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Abstract

Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many
regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to
memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories
may respond differently to current conditions. These “memory” effects may be more than incidental to the regulatory
mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and
confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior
is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an
information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount
of information about the past encoded in history-dependent dynamics. This method produces a phenomenological measure
of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a
strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesis and
estimate the capacity of these systems and growth dynamics to ‘remember’ 10 distinct cell histories prior to application of a
common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell history,
and that this memory is distributed differently among the observables. While this study does not examine the mechanistic
bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for
studying new questions about cellular regulation and evolutionary strategy.
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Introduction

Your average bacterium is unlikely to recite m to 15 places or compose a symphony. Yet evidence is mounting
that these ‘simple’ cells contain complex control circuitry capable of generating multi-stable behaviors and other
complex dynamics that have been conceptually linked to memory in other systems. And though few would call
this phenomenon memory in the ‘human’ sense, it has long been known that bacterial cells that have
experienced different environmental histories may respond differently to current conditions [1-3]. Though some
of these history-dependent behavioral differences may be physically necessary consequences of the prior
history, and thus some might argue insignificant, other behavioral differences may be controllable and therefore
selectable and even fitness enhancing manifestations of memory.

In this paper we take the potentially controversial view that history-dependent behavior, whether short or long
term, controlled or incidental, reflects a form of memory [4-6]. Because bacterial dynamics at every level of
resolution operate within the limitations and potentials of nonlinear physical and biochemical dynamical
systems, they must exhibit at least very short-term transient memory, and potentially longer term memory. The
type of memory (and its significance) depends on which features of cell history are ‘remembered’, and at what
resolution; whether or not the system eventually ‘forgets’ its past, and if so, how long this forgetting takes; the
mechanisms in the cell responsible for memory storage, encoding, and retrieval; and whether or not this memory
provides a fitness advantage in a natural environment. In cellular systems, environmental memory has been
noted to be inherent in everything from the selective history of mutation, epigenetic inheritance via chromatin
modification in neurons and DNA methylation in chemotaxing bacteria [7], genetic and epigenetic phase
variation mechanisms controlling surface features of pathogenic bacteria [8,9], cellular proliferation and survival
in the immune system, and in switch-like feedback systems in regulatory networks spanning signal transduction,
metabolism and gene expression [10-21]. There is also a growing body of work focusing on synthetically
designing and constructing network motifs and systems that are capable of showing some types of dynamic
memory [22,23]. These and many other studies in synthetic and natural systems suggest that even the simplest
first-order chemical reactions have at least transient memory of initial conditions, and more complex
mechanisms involving history-dependent changes in the concentrations, states and localization of proteins and
other regulatory network elements can encode a wide range of input information and store it for amounts of time
ranging from minutes to days or longer [4,16,24,25]. The state dynamics of such systems contain the memory
of past controlling inputs, and even of past environmental conditions if one is to interpret more broadly [5,26].

In metazoans, the ability of somatic cells to remember their fates is key to development and thus to organismal
fitness. The same can be said for other types of metazoan cells like those found in the immune system that use a
memory of past states to modify future behavior. In principle at least, memory, whether short- or long-term, can
feasibly confer an evolutionary advantage in microbes as well. For instance, Hoffer et. al. suggest that in E. coli
a form of ‘memory’ of past phosphate limitation leads to a faster response to successive periods of phosphate
limitation, and that this faster response may be survival enhancing [5]. It has also been suggested that
pathogenic bacteria use cross-talk encoded memory to balance the demands of immune avoidance with a
sequential, compartment to compartment infection lifecycle [8,9]. More abstractly, the dynamic implementation
of cellular behaviors can be viewed as a selected, ‘winning’ (or at least stable) strategy in an evolutionary game
[12,27]. In game theory, information creates advantage [28-30], and information about the past as well as the
present creates even greater advantage. Thus if bacterial cells are able to store information about past
experience in some type of memory, and use this memory to modulate their behavior, this opens up the
possibility of playing game strategies with memory, a provably superior family of strategies compared to those
without memory [31-35]. Even if the memory capacity of the system is short term, but on the order of
environmental fluctuations, it could conceivably impact fitness and therefore play a role in an evolved adaptive
behaviour [28].

Given the potential ubiquity and significance of bacterial memory, we propose that quantifying history
dependent behavior in microbes could be an important piece of the puzzle of bacterial regulation, survival
strategy, and evolution. To this end, we developed an information-theory based conceptual framework for



thinking about and measuring both the persistence of memory in microbes and the amount of information about
the past encoded in these dynamics. This method produces a phenomenological measure of cellular memory
without regard to the specific cellular mechanisms encoding it. We then applied this framework to the
bacterium B. subtilis. B. subtilis presents an excellent model organism for this study because of its exquisite
sensitivity to environmental conditions, its known mechanisms of bistability and other hysteretic switch-like
regulatory stress response mechanisms and architectures, and its developmental decision to sporulate that
strongly resembles eukaryotic memory-associated processes determining developmental cell fate ([10,36-40],
Fig. 1). Also, certain aspects of B. subtilis behavior, such as spore coat composition, have already been
associated with environmental memory [41-43], and though much suggests that there should be memory, how
these response dynamics depend on past conditions prior to application of a stress has not been systematically
examined.

In our experiments, we quantified the ability of three B. subtilis stress response systems — sporulation,
degradative enzyme synthesis, and growth - to ‘remember’ 10 distinct cell histories prior to application of a
common stressor. We chose to observe commitment to sporulation (via reporter fusion to Pspong) because the
sporulation decision is bistable, and bistability is associated with memory [9,11,16,44]. We added the reporter
for degradative enzyme synthesis (measured by a fluorescent reporter fused to the AprE promoter) because
though it shares many common controllers with sporulation, its expression pattern is quite different and not
believed to be bistable or probabilistic. We wondered whether any history-dependence in sporulation control
would be mirrored in AprE control. Finally, we chose to observe growth (as measured by ODgg) because it is
perhaps the most accessible measure of cellular health and fitness and is an integrator of many other aspects of
cell function, thus it may show interesting differences depending on cell history. One can imagine that there
might be a strong fitness incentive toward memory in B. subtilis. If cells could use a memory of past conditions
to ‘predict’ future conditions, and delay sporulation, an expensive process, if the environment is likely to
improve or accelerate sporulation if the starvation period is likely to be long, they might improve their odds for
long-term survival.

Results

Information Theoretic Memory Framework

‘Adaptive’ memory experiment

A complete quantification of biologically relevant memory would involve first perturbing the cell with all
possible sequences of complex environmental inputs it might experience in the wild in each of its growth modes,
then measuring all cellular responses to these perturbations, and, finally, quantifying the degree and distribution
of history-dependence in these responses.

Here we assume a simple approximation of this scenario, in which each sample of a biological system is
subjected to one of many conditions prior to time t0, and then observed in a common condition after t0 (see Fig.
2 and Definition (1) in Appendix S1 in Supplementary Information). We call this an ‘adaptive’ memory
experiment because it roughly simulates a temporal shift in the environment requiring adaptation or acclimation,
and to differentiate it from the more classical memory experiments in physics, engineering and cell biology
designed to identify hysteretic loops [45-47]. While we do not identify such loops here, multistability is
suggested by the appearance of long term memory in our experiments. More complex environmental history
trajectories could feasibly unravel more memory effects.



We are interested in whether past conditions can be inferred from observations of behavior in current conditions.
The assumption here is that history-dependent behavior is a manifestation of memory, and that the better the
possible inference about prior conditions from current measurements, the more memory there is within the
system.

Adapting communication metrics to memory

To quantify this intuitive concept of history-dependence as memory, we use concepts from information theory
[48] in the tradition of Landauer’s use of informational entropy to estimate human memory capacity [49], and
the extensive body of work characterizing memory in individual neurons [50-53].

By interpreting the random variable Y as behavior in current conditions, and the random variable M as past
cellular history prior to time t0, the mutual information I(M;Y)=H(M)-H(M |Y) of M relative to ¥

provides a measure of memory in informational entropy bits (see [48], Fig. 3, and Definition (2) in Appendix S1
for details, including the definition of informational entropy H). Roughly speaking, from this perspective
I(M;Y) captures how much uncertainty about past conditions can be reduced by observations of behavior in
current conditions. Worded differently, /(M;Y) captures how much information about past conditions can be
inferred from observations of behavior in current conditions. The better the possible inference about prior
conditions (and thus the higher the bit count of I(M,Y)), the more memory there is within the system.

Short term vs. long term memory

Memory, or history-dependent behavior, can manifest across multiple time scales. Short term, or transient,
memory is stored by the system for some time, and then ‘forgotten’ (see Fig. 4a,d). Systems may also have
either ‘effective’ long term memory if the transient dynamics are long compared to environmental fluctuations,
or ‘true’ asymptotic memory if the stationary state of the system depends on initial conditions, as occurs in
nonlinear systems with multiple attractors (see Figs. 4b,c,and e). For an example of the latter, the state of a
bistable switch encodes an asymptotic memory of the last switching event.

Because in many systems the significance, mechanistic origin, and function of memory likely depends on how
long it lasts, and in particular whether it can be classified as short-term or long-term, we distinguish between the
two types of memory and quantify them separately. From an information perspective, we say that an external
observer of an adaptive memory experiment with a priori knowledge of the probability distribution over cell
histories detects short-term memory in this system if observing measurements of some fraction of the short-term
behaviour of the system after time t0 leads to a reduction in uncertainty about the history of the system prior to
time t0. In this case, we say that the cells exhibit Liuns(M;Y; tyans) = 1(M; Y(t = t0:t0+ 2,,,)) bits of short term
memory in the observable Y over the period from t0 to tO+trans, where ty.,s is a time before the signal
approaches its steady state (Definition (3) in Appendix S1). Likewise, long-term memory is detected if
observing measurements of the system behavior near an apparent steady state after time t0 leads to a reduction
in uncertainty about the history of the system. Here we say the cells exhibit Lm(M;Y) = I(M; Y(t=t0+2s5m:))
bits of long term memory in the observable response Y during the experiment, where tgm is the time it takes for
the signal to settle (Definition (4) in Appendix S1).

Memory quantification normalized

The above metrics for short term and long term memory are absolute measures, in that they give a bit count for
an answer. Though these absolute numbers can be useful, it is also useful to measure memory in relative terms,
compared to the total amount of memory that could be observed in a perfectly retentive system given the
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limitations of the experiments. To address this issue, we define short-term memory fidelity to be Py, (M; Y;
trans) = 1(M;Y(t = t0:t0+2,4,5))/H(M) and long-term memory fidelity to be Puym(M;Y)= I(M;Y(t = t0+ fom
:0))/H(M), where H(M) is the entropy over all the past conditions that were applied in the experiment. These
normalized mutual information metrics, measures between 0 and 1 of the fraction of uncertainty about the past
conditions tested that is reduced by knowledge of future cellular response, have also been called the coefficients
of constraint [54] (see Definition (5) in Appendix S1).

Quantifying memory in higher dimensions

In addition to analyzing each observable individually, we are interested in calculating the short and long term
memory exhibited by the combined behavior of multiple observables. To do so, the above definitions are easily

extended to the case of multiple observables by letting Y be a vector Y =(Y},...Y,) and calculating

Lym(M;(Y,,...Y,) and Lyans(M;(Yy...Y,); tyans) and the memory fidelity of each. This combined-memory
estimation is interesting because it allows one to address the question of whether combining information from
multiple read-outs leads to extra memory beyond what is present in any of the individual read-outs, and if so,
how much. This issue is related to the size of the memory, and the dimension it occupies within a cell’s state
space.

An inequality governing the informational entropy of a vector pair of variables (X,Y) is as follows:
max(H(X),H(Y))<H(X,Y)< H(X)+ H(Y) [54]. Thus, we know that the memory exhibited by any pair

of observables must be greater or equal to the bit count of the most retentive pathway of the pair, and less than
or equal to the sum of the bit counts of the two pathways. If two pathways are controlled independently, their
combined behavior could produce the upper limit on memory in the higher-dimensional space, whereas if the
pathways are controlled by a common signal or if one pathway hierarchically controls the other, the lower limit
might be realized. To quantify this concept, we define memory orthogonality between two pathway readouts Y/
and Y2 to be: Memyu(M;(Y1,Y2)) = (I(M;(Y1,Y2))-max(I(M;Y1),I(M;Y2)))/min(I(M;Y1),I(M;Y2)), where M is
cell history and / is mutual information. Mems,,,;, equals 1 if the two variables combined as a vector yield the
upper bound of memory, and 0 if the two variables in combination yield the lower bound (see Definition (6) in
Appendix S1).

Implementation

For the calculations above, listed more formally in Appendix S1 in Supplemental Information, we need to
estimate probability distributions over the past cell histories being tested and the responses of the cells to each
history. For past conditions/histories, we enforce a uniform probability of observation of each condition by
running each experiment (condition i => response i) a fixed number of times. For responses, we cluster
trajectories from the different conditions and the probability of a response is simply the histogram of trajectories
over clusters. The probability of prior environment given cluster membership is enumerated in a similar way.
Details of the entire analysis algorithm can be found in Materials and Methods.

Caveats

The above information-based metrics and simple associated analysis algorithm (see Materials and Methods) are
useful in that they transform the ‘lay’ questions — “Do cells ‘remember’ past experiences and use these
memories to modify future stress response dynamics?” and “If so, is this ‘memory’ short term or long term, and
how much is there?” — into well-defined queries about information and uncertainty yielding quantitative
estimates of microbial memory in informational entropy bits.



However, any attempt to quantify or qualify memory is fundamentally limited by the possibility of unobservable
states (see Fig. 4c), uncontrolled and unobservable inputs, poor choice of input combinations and sequences, and
measurement errors and distortions. Here we assume most such limitations, discussed in more detail in
Supplementary Information (Section S1), are inherent in the estimation of memory processes and most likely to
result in information loss and thus underestimates of the ability of the system to ‘remember’ the cell histories
tested by the experimental compendium. Therefore we interpret quantifications of memory within our 5.
subtilis compendium as lower bound estimates.

Experiment and Overview of Analysis

Memory experiment on B. subtilis: To test for history dependent behavior — ‘memory’ - in B.
subtilis, we engineered a fluorescently labeled strain of Bacillus subtilis to report on commitment to sporulation
and degradative enzyme synthesis: the KEE strain (PspollE-gfp, PaprE-dsred cmp, see Materials and Methods
for details on strain construction). The spollE promoter (PspollE), our sporulation reporter, controls expression
of spollE, a gene encoding a serine phosphatase specifically expressed upon commitment to sporulation and
therefore considered a good sporulation commitment signal [55,56]. The aprE promoter (PaprE), our
degradative enzyme synthesis reporter, controls expression of the extracellular protease subtilisin naturally
produced by B. subtilis cells at the end of exponential growth [57].

With the KEE reporter strain, we used our framework to estimate, in informational entropy bits, the capacity of
these stress response pathways and of the cell growth dynamics to ‘remember’ 10 distinct cell histories prior to
application of a common stressor. Specifically, we first grew three replicate cultures in one of two media, Luria
Broth medium (LB) or growth medium (GM) [58], to one of five different densities (all still in exponential
growth, ranging from ODggo = [0.1:1], see Table 1, where ODyq is the optical density of the culture at 600nM),
for a total of ten cell histories. Thus in the first stage of the experiment, a clonal population of cells was divided
into 30 groups, each of which experienced one of the 10 cell histories consisting of growth in one of two media
to one of five cell densities over a fixed period of time (see Materials and Methods for details).

We chose to combine different media with growth to different densities as our set of cell histories because
growth media can impact cell state, as can growth of cultures to different densities over a fixed period of time.
Cells deplete nutrients and respond to the environment and its dynamics with changes in metabolic fluxes, post-
translational modifications, gene expression, quorum signaling and synthesis of storage compounds. GM
medium (also called CH medium) is a rich medium with casein hydrolysate as the sole carbon source [58]. LB
medium is a much richer and more complex medium than GM and therefore sustains more rapid growth. We
assumed that any resulting history-dependent differences in cell state at time t0 might lead to different history-
dependent behaviors in the common medium after t0.

After experiencing one of the 10 different cell histories, cells were then pelleted and resuspended at an
intermediate density (ODgp=0.5) in a common stress medium, in this case, sporulation salts starvation medium
(SM) [58]. The resuspension time is denoted t0. Thus, regardless of past experiences, all cells observed after tO
were subjected to starvation conditions starting at t0 in a fixed-density, fixed-size population.

Our three observables Y after t0 consisted of two fluorescent reporters, one for sporulation initiation and another
for degradative enzyme synthesis (strain KEE (PspollE-gfp, PaprE-dsred cmp)), and optical density of the
culture as a proxy for cell growth (ODgg), measured at the bulk population level every 15 minutes for 24 hours
starting at time t0 (see Fig. 4 for time series, and Materials and Methods for details on strain construction and
experiments). Thus, with 30 cultures — three for each of the 10 cell histories — and three observables per culture
measured every 15 minutes for 24 hours in the common stress medium starting at t0, the memory data
compendium for this set of experiments consists of 30x3x96=8,640 measurements arranged in a 90 by 96
matrix.



Data analysis overview: The resulting memory data compendium was then analyzed for short- and
long-term memory in each output signal individually and in all possible combinations of the three signals by
applying the memory quantification algorithm described in detail in Materials and Methods and illustrated in the
flow chart in Supplementary Information Section S2.

To briefly summarize, in order to estimate how much short-term and long-term memory was manifested in the
behavior of the reporters, we sought to calculate the mutual information between the behavior of the cells after
t0 and the history of the cells before t0. This calculation required that we estimate the joint probability density
between cellular behavior after t0 and cell history prior to t0. Given constraints on the amount of data and other
considerations described in detail in Section S3 of Supplementary Information, we took a clustering approach to
this problem. That is, we first clustered the response of the pathway reporter as a way of dividing the trajectories
into groups with common, distinct behaviors. The resulting assignment of each trajectory to a cluster was then
used to calculate the frequency of co-occurrence of each behavioral class and each possible cell history. From
this histogram we estimated the requisite joint probability distribution, which was then used to calculate the
mutual information between cell history and the behavior of the observable, and thus arrive at an estimate for
memory.

We performed this procedure on the 30 trajectories (3 replicates for each of the 10 cell histories tested) of each
of the three observables, using both the short term (first 11 hours of measurements, during which the signal was
still dynamically varying - see Materials and Methods for more details on our choice of analysis intervals) and
long-term response (last three hours of measurements, from 21 to 24 hours, by which time the signals have
remained flat for several hours) in order to estimate short-term and long-term memories manifested in each
individual signal. To calculate the short-term and long-term memory in the combined activities of multiple
signals, we took the same approach, with the one difference being that the clustering step captured the combined
behavior of multiple readouts (Step 3 in the algorithm in Materials and Methods). All bit counts were then
normalized to calculate memory fidelities and orthogonalities, as defined in Appendix S1, in order to estimate in
relative terms how much of the total possible memory each system ‘remembers’, and how much ‘extra’ memory
is embedded in the higher-dimensional spaces formed by multiple pathways.

Since the 30 populations were subjected to 10 different (within error) past conditions M=(Medium1, Densityl)
in equal proportions, the informational entropy of the cell history space M is H(M) = —log,(1/10) =3.3219

bits. Thus, without prior knowledge there are 3.3219 bits of information about cell history at most that can be
recovered from observation of these three outputs, either individually or in combination and on any time scale.

Experimental Results

A qualitative overview of history-dependence

The B. subtilis stress responses measured by the three observables (Figure 5) appear neither memoryless nor in
possession of a perfect memory of the cell histories tested. They do not appear to be memoryless because not all
signals from a given observable follow a common trajectory (within noise bounds) irrespective of past history of
the cells. Nor does the memory of any observable appear to be perfect, because though there are ten distinct cell
histories prior to time t0, there appear to be fewer than ten distinct dynamics per observable in response to the
starvation stressor administered at time t0. By eye, there appear to be more distinct behaviors in the short term
than in the long term. Also, different cell histories group together for different observables. This means that we
expect a higher bit count estimate of short term memory than long term memory, and different amounts of
memory and of different aspects of cell history in the three pathway observables.



All observables exhibit short-term memory of cell history, with sporulation
exhibiting the most and growth dynamics the least

The transient behavior (first 11 hours) of the SpollE (sporulation) reporter clusters into five distinct classes of
behavior (different onset times and sigmoidal vs. more pulsatile expression), whereas the transient behavior of
the AprE (degradative enzyme synthesis) reporter clusters into three classes (different onset times and different
expression levels) and the growth reporter into just two classes (some vs. almost no growth) (see left panels of
Fig. 6a,b,c). The mutual information between the resulting clustering vectors and the cell history vector
captures how well the different behavioral classes of each observable correspond to different cell histories.
Performing this calculation, we estimate liansspo) = .96 bits of short-term memory in the sporulation reporter;
Liansaprey = 1.48355 bits of short-term memory in the degradative enzyme synthesis reporter, and Lyanscon) = 1 bit of
short-term memory in the growth dynamics reporter ODgoo. Thus, all three observables exhibit short-term
memory of the cell histories tested, with the sporulation reporter exhibiting the most memory and growth
dynamics the least.

Dividing these absolute bit counts by the entropy of the cell history space, we estimate the short-term memory
fidelities of sporulation initiation, degradative enzyme synthesis, and growth dynamics to be Piansspo=
Lirans(spoy HMM)=1.96/3.3219=0.59, Pyansaprey= Liransaprey/ H(M)=1.48/3.3219=0.45, and Pianscop) = liransony H(M) =
1/3.32=0.3, respectively. This means that if one were to observe all 30 short-term responses of one of the three
reporters after tO but not told which history corresponds to which trajectory, 59% of the uncertainty about cell
history prior to time t0 could be reduced by observation of the transient sporulation reporter dynamics after time
t0, 45% of this uncertainty about the past could be reduced by observation of the degradative enzyme synthesis
reporter dynamics after t0, and only 30% of this uncertainty could be reduced by observation of the growth
dynamics after t0. More intuitively, one could say that 59%, 45% and 30% of the cell histories tested are
‘remembered’ by the short-term dynamics of the sporulation, degradative enzyme synthesis, and growth
reporters, respectively (see Fig. 7 and Table S1).

All observables exhibit long-term memory of cell history, though at a lower bit
count than short-term memory

Though short term memory can be important—because even short term behavioral differences may have fitness
consequences [59], especially if they are on the order of environmental fluctuations [28,60]—long term memory
is generally the first thing that comes to mind when memory is discussed [61-64]. One might expect long term
memory in B. subtilis stress responses - sporulation control especially - because of the feedback topologies in
their regulatory circuitry and reportedly bistable behaviors [10,36-39].

To estimate the long term memory in each individual pathway we first clustered the final segment of the 30 time
series of each reporter (from 21 to 24 hours after t0) to estimate the number of distinct long-term behaviors for
each of the three pathway reporters (results = 2 unequal-sized clusters for each reporter, as shown in Fig. 6,
though the cluster sizes and associated cell histories differ across reporters). We then calculated the mutual
information between the clustering results and the cell history vector to arrive at lower bound estimates of
Lisym(spoy = 0.8813 bits, liymapry = 0.72 bits, and liymon) = 0.97 bits of long-term memory in the networks
controlling sporulation initiation, AprE synthesis and growth dynamics, respectively. Thus, like a switch, there
appear to be two, stable, long term behaviors for each pathway reporter, though the probability of converging to
each is not equal or the same across reporters, as is reflected by distinct bit counts of less than 1 (if half the past
histories lead to one attractor and the other half of the histories lead to the other, there would be 1 bit of
asymptotic memory).



Dividing these absolute numbers by the entropy of the cell history space, we estimate the long-term memory
fidelities of sporulation initiation, degradative enzyme synthesis, and growth to be Pasymspo)= Lasymespoy H(M) =
0.8813/3.3219 = 0.265, Puymape= 0.22, and Pugymony= 0.29, respectively. Thus, approximately 25% of the
uncertainty about cell history prior to the onset of starvation is reduced by knowledge of any one of the three
long-term reporter dynamics in the starvation environment. To summarize, all three observables exhibit around
1 bit of long-term memory of the histories tested, though of different aspects of cell history as will be shown
below. One bit is a significant amount but much less than the nearly 2 bits of memory seen in the most retentive
short-term response.

Different observables remember different aspects of cell history to different
degrees

The above memory estimates are in a sense high-level, because each of the 10 distinct cell histories is treated
identically. By drilling down a level of resolution to the component parts of the cell histories — initial nutrient
composition of the media and cell density reached in that media (which can also feasibly affect both the
nutritional composition of the medium and cell state while in log phase) — we can investigate which aspects of
cell history are remembered by the observables and for how long.

In the short term, all three observables have a perfect memory of whether they were grown in LB or GM, and
only a partial memory of their density in this medium. Put more formally, if we consider growth medium in
isolation and calculate the mutual information between growth medium prior to time t0 and transient response of
the three reporters to starvation after time t0, we see that a history of growth in LB can be distinguished from a
history of growth in GM with 10