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We present the design and first results of a low-temperature, ultrahigh vacuum scanning probe
microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and
noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides
flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When
choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible.
Noticeable characteristics that distinguish this setup from similar systems providing simultaneous
STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs
no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest
helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the
optical surveillance of the tip during approach but also the direct deposition of molecules or atoms
on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could
successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data
acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111)
and graphite illustrate the microscope’s performance.

1. INTRODUCTION

It is well known that scanning probe microscopes (SPMs) can be adapted to various environments such as
air, liquids, or vacuum conditions and run at temperatures ranging from the millikelvin regime to hundreds
of degrees celsius. This astonishing spectrum of possible operating conditions allows one to tailor the
experimental setup to the specific scientific or technological problems that are to be addressed. Despite
representing the most complex class of setups, SPMs working in ultrahigh vacuum (UHV) and at low
temperatures (LTs) have become increasingly popular (see Ref. 1 for a recent review). This choice of
operational conditions is necessary if effects manifesting only at low temperatures such as
superconductivity? or the Kondo effects should be studied.

However, there are also two other reasons that make researchers develop low-temperature compatible
setups. Firstly, low temperatures slow down or, in some cases, entirely suppress many processes that would
otherwise be too fast or unstable to be observed, such as the surface diffusion and adsorption of atoms4-6
and molecules,7,s or surface reactions.o Secondly, if built appropriately, low-temperature SPMs can
significantly reduce thermal drift, lower noise levels, diminish piezohysteresis, creep, and nonlinearities,
and contribute to an enhanced stability of the atomic configuration of the tip apex.1 Therefore, low
temperature operation represents the preferred choice of researchers whenever ultrahigh resolution and
long-term stability is of importance. Depending on the objectives, the design of low temperature SPMs can
incorporate very different features. For the instrument presented in this paper, optimization for
highresolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force



microscopy (NC-AFM) modes was intended, as the system should ultimately enable atomic-scale imaging
and site-specific, long-term spectroscopy of conducting and nonconducting surfaces with applications such
as chemical imaging, the identification of catalytically active centers, atomic-scale growth studies, etc. To
achieve this goal, excellent vibration isolation, a compact, rigid microscope design, superior temperature
stability, and operation in ultrahigh vacuum were of primary concern. In addition, flexibility in the choice
of tip materials (both metallic and nonmetallic) due to the application of a Q-plus style, tuning-fork-based
sensor, 10,11 and the possibility to deposit molecules or atoms on the tip and/or sample while they are cold
help provide control of the chemical nature of the tip-sample interactions. Finally, the use of an on-top bath
cryostat allows not only in situ tip and sample exchange at low temperatures but also results in short
turnaround times and budget-friendly cryogen consumption.

Il. SYSTEM OVERVIEW

The UHV system is based on a commercial setup manufactured by Omicron Nanotechnologyi2 and consists
of their standard preparation and analysis chambers in combination with a custom-made third chamber
housing the microscope and the cryostat, referred to as “SPM chamber” (see Fig. 1 for an overview system
drawing). Each chamber is equipped with an ion getter pump and a titanium sublimation pump. For
bakeout and evacuation from ambient pressure, both the preparation chamber and the SPM chamber are
additionally connected to rotary-vane-backed turbo pumps. To prevent the generation of unwanted
vibrations, all mechanically operated pumps are turned off during measurements.

The preparation chamber currently features a sputter gun, a resistive heating stage, a plasma source, and a
residual gas analyzer. In addition, it is connected to a separately pumped fast entry lock for introducing tips
and samples into the vacuum system. Base pressures in the preparation chamber are typically in the low
10-10 mbar regime. In contrast, pressures below 10-11 mbar are routinely reached in the analysis chamber,
i.e., lower than the calibrated range of the ion gauge used to measure it. At this time, the chamber is
equipped with low-energy electron diffraction (LEED) and Auger capabilities (SpectaLEED combined
LEED/Auger system from Omicron Nanotechnology12) and a second resistive heater stage.

The largest chamber of the system is the SPM chamber, which has been produced by NorCal (Ref. 13)
according to our specifications. It was designed to have easy access to all parts of the microscope, which is
cooled by an on-top bath cryostat (cf. Sec. III). Due to the chamber’s large total volume and surface area
caused by the cryostat, pressures in this chamber are typically in the upper 10-11 mbar regime. In addition, a
sample carousel located in between all three chambers provides in-vacuum storage space for up to six tip or
sample holders.

One of the features of this vacuum system is its gas inlet system. It allows dosing of molecules for
adsorption at the tip apex and/or the sample surface both into the preparation and the SPM chamber, giving
the experimentalists control over the chemical nature of the surfaces exposed during an experiment. Dosing
is regulated by a total of four strategically positioned precision leak valves (type MDC ULV-150).14 To
avoid unnecessary chamber backfilling, stainless steel tubes have been fitted into the outlets of the leak
valves attached to the SPM chamber to direct the molecules selectively either toward the tip or the sample,
depending on which inlet has been chosen (see Fig. 1 for their locations). This permits working with the
lowest amount of reagent gases possible. Deposition can be performed at room temperature as well as at
low temperatures. Besides regular gases such as oxygen or carbon dioxide, the gas inlet system also
accommodates liquids stored in glass containers (type MDC SEG-075).14 Gas lines are pumped by a 3.2 1

/ s rotary vane pump while the pressure is monitored by a convection gauge.

To achieve ultimate resolution, adequate vibration isolation is crucial. To meet the most stringent demands,
the system has been set up in the basement of a building that was constructed with the requirements of
highly vibrationsensitive equipment in mind. For example, the building has an extra thick base slab to
minimize floor vibrations. Thereby, we purposely decided against having a separate foundation, as we
believe that the high mass off the building (the weight of the base slab alone exceeds 1000 tons) has
advantages compared to the necessarily lower weight of a separate foundation if not additional, potentially
very expensive measures for vibration isolation are undertaken.1s In addition, the system is located inside a
soundproofed room. Operators, data acquisition electronics, as well as all other electronic components that
might produce acoustic noise or need to be under surveillance are in a separate room during measurement.



To further eliminate any noise sources, there are no outlets of the building’s air handling system within the
soundproofed room. 16 Finally, the frame that supports the vacuum chambers is mounted on a total of 12
active vibration isolation dampers (type MOD-2 by Halcyonics17) to minimize vibrations still introduced by
floor movements.

lil. CRYOSTAT

To cool the microscope, we chose an on-top bath cryostat fabricated by Cryovac.1s On-top bath cryostats
have been rarely used for low-temperature AFM setups so far,19,20 even though a number of such systems
are in use for STM applications.21 The cryostat can store up to 8.5 1 of liquid helium (LHe) in its central
dewar and 18 1 of liquid nitrogen (LN) in the nitrogen shield. With one filling of LHe, 75-96 h of
measuring time are available, depending on whether or not the tuning fork preamplifier has been switched
on (see Sec. VI). This results in a very low helium consumption of 2-3 1 per day.

The microscope is enclosed in a double set of thermal shields made of oxygen-free high-conductivity
copper plated with 5m of silver acting as an antimigration layer during bakeout followed by a 3m thick
layer of gold. The shields are connected to the helium (inner shield) and the nitrogen reservoir (outer
shield), respectively (Fig. 2). As a consequence, the entire microscope is evenly cooled, suppressing the
formation of thermal gradients within the microscope body. Both shields have a modular, square design.22
Each of the four side panels can be taken off independently to gain access to that side of the microscope,
which makes servicing easy. Despite the double shields, we still have optical access to tip and sample at all
times through infrared radiation blocking windows integrated into both side panels that are in line with
viewports of the vacuum chamber. This simplifies the coarse approach, because the position of the tip over
the sample can be monitored using a video camera positioned outside vacuum, which transmits live
pictures to the operator’s room.

By opening shutters that are integrated into the front shields, unrestricted access from dedicated flanges
permits the direct deposition of molecules or atoms on either tip or sample. In addition, it also allows both
tip and sample exchange using a wobble stick even while the microscope is cold. Samples cool in as little
as 1.5-2 h to temperatures close enough to the final equilibrium value (typically 300-400 mK off) that drift
rates allow initial inspection, leading to short turnaround times. These values gradually stabilize further to
less than 10 mK off long-term equilibrium after 6 h. The sample temperatures are measured with an Si
diode23 located on the scanner directly underneath the sample holder and found to be about 5 K in STM
mode and 6 K in AFM mode, as the tuning fork preamplifier produces some unavoidable heat (cf. Sec. VI).
Temperature stability is currently about 1 mK/h in equilibrium, but could be improved further by either
using a feedback loop-controlled heater located at the sample position and regulated by the adjacent
temperature sensor, or by pumping on both the Lhe and the LN reservoirs.24 Measurements would
additionally benefit from the latter option, as it would decrease noise induced by the boiling of the LN and
lower the temperature of the LHe (and thus of the microscope). Both approaches are possible in our setup,
but have not been implemented yet.

All electrical signals enter or leave the chamber at the top of the cryostat. Most cables transmitting these
signals are made from manganin (a copper-manganese-nickel alloy) and feature a wire diameter of only 0.1
mm to minimize heat transfer from room temperature to the microscope along the cables. Exceptions are
the wires carrying the tuning fork signal (two wires), the tunneling current, the sample bias, and the
oscillation excitation signal, which are coaxial cables made out of stainless steel. Most wires, each about 1
m long, are guided through five separate pipes passing through the He tank for precooling and electrical
shielding. Once a wire leaves its pipe, it is thermally anchored to the He shields. At this point, the cable
type is changed from the manganin wires described above to pure copper wires with diameters of 0.25 mm.
This facilitates the thermal stabilization of the microscope by optimizing the thermal conductance between
shields and microscope provided by the wires.

IV. MICROSCOPE

For the construction of the microscope, many of the well-tested design elements already employed in
earlier LT-AFM developments two of the present authors have been involved in have been reused.20.2s The
main innovation compared to these two earlier designs is the adoption of a tuning fork as a force sensor



(see Sec. V),10.11 as opposed to detection by fiber-based interferometry.2s-28 This allows the realization of a
more compact body, giving it dimensions simila to their sister STM versions of this design type (e.g., Ref.
29-32). For these microscopes, superior overall mechanical stability has been well established.32-39

Figure 3 depicts the microscope, whose main body is fabricated out of a single cylindrical Macor4o piece 80
mm in height and 40 mm in diameter to ensure maximum rigidity. Most metallic parts are made out of
titanium because its thermal expansion coefficient is similar to that of Macor.41 Additionally, the setup was
designed to be as symmetric as possible around the scan axis to once again minimize thermal influence. In
particular, like their predecessors,20.25 it features a symmetry plane stretching from the front to the back,
including the cylinder’s middle axis (see the section view in Fig. 3). As a result, we could establish very
low drift rates during measurement of <2 pm/h vertically and <15 pm/h laterally, the latter being equivalent
to about one unit cell or less drift per day for typical sample materials. Initial drift rates shortly (=3 h) after
refilling cryogen or tip or sample exchange are about twice as high and need about one day to settle to the
values given above. Since a clear correlation between the temperature stability and the position can be seen,
we expect that these values reduce further once the temperature-stabilizing measures discussed in the
previous section have been implemented.

In our setup, the sample is moved with respect to the tip. As before,20,25 we continue to rely for the tip-
sample coarse approach on the “walker” principle, which has been introduced by Pan et al.30.31.42 This type
of motor has been proven to operate very reliably and be mechanically stable at low temperatures in UHV.
The piezostacks employed in this motor (termed as the z motor later on) were prefabricated and supplied by
PI Ceramic.43 The sample is mounted on top of a piezotube scanner (type EBL 4 piezo ceramics,44 length of
13.7 mm, diameter of 9.5 mm, wall thickness of 0.5 mm) for scanning and z feedback, which is embedded
into the hexagonal sapphire prism that is moved up and down inside the z motor. At room temperature, the
scan range is about 1.6 X 1.6 pm2 in xy and =300 nm in z if driven by the £130 V provided by our high-
voltage amplifier (cf. Sec. VI). These values decrease to 450X450 nm2 and 110 nm in xy and z,
respectively, at LHe temperatures. A titanium rod, which is fixed at the bottom of the microscope, extends
inside the scanner and acts as a stopper when the motor is fully retracted. With the scanner in this position,
the rod also increases the scanner’s mechanical stability during sample exchanges.

In typical measurements, the bias voltage is applied to the sample, while the tip is connected to the STM
preamplifier (type RHK IVP 300) (Ref. 45) located outside the vacuum at the top of the cryostat. This
configuration leads to an open-loop noise floor on experimental current data of 0.5 pA peak-peak in a 500
Hz bandwidth. The microscope body is suspended by three springs from the helium tank base plate for
vibration isolation from cryogen bubbling (cf. Fig. 2). An eddy current damping stage realized by mounting
a copper cross below the Macor microscope body provides damping. In addition, a locking mechanism
enables us to attach the microscope firmly to the helium shield for fast cool down as well as for rigidity
during during tip and sample exchange.

V. DEFLECTION SENSOR AND TIP HOLDER

To date, the majority of LT-AFM systems in use are based on optical cantilever deflection detection
systems such as fiber-optic interferometry (e.g., Refs. 19, 20, 25, and 46— 51) or laser-beam deflection.s2-s
These systems have the disadvantage that the integration of the deflection detection mechanism into the
microscope design makes the microscope rather bulky. An additional disadvantage is that standard
commercial cantilevers are used in these instruments, which limits the selection of materials available as
tips.s7 To keep the microscopes compact and simple, some systems use piezoresistive cantilevers for
measurement and signal detection,ss 5o which additionally eliminate the need of timeconsuming
repositioning of the cantilever relative to the detection system upon probe tip exchange.

Despite these advantages, the resolution demonstrated by piezoresistive cantilevers at low temperatures has
remained poor. Therefore, attention has turned toward other self-sensing devices, mainly ones based on
quartz tuning forks.s0-64 Quartz tuning forks have been in use for SPM applications since 1989 (Ref. 65)
and feature the same benefits of compact microscope design and positioning ease as piezoresistive
cantilevers. However, they also offer a variety of additional merits that make them ideally suited to achieve
many of our earlier formulated design goals:



(1) It has been shown that choosing force constants typical for quartz tuning forks (>1000 N/m) offers
advantages for small amplitude imaging, which result in superior signal-to-noise ratios especially
when short-range atomic interaction forces are to be probed.11,66

(2) (2) Quartz tuning forks allow mounting custom tips of considerable overall size (cf. inset in Fig. 4
for an example), giving the experimentalist a wide choice of different tip materials in their bulk
form.63,67 This is especially beneficial if the chemical interactions between certain specific atomic
species should be explored.

(3) If conducting tip and sample materials are used, simultaneous operation in NC-AFM and STM
modes is possible,s0,62.68 allowing force and tunneling current spectroscopy to be recorded at the
same time.9,70 Also, metallic STM-style tips can be shaped in situ by applying voltage pulses or
by the controlled “gentle dipping” of the tip in the surface. Such procedures have been well
developed in the STM community over the years, but cannot be applied to commercial silicon-
based AFM tips.

As quality factor and signal-to-noise ratio were shown to increase significantly at low temperatures
compared to room temperature operation,2,71,72 low temperature operation of the tuning fork is even more
favorable. Please note in this context also that quartz tuning forks do not produce significant amounts of
heating power, in contrast to piezoresisitve cantilevers or detection systems based on laser light.73 Despite
this impressive list of advantages, only two groups74 have so far demonstrated atomic resolution at low
temperatures using tuning forks (e.g., Refs. 68, 69, and 75— 77). Both their microscopes, however, do not
offer the possibility of in situ tip exchange.

Our exchangeable tip holder is shown in Fig. 4. It consist of a trapezoidal stainless steel metal plate 16 mm
long, 7.6-11.0 mm wide, and 1 mm thick with a slit at the end so that it can be securely gripped by the
wobble stick. Once it has been inserted into the microscope, the four springs indicated in Fig. 4 enable
electrical contact for the tuning fork and STM signals while providing mechanical stability at the same
time. Note that in order to avoid any coupling between the STM signal, the tunneling current is collected
using a thin wire contacting the tip separately (see inset in Fig. 4).60 The metal base plate of the tip holder is
always grounded while in the microscope.

The tuning fork with an unmodified eigenfrequency of 32 768 Hz is glued to a Macor piece in the so-called
Q-plus configuration.10,11 The prongs are both 2370 pm long, 130 Pm wide, and 220 Um thick, resulting in
a force constant of =2000 N/m (see appendix A for details). The tuning fork is mechanically excited using a
dither piezo. Resonance frequencies of up to 32 kHz and quality factors (Q factors) of up to 50 000 in
vacuum at low temperatures have been reached with tip attached (cf. Fig. 5). Since Gildemeister ef al.¢4
report O factors up to 150 000 for even lower temperatures, we expect pumping on our cryostat will further
increase the Q factor.

For the results shown in this paper, tips were prepared from 25 pJm Pt/ Ir wire, which was glued to the end
of the tuning fork prior to the tip sharpening process performed by electrochemical etching. The etching
while the tip is in place has the additional advantage that the tip can be reetched and reused a couple of
times before it needs to be replaced. To facilitate tip replacement, it is often possible to remove the tip wire
from the tuning fork and to glue a new wire on afterwards. However, this procedure cannot be repeated too
often because the amount of glue and therefore the mass on the prong of the tuning fork increases with each
tip replacement. We also experimented with other materials such as tungsten as tip material, but Pt/ Ir tips
seemed overall the easiest to handle, most likely because of reduced effects due to surface oxidation.

VI. ELECTRONIC SETUP

As the electrical currents generated by the tuning fork oscillations are very weak, it is of preeminent
importance that the distance between tuning fork and preamplifier is kept as short as possible. In our case,
the two wires connecting the tuning fork with the preamplifier are about 10 cm long. The preamplifier itself
is inside the vacuum and in contact with the LN shield. Having the feedback resistor at LN temperature
reduces the intrinsic noise of the amplification stage, which is still able to work at this temperature without
the need to heat the operational amplifier (charges would freeze at LHe temperatures). On the downside,



the temperature at the sample rises from =5 to about =6 K with the amplifying stage switched on, and the
measuring time that can be achieved with one filling of the helium bath is reduced by about 20 h.

The preamplifier itself is a very simple current to voltage converter. Due to the high bandwidth and limited
gain of the amplifier, a second amplification stage is necessary to achieve a convenient signal level. It is
positioned outside the vacuum on top of the cryostat at a similar location as the STM amplifier described
earlier. Keeping it outside provides easy access and allows to minimize the number of electronic
components located within the vacuum chamber. Subsequently, the tuning fork signal passes a 35 kHz
lowpass filter to reduce high frequency noise picked up from sources such as, e.g., power supplies, etc. The
35 kHz cutoff frequency was implemented as this choice does not have any impact on the frequency
measurement, which naturally takes place at or below the 32 kHz eigenfrequency of the tuning forks. For
excitation, amplitude, and frequency control, a PLLPRO from RHK (Ref. 45) is used. Scanning, distance
control, and data acquisition is carried out by the SPM 1000 system, also from RHK, in conjunction with
their XPMPRO software package. This setup allows simultaneous recording of the topography (i.e., the z
voltage of the scan piezo), the frequency shift, the amplitude, the cantilever drive signal, as well as the
tunneling current.

VII. FIRST EXPERIMENTAL RESULTS

As suitable test samples, the (111) surface of copper was chosen for the STM mode and the (0001) surface
of highly oriented pyrolytic graphite (HOPG) for the NC-AFM mode. This was not only because they are
well known,6s,69,7s-82 but also because these surfaces challenge the system due to the low corrugation of
their atomic structure in the respective modes.

A. STM results obtained on copper

Figure 6 shows topographical STM raw data acquired at 7=5 K on a Cu(111) single crystal, which had
previously been cleaned by repetitive cycles of argon sputtering and annealing at temperatures up to 7=700
°C. The atomic lattice with a lattice spacing of 2.56 A is clearly visible. In addition, a nearby step edge just
outside the imaged area in the upper left corner induces an electronic surface charge wave, which runs
diagonally from upper left to lower right, but dies out after about half the image. Such surface charge
waves are a well-known phenomenon on Cu(111) surfaces.7s,79 Note that stable STM imaging is possible
even though the tip was mounted at the end of a tuning fork.

Another example for the same surface is shown in Fig. 7. Due to slightly different tunneling parameters and
a different tip, the charge waves appear stronger relative to the atomic lattice than they did in Fig. 6. Their
specific appearance is due to interference of circular charge waves caused by the black defect in the upper
half of the image and others originating from similar defects outside the present field of view. From the
cross section displayed in Fig. 7(b), we see that the charge wave corrugation is of the order of 10 pm, i.e.,
similar as in Fig. 6, while the atomic corrugation is with 3-4 pm about ten times lower than before.
Generally, atomic corrugations as low as 1 pm have been routinely resolved, thereby proving that the
system is capable of operating as a fully functional STM without any compromises due to its additional
AFM capabilities.

B. NC-AFM results obtained on graphite

Despite the good quality of the STM results shown above, we have to keep in mind that the main design
goal for the instrument was to create an instrument capable of high resolution NC-AFM imaging. As
mentioned earlier, we chose HOPG for the initial testing because it is easy to prepare, but difficult to image
with NC-AFM due to weak tipsample interactions, which result in very low atomic corrugations. This is in
sharp contrast to STM or contact mode AFM, where HOPG is a frequently used easy test sample. In fact,
HOPG has so far been resolved in NC-AFM only by two other groups, both using high-resolution
microscopes operated at helium temperatures.s8,69,30-82

Figure 8 displays NC-AFM images of HOPG (raw data). Recorded at 7=6 K with oscillation amplitudes of
0.25 nm, the images feature protrusions with 2.46 A spacing, which corresponds to the distance between



every other atom in the graphite surface and agrees well with data recorded earlier under similar
conditions.s0 Discussions why this structure—as opposed to the imaging of every atom in the graphite
surface—is commonly observed in NC-AFM can be found in Ref. 81 and 82. Corrugations were of the
order of 4-5 pm [Fig. 8(a)] and 10-12 pm [Fig. 8(b)], respectively, with a noise level of below 1 pm (cross
section in Fig. 8(c)). Simultaneous to the topography data, the frequency shift (often termed as the “error
signal,” as Af'is being kept constant), the excitation, the oscillation amplitude, and the tunneling current
have been collected (not shown). The oscillation amplitude was calibrated using procedures described
elsewhere.s3 Please note in this context that we usually did not detect a measurable tunneling current during
the imaging of HOPG in NC-AFM mode as the contact potentials were carefully compensated.

In the last two figures, force versus distance curves taken on HOPG are shown to demonstrate the
instrument’s usefulness for force spectroscopy. While Fig. 9 depicts an individual curve, 256 curves are
combined in Fig. 10 to form a two-dimensional, site-specific array similar to 2D arrays described earlier.ss-
86 From this figure, in which contour lines are drawn every 40 pN, we can see that local atomic-scale force
variations can be observed up to a distance of about 0.15 nm from the level of closest approach to the
surface, which has been arbitrarily gauged to zero. In both cases, the force was calculated from original
frequency shift data applying a procedure introduced by Sader and Jarvis.g7

VIil. CONCLUSIONS

We presented the design and first experimental results of a scanning probe microscope that can be operated
in both STM and NC-AFM modes while operating in ultrahigh vacuum and at low temperatures.
Advantages of the design are excellent temperature stability, compact dimensions, low helium
consumption, short turnaround times, provisions for in situ tip and sample exchange, and unrestricted
access from dedicated flanges that allows optical access during operation and the deposition of molecules
on tip and/or sample while they are cold. Initial experimental results show atomic resolution in both STM
and NC-AFM modes with corrugations down to 1 pm resolved and lateral drift rates as low as one unit cell
per day.
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APPENDIX A: ESTIMATING THE SPRING CONSTANT
OF THE TUNING FORK

According to elementary elasticity theory, the spring constant of a cantilever can be calculated from c:
=Et3w/4[3, where E is Young’s modulus, ¢ is the cantilever thickness, w is its width, and L is its length.
With the values provided in the main text and Young’s modulus as given further below, this results in
¢z=2056 N/m. However, as pointed out by Simon et al.,83 ¢z might change as the tuning fork is glued to its
holder. Therefore, we simulated our setup (tuning fork and holder) by finite element analysis, which
resulted in a ¢z of 1897 N/m. Thus, it seems adequate for calculations where the tuning fork’s force constant
is needed (e.g., when the force should be recovered from frequency shift data) to assume an average cz of
~2000 N/m. Please note that for the calculation of ¢z, we used a Young’s modulus of 79.1 GPa, which is
different from standard tabular values for quartz. This variation is caused by the tuning fork’s special
crystallographic cut of © =85° and ® =0°, which needs to be considered.ss
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G. 5. (Color online) Example of a resonance curve of a tuning fork with
/Ir tip attached. The data have been acquired in vacuum at T=6 K,
aturing a resonance frequency of f,=28237.8 Hz and a Q factor of
=39 200.
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FIG. 7. (Color online) (a) STM image (image size: 10X 10 nm?) recorded
on Cu(111) at T=5 K with a tunneling current of /=300 pA, an applied bias
voltage of U=+20 mV, and a scan speed of 11.1 nm/s. Both the atomic
surface corrugation as well as the charge modulations originating from sev-
eral interfering circular charge waves can be observed. The data shown have
been slightly Fourier filtered. (b) Section view along the line shown in (a).

FIG. 6. (Color online) STM image (raw data) of Cu(l111) (/=50 PA,
U=+100 mV, T=5 K, scan speed of 13 nm/s, image size: 13X 13 nm?).
An electronic surface charge wave, caused by a step edge located just out-
side the scanned area next to the upper left corner, rins diagonally from
upper left to lower right. The arrows on the Ieft indicate the position and
orientation of the individual wave fronts. Atomic con‘u;atioais_ =30 pm and
charge wave corrugation ~10 pm max. e
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FIG. 8. (Color online) [(a) and (b)] Atomically resolved NC-AFM images of
HOPG, recorded with constant oscillation amplitudes of 0.25 nm and con-
stant scan speeds of 1.3 nm/s using a tuning fork with f,=29 529 Hz. The
sample has been cleaved in air and subsequently been heated in vacuum to
150 °C for 30 min to remove eventual contamination. The images were
recorded at Af=~3.1 Hz with the PLL bandwidth limited to 18.75 Hz for (a)
and at Af=-2.9 Hz with 37.5 Hz PLL bandwidth for (b); image sizes are
3.83.8 nm? and 1.3 X 1.3 nm?, respectively. (c) Section view cut along the
line indicated in (b). All data shown are raw data.
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