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ABSTRACT 

The random-phase approximation has been applied to treat the giant 

2-i- 
El resonance of the deformed nucleus Mg . Two well separated peaks are 

predicted on the basis of reasonable force parameters. The backward-going 

graphs are found not to affect significantly the positions of the 1 states 

•or the relative distribution.of the oscillator strength. On the other - hand 

the Thoinas-Kuhn-Reiche.sum isdiminished for the case of a Ferrel-Visscher 

force by a magnitude of up to 30  percent by the inclusion of ground state 

correlations. The violation of the TKR sum rule encounteredin the shell-

model calculations is thus reduced considerably. 
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** 	 *** 
S. G:. Nilsson,. J Sawicki, 	and N. K. Glendenning 
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INTRODUCTION 

The giant El photo-nuclear resonance has now been studied for a large 

rtumber of nuclides, and there appears to be experimental indication that the 

1 	2 
giant El resonance exhibits a split peak in strongly deformed nuclei. Danos 

and Okamoto3  explained this effect qualitatively in terms of a hydro-dynamic 

model with different characteristic frequencies along the major and minor 	-' 

axis of the nuclear spheroid. This effect, was then also calculated on the 

basis of the independent-particle picture by Wilkinson and by Mottelson 

and Nilso? using the, single-particle wave functions of an anisotropic har-

monió oscillator. 	
V 	 . 

Such a simple descr±ption of the El giant resonance in terms' of non- 	
V 

interacting particles now appears to be contradicted by the empirical Vfact 

that the cMracteristic resonance energy is of the order of a factor of 1.7 

to 2 larger than the spacing between two oscillator shells, hw. 6  Already 

sereral years ago Elliott and Flowers7  were able to explain the photo- 

16 excitation spectrum of 0 by the perturtation of the simple shell-model 

states by a residual two-body force of finite range and containing exchange 
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operators. As a result, states of mixed configiiatioñ are fmed with such 

proportions of the pure states that the.1 states with T=l generally appear 

above bwhile those with T=O generally appear below. In particular, the 

two highest-lying El states were found toabsorb almost all of the El oscil-

lator strength and thus together constitute a true giant state.. 

Recently, Brom and Bolsterli8  proposed a very schematic but suggestive 

picture of the underlying mechanism of shell-model configuration mixing that 

gives rise to the El resonance. In a representation of single -particle.states 

where all Elsingle-particle matrix elements are of same sign, and.furtl -iermore 

provided the matrix elements are of roughly equalmagnitude, a coherent excited 

state, collecting the main El oscillator strength, is obviously:.thëhlinear. 

combination of single-particle excitations with the amplitudes being rOughly.. 

equal and all of the same sign. Such an: excited state of one-particle char.cter 

is indeed also the highest-lying 1 state provided all matrix elements::of the 

residual interaction are of the same magnitude and sign.in  this representation. 

Brom and Bolsterli treated the case of a residual Wigner force of zero range. 

However, the specific isobaric spin character of the El., state aswell as the 

ant isymmetrisation of the nuclear wave function are neglected in the first of 

the papers of Ref. :8. A conjectured change of the over-all sign of the interac-

tion matrix elements compensates qualitatively for the mentioned effects. 

Recently the approach based On the Random-Phase-Approximation has been 

applied with success to the study of certain types of collective states of 

nuclei. The formalism employed was first developed in the early papers by 

Sawada9  and his collaborators with application to the electron gas problem 

The corresponding methods were intrduced into nuclear physics ihdependently 

10 	 11 	 12 
by Takagi, Pallieros, Mottelson, and others. This latter type of theory 

has the distinction relative to the shell-model calculations in that it accounts 

approximately for the effects of correlations in the ground state. These effects 

are sometimes discussed in terms of the so-called backward-going graphs which 
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means that single-particle deexcitations are considered in addition to the 

excitation, i.e. the lifting of a particle from below the Fermi surface to 

above it. Only the latter type of processes are included in the usual shell-

model calculations. 

1314 
In the present paper we shall employ the density matrix formulation' 

which is especially suitable for the study of higher order nonlinearity effects. 

As the specific T=l character of the giant resonance state appears to 

be of primary, importance, it is of particular interest to study nuclei with 

such a low Z- value that the isobaric spin is a good constant of the motion. 

Therefore our first choice has been Mg2  which is a prolate nucleus and for 

which the adiabatic coupling scheme seems well established. In adition, as 

an example of a possibly oblate nucleus, we have considered C 12 . 

THE RMDQM-PHASE-APPROXIMATION TREATMENT OF THE RESIDUAL INTERACTIONS. 

We consider a Hamiltonian of the form 

H=H+V 	 (i) 

where in the notation of second qiiantization 

+ 
H = 	a a 	 (2) 

is the single-particle part of the Hamiltdnian, including the shell-model field, 

and where 

	

All = 1/2 	Z 	(IvIa'') aa a 	a,aa t 	 (3) 

is the residual interaction, i.e. the part of the interaction that is not 

already included in the field. 

The two-body interaction V refers to space, spin and isobaric-spin 

quantum states of both particles involved in the interaction 

	

- 'L 	' 
( 1) 	(1) 

'LE 
 (1) .' 
	

(2) 	(2) 	(2) 
' 	'i 
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In the absence of a residual interaction, LV,. the ground state is an 

eigenvector of H corresponding to a sharp Fermi surface in.terms of the shell-

model wave functions. In the presence of a residual interaction the ground 

state may contain correlations. As seen from (), L\V scatters particles out 

of the Fermi sea. Obviously such hole-particle pair excitations have to comply 

with parity and angular-momentum conservation of the ground state. 

Our main interest is, however, not the ground state but the excited 

giant El state. Just as the ground state appears to be a complicatedlinear 

combinatjon of various one-two- etc. particle excitations, so also the El state 

mayhave a complicated structure. However, we are concerned only with its 

relation to the ground state The simple Random-Phase-Approximation is largely 

equivalent to the contention that, relative to the correlated ground state, 

denotedby tQ),:the  "collective state" jE) is of the simple type 

IE) 	
E) 	

0) = 	E 	 ) 	 ( 5) 
VVt 

vv , 	vvt 

where cE!  are coefficients later to be detethined and where 

,\ 	+ 
p 
vv 	

=a
V' V 
a 	 (6) 

is the density matrix operator connected with the promotion of a particle from 

the single-particle state v to another state v'. 

The "collective" states thus correspond to linear combinations of one-

particle excitations relativeto the ground state. The assumption of a state 

of this particular character to approximate the physical state has strong direct 

r.i 

LI 

support from what is empirically known about the character of the collective 

state. As this state (or narrow group of a few states) may be reached from the 

ground state by an El excitation that to a large extent exhausts the total sum 

rule strength, and as the electromagnetic interaction can excite only one part-

icle at a time to lowest order in e 2 c, the character  of the collectiv 
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excitation is thus rather well specified empirically as being domirant1y of 

the type expressed by Eq. (5). 

The problem of findig the coefficients c 	 is equivalent to the 
VV 

problem of finding the matrix elements ofbetween the ground state 10) 

and the TT collectiv& state IE). 

The operatorsP
VVf 

fulfill the equations of motion 

[AV  V H] 	 ] 	 (7) 

The first commutator onthe right hand side is easily evaluated to be 

Hi = 	 1) 

We omit here the details of the evaluation of the second commutator. 

Afer multipliation of Eq. (7) by (El from the left and by IC) 

from the right we obtain 

(E:
€- E)<Elp,IO) =

K' IV IS K~~E 	A 10> 
KK S (<V 

- K5KIVIvtK)<EIv PKKIO) 	 (9) 

where 

(vK'IvIsK).= 
f*() 	

,(2) v(i) VIK(2) dT1dT2 	 (9a) 

This equation thus relates the matrix elements of one p to those of a 

product of two p's. By exactly the same procedure an analogous equation can be 

formed relating two-p aggregates to three-p aggregates, etc. In the simple 

Random_PhaseApprOXimatiOn (RPA) one confines oneself to Eq. (9), which is 

then linearized according to a certain prescription. In this way Eq. (13) is 

obtained (see below). Thus quadratic terms of matrix elements of p 	 with 
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vt 	v ar' ñégle'cted as bein Thl.of a higher order. Altbougb there .à±'e 

many of these terms, they are assumed to be negligi'bl a's t'hêyccur incoherent-

ly, i.e., with r'ahdom phases.  

For'he sake1of making a rough estimate of theneglected txms.,' assume. 

first that all matrix elements involving V are approximately eqtial 

One may then compare on the one hand the matrix element (Ej,,IO) 

and on the other the product of matrix elements (E
J A  

KKH XE 1I) The 
 PsV 

only important intermediate states are otter Ut wo _ usi_particle! states IE') 

of the same type as IE). Note, however, that LE')  may not necessarily be an 

El state. Under the assumption that IE) and IE')  are linear combinations of 

on the, average Q elementary particle-hole excitations, it is then easy to see 

that the following order -of -magnitude estimates'are valid 

(E  I KK' 
IE' )E' 	' 0) 	l/2 = 	

(10) 

and

1 0  1 
KK' v'v' / 	72 

for:..v referring to a::single-particle -statd below the....Fermi surfaOe. In : 	( u) 

obviously is the number, operator associated with the single-particle level 
vV 

v'. It is also"apparent that only some of the intermediate states jE') have 

nonvanishing matrix element with E) in the approximation that only one-particle-

hole excitations ('two-quasi-partic1e" states) have to be considered. In fact 

in this case the sum over S',K' and E' together give's just of the order of Q tms. 

If now the 	off-diagonal terms contribuied all coherently, their 

contribution would be of the order of magnitude compared with for 

the sum of ç2 terms of the type given by Eq. (11"). However, the assumption of 

a random'phase relation between these terms instead makes their sum of the 
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order of magnitude p3/2 . -3/2 = 1. Thus for large the terms with both 

annihilation indices different from both creation indices may be neglected.X 

For the matrix element (11) we make the further approximation 

+ 	+ ,j 	A 	 A 

	

(El aK,K 	, a 0) 	, n (EIPKK ,P,,l 0 )=n,(EIPKK IIO) 	 (12) 

which would be exactly correct fora sharp Fenni surface. In Eq. (12) n 
1 

is 

the occupation number of the single-particle state v'. (For the second term 

on the right hand side of Eq. (ii) we furthermore assume that also IE)  behaves 

approximately as a sharp Fermi surface•when acted upon by the occupation number 

operator P .) 
VV 

The fact that an occupation number operator a+,a1  can occur in (12), 

alternatively if the summation index s equals v' or if the summation index 

K equals Vt,  gives rise to the usual exchange matrix elements of V, well-known 

from shell-model calculations. In the usual procedure for linearizing the 

billinear Eq. (11) to obtain Eq. (13) a factorization of this two-a product 

that takes the Pauli principle, properly into account is referred to as a 

Hartree-Fock factorization. 

The complete linearized equation can thus be written as follows in terms 

of the amplitudes (Ejp 110),which we will denote P 
VV,

for the sake of typo-

graphical simplicity 

	

(€Vt_ 	E) P VV I ( Vt 	
) KK 	
< VKhIV(1_Pl2)lVtKpKK, + 

+ 	n 	Z 	<VKIV(1-P
'2) IK'K) 

K'V' KTV< 	
IV'KP1 

K 
K 
 '[K'l V,

(13) 

X 
The effect of two-pair excitations neglected in the RPA could be further 
examined, e.g. by an extension of the Random-Phase Approximation - the ttHigher 
RPA TT  - consisting of a closed system of equations of motion also connecting 
the two- and three-operator products where the three-s aggregates are in turn 
linearized. 
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The terms on the second line of Eq. (13)  are self-energy terms cor-

responding to the contribution from the self-energy part of the interaction 

Hamiltonian 

Aself 	 .,. 
= 1/2 Z (5Kj VI 5K ) a a. a a  

It appears reasonable to assume that terms of such origin are already 

effectively included in the shell-model field from which the single-particle 

erErgies k • have been determined, although we have obviously not attempted 
V 

to relate the self-energy parts of V to the single-particle energies through 

a Hartree-Fock procedure or through any other self-consistent method. 

After the exclusion of the self-energy terms,Eq. (13)  takes the 

sin1p1e.;Q.rm. 

E- E)p,= (n e - n 	
KK? KK 

Another question also related to the arbitrariness in the problem.of 

hathe self-consistent  field is defined concerns the RPA elements of Eq. (15) 

that are diagonal in the particle hole-pairs, nane1y (vv IV(1-P) Iv,'v. 

Those obviously correspond to elastic scattering of particle-hole pairs (vv), 

and the problem arises whether they also should be thought of as being already 

included in the single-particle potential. Ordinarily such terms are not 

included in a Hartree-Fock calculation based on the Brueckner reaction matrix. 

Unless one employs another type of reaction matrix (see e.g. Sawada 15 ) in 

finding 	such terms should be retained in the corresponding EPA calcu- 

latiori.. However, in the present calculations we have assumed a tiphenomeno 

logical" shell-model field to supply ,11. Probably the mentioned terths of 
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the elastic-scattering type are included in this field on the average. However, 

individual fluctuations relative to this average may be significant and display 

effects of correlations. For most of our calculations we have chosen to include 

these diagonal terms, but for some cases they have been excluded. Probably the 

wave functions and values of the El matrix elements corresponding to the former 

case are to be considered as somewhat more plausible. The energy values are, 

however, just on account of this ambiguity, uncertain by an order of magnitude 

of a couple of Mev, and for this reason one might imagine them to be over-

estimated in.the former case. 

It should finally be emphasized that for the case of an uncorrelated 

groundstate (i.e. when deexcitations, or annihilations of hole-particle pairs 

are excluded) Eq. (15) leads exactly to the eigenvalue problem occurring in 

the shell-model calculation. The latter type of calculations are obviously 

limited to including only the very simplest hole-particle pair graphs (one 

hole-particlepair being exchanged for another hole-particle pair in the 

interaction process). 

In the approximation employed, our occupation factors n and n, have 

the values 1 and 0, corresponding to a sharp Fermi surface. We then also 

confine ourselves to excited states that, relative to the ground state, 

represent transitions of a particle across the Fermi surface. Thereby obviously 

a transition of a particle originally being above the Fermi surface in the 

correlated ground state to another state above the Fermi surface is excluded. 

The same holds true for a hole transition below the Fermi surface. However, 

as already emphasized, the formalism allows for both creation and destruction 

of hole-particle pairs relative to the correlated ground state. 
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Equation (15) is an eigenálue equation in temS 	atrix 

elements of the density matrixvv,'The  corresponding transposed matrix 

uLon holds for the coefficients c 
V 

11 

V1 which are the cothponOts of the 

"coflectiv" eigenvector IE) defined in Eq (5). This equationmá3r be 

i6 
written in the form 

(i6) 

where u corresponds to creation of a hole-particle pair relative to the 

ground state while v corresponds to the annihilation of such a pair relative 

to the ground state. Thus in a pure shell model calculation v = 0. The 

matrix B'is obviously associated with the coupling between the excitatiohs 

and the de-excitations. While both of the matrices A and B are Hérmitiah, 

the total matrix is non-I-Ieranitian. 

The reality of E depends on the actual strength of interaction and is 

for the present case always very well ensured. It is easy to verify that 

Eq. (16) has the simple property that to each positive eigenvalue E there 

corresponds a negative and unphysical eigenvalue - E, which may be ruled out 

by imposing the extra condition on the correlated ground state 

E 110)  = 0 	 (17) 

Also, as the ty-pical matrix elements of B are of the order of, or less than, 

1 Mev for the light nuclei considered compared to a separation of the roots 

of A and -A by a magnitude of the order of 2hw, the amount of mixture of 

de-excitations in the eigenfunctions ofE4..(1is expected to be rather small 

in the treated cases. This is also born out in the explicit calculation. 
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As a result of the non-hermiticity of the secularproblem the corres-

ponding eigenvectors satisfy orthonormality and completeness relations charac-

teristic of an indefinite metric: 

r 	•. 	- 	 * 

	

E 	E 	E. 	E 	E 
I(c 	m (n 	m 	___ 	 (i8a) 71 

vv' L1t1 	
- vv 	\ vtvJ 	.t 	IEl 	mn 

	

* 	 E

VV 

E. 	E 	n 

E,EO () c 
	IEl = öv K5v K? 	 (18b)KKI 

where the sum over v in (18a) runs over all single-particle states below the 

Fermi surface and the sum over v' includes all such states above.it. The El 

matrix element between the 1 states and the ground state is - most easily 

expressed in terms of the (EI', 0) matrix elements 
VV 

	

erY(i) 0) 	 +eh(E1IV,0.) 	(19) 
VVf 

DETAILED CALCULATIONS. 

In our calculations we have considered the self-conjugate nuclei Mg2 

12  and C which have ground states with T = 0. Excitations of El character 

relative to the ground state have thus the isobaric spin T = 1 and are generated 

by the operatorsx 

t. 	
= 1 	(P 	

- 	
) 	 (20) 

	

vvt 	 vvf 	vv 

where, from here on, v and v label only the space and spin coordinates but not 

the charge of the state. If we rewrite Eq. (15) in terms ,of the matrix elements 

of 
vv 
 denoted 	

vv 
,, it takes the form: 

-  

(€ , -E - E) 	
= 	V'

(VK'IUV'K) KKt 	
(21) 

KKr 

where (vKtlUIvtK) is the matrix element of v(i-p'2) in terms of the T = 1 wave 

functions (see Eq. (20) ). 
* That only T=1 states are excited can be seen from Eq. (19) and the fact that 

for such self-conjugate nuclei considered here the effective charges ep and e n  
of the proton and neutron are e/2 and -e/2, respectively. Physically the T=1 
state, as seen from Eq. (20), corresponds to neutrons and protons moving .180 0  
ut of phase relative to each other, a pictu which retains an essential 
feature of the original Goidhaber and Teller I two-fluid model. 
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Restricting ourselves to an interaction of the form 

V = J(r12)(w+ bP+ mpr + hprP(Y) 	 (22) 

and introducing the integrals 

w = f 	( 1) (2): 2) 	dT1 dT2  (2a) 

B = j 	qi(i)  K(2)  rp 	'1(j.) 	 dT1 d 2  K(2) (23b) 

M = f 	i(i) 2) JPr  V1 	(1) dT1 th 2  K(2)  (2c) 

H = f Vi (i) 1K2) JP P 	Li(i) 	dT1 dT2  K(2) (23d) 

we may write 

(vKUlvTK)wH_bM_mB_hW. 

The calculation of the interaction matrix elements as wel1sHZhe  El 

transition matrix elements is particularly simple if, one uses the TTasymptotich 

wave functLons, 5  valid in the limit that the quadrupole part of the shell 

model field is strong relative to the spin-orbit cop1ing. In this limit 

appropriate at large deformations only the diagonal parts of the spin-orbit 

interaction is retained. In the Appendix we present the results of such 

calculations applied to the C 12  nucleus. Unfortunately the applicability of 

not only the adiabatic coupling scheme but in particular the asymptotic wave 

functions to the nucleus is very uncertain, and the results obtained are only 2  

of interest as illucidating the general mechanism behind the calculations that 

employ the more detailed wave functions of Ref. 1. They should thus not be 

directly compared with the empirical data. 

In the coupling scheme appropriate to deformed nuclei, there are two 

separate modes of excitations corresponding to K=O and K=l. These are ha-

sically characterized by the two different oscillator frequencies w and cn1 



-13- 	 UCRL-9975 

where w <,u for prolate nuclei as Mg2  and n2  >for oblate nuclei, of 

which we have assumed C to be an example (see Table i). Within.eachof the 

K=O and K=1 groups of states a giant El excitation is then formed. 

Furthermore in the case of deformed nuclei, an El transition from 

the ground state populates only the lowest member of a K=l rotational band 

and only the 1=1 member of a K=O rotational band. In this case there is thus 

no sharing of the intrinsic El strength on different rotational states. The 

transition probability is therefore given exclusively in terms of the intrinsic 

18 
wavefunetlons.  

'Most of the degeneracy of the spherical problem is. removed by the 

distortion of the nuclear field. The remaining degeneracy associatedwith 

the time reversal degeneracy of the single-particle orbitals may be exp;Loited 

to reduce the secular matrix in the K=O case by the introduction of the new 

state vectors generated by 

!ab 	-a-b 	. 	' 	' 	( 25) 

	

II ab - -a-b 	 . 	' 	(26) 

It is easily seen that the matrix elements of V vanish between states of 

those two different types. Furthermore it is also easy to verify that the 

second group of states are associated with a vanishing El matrix element 

with the ground state and therefore can be left out of the discussion. 

In calculating the strength of the K=l transition we will have to 

remember to double their relative strength corresponding to the additional 

degeneracy of the K=l states (the angular momentum component may be +1 or 

-1). 
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RESIDUAL INTERACTION 	?LOYE 	:-' - ' 	 ' -• 

In these calculations we have-limited ourselves to considering a 

phenomenological interaction - V simulating the "actual" nucleär'fore-. We 

have chosen the "empirical" force employed by Ferrell and Visschei,' -having a 

Gaussian radial shape and a particular exchange mixture. - -To isolate the 

effects to exchange mixtures, wehavé also considered the case of a pure 

Wigner force.'- 

In 'addItion we have also -in some cases considered a force of the- same 

radial dependence as the interactions above but with the exchange paratheters 

of a "Rosenfeld mixturei.  (We will somewhat inadequately label this-potential 

as "Rosenfeld" in the tables.)- The parameters characterizing these foràe may 

be found' in Table 2. - 	 - 	- 	- 	- 	- - 	-- 	-- 

RESULTS OF CALCULATIONS 

a. Excitation spectra 

The effects, of the inclusion of the backward-going graphs are, as 

pointed out, rather small as far as the positions of the roots and the reiLqtive 

distribution' of El strength is concerned. Generally the resonances are slightly 

lowered by some tens or hundreds of key. 	 -- - 

Of more interest is the way in which the sum rules are affected. This 

will, however, be discussed later in this section. 

Complete calculations have been performed for Mg 2  , and the results can 

be studied in Table i-i-. For C the calculations are complete only for B = 0, 

i.e. with ground state correlations neglected. The results may be studied in 

Table 5. 	 - 



-17- 	 UCRL-9977 

The matrix elements, computed numerically on the IBM 709 of the 

Lawrence Radiation Laboratory, exhibit some of the features conjectured earlier 

(e.g., Ref. 8). Thus, for instance, the effective interaction for T=lis 

repulsive in most cases, thereby generally pushing the roots above their. 

• single-particle values. The matrix elements are in no way constant, however, 

and fluctuations in their size is of.decisive importance. Instead the single-

particle, excitations that originally carry most of the El. oscillator strength 

(asymptotically unhindered) have also the large interaction matrix elements 

in between themselves. It is effectively on one or two of the states in this 

smaller group of states that most of the El strength is collected as they are. 

being pushed upwards due to the interaction. 

Thus, e.g., for Mg2  the single-particle excitations carrying most of 

the El oscillator strength scatter in energy around bw .or say ll-1 .Mev for 

••K-0 and around hm or about 17-17 Mev for K=1 (with the well parameers assumed 

as rj=Lt- and K=0.08). 	 . 	. 

The one or two states collecting the giant strength now appear at 

energies higher by about 7 Mev for K=0 and about 7 Mev for K=l, as is shown 

in Table 6. These figures refer specifically to the Ferrell and Visscher case 

with diagonal elements retained. Note that, in the total spectrum of states 

reached by El excitations the giant states are by no means the highest-lying 

2 
as in the spherical case. Thus for the mentioned case of Mg with Kz1.(as 

exhibited in Table Li-b) the highest-lying root is more than 5-Mev above the 

K=l giant resonance peak, and for K0 about 12 Mev above the corresponding 

giant peak. Indeed in the latter case the giant peak is found in the lower 

part of, the energy spectrum. 



-16- 	 UCRL-9975 

One may:  aló note that the interatioh mechanin deribed tries to 

enlarge 'the 'plitting teen the two peaks, 	latire to their slitting in 

the independent particle description (see Table 6)1. This should be comparê& 

with the energy Splitt.ihg edsting afte± the interacion has been turned on, 

whidh s'ab6ut 5.7 Mev .  . It may be pointed out'tha't the ratio between the 

enrgy: differenbetweéntwo peaks and the average El'esbnance energy is 

rOhly prèsèrved'relative'to the independent-particle case andis aproxim'ately 

equ'al6thedistortion parameter c. 	 '• ' 

A balculatithi where a puke Wigner fbrce was assumed'gives 'a 'cohcehtrated 

while for K=l the strength is distributed over states ereral Mé 

apart. On the whole the difference between this and the Ferll"and Vih 

csC'btoomaiked, Iwèrer, apart from difference in the TKR suii' rule 

(see'belew). 	 •' 	 ' 

'Turning attention to the case of C 
12

(Table 5), where the whole couplixg 

scheme may be very much less appropriate, we note that the clear' sepai'tion 

24. 
encountered in Mg into two peaks of K=O and Kni, respectively,' does not occur 

here' Inanalngy with the prolateMg2, the obl5te C 2 wouldbe expected ."ó 

exh±bit''a lo-ly±ng K=l peak and a higher-lying KO peak with asplitti'hg-f 

order dlcu. In' C'2  there is indeed for Krl a' strong low-lying peak. However 

7 Mev higher there is still another peak for K=1 which may be a remnant of 
12 

the spherical coupling scheme, from which'we are much less distant' in 

(with Tj = 2) th'an in Mg2 (with I = 4). For K=O there is essenia1l oe,' 

12 
high-lying peak in C 
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The gross features of the empirical gamma-ray absorption cross section. 

for C 
12

and Mg may be obtained from the (7,n) and ('y,p) reactions and. the 

11 	12 	23 	2)-i- 	 19-27 
reactions B (pçy)C and Na (p,7)Mg . The experimental results 	indicate 

a sharp peak at 22 	
12 

Mev for C and.a somewhat wider peak at 19 or 20 Mev for 

Mg2  . At higher energies the details of the cross section are still un1om. 

In the proton capture experiment it was found that upto energies of 

24 Mev the excited 1 states of C12  decay primarily by ground-state gamma 

+ 
transitions whereas, above that energy, transitions to the rotational 2 state 

at 4.43Mev are favoured. Although the data on Mg2  are more fraentary, 

there is evidence that the opposite situation exists there; i.e. decay through 

-. 
the 1.37  Mev rotational 2 + state in Mg 

2)-i- 
 is strongly preferred at least for 

excitations up to 23 Mev. 

It is therefore tempting to identify the observed giant resonances in 

'2  C with the theoretically calculated .K=1 group of giant?  states and to 

2)-i-  identify the peak observed in Mg with the narrow group of K=0 states predicted 

theoretically around 18 Mev.x The reduced El transition rates from an 1= 

K=1 state to the 0 and 2, K=0 states ou1d be in the ratio 2:1 theoretically. 

The same ratio from the 1=1, K=0 state should be 1:2. Those two ratios cor-

respond qualitatively to those inferred from the experimental data. The K0 

state in C12  and the K=1 state in Mg2  would then presumably be located at 

a higher energy. 

The experimental information from the mentioned gamma-ray branching in 

The B (p,-y)  reaction might on this basis be taken to indicate a K=0 character 

of the 1 spectrum above an excitation energy of 24 Mev in C 12 . However, any 

conclusions are obscured by the occrence of rotational 2 states which in C 12  

should lie about 3 Mev above the giant 1=1, K=1 states. These are expected 

The rotational energy correction is of the order of 0.5 Mev in Mg2  Il K=0 
0.8 Mev in C12  1=1, K=1. 
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to be popuated in theB
11

(p,) reaction, and will probably decay mainly to 

the low-lying 2 rotational state. InMg2 the I = 3 , K = 0 rotational 

states are expected to occur aboit 2 Mev above giant.l states. They may 

2 
possibly be responsible for a jpart of the peak observed in the Na  

reaction just aboie 20 Mev. 

b. Discussion of sum rules 

It is obvious that a pure shell-model calculation (ground state cor-

relations not considered, cf. Tables )_5) retains the sum over sQuared El 
matrix elements unchanged. In the shell model case the Thomas-Kuhn-Reiche

NZ  
sum proportional to > E M 2  will exceed the sum rile value 	, derived 

for velocity-independent and non-exchange interactions, since the energy 

values En  are pushed upwards relative to the independent-particle case. The 

effect is usually larger with the force mixtures considered that contain 

exchange components. However, also the Wigner interaction treated in the 

approximation where backward-going graphs are neglected violates the sum rule 

due to the fact that only a particular set of graphs are included in the 

conventional shell-model treatment of this interaction. This is borne out 

in Table 4.. 

For the Ferrell and Visscher force the inclusion of the backward-going 

graphs decreases the sum of squared El matrix elements by as much as 25 per-

cent or more for Mg 	Also the energies are somewhat lowered when the back- 

ward-going graphs are included. The TKR-sum is therefore considerably reduced, 

in fact almost dowu to the sum-rule estimate. This is in line with the 

result2627 that the random-phase approximation with inclusion of only 

"exchange" graphs leads to this sum rule being exactly obeyed. 

On the whole, it may be considered one of the gratifying results of 

these calculations that for a force of finite range and realistic exchange 
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mixture the TKR sum is very much improved and brought into line with general 

experimental findings that the TKR sum is generally exceeded for light elements 28 

* 

	

	by no more than about 10 percent below an energy of 2 hw, which excess is then 

attributed to exchange forces. 

However, for the unrealistic but interesting case of a pure Wigner force 

the effect of the inclusion of the "backward-going graphs" is rather small. 

Indeed the contribution from the correlation terms appears to be almost com -

pletely incoherent with tlEflBnshefl-model contribution. The TKR sum rule is 

thus still violated by a considerable amount ;  which may reflect on the insuf- 

ficiency of the EPA approximation for the treatmert thisiarticular force. 
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TABLE LEGENDS 

Table 1. 'Parameters of the shell-model potential appropriate to the description 

of deformed nuclei. For the meaning of the parameters.see Ref. 18. 

Table 2. The exchange mixture parameters of the force V0 (w+bPimpr+hpI o' 

r 2  exp - 	, where V, = - 51.9 Mev and a = 1.752 fm. 

Table. 5. Elementary single-particle excitations for Mg 2 . TabIe.5a refers to 

K=O and Tb1e 5b to K=1.. The energy values are taken from Ref. 18. 

In, this reference the N=O, 1, .2 shells are calculated with an assumed 

=o (coefficient of 22-part of potential); on the other hand is 

assumed'=O.55 for N=5. The energy eigenvalues of the .N-=5 shell are 

now.' corrected a .posteriori to correspond to i=O while the. wave 

'.,.fiinctions calculated for i=0.55 are left as before. Th 'iO .  incon- - 

' sistency as wll.as the slightly inaccurate energy adjustment 

does not affect the sum of.suared El matrix elements. '(The table 

lists.the puresingle-particle matrix elethents of z and 	in 

its of 	and 	respectively.) However, it affects somewhat 

the,distribution on the different states and is responsible for the 

fact that the Thomas -Kuhn -Reiche sum rule > f .= 	(for K=l, 
Ofl' A 

as both K=l and '  -1 are included) is somewhat exceeded in the 

independent-particle case The matri5 elements are defined for 

negative angular-momentum states with a phase that differs from the' 

time-reversal convention by a factor (-) 	- In accordance with 

this convention the following relation holds 
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Table 4 . Shell-model calculations for 	K=0(a) and Kl(b). The energies 

of the calculated 1 states are given in column one. The squared 

1 matrix elements IMI of z and -- (x+iy) in terms of the basic 

linear combinations of Eq. (20) and (25) are listed in column two 

in units of 1/Mn and h/Mo1, respectively. The sum of matrix 

elements is compared withthe single-particle sums of the included 

single-particle excitations. Column three lists the oscillator 

strength (the quantity occurring in the Thomas -Kuhn -Re i che sum), 

f, which for K=0 equals (/h2)(EnIMn12) 	(l/), where the 

factor l/L comes from the effective charge. The f sums may beon 

compared with the estimate Nz/A. For K=l, we have added the contri-

bution frdm(x+iy) and 	(x-iy). The cbmparison in this 

càsë should be made with the estimate 2 NZ/A. Column four lists 

the gamma widthr F 	2(e2/hc) . (E 2/Mc2 ) • f. The diagonal 

hole-pair interaction matrix elements were retained in these 

calculations. This accounts for the shift upward of the sum of 

the eigenvalues over the sum of the single-particle energies listed 

in Table 5. 

Table 5. Results of calculations for C 12  K=0 and K=l. For a detailed elana-

tion see the caption to Table i-i-. Only the Ferrell-Visschef force is 

considered in the case of C 12 . The number of elementary excitations 

isnot quite complete. Three transitions associated with very weak 

El matrix elements are left out for Kl and two for K=O. This is the 

reason why we fall short of the TKR sum rule by a few percent in the 

independent-particle case. 

Fora discussion of the listed cases of the diagonal hole-pair 

interaction matrix elements being alternatively excluded and retained, 

see the main text. 
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Table 6. The average peak position (in Mev) for the K=O and K=1 states, 

found by weighting the energy levels according to their absorption 

cross section is shom for the independent-particle system based on 

the pure shell model wave functions (see Table ) and the random-. 

phase approximation calculation with the Ferreli-Visscher force 

('Table )4). 

Table A-i. The K=O matrix elements of j() with the C 12  asptotic" wave 

functions expressed in terms of theTaimi integrals I. 

Tabie'.A-2. The T=l, S=O, odd-parity states of the K=O and K=i groups and 

their respectiveEl strengths forthe C 12  nucleus computed with 

the "asymptotic" wave functions. Results fortwo different 

interaction potentials and two values of the deformattonparameter, 

= -2 and r= -.il, are compared. Ground state correlations are 

included in the calculations. 



Table 1. 

K 

(Mev)  

-2 	() 0.10 20.5 16.8 

Mg2 4 0.08 11.4 15.9 
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Table 3a, 

Hole-particle excitation 	€ -€ 	Single- 	C1assif 	(IzI)2 
Hole state Particle state 	

1 ev1 particle according 
[Nn Al] 	[Nn 	 matrix 	to asympt. 

- 	Z 	 Z 	 elements rule 

(Izi) 
[110 1/21 [2111/2] 17.79 0.1693 h 0.029 0.09 

[110 1/21 [200 1/21 21.61 o.oi8a. h 0.000 0,00 

1101 3/21 [2023/2] 19.9 0.1817 h 0 .033 0.12 

[101 1/21 [211 1/21 11.06 o.6645 u 0.2 0.86 

[101 1/21 [2001/2] 15.08 0.3017 h 0.091 0.24 

[220 1/21 1330 1/21 12.3 1.1278 u 1.272 2.76 

[211 3/21 1321 3/21 11.21 0.9528 u 0.908 1.79 

[211 3/21 1312 3/21 18.4 0.2215 h 0 Q09 0.17 

[211 3/21 1301 3/21 22.3 -0.1008 h 0.010 0.00 

[220 1/21 1321 1/21 16.92 0.3669 li 0.135 0Jo 

[220 1/21 1310 1/21 21.25 -0 - 1774  h 0.032 0.12 

[220 1/21 1301 1/21 28.54 -0.0125 h. 0.000 0.00 

Sum =4x3.000 	6.55 
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Table 3b. 

Hole -particle excitation 	€ -€ 	Single- Classified / x+iy \ f 
Hole state 	Particle state 1V

Mev1 	particle - according 	.,,J 	/ 	
on 

[Nn 1\c] 	[NnAc] 	 matrix 	to asympt. 
elements rule 

/x+iyi 

72 
\ 

[110-1/2] 	[211 1/21 	17.79 	_o.654o 	u 	 0.11.28 	0.95 

[110-1/2] 	[200 1/21 	21.61 	-O.113 	h 	 0.013 	0.04 

1101 3/21 	[202 5/21 	111..78 	1.0000 	u 	 1.000 	1.86 

[10-1-3/2] 	[21-1-1/2] 	13.76 	-0.2919 	h 	 0.085 	0.15 

[10-1-3/2] 	[200-1/2] 	17.78 	O.627 	u 	 O,13 	0.92 

[10-1-1/2] 	[211 1/21 	11.06 	0.1297 	h 	 0.017 	0.02 

[101-1/2] 	[200 1/21 	15.08 	-0.697 	u 	 O.83 	0.92 

[id 1/21 	[202 3/21 	17. 24 	0.9809 	u 	 0.962 -. 	2.09 

[220 -1/21 	1330 1/21 	12 , 311. 	0,3898 	h 	 0.152 	0.23 

[220 1/21 	1321 3/21 	1.86 	0723 	u 	 0.551 	1.03 

[21-1-3t2] 	[330-1/2] 	8.70 	0.2012 	h 	 0.01 	0.O 

[211 3/21 	1312 5/21 	17.15 	i.012 	u 	 1.029 	2.22 

[220-1/2] 	1321 1/2] 	16.92 	-0.5839 	u 	 0,311.1 	0.73 

[220-1/2] 	1310 1/21 	21.25 	-0.066 	h 	 0.004 	0.01 

[220-1/2] 	[301 1/21 	28 -54 	0.0671 	h 	 0.005 	0.02 

[220 1/21 	1312 3/21 	22.08 	-0.0534 	h 	 0.003 	0.01 

[220 1/21 	1301 3/21 	26.07 	-0.0772 	h 	 0.006 	0.02 

[21-1-3/2] 	- [32-1-1/2] 	13. 42 	-0.2381 	 0.057 	0.10 

[21-1-3/2] 	[310-1/2] 	17.60 	0.6311.7 	u 	 0.11.03 	0.89 

[21-1-3/2] 	[30-1-1/2] 	24.90 	0.0019 	h 	 0.000 	0 

[211 3/21 	1303 5/21 	23.911. 	-0.0667 	h 	 0.004 	0.01 

Stmi=2:x5.997 	12.26 
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Table 

Shell-model calculation (012) 

)iagonal 
included excluded m.e. 

K=0  

E MI2 f F7 E MI2 f00 F7 

(Mev) (key) (Mev) (key) 

31.91 3.52 2.77 8.8 2 7. 43 3.46 2.33 27.3 

26.31 1.26 0.83 8.9 22 .32  2.16 1.20 9.3 

23.74 1.08 o.64 5.6 19.31 0.22 0.11 0.6 

20.85 0.08 0.04 0.3 17.27 0.12 0.05 0.2 

17.82 0.00 0.00 0.0 1.29 0,00 0.00 0.0 

sums 5.94 4 .28 5.96 3.69 
indep. 5.98 3.00 5.98 3.00 

sums  

fodE 257 (Mev-mb) 222 (Mev-mb) 

K=l 

29.50 l.o4 1.82 2.7 25.58 1.10 17.0 

24.77 0.04 0.06 0.6 21.90 0.02 0.03 0.2 

24.08 0.00 0.01 0.0 20.50 0.16 0.19 1.3 

22.97 1.08 1.8 12.2 20.27 0.06 0.06 

22.21 3,66 4.85 37.2 18.84 4.10 4L6o 25.4 

19.74 0.08 0.10 0.6 16J8 oJo oJo 1.7 

17.82 0.00 0.00 0.0 1.62 0.02 0.01 0.0 

17.12 0.00 0.00 0.0 13.36 0.08 0.01 0.0 

sums 5.92 8.32 5.92 6.96 

indep. P 5.92 5.92 5.92 5.92 
sums  

fodE 499 (Mev-mb) 418 (Mev-mb) 
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Table 6 

K=1 	 K=O 	 Difference 

Interacting-particle system 	23.7 	 17.8 	 7.7 

Independent-particle system 	16.4 	 12.8 	 3.6 

Difference 	 7.1 	 7.0 	 2.1 

'I 



-2- 	 UCRL-9975 

Table A-i 

(000 110 J (r) 1 	110 000) = 1/2 (i_I) 

(000 nO J (r) 000 no) = 1/2 (i+i) 

(coo 211 IJ (r) 1 	110 ioi) = i/ (10_12) 

(000 211 I J (r) 1 	101 no) = 1/4 (10-12) 

(000 101 1 211 110) = i/ (10-211+12) 

(101 211 I J () I 	211 101) = i/ (I0_I1+I2_I) 

( 101 211 I J (r) 1 	101 211) = i/L (Io+I1+I+I3) 

(101 21-11 S (r) 10-1 211) = i/ (Io_11_12+13) 

( 101 10-11 (r) 21-1 211) = 1/1 (Io_3II+I2_I) 
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Table A-P 

MJCLIDE 

• 

q FORCE 

DIAGONAL 
MATRIX 
ELEMEITS K 

•r:: 
(Mev) 

OSC1L1A-T0R 
STRENGTH 
± 

v -  
(Mev) 

O 28.5 2O5=±1u 

INCLUDED  
• 

FERRELL 
22.1 lo.o = hwL 18.1 

and - 

VISSCHER 

0 
2.5  

20 17.2 
EXCLUDED 

1 18.2  16.8 lLi-.8 1,36 
-2  

c12  0  20 5 

INCLUDED  

1 21.7 6J3 • 16.8 
ELLIOTT 18,8 0.13 

and  
FLOWERS 

EXCLUE 
o 
- 

25.6 
205 17.9 

1 18.0 ____ i6 8 
15.3 

FEREELL 
51.0 5..10 22 2.0 0.110-  

- and INCLtThED  
1 21.1 

17.1 • 	15.8 	• 
• 	 • 

VISSCHER 
0.0. 
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APPENDIX 

Calculations with the Asymptotic Wave Functions 

In the limit when the deformation energy is large compared to the 

off-diagonal elements of the spin-orbit coupling we can use the approximation 

5,14  
in which the spin motion is decoupled from the orbital motion. 

In this approximation we shall use the harmonic oscillator wave 

function 5 ?/JN A(p,z,) in the representation of the (dimensionless) cylin- 
.z 	

/ 	122 	 111. 	, 	,
MW 

drical coordinates p = Jx +y , z, ; x, y = 	x ,y ; z =(--. z ): 
where A has the meaning of the projection of the orbital angular momentum 

on the body axisz',n8ndnJ.=N_flaI the oscillator quantum numbers referring 

to oscillations parallel to the z'-axis and perpendicular to it, respectively. 

Uing the above wave functions it is easy to eliminate the degenerte 

spin substates from the equation of motion (Eq.17)). For a general collective 

state of isotopic spin T and spin S and with the two-body interaction V of 

Eq. (22) we obtain the EPA "equation of motion" of the p,'s in the form: 

(1--)X 	(VlrY)L 	I2([w 	L) ~ OS(L) 

' 	[w+L)+  

+ 	 JJ 
:, 

	 (Al) 

x 	.Z!)+(-) w (,ZrZ?' ( TJ 
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Here 	
) 
means a pcomponent with the (a,at)  pair characterized 

by the charge state 'r and spin state Z. In the giant El problem, i e., for 

S=O,T=lwehave: 

- (rt. - kt)1 	 Y'x>C 	 (A5) 
)cf 

Here the matrix elements are expressed in terms of spacial wave functions only 

i.e the subscripts refer specificailyto spacial states. 

Our wave functions given in cylindrical representation can be expanded 

in the spherical functions as 

'N VtZ&
N Z (Alt) 

The matrix element KoI d 	are now dbviOuly 

< I C) k > 	 NL )  Ni 

I 	 Y Y> 	(A7) 

Sometimes it is convenie'nt to use the Talini :rnmbhod of separation of 

the center of massand the relative coordinates of the particles "1" and "2". 

This method is especially useful when the radial shape of(r 12) is complicated 

and it is difficult to employ an electronic computer for the evaulation of 

(oy 
) 
of E. (A5). We can expand the Product (a)(rl()(r2) as: 

NLAI ) 	 =. 

(A6) 
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where the "tasformatjon brackets'l)  are defined and étnsively tabulated 

by Moshinsky and Brody. 0  The relative motion (nl)=and center of massinotiOn 

(IL) wave functions and the "ket Tt  jn.e,IL,t ) are as defined in Ref. 30. 

Using Eq.. (kE) we can now express (cry) as: 

	

A 	
E A A I x)ar I.0

$  

(A7) 

where the reduced radial integral (n'2IIJ(r)IIn.) can be expressed in terms of 

the Talmi integrals I 
p 
 as: 

<ne II)/Ifl> 	L 
where the coefficients B (n2, n2,p) are tabulated in Ref. 30. 

We have performed explicit computationa for the problem of the 1, 

T=l states in C12  ,. We have employed two different interactiona 

	

0 	 ç/. 

 

He  V) 	/732/O(A9a ) 

w = 0.317, rn 	0., b = 0, h = 0.183 

identicaI with the interaction listed in Table 2 

ra 
'I) Lr) = - 	

[r//J 	
43l= 	'A96) 

w= -0.13, m m 0.93,  b 	o+6, h = -0.26 

i.e. the Rosenfeld rnixtu2e eed by Elliott and Flowers. 7  

In the C12  ro.b1exn we have the "occupted (n.= 1)  states [NnA]=  [000], 

[10±1] and the 	 (n= 0) states [110], [20±2], [21±l],and [200], 

where the ±A states are degenerate in energr. The;abovesttes.,.dented:I), 
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are expressible in terms of spherical states denoted I)) (where the phase 

convention of the radial wave function is that of Ref. 18, i.e., such that 

the sign of the term of highest power in the radial polynomial is always 

positive) as follows: 

1000 ) = IN = 0; 2 = 0,A= 0)), 

110±1) = N = 1, 2 = 

110 	= N 	1, £ = l,A= 0)), 

20±2) = N 	2, 2 	2,A=±2)), 

21±1) = N = 2, £ 	2,A=±l)), 

200  ) = 	IN = 2,2=2, A= 0)) 	IN = 2, 1 = 0, A= o)) 

In Table Al we give the explicit exession'sfor.the relevant matrix 

29 	 * 

	

elements for the case K 0 in terms of the Talmi integrals I . 	The basic 

single particle El matrix elements (a' zia)  are in units of --- 

(l10 1 z I 000)= (2111  zi101) = (21-li zllO-l) = l; the (ahY ) elements in 

units of 	:(02 
x+iy 

 101) = (_1 

 l
x+iy 20_2) = 1; (200 

1x-l-iy 
 1O-1 = 

101 	200= 1/2.  The cámputed oscillator strengths for K = 1 have to (  

be doubled to take account of the two nuclear spin projections = ± 1. Our 

final numerical results are displayed in Table A2. The computations were 

performed for two values of the oblate deformation = -2 and = _ 4. The 

splitting of the giant El states corresponding to K = 0 and K = 1 is roughly 

in agreement with the more detailed calculations. The second K = 0 giant 

peak occurring in the latter calculations does not appear in the asymptotic 

* 
For the range of force considered here 10  is the dominant term, .which together 
with our choice of parameters w, m, b, and h in (A13) ensures that all the 
occurring matrix elements are of about equal magnitude and have one and the 
same sign. The condition for 10  to be dominant is that a << 5/Mu6. In 
the limit of an extremely long range interaction we have instead 10 = 11=12 
etc. The interaction matrix elements then all vanish, except the diagonal 
ones, as seen from Table Al. Thus in this limit the  coherence is again des-
troyed. 
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limit and is obviously associated with the fact that the wave ftmction of 

Ref. 17 are intermediate between the spherical shell-model wave functions and 

the as,mptotic ones. 

Our results for the Rosenfeld mixture of Elliott and Flowers 7  with 

a Yukawa well (Ec1. (A9b) ) .are quite similar to those for the rather different 

interaction of Ferrell and Visscher (Eq. (A9a) ). 	- 

We have also computed the self-energy terms originating from the self.-

energy hamiltonian Eq. (13).  Some of them are very large (of the order of 

40 Mev for the interaction of Eq. (A9a) ). This indicates that a self-

consistency calculation for the single particle energy spectrum, or conversely, 

a self-consistent determination of the residual interaction for a given single-

particle model is generally important. 
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