas,
which we shall call the laboratory frame. If we dex:wie the speed of the shock in
this frame by U and the velocity of the plasina by vV, l.e., :fl = (0,0, 0) and

Y, = (vz. 0, wz). (see Fig. 3), where all epeeds are assumed to be small compared

to the apeed of light, these shock relations are

H ® sz = HR' (1)

p'3 |

910 = pz(u"vz)o (2’
Uv, = py-p, ++ ps e H ,2) (3)

Py UV2 = PP t 3Ry - My ) at

o Uw, = pH (H , - H ), (4)

1.2 1.2 1 2 .. 2
prUlegey vy + 3w )+ gpUH,," - H | 7)

=PV, + EZHzZ - Elﬂz_l' (5)
E,s EX + p.U(sz - Hal) = p(vzﬂzz - wsz_ix) . (6)
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We have retained the symbole £, and E, for the electric fields on
purpose, because these may be observables and because we want te point out
the relationship to ordinary hydromagnetic theory. We have also written e for
the internal energy per unit mass 8o that e, = pl/(yl—l)pl. Since the gas is
being ionized in the shock transition we propoae' the following eguation of state

for the gae in region Ry:

e, = eq + [py/lvy-1)0,) - . ("
This means that we are assuming we can describe the plasma as a polytropic
ideal gas with an additional "frozen-in' internal energy e, as, for instance,
stored in dissociation and ionization. In general, both v, and g will be |
fuhctiong of p, and p,, of course, and the gystem (1) through (7) must be
supplemented by a eet of equations which determines these relations. Thie
requires numevrical means, 8 and does not add aixy profound insight into our
problem. In the analysié discussed here we simply consider both s and Y,
as given fixed quantities. The latter is, in fact, a valid approximation if the gas
in K, is hot enough to be practically completely dissociated and fully ionized,
In that case we simply havé ey = & + e4s the total encrgy of kmiéation and
dissociation per unit'mass, and vy, = 5/3. For hydrogen the approximation is
good if, for instance, p, is lees than one atmosphere, and the temperature

8
8 mz/eecz.

exceeds 30000°K, i.e., pz/pz is greater than 5X10
‘ Equation (5), in the form given here, is most readily derived from the

complete energy eqﬁa&ibn as given by Pai. 9 The form is intéresting because it
states that the work done on a unit volume of the undisturbed gas, including the

energy change in the mégaetic field, hao to be provided by both a piston moving
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with the gas velocity v, and the negatsvve divergence of the Poynting vector -
in the tube. It is th_e divergence of the Poynting vector which, at least in part, .
takes the place of the chemical energy released in a detomation wave. The
piston, of which either pp or v, may be specified as the additional datum
zﬁeutioned before, is necessary to ensure the assumed steady flow. We shall
show, however, that here, as in the case of detonation waves, the flow is only
maintained uniform by such a piston if its speed equals or exceeds a certain
minimum. 2 If no such piston is previded.' or if the piston is too slow, a region
of nonsteady flow in the manner of a rarefaction wave appears between it and
the propagating shock front, and the qua.niity PV, in Eq. (5) is not determined
by the piston but by the dynamice of the expansion wave; i.e., the energy ie
taken from the expanding gas itself.,

if we set El = 0, eg = 0, and Yz = Yy the system of equations (1)
through (7} is identical with the one derived very elegantly by Liist for ordinary

10 the solutione of which have been

nonrelativistic hydromagnetic ‘shocks,
adequately ‘qtudied. 3 Since we have to abandon the condition £, =0 for our
jonizing fronts, it is _obvioué that the set of algebraic equations (2) and (7) is
insufficient to determine the solutions completely. Just as is done in the dis-
cuasic;n of gasecous detonations, we can derive a relation between any two de~
pendent variables —eliminating all the othefs with the help of the shock equationa.
This yields the locus of all possible solutions, thus affording ue considerable

insight into the nature of the phenomenon.
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SIMPLIFIED SOLUTION

In the treatment of detonations, relations between p, and l/pa. the
so-called Hugoniots, are usually derived for purposes of discussion. In our
cage it is more instructive and convenient to find the relationship between U,
the éhock velocity, and Vae the x component of the flow velocity behiand the front.
We use Egs. (2) to (7) to express U, w,,P,: £5» Ez. and hence also E‘. a8
functions of px.pl'.yl.Hx; Hzl‘ and of Ha?.‘ yz; and eqs 88 well as of Ve
Physically, this means that we are specifying the conditions in the undisturbed
gas, and the current—but not the electric field. If we eliminate in Eq, (5) the
guantities Wy €34 pz.pz.Ez and El with the help of Eqé. {2), (3), (4), (6), and
(7). we obtain a relation of the fourth degree wﬁich is cubic in U and quadrat{c in
v, We could solve this for v ,+ and study the behavior of v,(U). Algebraically,
however, it turns out to be much more convenient to introduce a set of new
dimensionless variables which simplify the expressi@ considerably, and permit
a much more direct inspection of the character of the solutions.
Let ue define the following new variables:
AH=H_, - H ; # 0 (8)
X= flf:-%- 9
(10)

(11)

TT = -—-E-—z- . (12)

p,e «
10 . (13)
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@ = | (14)

8= Hzl * HzZ
Eg! ¢
We are not interested in the case AH = 0 because this ie the ordinary gasdynamic |

(15}

shock. The parameter P can have any value, in principle. In particular,

8 = 1 implies Hzl 0, B2 -1means Hszao, and P = 0 refers to Ho,= - Hzl'
In analogy to the nomenclature introduced for ordinary hydromagnetic shocks, 7
we shall call these cases magnetic "switch-én, " "switch-off, " and "traneverse"

ionizing fronts, respectively. With the above substitutions, the golution takes

on the form

(vy + DX+ tyy = 1= B + 2y,TT;)IX + (v, - Da’

v. (18)
2X + 2(v, - D¢ + v, = 158 52T lvy-v) )/ ly-1)
Z=-a _ | 4o
pz/pl s Y/(Y-X) (8
Ty=X-8/2+ T -
E, £y o® 4 7 (L4BIX
) 1o . (20)
¥OBH° goaw * ¥

Although this form is still imfmcit. since X contains the dependent variable u,
many features of the solutions are easily demonstrated. When El.e , and

Y, - Y, are all eet equal to zero, these equations are again reduced, of course,

to the ones investigateavby Bazer and Ericson. 3 In particular, it is readily shown
that in such a case X cannot be negative if the entropy is not supposed to diminish

acrose the shock. Also, it is easily seen that under those circumstances X
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can only be zero if B = 0, and then we have Y = az, and T 5 = T[;i i.e., the
noncompressive so-called symmetrical or Alfvén shock. ‘

None of the-ee inferences can be drawn from Egs. (16).to (20) if E, is
allowed to differ from zero. Thie is the ﬁret imﬁortant conclusion.

We shall now point out some of the general features of Eq (16), which is
plotted for variéup a's in Fig. 4. Of course we are only intercsted in the region
Y< a? + 1/2(148)X so that E, never vaniches.

(a) Eqnation (16) describes hyperbelae' in the x-y plane. The aaymptotee

are:

Md

Yo gl tDX415 (- D (+8-v,)- 3 (v,
| 1*Y; |
+(YZ~”W Ty e {21b) |
i.e., they do not depend on tixe parameter 6.
(b) When X is very large compared to é. B, v,¢, and ‘]Tl. we have
Y-~ % (yzﬂ)x. This is the ordinary gaaéynatnic strong shock,. We should
expect this property because it i clear thai the péstoi\ in Eq. (5) is doing
practically all the work in this case. |
| {c) The curves Y(X) have minima. The minima have as loci the
straight unes

1 ~
Ym = (yz + 1) X - 5 (l+§-v2) +Y, T'(’l . {22)

7D
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These are seea to be independent 6f both o and ¢. The fact that the
Y(X) have minima means that for each eet of given conditions P+ Pp. AH, etc.
the resulting relation U(vz) has a minimum. Again, this feature is reminiscent
of the behavior of detonation wavee. One might, for instance, be tempted to
identify the minimum with the familinr Chapman-Jouquet point in the theory of
gaeeous detonations, although the analigy should not be stretched too far.

The énalysis of gaseous detonation waves showse that at the point of
minimum propagation speed the flow velocity of the gas behind the front relative
to the iraﬁt is always exactly sonic. That 16, at that point the rarefaction wave
follows‘ the front immediately, Moreover, the entropy behind the front is &
minimum when compared to values of entropy on other points along the U(vz')‘
curve. The a.aalogoua‘conditione are generally not fulfilled for the propagation
speeds Ym of our hydromagnetically driven ionizing fronts. However, in the
special case f = - 1, the magnetic switch-off wave, we can show that the analogy
is almost complete. T'his is the second important conclusion,

The proof is elementary. W%%xﬁerely have to express the relative velocity
u, = - (U-v,) in terms of our new variables:

"z“?.2

T evex | | (23)
m ~ :

Substitution from Eqa. (19) and (22) yielde for the relative gas speed at the minimum

of U

0 ) = U=v )% @ (1/0)) [0, ¢+ § (148) v-buam? ], (24
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if diesipation can be neglected, the propagation speeds ¢ 2 dlong the x
direction for small disturbances in the plasma in region R, are given by the

relation7' 11
& [ (m2+u 3,2k YoP2 moy2 .2 28)
2 Epz b3 2 2 P pz‘ 2% 2

: _'.vshawn that the change of entropy per unit m.av'ss
de =(1/Tjfde + pd(1/p) ] . taken along the curve Y(X%at the point where
dy = 0, is given by

‘ B _ : & aX s
(Tzdsz)m = fﬁ;—Zpl (148) (szoﬁzl) - {(26)

which again is sero for P = - 1. We shall therefore call this point in this special
case the C-J (Chapman-Jouguet) point, and the modec of operation of the ionizing
front at this point the C-J {onizing process.

This result is not too surprising because here the magnetic field has no
transverse component behind the front, sothat the gas flow in the x direction is
purely accuetic. The entropy produced in a switch-off ionizing wave can be shown
to be a maximum at the C-J point rather than a minimum; xt&is therefore not
clear whether the phenomenon is stable at this point. |

In the theofy of simple gaseous detonation, as poimed out before, it is
usually argued that the C-J process must occur whenever ti:ere is no piston added
that moves with a epéed vy > (vz)m. the gas flow velocity in the x direction

corresponding to the C-J point. 2 The same can be demonstrated here. It is
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easily verified that, in the case of f = « 1, we have YR, > pZ(U-vz)? for

v, > (v Z)m‘ This means that any rarcfaction wave existing behind the shéck
will catch up with aﬁd weaken the shock, reducing both U and vz-eifb.er '
until the flow behind the front iz uniform, or until v, eguals (frz)m, whiéhever
is reached first. In that case, therefore, the situation v, < (va)m is never
obtained. DBesides, situations with ""Z < (vz)m. f=s- l' are believed to be
undtable, because they involve supersonic flow normal to the front on both
sides of the shock. As a result, we can use Eq. (22) for B = - 1 to expresse
the additional condition for the C-J process. Hence we can eliminate ejther
Y or X f{rom Eq. (16) so that the ,proble'm of the switch-off wave ia
completely determined provided the C-J procéss itself ie stable. It‘ should
be noted that White‘z has recently observed turbulence inC-J detonations.

In order to extend the jeﬁplugion to the general case - o9 < <+ o,
we shall postulate here that the relevant physical condition determining the
mode of operation according to the arguments in the previous paragraph is

U-v,= ca'. : (27)
Dhie: micans regionoR 2 in Fig. 2 is assumed always to'bé shrunk to zero length.
Here ¢, is given by the emallest positive root qf ¥q. (25), because a
ma;gn-étﬁson'ic expansion is a slow wave. !

It does, of course, seem possible that the actual piopagation of fonizing
fronts is governed by the ionization rate rather than by the magnetosonic
conditions analyzed here. In particular it may be argued that El must be
sufficiently small so that no electrié: breakdown occurs in region R ' In that

cage, however, a steady phenomenon can only result if v, is equal to or
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smaller than given by condition (27), because otherwise the expancion wave
will overtake the front, causing a nonsteady or noneguilibrium flow.
Equation (27) can therefore be regarded as a limiting condition on v, for
steady propag@tion. In experiments where steady ionizing ewitch-on fronts
have actually been observed, 5 one of the two electrodes (conducting plates)
shown in Fig. 1 does not extend into region Rl. so that the eclectric field
2 ie, as it were, convected along with the speed U, and attenuates with
increasing distance from the front. This means that the gas in region R,
is exposed to electric fields of the magnitude of El ‘only for a very shoxt
time and a finite jonization rate is consistent with a steady propagation apeed.
Since a completely self-consistent calculation of ionization rates, and hence
of the etructure of the hydromagnetic front, ie an exceed&;ngl& complex
problem, we keep this discussion simple by assuming that condition (27)
can be used as a good approximation for all cases of interest.

Fquation (27) can be combin/ed with Egq. (25)-a.nd rewritten, with the

help of our new variables (8) to (15}, to read
(v-x) [o®+ zusmP-vax] =y iy ax . (28

Because of Eq. {19), and after some rearrangement, we finally obtain our

general subsidiary equation
2
A+ (Y =X = b(y,X+X Y- Jvpey, TPEE+x-v). (29)

The algebraic solution of the simultaneous equations (16) and (29) is still
cumbersome unlegs f = - 1 or a = Q. | |

Firet we examine the case where a=0, f.e., Hx =0. In tfxia case
the smallest root of Eq. (25) vanishee and éz = 0. This means that
P =, and Y = X; {.e., we get a so-called "snowplow" solution and, of

courge, there is no expansion wave. In particular we find, neglecting Py
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Usv, = ey, | (30)
1 2, 2

Pp=20p0p - zh Wy - H ). - B

E, = b U | (32

B, = pH,,U. (33

These resulte differ from previous snowplow solutions, becau;ae in the
earlier treatments the energy equation was not used. We c;btain the
conventioqal form of the plane anwplow solution if we eliminate 2y
between Eqs. (30) and (31), and arbitrarily set p, = 0. In view of the
predicted infinite density and the possible negative pressures, according
to Eq.  (31), it is quite clear that our model is not any better than the carlier
one. In fact, we must conclude that an ionizing front will not be steady if
e = 0 and Eq. (27) applies. ' |

If Eq. (27) is abandoned, stéady solutions are posaiﬁle of course.
Since there cannot be an expansion wave when a = 0, the flow is similar to that
dxiven by a conventional impenetrable piston. This situation has recently
been studied in more detail by Lyubimov and Kulikovskii, 13,14,15 who
decided that they had to supply informatién éoncernﬁng the shock structure
and dissipativé effects in order to arr;vé at unique solutions. & is interesting
to note that théy found conditions under which current-free, i.e., ordinary
gasdynamic ionizing shocks should propagate eghead of the current-carrying
interface. The question of stability was not yet considered, however. -
Clearly, the special case of a=0andp=+1,1.e, H =H , = 0.' gives no
trouble if the conductivity is sufficiently high behind the front, because in

that case E, is certainly vanishingly small and the usual model of the
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idealized flow in a magnetically driven shock tube should be valid. The
expressions for the velocities, pressures, and electric fields in all these
cases differ somewhat frofn those given in Fqs. (30) to (33), of céurse. We
shall not discuse these here, but i'ather nmlt the treatment to the range of
values of o> e rit for thch the speed of the expansion wave is fast enough
to rule out the possibility of purely gasdynamic shocks even if the con- -
ductivity were infinite. In this case liq. {27) can certainly be used as a
lirrxiting condition.

For eimplicity we examine the important case where

o? >> (14 B)Z. | - (34)

6o that we can use as a good appro:dma;ion '
Y=y, t1)X- é\yzﬁ}‘yz‘nl. | (35)

A plot of _Eq. (35) is also included in the example on Fig. 4. For
f = - 1, both Eqs. {29) and (35) are identical with Eq. iZZ), and the{: Eq. (35)
is valid for all ¢ > 0. Certainly for experiments in which Hx >> H a1 and
H, >> sz, Eq. (‘35) is adequage. We may, moreover, always neglect Ty
because we will certainly need Ty <<1 in ionizing hydromagnetic waves; [ 1
was only carried in our equationc for the sake of completenés’s. The subscript
of Y, may then also be dropped. If we now use Eg. (35) to eliminate X

from KEq. (16) we abtain the solution for the wave speed

Y e (A+.az)“/2-3 , \ | (36)
where .
A=ty? -ty Ty (ZBy+y-1-p)

and
B=(y-1)e+ %v(v-l-ﬁ)-



-18~ ' JCRL-9971

The terms containing P in this expression are strictly justified only for

(1 + ﬁ)z << 1, because of condition (34). For A >> Bz, i.e., wHKAZ-! >> P1o° WO 33T

find
Uzz(u/pl)HxAH w2 - /2, (37)
Yor Bz >> A, on the other hand, we have
B }inAE-i
U : (38)
pyl2ey)

in Flig. 5 we show a plot of ¥ as a functidn of o for peal, y=5/3,
and a variety of values for «.

The other quantities of interest-—vz. Py ‘r.i'z. and Ezf-are:most easily
expressed in terms of U, the wave apeed; by ueing Eqs. (35), (18), (19),
and (20).: In these, too, we shall ignore Py everywhere and drop the sub-

script of lYZ‘ From Yge. {35), we immediately obtain

U g¥ _

Vz = m (1+ ) . (39)

and, by using Eq. (18), '
ppme lrl/ma-ggrt. (40)
According to Fq. (19), P, is given by .
v B
This algo deterrnines the temperature behind the front as
P2 yul. 2
(RT)Z;-B.Z...‘:WQL-%) ) (62)

Finally, the electric field in the region RZ is determined from Eq. (20)
to be |
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| A 2
. _BAH | g 27 +pU . By ]

SPECIFIC CONCLUSIONS

We have shown that many of the previously drawn conclusions con;
cerning hydromagnetic shock jump properties cannot be carried over to the
important case where El ie allowed to.diifer from zero. Also we have shown
that the magnetic switch-off ioniging wave is almost in complete. analegy with
Chapman-Jouguet detonation theory. |

From thé st of relations (36) to {43) further conclusions concerning
these hydromagnetic ionizing fronts may be drawn immediately. First of all,
it is casily demonstrated, with the help of Fq. (16), that ¢ >> ¥ >> 1 if both
QZ >> (1 ¢ ﬁ)z and 02 >> 1 are fulfilled. Lquations (36) to (43) therefore ahéw
that under these circumstances vz'. Pge Py and Ez do. not depend strongly

'o'n B. Also, we see thatin this case the difference.between conditions (22)

and (35) is negligible. In other words, if the longitudinal magnetic fleld H_

is much stronger than both H_, and H_,, Eqgs. {(36) through (43) can be expected
to describe the phenomenon rather well, even if the postulaté (27) is not the
correct one, Th'is is the third important conclusion.

Furthermeore, certain interesting features pgrtaining to the extreme
case mentioned above are worth poinﬁng out. Eqixation (40) in this limit states
that pé/ £y is remarkably insensitive to changes in the independent variables,
the value being surprisingly low. For example,; for y= 5/3 we have
0,/p, =16, |

4 i - Fm - - (- . 3
R ] . i aill: .. S :
I A L N hem s .- N R S
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Substitution for U from Eq. {36) in Eq. (43) shows that EZ varies -
only elowly with AH. In fact, for pHxAH <<p,e, Eg. (38) applies, and we

have

1/2. , (44)

which i5 independent of the current and gas density. Fquation (44) as well |
as Iq. (30} resernble the findings by Al£vént® and Fableson, 17 although the
experiments described by them apparently did rot in‘volve distinct fronts
producing full ‘ionization, as assumed in our model. Equation (38), when

combined with Fq. (4), can also be written
w,lc 2e (45)
2 0" ,

Actually, when Eq. (38) applies, the temperature 7T, ie often too low to
justify the original assumption of complete ionization.
In Fig. 6, Ig. {43)—for the case of ! = + 1~1is plotted in a non-
~dimeneional form, i.e., expressing the qua.ﬁtity Fa/yﬁ:-l'x (Zec)l/2 as a
function of A:i [“/(piéO)J 1/2 for various values of H [p/(pleo)] l-/Z'
The solid curves zre fair apprbxima.tions also for § # 1, provided that

(1 + {3)2 << uz.

The predictions of Eqs. (36) i:hrough (43) may be compared
with the experimental findings of Wilcox et al., in which p = + 1.~ Although
their geometry is not one-dimensional but cylindrical, their observations
agree fairly wéll with some of the major conclueions arrived at here {(slow
uniform propagation speed of a distinct front, voltage regulations, etc. )-1 8
More extensive comparison between theory and experiment is planned for

the near future.
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Whel-"eas the magnetic "switch-on' wave is of particular interest
to the experimentalist ﬁéa’auge of the gsimplicity in instrumentation, the
Yswitch-off" wave is @re éttractive from the analytical point of view., In
addition to the close correspondence to gaseous detopation waves, in the
switch-off case, we note that both Egs. {16) and (20) beéome eimplified. In
particular, it is interesting to see that, for 8 = - I, Eqs. (36) through (43)
are exact, the only restxiction being > 0.

Finally we investigate under what conditions v, can be zero, i.e.,
Py = #;. Hs pointed out before, Eqs. (16) through (20} do not restrict X
to values greater than zero if B is petmitted to take on values less than
zero. In our ﬁo.&del of a closed input end of the tube, v, ¢aon never be
negative. If conditions in the front call for v, < 0, & precémpreasion
shock is set up, violating the assumption of gas at rest in region B’l’ If
the precompression shock i8 strong encugh to ionize the gas, the front will
change its character so that v, is greater than zero. Imn a very sirnilar
manner, deflagrationes are cha.nged into detonations in the cage of closed
gas-combustion tubes, We certainly may set X = 0 in both Egs. (16) and
(Z‘i), and obtain two simultax_zeoua equations in Y..ﬁ. and a:

A
Y- = (Y-x)“ (46}

2{y-1) e ¢ y-1-§

and
S(140)Y . 3 2(2Y, 4 BY) (0% - Y. . (47)
0 2 82T, o
We usc the symbol >to allow values of ¢, >Uin Eq. (27). If we climinate
Yy
functio»n of a and ¢ that makes v, = 0 poegible. We shall not do this here,

between T.qe. (46) and (47), we find the rninirnum condition for -f as a
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because it is lcngthy and not particularly inetructive. However, we may
~alsc ask what can be the maximum « for which a switch-off wave,

p = - 1, does not yet bring about 2 compression. This means that, after

imposing 5 + 1 = 0 in Fq9. (46) and (47), we solve for a. The result is

L

o’ sv e+ i) - (48)
We may, of course, express this relation as a2 condition for the minimum
admissible value of H? if Hx. e, p, and y are all given:

1 0

Hzlz 2 (Z/YZ} (v-1) [sz - (y/m) Peg J (49)

The propagation spead of the front is then given directly by £q. (46). The

transverse velocity becomes independent of Hx:

w.lsze ¢ —Y _.H 2 . (50)
2 0 21,
{y-1)p

The expression for the pressure is simply

1 2 : . )
pz = ~Z [.‘.::'Izl » ' (51)

which imposes a regquired minimum on Hzl to ensure adequate ionization,

The electric fields are

_'g;';z = - p.wzblx ‘ {52)
and
2
- . A
By = E, {1 - g—-—-z) .
2 #Hx

The situation is particularly simple for ={J 2 >> ype In that cass, fiq. (49)
s p Y P

x 0°

reduced to
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P 1/2
cE g% [aen] Yoy (53)
for y=5/3. Moreover, both U and the impedance "EZ/Hzl become in-

dependent of current (the minus sign refers to the fact that, for 8 <0, E

is negative if H,, is positive):

2 (y-1)p 2 .
U= KT Hx 0 (54)

EZ. = yEl g-[ﬁ%ﬁr)‘p‘] 1/2 “Hxﬂal o {55)
whereas
' 'wzzw F}?Tﬁ- Hzlzz fi-l Y—i:;-z-— . (56)

We feel that such a ewitchaotf ionizing wave would be a very suitable
means of generating 2 uniform magnetized plasma. After the plasma is f.or_'med.
the resulting transverse motion is eaaiiy arrested by shorting out E, through
a suitable resistor so that a simple Alfvén-wave relaxation will take place
without disturbing the state of thé gas. It would be interesting to try to
realize this situation experimentally, and to test the various conclueiéns
arrived at in this analyaie. |

For v, > 0, however, the front ﬁmst be followed by a rarefaction

wave. A very brief discussion of this phenomenon is presented in the next

section.
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RAREFACTION WAVE

in the treatment of the rarefaction wave we must assume that
diseipation is negligible. This was already neceseary when Eq. (25) was
introduced; otherwise, the analysis becomes extremely complicated. Ewven
80, in general the quantitafiva description of one-dimensional isentropic
rarefactiqn wavee requires numerical integration because they are nonlinear
phenomena. Such coniputations have been carried out for é number of
examples by Kemp and F%atsc.:lmekl and, in principle, their results could be
used in conjunction with our shock solutions to describe the éntiz'e flow
completely. We shall not go into such detail here. The equations of motion
for the centered rarefaction wave become very much ai.mpliiiéd. however, if
the value of Hx/ H,, ie lé.rge. In that case the situation can be approximated
by the familiar isentropic acoustic solution, and anslytic treatment i_e possaible, 19
In particular, it can be shown that in region R 4 {ece Fig. 2), where we require

that P 0, the speed of sound Cq iz given by

co= FU{1-v/21)], | (57)
if v, and c, obey Eqs. (39) and (27), respectively. This means that the
tail of the expaneion wave moves at roughly half the speed of the front. The
density P4+ 8ccordingly, is

i (%)

2/(y-1) ) (y+1)/{y-1)

I 291 (Y’%‘_

(58)
where the value of p, was substituted from Eq. (40). For y= 5/3, this

yields Py = 0.8 P -
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Therefore it appears that the expansion produced by a hydromagnetic
ionizing wave {8 very mild, and about half the length of the generated plasfna
is uniforﬁx- and without longitudin%tl motion if Hz is mch less than Hx'

Pressure and temperature in region R 4 ™oy also be computed.

The resulte are

, 2 '
| 2y/(y-1) »,U / (y+1)/{y-1)
+1 1 [yl
Py ®Pp <]Z_> R v \YZV )
~ ' ' (59)
and
| +1 .2 vyl
(RT), = (RT), () & 5 (60)

where the values of p, and (RT) , are substituted from Ecia. (41) and (42).
Finally we calculate E-l8 4 and E 4 {for w 4) in this approximation.
We find | |
2 .
p.Hx de N - Hﬁdp.
so that we have

wtetp,-p,) (61)
ﬁ% :pz Py ]

Hoy ¥4, e"P[

- B
THa |1t 2 “’z“’e’]‘
x
Similarly, we deduce the approximate solution

-y T4 K4

80 'that ﬁre have

_E4 = - pw4ﬂx mEZ . i : {62)
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For large H_/H_ ,, the net impedance of the shock tube, which we may

1, {6 then essentially computed from Eq. (43),

expresa ae E4 (Hzé’Hzl)
where U must be evaluated from Eq. (36). That is, the expansion wave
does not contribute appreciably to thé electrical behavior. In retrospect,
this is fortunate because large current densities at finite conductivity in
region 23 would certainly gonﬂuﬁt violently with the aasumption of ieentro;pnc
flow there. We conclude that the major deviation from this ideauzed model
will be caused by the finite viscosity of the plasma, which must definitely cause
congiderable &issipation. It is therefore essential that the chamei in which
such a plasma is generated is not too narrow in the direction of the electric
field. |

This discussion may suffice to outline the principal features of

hydromagnetic ionizing waves and of the plasma which can be generated by them.
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FIGURE LEGENDS

1. ldealized experiment with i:lane hydromagnetic ionizing waves.

2, Model for analysis of hydromagnetic {onizing waves,

3 Schematic for shock conditions. Note that in this exaﬁple the
current is ig the +y direction so that the velocity Wy is negativé
{ -z direction). ' |

4. Plot of Y(X). Eq. (16), for various values of az.‘ This includes

. plots of Eqs. (21) and (35).
5. Plot of ‘{(d) for various valués of e and B.
6. Plot of E,(AH), Eq. (43).1 for various values of P-sz/ Py

{made nondimensional).
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