
 1

Coherent Orbital Waves during an Ultrafast Photo-induced  

Insulator-metal Transition in a Magnetoresistive Manganite  

D. Polli(1) ‡, M. Rini(2) ‡, S. Wall(3) ‡ , R.W. Schoenlein(2),  

Y. Tomioka(5), Y. Tokura(5), G. Cerullo(1), A. Cavalleri(3,4)* 

(1) ULTRAS-INFM-CNR Dipartimento di Fisica, Politecnico di Milano, Italy 
(2) Materials Sciences Division, Lawrence Berkeley National Laboratory, USA 
(3) Department of Physics, Clarendon Laboratory, University of Oxford, UK 

(4) Central Laser Facility, Rutherford Laboratory & Diamond Light Source, Chilton, UK 
(5) Correlated Electron Research Center, Tsukuba, Japan 

Photo-excitation can drive strongly-correlated electron insulators into competing 

conducting phasesi,ii, resulting in giant and ultrafast changes of their electronic and 

magnetic properties. The underlying non-equilibrium dynamics involve many degrees 

of freedom at once, whereby sufficiently short optical pulses can trigger the 

corresponding collective modes of the solid along temporally coherent pathways. Their 

characteristic frequencies of these modes range between the few GHz of acoustic 

vibrationsiii to the tens or even hundreds of THz for purely electronic excitations. 

Virtually all experiments to date have used 100-fs or longer pulses, detecting only 

comparatively slow lattice dynamicsiv,v. Here, we use sub-10-fs optical pulses to study 

the photo-induced insulator-metal transition in the magneto-resistive manganite 

Pr0.7Ca0.3MnO3. At room temperature, we find that the time-dependent pathway toward 

the metallic phase is accompanied by coherent 31-THz oscillations of the optical 

reflectivity, significantly faster than all lattice vibrations. These high-frequency 

oscillations are suggestive of coherent orbital wavesvi,vii, crystal-field excitations 

triggered here by Impulsive Stimulated Raman Scattering. Orbital waves are likely to 

be initially localized to the small polarons of this room-temperature manganite, 

coupling to other degrees of freedom at longer times and seeding the coalescence of 

photo-domains into a metallic phase.  
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Pr(1-x)CaxMnO3 is a perovskite manganite with low tolerance factor, which maintains semi-

conducting properties for all temperatures and doping levelsviii. Below 220 K, long-range 

charge, orbital and magnetic orderix,x sets in, mediated by a subtle interplay between super-

exchange interactions and a long-range Jahn Teller distortionxi,xii. For x=0.3 doping, the 

electronically-ordered insulator becomes particularly precarious, exhibiting an instability 

against one or more competing metallic phases and a truly “colossal” negative magneto 

resistancexiii. In addition to the application of a magnetic field, other perturbations can “melt” 

the insulating state: photo-excitationxiv, application of static electric fieldsxv, x-ray 

irradiationxvi and electron irradiationxvii.  All these processes are related to charge injectionxviii 

into the orbitally ordered phase of Pr0.7Ca0.3MnO3. 

Ultrafast pulses have indeed been used in the past to manipulate and study the dynamics of 

photo-induced phase transitions in thisxix and other compounds. However, virtually all 

experiments to date have been limited to near-100-fs time resolution. This has only revealed 

dynamics on comparatively slow timescales, and only lattice vibrations at frequencies of a 

few THz have been detected (~10 meV energy scale). The experiments reported here are 

performed with 7-fs pump and 11-fs probe pulses. The order-of-magnitude decrease in pulse 

duration provides access to coherent modes at frequencies of tens of THz, reaching the 

hundreds-of-meV energy scale of collective electronic excitations.  

We first performed time-resolved resistivity measurements at 77 K, which substantiate our 

claim of a photo-induced insulator metal transition (figure 1). A current amplifier was placed 

in series of the sample, which was held between two gold electrodes deposited on the surface. 

The combined temporal resolution of the oscilloscope and of the current amplifier was 1 ns. 

After femtosecond optical excitation, a prompt resistivity drop was observed from the static 
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value of 3•104 [Ω cm] to approximately 0.1 [Ω cm], a conductivity change of similar 

magnitude as that obtained by application of a 6T magnetic field at this temperature and 

doping7. The photo-induced conductivity exhibits non-linear growth with fluence above a 

threshold of 1 mJ/ cm2, saturating above 30 mJ/cm2. This behavior and the long lifetime of 

the high conductivity state are indicative of cooperativity in the de-stabilization of charge-

order and of a photo-induced phase transition.  

Figure 2a shows femtosecond pump-probe experiments at 77 K, highlighting the dynamics of 

the insulator-metal phase change. Optical pulses of 7-fs duration near 550-nm excited the 

O2p-Mn3d-eg charge transfer resonance in the low-T charge-ordered insulator. The broad 

bandwidth of the pump pulse coupled the O2p states to a coherent superposition of the Mn-eg 

levels. The probe pulse duration was set to 11 fs duration, corresponding to a limited 

bandwidth and allowing for measurements the time-dependent reflectivity response in 

different spectral regions. After photo-excitation, a large reflectivity change was observed. 

The spectral dependence of the differential reflectivity signal at 500 fs time delay (see figure 

2a) shows an increase in reflectivity at shorter wavelengths and a decrease at longer 

wavelength, reminiscent of the effect seen upon application of a magnetic fieldxx.  

The time-profile of the differential reflectivity signal, for instance at the 660 nm wavelength 

shown in figure 2a, indicates that the phase transition does not occur promptlyxxi. This is 

clearly indicated by the comparison with the cross correlation between 7-fs pump and 11-fs 

probe probe pulses, measured in situ. Two time constants of 50 and 150 fs were found. To 

further substantiate the delay found in the measured optical response, we measured the time-

dependent transmission of a film of C60 molecules, which exhibits prompt excited state 

absorption and follows the integral of the pump-probe cross-correlation signal.  
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The delay found in the formation of the product phase is the first important observation of 

our experiments, which can set a time and thus and energy scale for the ultrafast insulator-

metal transition in manganites. The observed bottleneck timescale indicates that the photo-

induced metallic state is not driven by sole carrier injection, but requires rearrangement in 

slower degrees of freedom of the system. Figure 2a also shows the spectral response of the 

reflectivity at 500-fs time delay, which exhibits a shift of the charge-transfer excitation 

similar to what observed upon application of a magnetic field. 

We also found that the reflectivity change is accompanied by coherent modulations with a 

broad frequency distribution centered at 14-THz (see figure 2b). The frequency bandwidth of 

the oscillations covers many Raman-active modes of perovskite manganites, associated with 

motions of the oxygen octahedron and likely with the relaxation of the long-range Jahn-

Teller distortion that stabilizes the low-T insulatorxxii. The near-200-fs damping time of these 

coherent vibrations can probably be attributed to de-phasing of many phonon modes evolving 

at different frequencies.  

Figure 3 shows the possible photo-excitation mechanisms for the coherent vibrations. One 

mechanism corresponds to a pure transfer of charge from the O2p states to the Mn3+/4+ sites 

(mechanism a). Such photo-doping, if prompt compared to the period of a Raman active 

mode, can result in its displacive excitation in the electronically excited statexxiii. Displacive 

Excitation of Coherent Phonons (DECP) is related to the imaginary part of the Raman tensor, 

corresponds to the absorption of light and has a cosine-like temporal response. The second 

channel is possible only at the Mn3+ sites, where photo-excitation populates the upper 

unoccupied eg state and de-populates the lower lying one, leaving a quantum of excitation in 

the system but maintaining charge neutrality (mechanism b). In this case a vibration is 

excited impulsively in the electronic ground statexxiv,xxv. This process is referred to as 
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Impulsive Stimulated Raman Scattering (ISRS), is related to the real part of the Raman tensor 

and has a sine-like temporal response. The vibrational oscillations of figure 2a behave like a 

sine wave, exhibiting zero phase at the instant of photo-excitation and clarifying that the 

latter mechanism, i.e. ISRS triggers the observed dynamics.  

Summarizing our observations for the low temperature, charge ordered phase: coherent 

lattice vibrations associated with the motion of the oxygen atoms are excited by ISRS. These 

displacements couple to the Jahn-Teller distortion, and possibly also to the Mn-O-Mn angle 

(tolerance factor), mediating melting of charge order. This observation is consistent with our 

understanding of manganites below Tco.  Because a long-range Jahn-Teller distortion 

stabilizing the parent insulating phase, melting of charge and orbital order is associated with 

motions of the network of oxygen atoms.   

We now turn to the most provocative observation of our paper, i.e. that involving the 

dynamics of the phase change when initiated in the room temperature phase. Above Tco=220 

K, Pr0.7Ca0.3MnO3 behaves as a small-polaron insulator with no long-range Jahn-Teller 

distortionxxvi. In this phase, no colossal negative magneto-resistive behavior is observed. 

However, with photo-excitation we still observed the formation of a metallic state for 

approximately the same excitation fluence as that found at low temperatures (see figure 4a). 

The spectral dependence of the differential reflectivity is qualitatively similar to that reported 

in figure 2a, although the zero crossing occurs at longer wavelength, due to a shift in the 

charge transfer transition energy. The response at 660 nm wavelength has then similar size as 

that at low temperature but opposite sign. The observation of a photo-initiated metallic phase 

is quite remarkable, and it is indicative of the existence of a competing conducting phase all 

the way to room temperature. Presumably, colossal negative magneto-resistance does not 
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occur because of the low energy scale of magnetic fields, whereas the “barrier” between the 

two phases can be overcome with photo-excitation.  

Significantly, the coherent excitations that accompany charge de-localization are near 31 

THz, a frequency too high to be associated with lattice distortions in this crystal structure. 

Rather, this frequency is commensurate with the energy scale of d-d crystal-field excitations, 

or orbital waves (31 THz: 135 meV). Impulsive Stimulated Raman Scattering of coherent 

orbital waves, again indicated by sine-like oscillations, is then be qualitatively analogous to 

the excitation of spin-waves in ferro or anti-ferro magnetic systems, where a spin defect is 

introduced and a precessional wave is launched. In the present case, the collective orbital 

excitation likely corresponds to the excitation of a single pseudo-spin on a Mn3+ 3d site, 

effectively “flipping” one orbital and launching a “hybridization” wave (see figure 4b). 

While these excitations, or orbital defects, are likely to initially extend only over the 

coherence length of small polarons, an “orbital wave” may propagate beyond this length and 

accompany the coalescence of different clusters into the metallic phase. 

Evidence for orbital modes close to equilibrium has been claimed from Raman experiments 

in a different perovskite manganitexxvii and in titanatesxxviii, where energy shifts 

corresponding to the frequencies measured here were detected. Yet, a competing 

interpretation of the manganite experiments has argued that such peaks may have instead 

arisen from multi-phonon excitationxxix. It is important to stress that the conditions of our 

experiments are far from equilibrium, and the heavily photo-excited state (~1022 absorbed 

photons/cm3) could well be characterized by a different spectrum of excitations than those 

probed in Raman scattering. Thus, a direct comparison cannot be made.  

However, the possibility of multiple-phonon excitation should be discussed also for our 

experiments. The theory supporting the existence of large-amplitude, multiple phonon 
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excitations in Raman experiments addresses this issue in terms of a self-trapping exciton in 

the Franck-Condon state of a localized MnO6 “molecule”. For the Raman experiments, 

emission of inelastically scattered radiation is then coupled to a multiply-excited, ground-

state vibration, corresponding to multiple-phonon peaksxxx. However, our experiments can 

easily discriminate between these two possibilities, at least in a localized picture. In fact, 

unlike in Raman experiments where the energy of an excitation is measured, we directly 

detect its frequency ν. Thus, we can discriminate between a multiply-excited oscillator 

(which still exhibits the fundamental frequency ν1, increased amplitude and where ERaman = 2 

h•ν1) and a singly excited one with higher energy (where the frequency ν2 is high and where 

ERaman = h•ν2). Thus, we can safely exclude the possibility of a two-phonon response 

triggered by self-trapping of a localized exciton.  

The other possibility would be the excitation of a true two-phonon state of an extended solid, 

sometimes referred to as vacuum squeezing of phonon fieldsxxxi. The time-domain 

oscillations then wouldn’t correspond to atomic motions but to oscillations in the variance of 

the phonon-coordinate expectation valuexxxii. If this were the case, one should observe both 

the fundamental frequency and a weaker contribution at the sum frequency, which we do not. 

This leaves only the possibility of a phonon signal forbidden by symmetry at k=0, where 

optical probing is performed. However, if this were the case, a low frequency phonon 

contribution should also not be observable in the low-temperature phase, which has the same 

crystallographic structure as the high-temperature phase. Yet, at low temperatures we see 

only the low-frequency vibrational excitation. Based on these arguments, we conclude that 

low and high-frequency oscillations are associated with different modes of the system, 

namely vibrational and orbital excitations.  
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In summary, the picture that emerges from probing the photo-induced insulator-metal 

transition with high temporal resolution is one where collective rearrangements are 

responsible for a time-delayed charge de-localization process. Different coherent excitations 

accompany the phase change. In the low-T phase, where a long-range Jahn-Teller distortion 

stabilizes the parent insulator, a coherent vibrational mode is observed across the ultrafast 

“melting” pathway of charge and orbital order. More provocative are the observations in the 

small-polaron phase, where no long-range Jahn-Teller distortion is present. In this case, we 

also find a phase change to a metastable metallic phase, accompanied by a coherent mode at 

higher frequencies, suggestive of a coherent orbital wave. Much remains to be understood of 

the ensuing dynamics, especially how this localized electronic excitation couples to other 

degrees of freedom, including magnetic excitations. Further, new questions arise on how 

local photo-domains coalesce into a ferromagnetic metallic phase. In the future, femtosecond 

x-ray experiments may separately measure dynamics of the latticexxxiii and of electronicxxxiv 

or magnetic degrees of freedom, extending work performed in the past on longer timescales 

and shedding new light onto the non-equilibrium physics of photo-induced phase transitions 

in complex materials. 

 

MATERIALS AND METHODS 

Pr0.7Ca0.3MnO3 single crystal samples were grown with the floating zone method, cut and 

polished to a mirror finish for optical experiments. Laue diffraction was used to check the 

quality of the single crystal samples after processing. 

Measurements of the time-dependent sample resistivity (see figure 1) were performed as 

follows. Gold electrodes with a 200 μm-wide gap are deposited on the sample surface, and 

are DC-biased at 30 V. Laser pulses excited the sample with the laser spot fully covering the 
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space between the electrodes.  The current flowing through the sample was monitored by 

measuring the voltage drop across a 50-Ω resistor. The high conductivity state develops 

within the 4-ns resolution of the electronics, and exhibits a similar resonance behavior as 

observed in the optical measurements. 

For the femtosecond pump probe experiments, independently tunable ultrafast pulses of sub-

10 fs duration were derived from two non-collinear optical parametric amplification of white-

light continuum in two separate Beta-barium borate non-linear crystals (BBO), followed by 

independent compression with two pairs of chirped mirrors (see G. Cerullo et al. Appl. Phys. 

Lett. 71, 3616 (1997)). 
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FIGURE CAPTIONS 

Figure 1: Time-resolved measurement of the nanosecond conductivity transients induced by 

photo-excitation in single crystal Pr0.7Ca0.3MnO3 at 77 K. The experimental apparatus, 

sketched in the figure is described in the methods section. The measurements are indicative 

of a photo-induced change in resistivity of nearly six orders of magnitude.  

 

Figure 2: (a) Femtosecond optical reflectivity measurements of Pr0.7Ca0.3MnO3 at 77 K. 

Shown in the upper graph are: the reflectivity response of Pr0.7Ca0.3MnO3 (red curve), a fit to 

the delayed reflectivity response (dashed black curve), a pump-probe cross-correlation 

(thicker black curve), photo-induced transmission changes in a thin film of C60 molecules 

deposited (thinner black curve). The differential reflectivity for different probing 

wavelengths at a time delay of 500-fs is shown in the lower panel.  
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(b) Oscillatory time-profile obtained by subtracting a fitted biexponential rise from the from 

the measured reflectivity transient. The phase of the oscillation is zero at the instant of photo-

excitation, indicative of Impulsive Stimulated Raman Scattering excitation. The amplitude 

Fourier transform of this over-damped mode is also shown in the right panel, showing 

broadband excitation of many modes at once.  

 

Figure 3: Excitation process in Pr0.7Ca0.3MnO3 in the 2.5 eV photon-energy range. 7-fs 

optical pulses excite transitions between the O2p states and a coherent superposition of both 

Jahn Teller split eg states of the Mn3+/4+ sites. Both direct photo-doping (mechanism a) and 

Impulsive Stimulated Raman Scattering (mechanism b) correspond to the creation of charge 

and orbital defects. As discussed in the text, analysis of the temporal phase of the oscillatory 

signal indicates that mechanism b is dominat. On the left had side of the sketch we plot the 

measured spectrum of the pump pulse, covering a bandwidth of more than 200 nm. On the 

right hand side we show the corresponding spectra of probing pulses of slightly longer 

duration, used to measure the response of the system at different wavelengths.  

 

 

Figure 4: (a) Time resolved reflectivity measurement at room temperature. Heavily damped 

excitations near 31-THz accompany the phase transition. (b) Broadband waves are observed, 

with a spectrum well beyond the region where vibrational excitations (dashed curve). The 

sine-like phase of the oscillation clarifies the Impulsive Stimulated Raman Scattering 

excitation mechanism, amounting to a simple “flipping” of a pseudo-spin. A pictorial 

representation of a time-dependent orbital wave on a single site is also shown, representing 

the time and spatially periodic hybridization wave that underpins the physics of coherent 

orbital waves, is presented above the graph.  

 

 

 



 16

                                                                                                                                                        

0 200 400

10-1

101

103

105

ρ 
[ Ω

 

cm ]

Delay [ns]

32 mJ / cm2

64 mJ / cm2

112 mJ / cm2

Oscilloscope 
50 Ω

50 Ω

10 V+
-

Pr0.7Ca0.3MnO3
Amplifier

 
 

 

 

 

 

Figure 1 
 

 

 

 

 



 17

                                                                                                                                                        
 

500 600 700

-0.1

0.0

0 100 200
-0.1

0.0

Δ R
/R

vs
tim

e

77 K

7 fs pump 11 fs probe 

λ [nm]

Delay [fs]

660 nm probe

Pr0.7Ca0.3MnO3

 
 

 

 

Figure 2a 

 



 18

                                                                                                                                                        
 

 

 

 

 

 

 
 

 

 

 

Figure 2b 

 

 

 



 19

                                                                                                                                                        
 

 

 

 

 

 
 

 

 

 

 

 

Figure 3 

 



 20

                                                                                                                                                        
 

 

0 50 100 150

0

0.1

Delay (fs)

300 K
660 nm probe

 
 

 

 

Figure 4a 

 

 



 21

                                                                                                                                                        
 

 

 

 
 

 

Figure 4b 
 
 
 



0 200 400

10-1

101

103

105

Delay [ns]

32 mJ / cm2

64 mJ / cm2

112 mJ / cm2

Oscilloscope 
50 Ω

50 Ω

10 V+
-

Pr0.7Ca0.3MnO3

Amplifier



500 600 700

-0.1

0.0

0 100 200
-0.1

0.0

77 K

7 fs pump 11 fs probe 

 λ [nm]

 Delay [fs]

660 nm probe

Pr0.7Ca0.3MnO3



0 100 200

Delay (fs)

77 K

660 nm probe
!

R
/R

 (
t)

0 10 20 30 40 [THz]

50 100 150 [meV]

500 1000  [cm-1]

!
R

/R
 (
"
)



5
0
0

6
0
0

7
0
0

n
m

Probe: 11 fs

5
0
0

6
0
0

7
0
0

n
m

Pump: 7 fs

Mn3+ Mn4+Mn3+

O 2p

t2g

eg

(b) (a)



0 50 100 150

0

0.1

Delay (fs)

300 K
660 nm probe



Δ
R/

R 
(t)

 

Δ
R/

R 
(ν

) 

0 50 100 150

Delay (fs)

10 20 30 40 [THz]

50 100 150 [meV]

500 1000  [cm-1]


	Article File #1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21

	Figure1
	Fig2a
	Fig2b
	Fig3
	Fig4a
	Fig4b

