
 

 

Test of the consistency of various linearized 
semiclassical initial value time correlation 

functions in application to inelastic neutron 
scattering from liquid para-hydrogen 

 
Jian Liu and William H. Miller 

Department of Chemistry and K. S. Pitzer Center for Theoretical Chemistry  

University of California, 

and Chemical Science Division, Lawrence Berkeley National Laboratory 

Berkeley, California 94720-1460 

 

 

 

 

 

 

 

 1



Abstract 

     The linearized approximation to the semiclassical initial value representation (LSC-IVR) is 

used to calculate time correlation functions relevant to the incoherent dynamic structure factor for 

inelastic neutron scattering from liquid para-hydrogen at 14 K.  Various time correlations functions 

were used which, if evaluated exactly, would give identical results, but they do not because the 

LSC-IVR is approximate.  Some of the correlation functions involve only linear operators, and 

others involve non-linear operators.  The consistency of the results obtained with the various time 

correlation functions thus provides a useful test of the accuracy of the LSC-IVR approximation and its 

ability to treat correlation functions involving both linear and nonlinear operators in realistic 

anharmonic systems.  The good agreement of the results obtained from different correlation 

functions, their excellent behavior in the spectral moment tests based on the exact moment constraints, 

and their semi-quantitative agreement with the inelastic neutron scattering experimental data all 

suggest that the LSC-IVR is indeed a good short-time approximation for quantum mechanical 

correlation functions. 
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I.  Introduction 

 Most quantities of interest in the dynamics of complex systems can be expressed in terms of 

thermal time correlation functions1.  For example, dipole moment correlation functions are related to 

absorption spectra, flux correlation functions yield reaction rates, velocity correlation functions can be 

used to calculate diffusion constants, and vibrational energy relaxation rate constants can be expressed 

in terms of force correlation functions.  These correlation functions1 are of the form 

 ( ) ( )ˆ ˆ/ /ˆ ˆTr iHt iHt
ABC t A e Beβ −= = = , (1.1) 

where ˆ1ˆ H
Z

ˆA e Aβ β−=  for the standard version of the correlation function, or ˆ ˆ/ 2 / 21ˆ ˆ
sym

H H
ZA e Aeβ ββ − −=  

for the symmetrized version2, or ( ) ˆ ˆ1
0

ˆ d H ˆ H
Kubo ZA e

β β λ Aeβ λ
β λ − − −= ∫  for the Kubo-transformed version3.   

These three versions are related to one another by the following identities between their Fourier 

transforms 

 ( ) ( ) ( )/ 2

1
Kubo sym
AB AB ABC C e C

e
β ω

β ω

β ω ω ω− = =
−

=
=

= � � � ω , (1.2) 

where ( ) ( )1
2

i t
AB ABC dt e ωω

π

∞
−

−∞

= ∫� C t  etc.  Here  is the (time-independent) Hamiltonian for the 

system, which for large molecular systems is usually expressed in terms of its Cartesian coordinates 

and momenta 

Ĥ

 l ( ) ( )T
11

02
ˆH V H−= + = +p M p q q� � � �V , (1.3) 

where  is the (diagonal) mass matrix and M p� ,  are the momentum and coordinate operators, 

respectively.  Also, in Eq. 

q�

(1.1) ( )ˆTr 1/H
BZ e β β−= = k T  is the partition function, and Â  and B̂  

are operators relevant to the specific property of interest. 
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 For large molecular systems, classical molecular dynamics (MD) simulation methods are the 

only generally applicable approach, so for this reason we have been pursuing the use various initial 

value representations (IVRs) 4-19 of semiclassical (SC) theory20,21 to add quantum effects to classical 

MD simulations of time correlation functions.  The SC-IVR provides a way for generating the 

quantum time evolution operator (propagator)  by computing an ensemble of classical 

trajectories, much as is done in standard classical molecular dynamics simulations.  Such approaches 

actually contains all quantum effects at least qualitatively, and in molecular systems the description is 

usually quite quantitative

ˆ /iHte− =

4-8,15,20-27. 

 The simplest (and most approximate) version of the SC-IVR is its ‘linearized’ approximation 

(LSC-IVR)9,26,28-35, which leads to the classical Wigner model36-39 for time correlation functions; see 

Section IIB for a summary of the LSC-IVR.  The classical Wigner model is an old idea, but it is 

important to realize that it is contained within the SC-IVR approach, as a well-defined approximation 

to it28,29.  There are other ways to derive the classical Wigner model (or one may simply postulate 

it)9,35,40,41, and we also note that the ‘forward-backward semiclassical dynamics’ (FBSD) 

approximation of Makri et al.32,42-56 is very similar to it.  The LSC-IVR/classical Wigner model 

cannot describe true quantum coherence effects in time correlation functions—more accurate SC-IVR 

approaches, such as the Fourier transform forward-backward IVR (FB-IVR) approach22,57 (or the still 

more accurate generalized FB-IVR58) of Miller et al., are needed for this—but it does describe some 

aspects of the quantum dynamics very well26,30-32,34,59-62.  E.g., the LSC-IVR has been shown to 
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describe reactive flux auto-correlation functions (which determine chemical reaction rates) quite well, 

including strong tunneling regimes31, and velocity auto-correlation functions26,32,60 and force 

auto-correlation functions26,34,61,62 in systems with enough degrees of freedom for quantum re-phasing 

to be unimportant. 

  Similar to the LSC-IVR are two other ways to approximate the quantum dynamic correlation 

function such that the result both approaches its classical limit at high temperature and achieves the 

exact quantum result as  for arbitrary potentials.  One such approach is the centroid molecular 

dynamics (CMD) method of Voth and co-workers

0t →

63-75, and another is the ring polymer molecular 

dynamics (RPMD) model recently proposed by Manolopoulos and co-workers76-81.  In these 

approaches the real time dynamics is related to a modified classical dynamics of the path integral 

beads of the quantum Boltzmann operator or the centroid of them.  These two models are also unable 

to capture true quantum coherence effects.  For the case of harmonic systems, both of these models 

give the exact quantum result if at least one of the operators Â  and B̂  is a linear function of 

position or momentum operators; however, they do not give the correct result if both operators are 

non-linear71,78,82,83; the LSC-IVR, on the other hand, gives the exact quantum correlation function for 

all time t and for arbitrary operators Â  and B̂  for a harmonic potential9.  Fig. 4 of a recent study26 

shows that for the realistic anharmonic system liquid para-H2 at the state point (25K under nearly 

zero external pressure), the LSC-IVR is a more faithful approximation to quantum mechanical real 

time correlation functions at short time (on the order of thermal time β= ) than the CMD and RPMD 
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models even for linear operators (such as  or ).  How generally true this conclusion is must of 

course await future investigations on other realistic systems.  However, both the CMD and the 

RPMD models have the desirable feature that the quantum mechanical equilibrium distribution is 

correctly conserved—i.e., for the case 

p̂ x̂

ˆ 1A =  the correlation function (i.e. the canonical ensemble 

average of operator B̂ ) is time-independent—while this is not the case for the LSC-IVR (though Liu 

et al.26,54 have demonstrated that this is in fact not a problem in practical calculations so long as the 

correlation time scale is not too long). 

 We also note here that the maximum entropy analytic continuation (MEAC) approach 

developed mainly by Berne and coworkers84-89 and quantum mode-coupling theory (QMCT) approach 

of Rabani and Reichman90-97 are also very useful methods to capture accurate short-time behavior of 

the real time correlation function.  Since only the imaginary time information is needed as the input, 

calculations of these two methods are usually light and are feasible for cases where dynamics are very 

slow (i.e., glassy liquids), which is the strength of these two methods.  However, both methods have 

their shortcomings as well.  I.e, neither of them is exact in the classical limit (although the QMCT 

reaches the classical mode-coupling theory that is accurate in many cases in the classical limit), the 

MEAC is not so good when the spectrum of the correlation function has multiple maxima87 and when 

the system has a separation of time scales, and the mode-coupling theory is not easy to apply to 

polyatomic liquids98,99.  Since this paper mainly discusses on the approximated quantum dynamical 

methods involving trajectories, we focus on the comparison among the LSC-IVR, CMD and RPMD. 
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 The purpose of this paper is to present an additional challenging application and test of the 

LSC-IVR approximation to quantum mechanical time correlation functions, namely the incoherent 

dynamic structure factor for inelastic neutron scattering from liquid para-hydrogen100,101 , with special 

emphasis on how consistent the results are when obtaining this quantity from various time correlation 

functions.   I.e., in most cases the physical quantity of interest can be expressed in terms of different 

time correlation functions, which would all give the same result if the calculations could be carried 

out exactly:  e.g., diffusion coefficients can be obtained from position-position or velocity-velocity 

correlation functions, rate constants can be obtained from flux-flux or side-side correlation functions, 

etc.  When the calculations are carried out approximately, though, the results for the physical 

quantity given by using different correlation functions will generally be different, and the degree to 

which they do agree with each other thus offers some measure of how accurate one believes the 

approximate treatment to be.  In the present case, the incoherent dynamic structure factor for 

inelastic neutron scattering can be obtained from the self-part of the intermediate scattering function 

(involving nonlinear operators), or from the velocity correlation function (involving linear 

operators)102; see Section IIA for more details.  This thus provides an ideal test case to study the 

behavior of the LSC-IVR method and its comparison to the CMD72 and the RPMD78 models.  

Section II first summarizes the theory of inelastic neutron scattering and shows how the self-part of 

the intermediate scattering function and the velocity correlation function are related with each other, 

and then describes the LSC-IVR formulation of these time correlation functions using the thermal 
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Gaussian approximation (TGA) 26,32.  Section III presents the LSC-IVR simulation results for the 

incoherent dynamic structure factor of liquid para-hydrogen at 14KT = (under nearly zero external 

pressure) using different correlation functions, along with the spectral moment test and the 

comparison to other methods and the recent inelastic neutron scattering experiment data101.  

Conclusions are given in Section IV. 

II. Theory and Methodology 

A. Inelastic Neutron Scattering 

 Inelastic neutron scattering is a well established technique for obtaining information on 

dynamic structure of liquids and vibrational spectroscopy103-105.  Within the first Born approximation, 

the experimentally observed differential scattering cross section was shown by Von Hove106 to be 

proportional to the coherent dynamic structure factor which reflects the collective behavior of liquids 

 ( ) ( )1, ,
2

i t
cohS dte ωω

π

∞
−

−∞

= ∫κ κF t . (2.1)   

Here the intermediate scattering function ( ),F tκ  is given by 

 ( ) ( )ˆˆ

, 1

1, ji

N
i ti

i j
F t e e

N
−

=

= ∑ κ xκ xκ ii , (2.2) 

where N  is the number of particles of the system,  is the position operator of the i-th particle, 

 is the Heisenberg operator of 

ˆ ix

( ) ˆˆ ˆ/j ji t iiHt iHte e e e⋅ ⋅ −=κ x κ x= ˆ / = ˆ jie ⋅κ x , and the momentum and energy transfers 

from the scattered neutron to the liquid are respectively 

 i f= −κ κ κ= = =  (2.3) 

 
( )2 2 2

2
i f

nm
ω

−
=

κ κ=
=  (2.4) 
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with  and iκ fκ are the initial and the final wave vectors of the neutron, and  is the mass of the 

neutron. 

nm

 For some liquids, such as liquid hydrogen and deuterium, in which the particles have nuclear 

spin effects or nuclear internal variables, the incoherent dynamic structure factor which reflects the 

single-particle motion is pronounced 104, 

 ( ) (1,
2

i t
inc sS dte ωω

π

∞
−

−∞

= ∫κ ),F tκ , (2.5) 

where the self-part of the intermediate scattering function is  

 ( ) ( ) ( )ˆ ˆ0

1

1, i i
N

i i t
s

i
F t e e

N
−

=

= ∑ κ x κ xκ i i . (2.6)   

For isotropic systems, both the dynamic structure factors and the scattering functions only depend 

onκ = κ , i.e., they are independent of the direction of . κ

 Using a cumulant expansion, it can be shown that the self-part of the intermediate scattering 

function has the following equivalent form102 

 ( ) ( ) ( )
2

2

1
, exp

2
n

s n
n

F t it
m
κ κ γ

∞

=

t
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦

∑κ = . (2.7)   

where  is the mass of the particle in the pure liquid, and m ( )n tγ  is related to -point velocity 

correlation functions, i.e., 

2n

 ( ) ( ) ( )1

1 1 2 20 0

t t
t dt dt v t v tκ κγ = ∫ ∫ 1 , (2.8) 

 ( ) ( ) ( ) ( )1 3 2
2 1 2 4 4 1 10 0 0

1
2

t t t
t dt dt dt v t v t tκ κγ = γ− ⎡ ⎤⎣ ⎦∫ ∫ ∫" " , (2.9) 

and so on, where  is the velocity component along the direction of .  For small values of vκ κ κ , 

the first order truncation in Eq. (2.7) gives a Gaussian approximation, which for isotropic liquids is 
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 ( ) ( ) ( )2

0

1, exp
2 3

t

sF t it t t C t
m

κ⎡ ⎛ dt ⎤⎞′ ′ ′= − −⎜⎢ ⎝ ⎠⎣ ⎦
∫ vvκ =

⎟⎥ , (2.10) 

where  is the standard velocity auto-correlation function given by Eq. ( )C t′vv (1.1).  For the case 

that the velocity distribution of the system is Gaussian, ( )2 tγ  and higher order terms vanish, so that 

the Gaussian approximation of Eq (2.10) becomes exact.  Furthermore, it can be shown that the 

velocity distribution is Gaussian (i.e., Maxwellian) even if quantum corrections through order  are 

taken into account

2=

107, so that higher order corrections to the Gaussian approximation of Eq. (2.10) are 

expected to be extremely small even for large κ , except for very low temperatures102.  Eq. (2.10) is 

in fact a very good approximation, i.e., non-Maxwellian effects are indeed negligible, for the system 

under study in this paper—liquid para-hydrogen at --as implied in the literature14 K 72,78,100 and also 

discussed in Section III and Appendix C.  The incoherent dynamic structure factor can thus be 

computed either directly through the self-part of the intermediate scattering function, Eq. (2.6), or 

indirectly through the standard velocity function, Eq. (2.10), thus providing a test of the consistency 

of the LSC-IVR for these different correlation functions (involving both linear and nonlinear 

operators). 

B. LSC-IVR Correlation Functions Using the TGA 

The SC-IVR approximates the forward (backward) time evolution operator  ( ) 

by a phase space average over the initial conditions of forward (backward) classical trajectories

ˆ /iHte− = ˆ /iHte =

5,7,8,20.  

By making the (drastic but reasonable) approximation that the dominant contribution to the phase 

space averages comes from forward and backward trajectories that are close to one another and then 
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linearizing the forward and backward actions of such trajectories, Miller and coworkers28-30 obtained 

the linearized SC-IVR (LSC-IVR), or classical Wigner model for the correlation function 

  (2.11) ( ) ( ) ( ) (0 0 0 0

32 ,LSC IVR
AB w w t t

NC t d d A Bβπ− −
= ∫ ∫x p x p x p= ),

where wAβ  and wB  are the Wigner functions36 corresponding to these operators, 

 ( ) /ˆ, / 2 / 2
Ti

wO d O e= − +∫ p Δxx p Δx x Δx x Δx =  (2.12) 

for any operator .  Here (Ô )0 0,x p  is the set of initial conditions (i.e., coordinates and momenta) 

for a classical trajectory, ( ) ( )( 0 0 0 0, , ,t tp p px x x )  being the phase point at time t  along that 

trajectory.  More recently, Liu and Miller9 have shown that the exact quantum time correlation 

function can be expressed in the same form as Eq. (2.11), with an associated dynamics in the single 

phase space, and it was furthermore demonstrated that the LSC-IVR is its classical limit ( ), 

high temperature limit (

0→=

0β → ), and harmonic limit.  The LSC-IVR can be applied not only to 

correlation functions at equilibrium but also to non-equilibrium correlation functions.  These merits 

of the LSC-IVR make it a versatile tool to study quantum-mechanical effects in chemical dynamics of 

large molecular systems. 

Here we use the thermal Gaussian approximation108-110,111；Shao, 2006 #1741 (TGA) of Frantsuzov 

and Mandelshtam to construct the Boltzmann operator as necessary to obtain the Wigner function of 

operator Âβ
26,32.  In the TGA, the Boltzmann matrix element is approximated by a Gaussian form: 

 
( )( )

( )( ) ( ) ( )( ) ( )
3 / 2

ˆ 1
1/ 2

1 1 1exp
2 2det

N
THe τ τ τ τ γ

π τ
− −⎛ ⎞ ⎛= − − −⎜ ⎟ ⎜

⎝ ⎠ ⎝
0x q x q G x q

G
τ ⎞+ ⎟
⎠

, (2.13) 
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where ( )τG  is an imaginary-time dependent real symmetric and positive-definite matrix, ( )τq  the 

center of the Gaussian, and ( )γ τ  a real scalar function.  The parameters are governed by the 

equations of motion in imaginary time which were given explicitly in our previous paper32 and in 

other references108,109,112.   The matrix ( )τG  is a full 3 3N N×  matrix, where N  is number of 

particles of the system.  The TGA for the Boltzmann operator makes it possible to perform the 

Fourier transform necessary to construct the Wigner function of operator Âβ  analytically; 

specifically,  in Eq. ( 0 0,wAβ x p ) (2.11) is given as follows32 

 

( )
( )

( )( )
( )

( )
( )( ) ( ) ( )( )( )

( )
( )

( )( )

( )( )

2

3 / 2 1/ 2

2

1
0 02 2 21/ 23 / 2

2

1/ 2

2 2
0 023 / 22

0 0 2

0 0 0

exp 21 1

4 det

1
exp

det

det
exp /

, ,

, N

T

N

T
N

TGA

A

w d
Z

f

A

β

β

β

β β β

β

β
β

β

β γ

π

π

π

−⋅ − −

⋅ −

⋅

= ∫ q
G

x q G x q
G

G
p G p

x p q

x p

=
=

−
, (2.14) 

where for the Kubo-transformed momentum correlation function 

 ( )( ) ( )20 0 2,
2

02, ,TGA LSC IVR

A Kubo
f β

β β
β

− − =x p q MG p
=

  (2.15) 

for the momentum operator  with ˆ ˆA = p ( ) ˆ ˆ1
0

ˆ ˆH H
Kubo ZA d e

β β λ eβ λ
β λ − − −= ∫ p 32; for the standard 

momentum correlation function 

 ( )( ) ( ) ( )( )1
0 0 0 02 2, ,TGA LSC IVR

AAf iβ β− − −= − −x p q p G x q= 2
β  (2.16) 

for the momentum operator  with ˆ ˆA = p
ˆ1ˆ ˆH

ZA eβ β−= p 32; for the self-part of the intermediate 

scattering function 
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( )( )
( ) ( ) ( )

0 0 2

0
0 2 2

1

, ,

1 1exp /
4

i

i i

TGA LSC IVR
AA

N
i T T

i

f

e
N

β

β β

− −

− ⋅

=

=

⎡
i

⎤⋅ ⋅ − ⋅ ⋅⎢ ⎥⎣ ⎦
∑ κ x

x x

x p q

p G κ κ G κ= x

 (2.17) 

for the operator ˆ

1

ˆ 1
i

N
i

i

A e
N

− ⋅

=

= ∑ κ x  with ˆ ˆ

1

ˆ 1 1
i

N
iH

i

A ee
Z N

β β − ⋅−

=

=
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ κ x .  Here ( )2i

β
xG  denotes the 

three columns (related with jx ) of the matrix ( )2
βG , and ( )2i i

β
x xG  the 3  block matrix of 

which the rows and columns representing 

3×

jx .  The derivation of Eq. (2.17) is shown in Appendix A.   

Calculation of wB  in Eq. (2.11) is usually an easy task; in fact, B̂  is often a function only of 

coordinates or only of momenta, in which case its Wigner function is simply the classical function 

itself.  Monte Carlo (MC) evaluation of Eq. (2.11) together with Eq. (2.14) is now straightforward, 

and we refer readers to Section IV of our recent paper32 for more details.  We note here that the 

TGA/LSC-IVR is exact in the classical limit and in the harmonic limit as pointed out in our previous 

work32. 

 For our simulations (the results of which are presented and discussed in Section III) we have 

used the following three approaches to calculate the incoherent dynamic structure factor ( ),incS ωκ : 

1. Direct implementation of the TGA/LSC-IVR in Eqs. (2.11), (2.14), and (2.17) to calculate 

the self-part of the intermediate scattering function ( ),sF tκ , with ( ,incS )ωκ  then given by 

Eq. (2.5).  We refer to this as “inelastic-std”. 

2. Use of Eqs. (2.11), (2.14) and (2.16) to obtain the standard velocity correlation function 

 and then calculation of ( )C t⋅v v ( ),incS ωκ  via Eqs. (2.10) and (2.5).  We denote this 

“vv-std”. 
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3. Calculation of the Kubo-transformed velocity correlation function  by Eqs. ( )KuboC t⋅v v (2.11), 

(2.14), and (2.15), then use of the relation between the spectra, Eq. (1.2), to obtain the 

standard correlation function, i.e., 

 ( ) ( )1
2 1

i t i t KuboC t d e dt e C t
e

ω ω
β ω

β ωω
π

∞ ∞ ′−
⋅ −−∞ −∞ ⋅′ ′=

−∫ ∫v v v v=
= , (2.18) 

with ( ,incS )ωκ  then given by Eqs. (2.18), (2.10), and (2.5).  We denote this approach 

“vv-kubo”. 

 Though all three approaches above would give the same result for ( ,incS )ωκ  if the 

quantum mechanical correlation functions were calculated exactly, the results will actually be 

somewhat different because the LSC-IVR is being used to calculate the correlation functions.  

Comparing the results obtained for ( ),incS ωκ  by these various approaches thus provides a test of the 

consistency (and presumably the accuracy) of the LSC-IVR approximation for these correlation 

functions, which involve both linear and nonlinear operators. 

C. Spectral Moment Tests 

 At present, exact quantum results of ( ),incS ωκ  for this system are not available, so there is 

no way to be absolutely certain how well the LSC-IVR approximation performs in our present 

calculations.   However low order spectral moments of ( ),incS ωκ  can be calculated essentially 

exactly, by Feynman (imaginary time) path integrals methods, and this provides some rigorous 

comparisons by which to judge the accuracy of these methods.  Define the recoil frequency as 

.  The now standard procedure2 / 2mω κ= =R
102 is to express the spectral moments as 
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 ( ) ( ) ( ) ( )
0

, R

nn
i tn

n R inc sn t

dS d i e F t
dt

ωμ ω ω ω ω
∞ −− ,

=−∞
⎡ ⎤= − ≡ ⎣ ⎦∫κ κ κ  (2.19) 

e.g., the three lowest moments for the isotropic system are102,113 

 ( )0 1μ κ = , (2.20) 

 ( )1 0μ κ = , (2.21) 

and 

 ( ) ( )
2 2

2 2
2

ˆ20
3 3 2

v C
m mNκ

κ κμ κ κ ⋅= = ≡v v
p2

. (2.22) 

It is straightforward to verify that, when the Gaussian approximation, Eq. (2.10), is combined with 

exact velocity correlation functions, all moments in Eq. (2.19) are exact if the velocity distribution of 

the system is Gaussian; the four lowest moments are exact even for more general velocity 

distributions.  Eqs. (2.7) and (2.19) indicate that ( )0μ κ  and ( )1μ κ  remain exact when the 

Gaussian approximation, Eq. (2.10), is combined with any approximate velocity correlation function, 

but ( )2μ κ  and higher order moments generally do not.  Moreover, in Appendix B it is shown that 

( )0μ κ  and ( )1μ κ  are also exact for the TGA/LSC-IVR formulation of the self-part of the 

intermediate scattering function ( ),sF tκ , Eq. (2.6).  In summary, all three methods in Section IIB 

(the “inelastic-std”, “vv-kubo” and “vv-std” methods based on the TGA/LSC-IVR) give the exact 

values for the two lowest moments ( )0μ κ  and ( )1μ κ  (as shown in Table 1) 

 Craig and Manolopoulos78 proposed another test to check the accuracy of ( ,incS )ωκ  by 

calculating another set of spectral moments of the incoherent relaxation spectrum ( ),incS ωκ� , 

 ( ) ( ) ( )
0

,
n

n n
n inc sn t

dS d i F t
dt

μ ω ω ω
∞ − ,

=−∞
⎡ ⎤= ≡ ⎣ ⎦∫κ κ κ� � . (2.23)   
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Here the incoherent relaxation function ( ),sF tκ�  is 

 ( ) ( ) ( )ˆ ˆ

0
1

1, i i
N

i i i t
s

i
F t d e e

N
β λλ

β
− −

=

= ∑∫ κ r κ rκ i = i�  (2.24) 

and ( ),incS ωκ�  is the Fourior transform of ( ),sF tκ� .  Since we don’t directly calculate ( ),sF tκ�  

(and then its spectrum ( ),incS ωκ� ) using the TGA/LSC-IVR, we implement the relation in Eq. (1.2) 

into Eq. (2.23), i.e., 

 ( ) ( ) ( )
1

,n
n i

e
S

β ω

nc dμ ω
β ω

−
∞

−∞

−
= ∫κ

=

=
ω ωκ . (2.25) 

It can be seen that each of the moment ( )nμ κ  in Eq. (2.25) involves the collection of the moments 

( )nμ κ  in Eq. (2.19).  Based on the detailed balance for ( ),incS ωκ , 

 ( ) ( )AB ABe C Cβ ω ω ω− = −= ,        (2.26) 

one can show that all odd moments in Eq. (2.25) vanish.  From Eq. (2.23), it can be shown3 that the 

first two even moments are 

 ( ) ( ) ( )0 ,0S SFμ κ = ≡κ� χ κ  (2.27) 

and 

 ( )
2

2 m
κμ κ
β

= . (2.28) 

Accurate values78 of the susceptibility function ( )Sχ κ  can be obtained by imaginary time path 

integral techniques.  Generally, all the three methods in Section IIB (“inelastic-std”, “vv-kubo” and 

“vv-std” based on the TGA/LSC-IVR approach) only give approximate results for ( )0μ κ  and 

( )2μ κ  (see Table 1).  Comparison of these results with the exact ones can thus be used to check the 

accuracy of ( ,incS )ωκ  given by the three methods proposed in Section IIB.  Table 1 (for the 
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LSC-IVR) in this paper can be directly compared with Table 1 (for the RPMD) in Ref. 78,114, though 

such a table the CMD is not available in Ref. 72. 

III. Results and Discussions 

A. Simulation details 

 The system under study is liquid para-hydrogen at the state point  

under nearly zero external pressure

-314 K, =23.5 nmT υ=

115, for which the Kubo-transformed velocity correlation function 

has been calculated in our previous paper26.  The computational details are quite similar and are 

briefly described as follows. 

 Liquid para-hydrogen is well described by the Silvera-Goldman (SG) model116, an isotropic 

pair potential in which the para-hydrogen molecule is treated as a sphere particle.   Thus both 

( ,incS )ωκ  and ( ),sF tκ  depend only on κ = κ .  To accelerate the imaginary time propagation in 

the TGA, we fit the SG potential to a linear combination of Gaussians26.  In the simulation, we used 

periodic boundary conditions with 108 molecules per cell with the minimum image convention at 

various values of the momentum transfer parameter κ = κ  that satisfy the Laue relation117,118 

 2 /n Lκ π= , (3.1) 

where  is the length of the unit cell and  is integer.  As in our previous applicationsL n 26,32, the 

standard Metropolis algorithm was implemented and the acceptance ratio of new initial Gaussians (for 

the Boltzmann matrix element, Eq. (2.13)) was about 40%.  The initial inverse temperature of 

starting Gaussians was 0.0001β .  About  imaginary trajectories were used for initial 

equilibrations, and then during the simulation of the correlation function the total number of 

45 10×
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imaginary trajectories was , with an imaginary time step of 22.  With initial conditions 

generated by each imaginary time trajectory, 10 real time trajectories were propagated with the usual 

velocity Verlet algorithm, with a time step of . 

58.6 10×

1.2 fs

 During the TGA/LSC-IVR simulation, ( ),sF tκ , ( )C t⋅v v  and  were calculated 

simultaneously by collecting their estimators 

( )KuboC t⋅v v

( )( ) ( )0 0 2, , ,TGA
w t tA

f Bβ
β ⋅x p q x p  along trajectories.    

For convenience, the incoherent dynamic structure factor ( ),incS ωκ  was calculated from the real part 

of ( ),sF tκ , i.e., 

 ( ) ( ) ( )1,
1

i t
inc sS dte

e
ω

β ω
ω

π

∞
−

−
−∞

= Re ,F t⎡ ⎤⎣ ⎦+ ∫κ
=

κ . (3.2) 

It is straightforward to derive Eq. (3.2) based on the detail balance, Eq. (2.26). 

B. Incoherent Dynamic Structure Factors 

 Fig. 1 shows the self-part of the intermediate scattering function ( ),sF tκ  at four different 

values of the momentum transfer parameter, i.e., ( )-10.378 Å 1nκ = = , ( )-11.512 Å 4n = , 

 and .  One sees that the time scale for the decay of (-12.646 Å 7n = ) )(-14.536 Å 12n = ( ),sF tκ  

decreases as the momentum transfer parameter κ  increases.  By way of comparison, the typical 

time scale of the Kubo-transformed velocity correlation function is 1ps≤  as shown in Fig. 3b of 

Ref.26.  As pointed out in previous sections, the LSC-IVR approximation to quantum mechanical 

correlation functions is expected to be best at short times so that one would thus expect it to be better 

for larger momentum transfer.  On the other hand, the larger the momentum transfer parameter κ , 

the more nonlinear are the operators in the correlation function ( ),sF tκ .  Although it has already 
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been shown that the LSC-IVR deals well26 with linear operators (i.e., the velocity correlation 

function) in this highly anharmonic system, there is still the question of how well it treats these 

nonlinear operators. 

 To check these two points, incoherent dynamic structure factors ( ,incS )ωκ  are calculated 

by the three methods proposed in Section IIB and are plotted as a function of the energy transfer 

parameter ω  at various values of the momentum transfer parameter κ  in Fig. 2.  (Appendix C 

discusses in more detail why Eq. (2.10) is expected to be a good approximation for all  for this 

system, and why this leads to the incoherent dynamic structure factor 

κ

( ),incS ωκ  being Gaussian at 

very large  and Lorentzian at very small κ , as observed in Fig. 2.) κ

 The most important conclusion from Fig. 2 is that the results of the three methods based on 

the LSC-IVR approximation are in very good agreement with one another, provided  is not very 

small.  It is very encouraging that the results agree well with each other even for quite large values of 

, for which the relevant operators are highly non-linear.  This demonstrates that the LSC-IVR 

provides a consistent approximation to the quantum mechanical correlation functions for both linear 

and the nonlinear operators when the time scale of the correlation function is not too long.  However, 

for very small , corresponding to long time, Fig. 2 does show some deviations among the three 

methods proposed in Section IIB based on the TGA/LSC-IVR, although the peaks are located at 

nearly the same frequency.  In this regime, the deviations among three methods imply that some 

κ

κ

κ
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inconsistency may exist in the LSC-IVR formulation of correlation functions for different operators at 

very long times. 

 Fig. 2 can be directly compared with Fig. 7 in Ref.72 by Hone and Voth, and Fig. 1 in Ref.78 

by Craig and Manolopoulos.  These authors have studied the same system using the CMD and the 

RPMD models.  They considered two approximate approaches: 

(1)     Calculate the Kubo-transformed version of ( ),sF tκ —the incoherent relaxation function    

( ),sF tκ� , i.e., Eq. (2.24)—and then obtain the incoherent dynamic structure factor 

( ,incS )ωκ  from its spectrum via Eq. (1.2); we refer to this approach as “RPMD-kubo” for 

the RPMD. 

(2)     Calculate the Kubo-transformed velocity correlation function and follow the same procedure             

        as the “vv-kubo” method proposed in Section IIB; we refer to this as “RPMD-vv-kubo” for        

        the RPMD. 

It has been shown72,78 , for both the CMD and RPMD models, that approach (1) agrees well 

with approach (2) above in the regime of small κ ; for large κ , however, the agreement 

between the two approaches above becomes poor, presumably because the operator  

becomes more nonlinear. 

îie− κ ri

 To summarize the results contained in Fig. 2, all comparisons of the incoherent dynamic 

structure ( ,incS )ωκ  among the three TGA/LSC-IVR methods (proposed in Section IIB), and with 

other models72,78 , show that the LSC-IVR is a quite consistent method for approximating quantum 
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mechanical correlation functions involving both the linear and nonlinear operators if the time scale of 

the correlation function is not too long. 

C. Spectral Moment Test 

 In Fig. 3, the three lowest moments ( )nμ κ  of ( ),incS ωκ  obtained from our calculations 

are plotted as a function of the momentum transfer parameter κ , compared with the exact results in 

Eqs. (2.20)-(2.22) and the RPMD results of Ref. 78.  The spectral moments from the CMD are not 

available in Ref. 72, but expected to be similar to those given by RPMD.  Since the analysis in 

Appendix B shows that the “inelastic-std”, “vv-kubo” and “vv-std” versions of our TGA/LSC-IVR 

approach are expected to produce ( )0μ κ  and ( )1μ κ  exactly (also see Table 1), the slight 

disagreements with the exact values seen in Fig. 3 are due to residual numerical error.  Fig. 3 implies 

that the “inelastic-std” version of the TGA-LSC-IVR deviates more than the other two versions; we 

attribute this to the fact that the estimator for ( )/TGA LSC IVR
S tF −  in the Monte Carlo evaluation, Eq. 

(A.3), has more numerical cancellation from the phase term.  

      For the 2nd-order moment ( )2μ κ , the results of the methods based on the Gaussian 

approximation, Eq. (2.10), are independent of κ  and only depend on how accurate the average 

kinetic energy 
2ˆ

2mN
p  is given by the velocity correlation function (see Eq. (2.22)).  For example, 

the “vv-kubo” version of the TGA/LSC-IVR gives a value of ~65.0 K (for the present simulation of 

108 para-H2 molecules per cell with periodic boundary condition26), and the accurate result by the 

imaginary time path integral Monte Carlo (PIMC) is 63.2 K 48, so that the approximation to ( )2μ κ  
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overestimates the result by less than .  For comparison, it was reported in Ref. 2.85% 78 that the 

“RPMD-vv-kubo” result for ( )2μ κ  exceeds the exact value by .  Furthermore, the relative 

error in 

6.3%

( )2μ κ  by the “inelastic-std” version of the TGA/LSC-IVR or by the “RPMD-kubo” method 

certainly depends on the momentum transfer parameter κ ; these results are plotted in Fig. 4.  It is 

encouraging to see that the relative error given by the “inelastic-std” TGA/LSC-IVR method is quite 

small even at large values of .  For instance, at the largest κ κ  in Fig. 4, the relative error is about 

 while that given by the “RPMD-kubo”8% 78 is over 524%.  In the regime where  is very small, 

the “inelastic-std” version of the TGA/LSC-IVR doesn’t work as well, e.g., for the smallest value of 

 in the simulation, the relative error is about 18 , which is close to that given by the 

“RPMD-kubo” in Ref. 

κ

κ %

78 (about ). 19%

 Shown in Fig. 5 are the first two even moments of ( ),incS ωκ�  obtained from these three 

versions of the TGA/LSC-IVR, and from the two versions of the RPMD, in addition to the exact 

results in Eqs. (2.27) and (2.28).  Since the “RPMD-kubo” directly calculates ( ),sF tκ�  and then its 

spectrum ( ),incS ωκ� , it can be shown that the RPMD gives the exact results for ( )0μ κ  and 

( )2μ κ 78.  Fig. 5 demonstrates that all methods (the “vv-kubo” and the “vv-std” of the 

TGA/LSC-IVR and the “RPMD-vv-kubo”) which are based the Gaussian approximation, Eq. , 

are a very good approximation for this system, and the “inelastic-std” also works well for the test of 

this set of moments

(2.10)

119. 
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 Again, the overall comparisons of spectral moments as shown in Figs. 3-5 demonstrate that 

the LSC-IVR is a consistently good short-time approximation to time correlation functions involving 

both linear and nonlinear operators. 

D. Comparison with Experimental Data 

 Though experimental data reported so far on pure liquid para-hydrogen around  are 

not yet sufficient to compare with the incoherent dynamical structure factor 

14 K

( ,incS )ωκ  for the whole 

range of the momentum transfer parameter κ  shown in Fig. 2, some inelastic neutron scattering 

experiments such as Ref. 100,101 do provide experimental results on one or two points of ( ),incS ωκ  

for each .  Very close to the system that we consider in this paper, pure liquid para-hydrogen at 

the state point  has been examined in recent experiments by 

Colognesi et al.

κ

-314.1(1) K, =22.95(3) nmT υ=

101.  In addition to Section IIIA, Appendix D gives more details on the simulation of 

the experiment, and Fig. 6 shows the momentum transfer parameter ( )Fκ ω  or ( )Bκ ω  as a 

function of the energy transfer parameter ω  for the forward or backward scattering in the 

experiment. 

 All available results of the incoherent dynamic structure factor ( )( ),S κ ω ω  computed by 

all three versions—the “inelastic-std”, the “vv-kubo” and the “vv-std”—of the TGA/LSC-IVR 

formulation of the time correlation function are plotted together with the experimental data in Fig. 7.  

Panel (a) shows the comparison for the forward scattering along the ( )Fκ ω  in Fig. 6, which 

represents the momentum transfer from 1.780κ =  to 3.716 Å-1, i.e., in the intermediate regime 
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between the diffusive and the impulsive regime (See Fig. 2 and Appendix C).  Overall, the three 

versions of the TGA/LSC-IVR agree quite well with the experimental results.  There is some 

discrepancy among the three versions near the peak, 2.18κ ≈ Å-1, with the “vv-kubo” version 

seeming to give the best agreement with experiment.  Panel (b) shows the comparison for the 

backward scattering along ( )Bκ ω  in Fig. 6, which samples the momentum transfer from  

to 5.551 Å

3.532κ =

-1, i.e., from the intermediate to the impulsive regime (See Fig. 2 and Appendix C).  Again, 

all three versions of the TGA/LSC-IVR give reasonably good agreement with the experimental data, 

though there is somewhat more disagreement among the three versions in the backward scattering 

case.  The “inelastic-std” agrees best with the experiment for the regime 5 meV 5 meVω− ≤ ≤ or 

3.532 Å-1 ( )κ ω≤ ≤  4.343 Å-1, while the “vv-kubo” does so for larger ω  or .  Note that the 

discrepancies in Fig. 7 could be due to various factors, including the TGA introduced to obtain the 

analytical form for the Wigner function 

( )κ ω

wAβ , i.e., Eq (2.14), or the over-simplified isotropic pair 

potential (the SG model116) used in a process involved with the rotational excitation from 0J =  to 

1011J =  (not good for the spherical approximation).  And we notice that the system size may have its 

effect on the simulation results (at least in the diffusive region)80, but currently our simulations are 

limited up to 216 molecules per box (see Appendix D).  How the results can be extrapolated to 

infinite system size is of course worth investigating in future. 

 We note that the “RPMD-vv-kubo” approach also gives very good agreement with these 

experiments, though the “RPMD-kubo” is believed to give poor results78 (Since the “RPMD-kubo” 
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results are not available in Ref. 78, we don’t systematically compare the LSC-IVR and the RPMD 

results here).  The CMD model shares the same behavior as the RPMD, as seen in the simulations 

for some similar experiments100,120.  These results obtained through the Kubo-transformed velocity 

correlation function based on the RPMD and the CMD, in addition to what is shown in Fig. 7 for the 

TGA/LSC-IVR, verify that the Gaussian approximation, Eq. (2.10), is very good for calculating the 

incoherent dynamic structure factor of liquid para-hydrogen even at 14 KT = , which indicates that 

the non-Maxwellian part of the velocity distribution is negligible (consistent with the conclusion in 

Appendix C based on Fig. 2). 

 In summary, it is clear from Fig. 7 that all three methods proposed in Section IIB based on 

the TGA/LSC-IVR give reasonably good agreement with one another and a semi-quantitative 

description of both the forward and backward scattering data.  This agrees with our previous 

comments in Section IIIB and IIIC that the LSC-IVR formulation of time correlation functions treats 

both the linear and nonlinear operators in a fairly consistent manner in such a realistic highly 

anharmonic system. 

IV. Conclusions 

 In this paper, we have presented the first systematic examination of the consistency of the 

LSC-IVR approximation for time correlation functions with different operators for a realistic model of 

a complex system far from the harmonic regime.  We applied the TGA/LSC-IVR approximation to 

include quantum dynamical effects in the simulation of the inelastic neutron scattering from liquid 
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para-hydrogen at .  Taking advantage of the fact the velocity distribution is still very 

nearly Gaussian even for such a low-temperature liquid system, we were able to calculate the 

incoherent dynamic structure factor 

14 KT =

( ),incS κ ω  directly by using the self-part of the intermediate 

scattering function, Eq. (2.6), or indirectly by implementing the Gaussian approximation, Eq. (2.10), 

based on velocity correlation functions (both the standard and the Kubo-transformed versions).  

These approaches based on the TGA/LSC-IVR all give semi-quantitative agreement with inelastic 

neutron scattering experiments101.  Together with the spectral moment tests, it clearly demonstrates 

that the LSC-IVR is a good short-time approximation to the quantum dynamical time correlation 

function and can treat different operators (both the linear and the nonlinear operators) fairly 

consistently. 

 For dynamical processes in condensed phase systems where quantum mechanics play a 

significant role and time scales of correlation functions are usually not very long, the consistency of 

the LSC-IVR in treating different operators makes it a practical and versatile method for studying 

these phenomena semi-quantitatively.  It will be interesting to apply the LSC-IVR to complex 

systems at even lower temperature (such as normal and superfluid liquid He) where quantum effects 

are more pronounced, to see how well the Gaussian approximation (Eq. (2.10)) works52,121, and its 

comparison with the direct calculation of the incoherent dynamic structure factor using Eq. (2.6) and 

also with experimental data121-126.  It will also be an interesting task to use the LSC-IVR to calculate 

the coherent dynamic structure factor, which reflects the collective behavior of liquids rather than the 
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single-particle motion72,95,104,127, as demonstrated in experiments on liquid H2/D2
127-130 and liquid 

He131. 

 However, we did observe some inconsistencies among the different versions of the 

LSC-IVR approach in the long time behavior of the time correlation function.  Recently we have 

derived a different method9 to improve the long-time dynamical behavior of the LSC-IVR without 

having to deal with the phase cancellation problems in the full version of the SC-IVR.  This method 

with its modified classical dynamics can in principle guarantee that the distribution generated for the 

operator Âβ  is invariant with time for the case ˆ 1A =  (i.e., 
ˆ1ˆ H

ZA eβ β−= , the Boltzmann operator 

itself), which remedies one of the principle defects of the LSC-IVR.  It will be interestingly in future  

work to apply this improved version of the LSC-IVR9 and other more advanced SC-IVRs22,57,58 to 

complex (large) systems.  For instance, it would be natural to use the Fourier transform 

forward-backward IVR (FB-IVR) approach22,57 to calculate ( ),sF tκ , Eq. (2.6), by introducing the 

momentum jump  at time t between the forward trajectory ( 0 ) and its backward counterpart 

( ), similar to an early study on incoherent neutron scattering from solid HCN

κ= t→

0t → 132. 

 Finally, we note that using the RPMD76 results as the prior in the MEAC84-89 approach (the 

RPMD+MEAC) recently suggested by Manolopoulos et al.81, (though in an earlier proposed 

CMD+MEAC88 paper, the author mentioned about the possibility to use the CMD results as the prior 

in the MEAC, but no further work was shown), could in practice improve the behavior of the RPMD 

model to calculate the time correlation function with nonlinear operators.  E.g., the RPMD+MEAC 
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could probably reduce the large relative error of the “RPMD-kubo” approach for large κ 133 in Figs. 

3-4.  Quite interestingly, Ref. 81 shows that even classical dynamics combined with the MEAC (the 

CD+MEAC) could produce similar results as those given by the RPMD+MEAC.  Since the 

LSC-IVR is a consistently better approximation to the quantum mechanical correlation function than 

classical dynamics, the LSC-IVR combined with the MEAC (the LSC-IVR+MEAC) could very likely 

improve the long-time behavior of the original LSC-IVR.  A further investigation of this extension 

of the LSC-IVR approach for treating quantum dynamical phenomena in large molecular systems is 

certainly warranted. 
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Appendix A: TGA/LSC-IVR Formulation of the Intermediate Scattering Function 

 The TGA/LSC-IVR formulation of the intermediate scattering function ( , )F tκ , Eq. (2.2), 

or its self-part ( ),SF tκ , Eq. (2.6), is related to the operator ˆ

1
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The integral over  gives Eqs. Δx (2.14) and (2.17).  Substituting them into Eq. (2.11), one obtains 

the expression of the correlation function as 
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where the estimator (in the Monte Carlo evaluation of Eq. (A.2), which is described in Section IV of 

Ref.32) is given by 
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For the isotropic system, both ( ,F tκ  and ( ),SF tκ  depend only on κ = κ .  Since the direction 

of the vector κ  doesn’t matter, for convenience one can choose it along the x -axis in the 

calculation, i.e., ˆ

1 1

ˆ 1 1
i

N N
i i

i i
A e e

N N
ˆixκ− ⋅ −

= =

= =∑ ∑κ x , where ˆix  is the x-axis component of the position 

operator  for the i-th particle, and Eq. ˆ ix (A.3) can be simplified further.  Better statistics could be 

obtained by averaging over the direction of  over the three Cartesian axes.  κ

Appendix B: Analytical Analysis of Spectral Moments 

 The two lowest spectral moments in Eq. (2.19) are given exactly by the LSC-IVR.  Based on 

the well-known identity for the trace of a product of any two operators  and , P̂ Q̂

 ( ) ( ) ( ) (3ˆˆTr 2 , ,N
w wPQ d d P Qπ −= ∫ ∫x p x p x p= )  (B.1) 

and the relation 

 ( ) ( )0 , 0SF tμ κ = =κ  (B.2) 

it immediately follows that the LSC-IVR, Eq. (2.11), gives the exact result for ( )0μ κ .  From the 

LSC-IVR expression for ( ),SF tκ , 

 30



 

( ) ( ) ( )

( )

( ) ( )

( ) ( )( )

0

0

/

/ /

3 1
0 0

ˆ ˆ
0 0

1

3 1
0 0

ˆ 0
0 0

1

/ 2

/ 2

, 2

/ 2

2

/ 2 i

T
ii

T
i i

i

i i

NLSC IVR
S

N
i tiH

i

N

N
i tH

i

e e e

e e

F t NZ d d d

e

NZ d d d

e

β

β

π

π

− ⋅

− −−

⋅− ⋅−

=

− −

− ⋅ −−

=

+

+

= Δ

−

= Δ

−

∫ ∫ ∫

∑

∫ ∫ ∫

∑

p Δx

p Δx κ Δx

κ xκ x

κ x x

x Δx

x Δx

κ x p x

x Δx

x p x

x Δx

=

=

=

=

2

 (B.3) 

one can show that 
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In each term of the sum, if one replaces the i-th particle component of the variable  by 

(which does affect the integral over ) and takes advantage of the symmetry 

of the matrix element  

0p

(0) (0) / 2→ +p p κ=i i 0p

 ˆ
0 0 0 0/ 2 / 2/ 2 / 2He eβ− −+− = +x Δx Δxx Δx x Δx Ĥβ −x , (B.5) 

then Eq. (B.4) becomes 
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so that 

 ( )1
1 0

,Ri t
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di e F t
dt
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=
⎡ ⎤= ⎣ ⎦κ 0= . (B.7) 

 Interestingly, the LSC-IVR is still exact ( )0μ κ  and ( )1μ κ  when using the TGA.  In fact, 

it is straightforward to show the TGA/LSC-IVR expression for ( ),SF tκ , Eq. (A.2) with Eq. (A.3), 

gives the exact value at , i.e., 0t =

 ( )/ 1TGA LSC IVR
SF κ− =  (B.8) 
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which is the same as Eq. (2.20).  Also note that the proof above for ( )1μ κ  in the LSC-IVR only 

requires the symmetry of the Boltzmann matrix element, i.e., Eq. (B.5), which is certainly true for the 

TGA (see Eq. (3.6) of Ref.32 and its discussion), so that it then follows that the TGA/LSC-IVR 

expression of ( ,S )F tκ  also satisfies Eq. (B.7), i.e., gives the exact value of ( )1μ κ . 

Appendix C: Incoherent Dynamic Structure in the Limit of Large and Small  κ

)     The results for ( ,incS ωκ  in Fig. 2 tend to be Gaussian for all three versions of the LSC-IV for 

large .  This indicates that even for such a low-temperature system as liquid para-hydrogen at 

, the velocity distribution is still nearly Gaussian.  To see this more clearly, substitute Eq. 

κ

14 KT =

(2.7) into Eq. (2.1), make a change of variable y tκ= , and expand the nγ  functions in Eq. (2.8) and 

(2.9) etc. in powers of , giving y

 ( ) ( ) ( )
1

1, exp / exp
2inc R n

n
S iyω ω ω κ

πκ

∞∞

−∞
=

g y dy⎡ ⎤
= ⎡− − ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦
∑∫κ , (C.1) 

where 

 

( ) ( )

( ) ( )

2 2
1

24 2 4
2

ˆ / 2 1/

ˆ ˆ3 / 24 1

g y v y O

g y v v y O

κ

κ κ

κ

/κ

= − +

⎡ ⎤= − +⎢ ⎥⎣ ⎦

 (C.2) 

and so on102.  As  (in the impulsive regime), if the velocity distribution is Gaussian, κ →∞ ( )2g y  

and higher order terms vanish, which leads to 

 ( ) ( )
1/ 2

2 2
2lim , exp / 2

2
eff

inc eff R

m
S m

κ

β
ω β ω ω κ

πκ→∞

⎛ ⎞ ⎡ ⎤= − −⎜ ⎟ ⎣ ⎦⎝ ⎠
κ  (C.3) 

with 
2

3
ˆ2 / 2eff

N
m

β =
p

, for isotropic systems 134,135. 
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 Fig. 2 verifies that the non-Maxwellian effect of the velocity distribution for such a 

low-temperature system as liquid para-hydrogen at 14 KT =  is still negligible, which is why Eqs. 

(2.10) is indeed a good approximation for all κ , allowing one to use the velocity correlation function 

to calculate the incoherent dynamic structure factor for this system as pointed out in Section IIA.  

The “inelastic-std”, “vv-kubo” and  “vv-std” methods proposed in Section IIB thus would give 

essentially the same results for ( ,incS )ωκ  if the quantum mechanical correlation functions were 

exactly calculated.  Comparison of ( ),incS ωκ  based on the three approaches does shed light on the 

consistency of the LSC-IVR approximation to deal with different operators. 

 However, for very small  (in the diffusive regime), the incoherent dynamic structure κ

( ,incS )ωκ  turns out to be Lorentzian instead.  Since the time scale of the correlation function 

( ),sF tκ  is very long, as shown in Fig.1 (longer than that of ( )C t′vv ), Eq. (2.10) is equivalent to 

 ( ) ( )2, exps RF t i Dω κ t⎡ ⎤= −⎣ ⎦κ  (C.4) 

where D  is the diffusion constant.  As a consequence, one has a Lorentzian-like spectrum in the 

very small  regionκ 104, i.e., 

 ( )
( )

2

20 2 2

/lim ,inc
DS

Dκ

κ πω
ω κ→

=
+

κ  (C.5), 

as seen in Fig. 2. 

Appendix D: Additional Simulation Details on the Inelastic Neutron Scattering Experiment 

In the experiment101 that we consider in Section IIID, the neutron scattering 
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spectrometer—the TOSCA-II apparatus136,137—was used to scatter neutrons from the liquid at a 

forward and a backward angle (i.e., the angle between the initial and the final wave vectors of the 

neutron,  and iκ fκ  in Eqs. (2.3) and (2.4)).  The forward angle is  and the scattered 

neutron is at energy of  (i.e., 

o42.6

3.35 meV
2 2

2
f

nm
κ=

 in Eq. (2.4)), and the quantities for the backward 

direction are  and  respectively.  Since the experimento137.7 3.32 meV 101 actually measured the 

cross section for the inelastic scattering process involved with the rotational excitation 

( ) ( )2 2H 0 Hn J n J+ = → + =1 , the energy transfer ω=  should be replaced by ( )10ω ω+=  in Eq. 

(2.4), i.e., 

 ( )
( )2 2 2

10 2
i f

nm
ω ω

−
+ =

κ κ=
= , (D.1) 

where 10 14.53 meVω ==  is the excitation energy from the rotational ground state ( ) to its first 

excited state ( ) of H

0J =

1J = 2.  By virtue of the conservation laws, i.e., Eqs. (2.3) and (D.1), it is 

straightforward to calculate the momentum transfer parameter ( )Fκ ω  or ( )Bκ ω  as a function of 

the energy transfer parameter ω  for the forward or backward scattering experiments.  Both ( )Fκ ω  

and  are plotted in Fig. 6 in the range of ( )Bκ ω ω  where the experiment101 detects .  

Such two kinematic lines for a wider range of 

( )( ),incS κ ω ω

ω  are shown in Fig. 1 of Ref. 101. 

 Because of the relation, Eq. (3.1), in the simulation using a finite cell with periodic boundary 

conditions, the available momentum transfer parameter ( )κ ω  depends on the size of the simulation 

box.  For a particular box size, only a few points of ( )Fκ ω  or ( )Bκ ω  in Fig. 6 satisfy Eq. (3.1) in 

the range of experimental data ( 5 meV 25 meVω− ≤ ≤ ).  To obtain more computational results, four 
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sets of simulations are carried out: 64, 125, and 216 molecules in a box starting from a cubic lattice, 

and also 108 molecules in a box with the face-centered cubic structure as the initial configuration. 

 The TOSCA-II experimental data101 along the two kinematic lines in the  plane in 

Fig. 6 provide only two points of 

( ,κ ω)

)( ,incS κ ω  for each κ  in the overlapped regime of  and Fκ Bκ , 

i.e., 3.532 Å-1 κ≤ ≤3.716 Å-1, and but one point of ( ),incS κ ω  for each κ  in other regimes.  More 

favorable experimental results will of course be those providing the whole spectrum  for 

each  to allow one to have a direct comparison to Fig. 2, which would give much more 

information to check the theoretical simulations.  Nevertheless, the TOSCA-II experimental data

( ,incS κ ω)

κ

101 

still provide a useful test for the accuracy of the TGA/LSC-IVR approximation while exact quantum 

mechanical results are not available. 

 Fig. 7 shows the incoherent dynamic structure ( )( ),S κ ω ω  calculated from the three 

methods proposed in Section IIB based on the TGA/LSC-IVR, compared with the experimental data.  

Since the TOSCA backward scattering data contain “a possible spurious background”101,  an 

additional linear polynomial ( 5 -24 10 meV ) ω−× × ) is added to the simulated  in Panel 

(b) as suggested by Ref. 

( )( ,incS κ ω ω

78,101.  This is not necessary for Panel (a) since the background has already 

been removed from experimental forward scattering data78,101. 
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of the operator Âβ , Eq. (2.12), were carried out exactly, quantities calculated by the 

Kubo-transformed velocity correlation function would be the same as those calculated by the 

standard one. 

120 S. Miura, S. Okazaki, and K. Kinugawa, J. Chem. Phys. 110 (9), 4523 (1999). 

121 T. R. Sosnick, W. M. Snow, R. N. Silver, and P. E. Sokol, Phys. Rev. B 43, 216 (1991). 

122 A. D. B. Woods, E. C. Svensson, and P. Martel, Can. J. Phys. 56 (2), 302 (1978). 

123 K. H. Andersen, W. G. Stirling, and H. R. Glyde, Phys. Rev. B 56 (14), 8978 (1997). 

124 T. R. Sosnick, W. M. Snow, and P. E. Sokol, Phys. Rev. B 41, 11185 (1990). 

125 T. R. Sosnick, W. M. Snow, P. E. Sokol, and R. N. Silver, Europhys. Lett. 9, 707 (1989). 

126 H. R. Glyde, R. T. Azuah, and W. G. Stirling, Phys. Rev. B 62, 14337 (2000). 

127 F. J. Bermejo, K. Kinugawa, C. Cabrillo, S. M. Bennington, B. Fak, M. T. Fernandez-Diaz, P. 

Verkerk, J. Dawidowski, and R. Fernandez-Perea, Phys. Rev. Lett. 84 (23), 5359 (2000). 

128 F. J. Bermejo, F. J. Mompeán, M. García-Hernández, J. L. Martínez, D. Martin-Marero, A. 

Chahid, G. Senger, and M. L. Ristig, Phys. Rev. B 47 (22), 15097 (1993). 

 43



129 M. Mukherjee, F. J. Bermejo, B. Fak, and S. M. Bennington, Europhys. Lett. 40 (2), 153 

(1997). 

130 F. J. Bermejo, B. Fak, S. M. Bennington, R. Fernandez-Perea, C. Cabrillo, J. Dawidowski, M. 

T. Fernandez-Diaz, and P. Verkerk, Phys. Rev. B 60 (22), 15154 (1999). 

131 K. H. Andersen, W. G. Stirling, R. Scherm, A. Stunault, B. Fak, H. Godfrin, and A. J. 

Dianoux, J. Phys.: Condens. Matter 6 (4), 821 (1994). 

132 E. J. Heller, J. R. Reimers, and G. Drolshagen, Phys. Rev. A 36 (6), 2613 (1987). 

133 D. E. Manolopoulos,  (Private Communication). 

134 V. F. Sears, Phys. Rev. A 7 (1), 340 (1973). 

135 S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter. (Oxford University 

Press, Oxford, 1984). 

136 D. Colognesi, M. Celli, F. Cilloco, R. J. Newport, S. R. Parker, V. Rossi-Albertini, F. 

Sacchetti, J. Tomkinson, and M. Zoppi, Appl. Phys. A 74, S64 (2002). 

137 http://www.isis.rl.ac.uk/molecularspectroscopy/tosca/. 

 

 

 

 

 

 44

http://www.isis.rl.ac.uk/molecularspectroscopy/tosca/


Tables 

Table. 1 Two sets of moments given by the three methods based on the LSC-IVR using the TGA as discussed in Section III. 

Those that can be analytically exact are marked with “✓”. 

Moments Inelastic-std vv-kubo vv-std 

( )0μ κ  ✓ ✓ ✓ 

( )1μ κ  ✓ ✓ ✓ 

( )  ✘ ✘ ✘ 2μ κ

( )0μ κ  ✘ ✘ ✘ 

( )1μ κ  ✓ ✓ ✓ 

( )2μ κ  ✘ ✘ ✘ 
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Figure Captions 

Fig. 1  (Color online). Self-parts of the intermediate scattering functions ( ) ( )
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para-hydrogen at the state point .  Dashed line: .  Dotted line: 

.  Dot-dashed line: .  Solid line: . 

3 -14 K; 25.6 cm molT υ= = -10.378 Åκ =

-11.512 Åκ = -12.646 Åκ = -14.536 Åκ =

Fig. 2  (Color online). Incoherent dynamic structure factors for liquid para-hydrogen at the state point 

.  Solid line: from the Kubo-transformed velocity correlation function (vv-kubo).  

Dot-dashed line: from the standard velocity correlation function (vv-std).  Dashed line: from the self-part of the 

intermediate scattering function (inelastic-std). 

3 -14 K; 25.6 cm molT υ= =

Fig. 3  (Color online). The first three moments ( )nμ κ  of the incoherent dynamic structure factors ( ),incS κ ω  

shown in Fig. 2.  Solid line: exact result. Dashed line with solid circles: from the self-part of intermediate 

scattering function ( ,s )F tκ  (inelastic-std).  Hollow circles: from the Kubo-transformed velocity correlation 

function (vv-kubo).  Crosses: from the standard velocity correlation function (vv-std).  Dot-dashed line: from 

the Kubo-transform of ( ,s )F tκ  (the self relaxation function ( ),sF tκ� ) by the RPMD method (RPMD-kubo).   

Hollow squares: from the Kubo-transformed velocity correlation function by the RPMD method 

(RPMD-vv-kubo). 

Fig. 4  (Color online). The relative error of the moment ( )2μ κ  the incoherent dynamic structure factors 

 shown in Fig. 2.  Solid line with solid triangles: from the self-part of intermediate scattering 

function 

( ,incS κ ω)

)( ,sF tκ  (inelastic-std).  Dashed line with solid circles: from the Kubo-transform of ( ),sF tκ  (the 

self relaxation function ( ,s )F tκ� ) by the RPMD method (RPMD-kubo). 
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Fig. 5  (Color online). The first two even moments ( )nμ κ  of the incoherent relaxation function ( ),incS κ ω�  based 

on the incoherent dynamic structure factors ( ),incS κ ω  shown in Fig. 2.  Solid line: exact result. Dashed line 

with solid circles: from the self-part of intermediate scattering function ( ),sF tκ  (inelastic-std).  Hollow 

circles: from the Kubo-transformed velocity correlation function (vv-kubo).  Crosses: from the standard 

velocity correlation function (vv-std).  Dot-dashed line: from the Kubo-transform of ( ,s )F tκ  (the self 

relaxation function ( ,s )F tκ� ) by the RPMD method (RPMD-kubo).  Hollow squares: from the 

Kubo-transformed velocity correlation function by the RPMD method (RPMD-vv-kubo). 

Fig. 6  (Color online). Wave-vector transfer ( )κ ω  accessible by the TOSCA-II experiment in backward scattering 

(dashed line) and forward scattering (solid line) as a function of the energy transfer parameter ω  based on the 

conservation laws, Eqs. (2.3) and (D.1). 

Fig. 7  (Color online). Comparison of the LSC-IVR simulations with the inelastic neutron scattering experiment results. 

along two different kinematic lines in the ( ),κ ω  plane: (a) forward scattering ( )Fκ κ ω=  and (b)backward 

scattering ( )Bκ κ ω= .  Solid line: experiment results.  Solid squares: from the self-part of intermediate 

scattering function ( , )sF tκ  (inelastic-std).  Hollow circles: from the Kubo-transformed velocity correlation 

function (vv-kubo).  Crosses: from the standard velocity correlation function (vv-std). 
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