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Summary 

Time resolution of a scintillation counter 
system composed of scintillator, light pipe, 
multiplier phototibe. discriminator, and coin-
cidence circuit is discussed. The discriminator 
and coincidence circuits can produce coincidence 
curves with edges as steep as 10 psec per dec-
ade. Multiplier phototubes are capable of sim-
ilar resolution, providing they view sufficiently 
bright, well-defined light flashes. 

In a time -of -flight measurement at the 
Berkeley 184-inch Cyclotron, the coincidence 
curve slope, measured from a counting rate of 
50'% to 511c. is 400 pscc per decade. The light 
level corresponds to 2000 electrons reaching the 
first dynode of the multiplier phototube. A 
slope of 200 psec per decade would be expected 
if only the multiplier phototube and electronics 
were considered. Geometry and rate of light 
output of the scintillator are believed to limit 
system resolution at present. 

Introduction 

The problem of extracting the best possible 
timing information from nuclear scintillations 
becomes more acute as better time resolution in 
nuclear experiments is sought. A previous pa-
per by the authors dealt with the use of tunnel 
diodes in standardizing multiplier phototube 
signals for optimum timing information. 1  The 
present work is concerned with a scintillation 
counter system used in a time-of-flight meas-
urement. The approach was to make the time 
resolution of the electronics better than that 
expected of the scintillator, light pipe, and 
multiplier phototube. As these latter compo-
nents of the system were added, the degradation 
of time resolution owing to the added statistics 
of each component could be measured. These 
statistics known, one can then predict the best 
possible time resolution of other similar syS -
terns. 
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Electronics Description 

A straightforward discriminator is used, in 
which a zero-crossing multiplier phototube pulse 
fires a tunnel diode that produces a sharp, 
standardized output at the point of zero crossing; .  
this is all done in the base of the multiplier 
phototube. The coincidence circuit takes these 

* Work performed under the auspices of the U. S. 
Atomic Energy Commission. 

standardized pulses after transmission through 
a cable from the multiplier phototube. and re-
standardizes them. The restandardized pulses 
are then summed in a tunnel diode regenerator 
to produce the coincidence output. 

Referring to Fig. 1, multiplier phototube 
signal current flows through the two series 
windings of a transformer. Two windings are 
used here to allow a favorable placement of AC 
ground between anode and D10, as determined 
by capacity measurements on the tube. The 
shunt inductance of the transformer, plus the 
capacity between anode and D10, form an 80-Mc 
tuned circuit which is overdamped to produce a 
"zero-crossing" pulse. A portion of the in-
verted "zero-crossing" signal is tapped off 
from the transformer output winding to provide 
a monitor signal proportional to multiplier 
phototube signal current. Signal current flows 
through the 27 12 resistor that provides addi-
tional damping in this winding, and into the 
1N3130 (50-ma peak current) tunnel diode. As 
the signal reaches a point slightly past zero the 
tunnel diode regenerates. The regenerator 
pulse rises in 150 psecs and is about 3 nsecs 
wide. The pulse leading edge is differentiated 
with a 200-psec time constant into a 50 12 co-
axial line. The tunnel, diode and differentiating 
capacitor are built into a coaxial housing (Fig. 
2) to preserve the pulse shape. The fast differ-
entiation serves two purposes; (a) it minimizes 
feed-through of the original, relatively slow 
zero-crossing signal, and (b) since the pulse 
has a half width of 300 psec it is well suited for 
producing narrow coincidence curves. 

The circuits described above are built into 
the multiplier phototube base housing (see Fig. 
3). The fast signal is carried to a remote 
counting area by a high-quality coaxial line. 

The signal now enters a restandardizing 
circuit (Fig. 4) comprising a grounded-base 
transistor, another coaxially-rnounted tunnel 
diode regenerator and a grounded-emitter mon-
itor. stage. Some distortion of the fast pulse is 
caused by the grounded-base transistor stage, 
which has a rise time of about 0.4 nsec. How-
ever, isolation between the tunnel diode regen-
erator stages is essential for stable operation 
of the system. The output of this circuit is 
identical to that of the first. A short length of 
50 12 coaxial cable carries the signal to the co-
incidence circuit, which is composed of another 
transistor isolation stage and tunnel diode re-
generator. Bias on this regenerator adjusts 
the width of the coincidence curves. 



Performance of the Electronic. 

Figure 5 shows two two-channel coincidence 
curves made by feeding artificial pulses into the 
"zero-crossing" signal monitor cable. The dif-
ference in width of the curves illustrates the 
effect of the coincidence tunnel diode bias adjust-
ment. 

If wider curves are desired, one may in-
crease the pulse width by using a larger differ-
entiating capacitor. In practice, when one is 
separating particles, this width is made suffi-
cient to give a fairly high efficiency for the par-
ticles of interest. However, in studying the 
statistics, the width 1s observed to be only of 
secondary *mportance because the slope of the 
coincidence curve fully determine, the statistics 
and is independent of the width, while the full 
width at half max is a measure of both the sta-
tistics and the width of the coincidence system 

The measured slope of the curves is es-
sentially constant once the "shoulder" is passed 
and is about 10 psec per decade for both curves. 
Time shift with temperature is less than 3 psec 
per °C over a range of -10 to +50 °C. Time 
shift with power supply changes is less than 50 
psec per 1 01r. supply-voltage change. Power sup-
plies regulated to 0.01% are used. Figure 6 
shows timing shifts of tunnel diode output pulse 
as a function of multiplier phototube amplitude 
changes. 

Effects of Multiolier Phototube Statistics 

The effect of multiplier phototube statistics 
on time resolution is shown in Fig. 7. An edge 
of a two-channel coincidence curve is shown for 
each of four different lilit levels corresponding 
respectively to 102. 10', 10 and 10 5  electrons 
reaching the first dynode of the multiplier photo-
tube. These curves were made using the pre-
viously described electronics with the addition 
in one channel of a 6342A 10-stage multiplier 
phototube illuminated by a UCLRL Mercury 
light-pulse generator. 2  The signal for the sec-
ond coincidence channel was derived from the 
light pulser trigger. The light pulse and trigger 
pulse are generated simultaneously in the light-
pulse generator, the light pulse having a full 
width at half maximum of less than 1.5 niec. 

The slopes (Fig. 7), after the initial shoul-
der, are 340, 120, 52 aqd 24 psecs per decade 
respectively for 102, 10', lO, and 105  photo-
electrons reaching D 1 . Previous work on the 
measurement of time spread of photomultiplier 
pulses for single electrons arriving at DJ light 
levels has been done at this laboratory. 5 This 
work indicates the pulses have a distribution in 
time which if approximated by a Gaussian gives 
a standard deviation in the range 0.4 to 1.0 nsec 
for the faster tubes. 

Our data for a single multiplier phototube 
plus coincidence system fits roughly a standard  

deviation a of 1.65 nsec for singles with the sys-
tem standard deviation. 0 system being 

a 0 singles 
aystern 	 l/i 

[No. of D 1  electrons] 

The n is not constant; for low light levels 
it is about 2.23 and increase, as the light level 
is increased to 2.75 for 103  to 104  electron.. 
We believe this effect arises because the actual 
phototube time spread does not fit a Gaussian 
distribution. At high light levels, system noise 
other than phototube statistics contributes to the 
total standard deviation. This contribution is: 

anoise 7psec. 

Effects of the Light Pipe and Scintillator 

In order to evaluate the role of the light pipe 
and scintillator in determining time resolution 
of a counter system, arrangements were made 
to place two counters in an experiment being run 
at the Berkeley 184-inch Cyclotron. The beam 
intensity is about 3x 10 5  particles per sec and 
consists of electrons, muons, and pions. Beam 
particles at the first counter have momentum 
200 Mev/c but must pass through a combination 
of counters and absorber equivalent to about 
31 g of carbon before reaching the second count-
er. At the second counter, 57 inches from the 
first, momentum of the muons is about 117 
Mev/c and the pions are normally absent unless 
some absorber is removed. 

Plastic scintillators in the shape of a 2 in. 
cube were used. The plastic is 97% polystyrene, 
301. terphenyl, and 0.03016 tetraphenyl butadiene. 
The light pipes are lucite, 5-1/2 in. long, and 
tapered to make a smooth transition from the 
square scintillator to the 2 in. -diam round mul-
tiplier phototube. Joints are made with epon 
and the assembly is wrapped in aluminum foil. 
Beam particles lose about 10 Mev of energy in 
each scintillator, producing 2000 electrons at 
the multiplier phototube first dynode. Figure 8 
shows one of the counters with a UCLRL corona 
lamp attached. 

Figure 9 shows the experimental coincidence 
curve. The electrons travel at essentially the 
velocity of light c, while the muons' velocity 
varies from 0.88 c to 0.74 c over various sec-
tions of the beam path. A curve was made (Fig. 
10) with some absorber removed from the beam 
path. Higher muon average velocity and less 
muon velocity-spread are evident in this curve. 
Also pions are now able to reach the second 
counter. 

The slope measured between the 50% and 
5% points on the leading edge of the electron 
curve is 400 psec per decade (this corresponds 
to a standard deviation of about 200 psec). At 
the 2000-electron light level this slope should 
be 200 pscc per decade, if the light pipe and 
scintillator did not degrade system resolution. 



The ecintillator geonwtry in believed to be lun-
iting resolution in this case. The obvious next 

• 

	

	step is to improve light pipe and scintillator 
statistics. 
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Figure Legends 

Fig. 1. Simplified schematic of the electronics. 

Fig. 2. Exploded view of the coaxial tunnel 
diode housing. 

FIg. 3. Counter base assembly. 

Fig. 4. Restandardizer plug-in box. 

Fig. S. Coincidence curves displaying the 
capabilities of the electronics. 

Fig. 6. Time shift of the tunnel diode output 
as a function of multiplier phototube 
signal amplitude. 

Fig. 7. Coincidence curve edges, showing 
the effect of multiplier phototube 
statistics on the slope. 

Fig. 8. Scintillation counter used in time - 
of-flight measurement. 

Fig. 9. Time-of-flight coincidence curve 
with absorber in place. 

FIg. 10. Time-of-flight coincidence curve 
with absorber removed. 
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