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Abstract   A procedure for carrying out iterative model-building, density modification and 

refinement is presented in which the density in an OMIT region is essentially unbiased by an 

atomic model. Density from a set of overlapping OMIT regions can be combined to create a 

composite “Iterative-Build” OMIT map that is everywhere unbiased by an atomic model but 

also everywhere benefiting from the model-based information present elsewhere in the unit 

cell. The procedure may have applications in the validation of specific features in atomic 

models as well as in overall model validation. The procedure is demonstrated with a 

molecular replacement structure and with an experimentally-phased structure, and a variation 

on the method is demonstrated by removing model bias from a structure from the Protein 

Data Bank. 
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1. Introduction 

Model bias is a continuing problem in macromolecular crystallography. It results from 

using an atomic model to calculate crystallographic phases, in which case the resulting 

electron density map will tend to have the features present in the model, even if they are not 

actually present in the structure (Ramachandran & Srinivasan, 1961; Read, 1986; Bhat, 1988; 

Hodel et al., 1992; Adams et al., 1999; Kleywegt, 2000). Once an atomic model is refined, 

model bias can be indirect as well as direct because the positions and other parameters 

describing correctly-placed atoms are adjusted during refinement to compensate for the 

incorrectly-placed atoms. Consequently even if the incorrectly-placed atoms are removed 

from the model before calculation of phases, a memory of their positions can remain and the 

resulting map can retain incorrect features. Refinement of a model omitting incorrectly-placed 

atoms should reduce this indirect bias, but there remains a question of how extensive the 
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refinement must be to reverse all compensating adjustments. Model bias can make 

interpretation of electron density maps difficult, particularly in cases where molecular 

replacement (Rossmann, 1972) is used to solve a structure.  

There are many ways that model bias could be defined. In this work model bias refers to 

the situation where a map has peaks of density resembling atomic density due only to atoms 

in the working model used in phasing or density modification and not to the presence of 

atoms in the real structure. 

There have been many methods developed to reduce the effects of model bias. These fall 

into two general classes. The first class consists of methods to remove the model bias after it 

has been introduced. The second class consists of methods in which a model is never 

introduced in a particular location of a map, so that in that location there is never any model 

bias at all. 

The reason to use an approach in which model bias is introduced and then removed is that 

the process of building and refining a model greatly improves the overall accuracy of phase 

information, and often this is required to obtain a structure at all. Once an initial structure is 

determined, it becomes important to know which details are correct, and removal of model 

bias can be important for this. A well-established method for reducing model bias is to 

calculate a map using σA-weighted (2mFo-DFc) eiφc coefficients (Read, 1986, Lunin et al., 

2002), typically using coefficients m and D calculated using a test set of reflections 

(Urzhumtsev et al., 1996, Pannu & Read, 1996). The σA procedure yields high-quality maps, 

but they can retain some model bias because the procedure is based on the assumption of 

random errors in the model, while actual errors after model refinement are typically correlated 

(Read, 1997). Simulated-annealing OMIT maps (Hodel et al., 1992; Brünger et al., 1998), 

“kicked” OMIT maps (Guncar et al., 1998), and model rebuilding with randomization (Zeng 

et al., 1997; Reddy et al., 2003) can all reduce model bias by removing, at least to some 

extent, the memory of some or all of the atoms in the model. Prime-and-switch density 

modification (Terwilliger, 2004) reduces the effects of model bias in a different way. This 

approach uses a model to calculate phases, yielding a map that is biased but nearly correct, 

and then using a characteristic of this map that is relatively uncorrelated with the model, such 

as the flatness of the solvent region, to calculate less-biased phases. Although these 

procedures can reduce the effects of model bias, they all have the disadvantage that it is not 

possible to know for certain that model bias is removed.  Additionally, techniques that 

involve a solvent mask have some potential for model bias as the mask can be influenced by 

the model. 

The second class of methods are those that never introduce model bias, and consequently 

can yield a higher degree of confidence in electron density that is in the same location as an 
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atom in a model. The simplest method in this class is an OMIT map in which the atoms in a 

particular region of the map are never included in phase calculation or in refinement of the 

other atoms in the structure (Bhat, 1988). In a molecular replacement structure determination, 

this type of OMIT map can be easily calculated early in the process, after the molecule has 

been placed in the correct location in the unit cell, but before any atomic refinement has 

occurred. In this case the memory of the presence of the omitted atoms is likely to be 

minimal, and the resulting map is unbiased in the OMIT region. The disadvantage of OMIT 

maps is that they are typically very noisy and consequently difficult to interpret. Additionally, 

once the structure (with all atoms) has been refined, OMIT maps are of less utility because of 

the indirect model bias described above.  

Another approach that avoids introducing model bias is to carry out the usual process of 

iterative model-building and refinement, but to avoid building a particular part of the model. 

The part of the model deliberately not built might be a ligand, a side-chain, or any other part 

of the model. This approach is commonly used for poorly-defined portions of electron density 

maps and has been used in some cases specifically to obtain unbiased information (James et 

al., 1980). Such poorly-defined regions are typically not interpreted until the improvement in 

the rest of the model is sufficient to yield clear electron density for a model in those regions. 

This approach has recently been extended into a systematic procedure (“Ping-pong 

refinement”) that allows each of the side-chains of a structure to be built into density that is 

unbiased, while gradually building up a complete atomic model (Hunt & Deisenhofer, 2003).  

Here we combine the ideas of OMIT maps and Ping-pong refinement in an “iterative-build 

OMIT” procedure for obtaining a partial or complete composite electron density map that is 

essentially free from model bias, yet that benefits from the power of iterative model-building 

and refinement. 

 

2. Methods 

2.1.  Calculation of an iterative build OMIT map for a single omit region 

Obtaining an iterative build OMIT map for a single region of the asymmetric unit of a 

crystal is in principle quite straightforward. First the OMIT region is defined as a contiguous 

region representing part of the asymmetric unit. Then a border (typically 2 Å thick) is added 

to this region. Finally an iterative model-building, refinement and density modification 

procedure is carried out in a standard fashion (Terwilliger, 2003), except that any atom that is 

located within the OMIT or border regions is given a zero occupancy in all calculations. We 

call this overall process the “Iterative-build omit procedure.” In this procedure all atoms in the 

omit region are included in geometric restraint calculations and are included in all rebuilding 
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steps. In this way the geometry of the model is retained. Due to their zero occupancy values, 

however, the atoms in the OMIT region do not contribute to the structure factor calculation. 

This prevents direct model bias. This procedure also prevents indirect model bias in the 

density calculated within the OMIT region, as parameters of atoms outside the OMIT region 

are never adjusted to compensate for electron density of atoms in the OMIT or border regions.  

To ensure that model bias is not indirectly introduced through the application of NCS, in 

the RESOLVE density modification steps no NCS-based target electron density is transferred 

into the OMIT or border regions. This is accomplished by defining the boundaries of the 

OMIT region and specifying that no NCS information is to be transferred into this region. As 

density modification with NCS is done point-by-point, using the density from N-1 copies as a 

target for density modification for the remaining copy (Terwilliger, 2002), it is 

straightforward to leave out NCS information for all points in the OMIT region. Once the 

final electron density map is obtained from the iterative-build omit procedure, the OMIT 

region (but not the boundary region or other parts of the map) will have essentially no bias 

due to structure factor contributions from the atomic model. As parameters describing the 

NCS relationships are refined there is in principle some possibility of model information to be 

transferred between NCS regions As in the case of rigid-body refinement of an MR 

model,however, it is not likely that significant information about the density in a particular 

location in the map is going to be transmitted through the very small number of parameters 

refined in this step.  In the standard PHENIX model-building procedure in the presence of 

NCS, all building is done independently for all copies, and in a specific step the structure of 

each NCS copy is transformed to match each other one, and the best parts of the structure 

from each NCS copy are kept. This step is not carried out when an OMIT map is constructed, 

so that no information about the structure within the OMIT region is transmitted among the 

NCS copies.  NCS restraints are applied during model-building with the OMIT procedure.  

The effect of this is that the (zero-occupancy) atoms in the OMIT region may be placed in 

incorrect positions because of the NCS restraints from copies outside the OMIT region.  

Other potential sources of model bias are the bulk-solvent correction and geometric 

restraints. In the procedure carried out here, a bulk solvent model and geometric restraints are 

applied throughout, as not applying them would lead to a poorer atomic model in the regions 

outside the OMIT boundaries and would therefore result in an OMIT map with greater 

artefacts and less utility.   

We note that there are some circumstances where the density within an OMIT region can 

be affected by the positions of atoms in the model inside the OMIT region. For example, an 

atom inside an OMIT region may be bonded to an atom outside the OMIT region, so that the 

positions are correlated. Similarly, the position of an atom inside the OMIT region could 
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affect the placement of a solvent molecule outside the OMIT region, or the allowed 

conformations of a side-chain outside the OMIT region.  Further, during automated model-

building, large units (helices, strands) may be placed based on density both inside and outside 

the OMIT region. In all these cases, however, this coupling between atoms inside and outside 

the OMIT region is unlikely to lead to density at the positions of the atoms inside the OMIT 

region. Consequently there is unlikely to be any model bias (density at the coordinates of 

atoms in the model, due to the presence of those atoms in the model) in the resulting maps. 

In our procedure OMIT regions are constructed so that they tile to fill the asymmetric unit. 

Normally approximately 10-20 OMIT regions are used to cover the asymmetric unit, but 

more (as many as 132 in our tests) may be chosen so as to have a minimal impact on the 

density modification procedure. Due to this way in which OMIT regions are chosen, there 

may be some OMIT regions that contain no atoms from the macromolecule and others with 

many atoms. Those OMIT regions that contain many atoms typically have poor electron 

density compared to those with few atoms, as density from the atoms in the OMIT region is 

excluded from contributing to the density modification procedure. It may be possible to 

improve the procedure by defining variable-sized OMIT regions that contain more equal 

numbers of atoms. 

The reason for adding a border region around the OMIT region is that a peak of density in 

electron density maps calculated from a model containing a particular atom has a substantial 

contribution within a radius that may depend on the resolution of the data and atomic 

displacement factors. We use the value of 2 Å for the thickness of the border region based on 

previous experience with composite omit maps in CNS (Brünger et al., 1998).  

The approach of never including atoms in an omit region is applicable in a straightforward 

way to cases where a model is being built without reference to an existing model. In cases 

where molecular replacement is used, ideally the atoms in the omit region should be omitted 

from the very start of the procedure, so that the placement of the molecule and any rigid-body 

refinement carried out are not affected by the atomic positions of these atoms. In practice this 

is probably unnecessary however, as the number of parameters being refined in placement of 

the molecule are so few that little information about positions of specific atoms in the OMIT 

region can be retained.  

We note that the OMIT procedure described here has a kind of negative model bias. In the 

OMIT region a model is built, but occupancies are set to zero. No solvent atoms are placed at 

the locations of these atoms, and no bulk solvent model is placed there. Consequently there is 

low (zero) density near the locations of atoms in the model within the OMIT region.  It seems 

possible that the procedure could be improved by setting the density in these locations to an 

intermediate value rather than to zero. 
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Though this procedure is straightforward in concept, it is somewhat less simple in 

implementation as all programs that operate on models that are built during iterative model-

building, density modification and refinement need to keep track of which atoms are in the 

OMIT and border regions. These steps have been implemented in the PHENIX (Adams et al., 

2002) AutoBuild Wizard by using the RESOLVE omit box generation procedure to specify 

the OMIT region and its boundary and to identify which atoms in a model are within these 

regions. Additionally, all density modification procedures with RESOLVE are called with the 

specification of the omit region and boundary so that that no model-based information is 

transmitted into these regions through the application of NCS. Standard procedures for 

iterative model-building, density modification and refinement are used as implemented in the 

PHENIX AutoBuild Wizard. 

2.2. Calculation of a composite iterative-build OMIT map 

A composite iterative-build OMIT map can be calculated by dividing the asymmetric unit 

of the crystal into a set of OMIT regions, calculating an iterative-build OMIT map for each 

region and its boundary as described above, and then simply combining the OMIT regions of 

all the iterative-build OMIT maps. This method of combining OMIT maps is similar to that 

used to create composite omit maps in CNS (Brünger et al., 1998). The resulting iterative-

build composite OMIT map has the property that the density at each point in the map has 

never been affected by the presence of a model atom near that point (or near any NCS-related 

point). It should be noted that due to the way such a map is constructed, it can potentially 

have discontinuities at the boundaries between OMIT regions, although we have not noticed 

any in the maps we have examined. 

The calculation of an iterative-build OMIT map can be carried out automatically using the 

“omit_type=composite_omit” keyword in version 1.3b or higher of the PHENIX AutoBuild 

Wizard (Adams et al., 2002), available at http://www.phenix-online.org. 

 

 

3. Results and Discussion 

3.1. Iterative build composite OMIT map for antitrypsin with molecular replacement 

We tested the use of an iterative-build composite OMIT map by applying it to repeat the 

structure solution of antitrypsin (Kim et al., 2001, entry 1HP7 in the PDB; Bernstein et al., 

1977; Berman et al, 2000) by molecular replacement, using the structure of antichymotrypsin 

(PDB entry 1AS4; Lukacs et al., 1998) as a search model. We used the PHENIX AutoMR 

Wizard which calls Phaser (McCoy et al., 2005) to obtain an initial molecular replacement 
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solution. The PHENIX AutoBuild Wizard was then used to edit the sequence of the search 

model to match that of antitrypsin, truncating side-chains at the C  or Cα β atoms if the 

remainder of the atomic positions were unknown. The AutoBuild Wizard was then used to 

define 128 OMIT regions covering the asymmetric unit of the crystal.  

To examine the properties of OMIT maps, the starting molecular replacement model was 

then used to calculate electron density maps in two ways. First, the occupancies of all atoms 

in one OMIT region were set to zero, then the entire structure was refined with the PHENIX 

refinement package phenix.refine (Afonine et al., 2005b) without rebuilding manually or with 

RESOLVE. The standard refinement procedure used included three macrocycles of 

refinement with automated estimation of parameters in a bulk solvent model and placement of 

solvent molecules (Afonine et al., 2005a), individual atomic coordinate shifts, and isotropic 

atomic displacement parameters. This refinement yielded an R/Rfree of 0.41/0.48, and a σA-

weighted (2mFo-DFc) eiφc OMIT map was calculated (Read, 1986). This σA-weighted OMIT 

map (Fig. 1A) has some features corresponding to a helix in the omitted region, but it is very 

difficult to interpret.  

The second type of map calculated was an iterative-build OMIT map (Fig. 1B) in which 

the occupancies of all atoms in the same OMIT region as in Fig. 1A were maintained at a 

value of zero for 10 cycles of iterative model-building, density modification and refinement. 

This map has very clear features of helical density in the omitted region, despite the fact that 

density was never calculated using a model for any atoms in this region. Figs. 1C and 1D 

show that OMIT regions such as the one illustrated in Figs. 1A and 1B can be joined together 

to form a composite iterative-build OMIT map that has clear electron density for much of the 

structure.  Fig. 1E shows the starting model superimposed on the final composite iterative-

build OMIT map.  It can be seen in Fig. 1E that the helix in the starting model is offset from 

the final position of the helix density by about 2 Å.  Fig. 1F shows that for this OMIT region, 

a map similar to the OMIT map can also be obtained by deleting all the atoms that are in the 

OMIT region completely, then carrying out a standard iterative-build procedure (with no 

OMIT regions).   

The reason why the density in the iterative-build OMIT map in Fig. 1B is so much 

improved over the standard OMIT map in Fig. 1A is that the model outside the omitted region 

was much more accurate after the iterative model-building process, and this model is used as 

a source of information for density modification. For the 128 OMIT procedures carried out, 

the mean final R and Rfree (including only the part of the model outside the omitted region) 

were 0.29 and 0.34, respectively (compared with the starting R/Rfree of 0.41/0.48). The range 

of R-factors was from 0.25 to 0.38 and the range of free R factors from 0.30 to 0.44 (the low 

R-factors are paired with low free R factors). The range of both sets of R-factors is quite 

7� 



large, and the higher R-factors typically correspond to OMIT regions containing larger 

numbers of atoms. 

3.2. Iterative build composite OMIT map for SAD-phased gene 5 protein 

We also tested the use of an iterative-build composite OMIT map for a case where 

experimental phases were available.  It seemed possible that a density-modified map could be 

created that had no potential of model bias, but that benefited from the use of iterative model-

building, density modification and refinement. Experimental phases were obtained using 

SOLVE SAD phasing (Terwilliger & Berendzen, 1999) with single wavelength anomalous 

dispersion (SAD) from gene 5 protein in this test. The structure of gene 5 protein was 

determined previously by MAD (PDB entry 1VQB; Skinner et al., 1994); in this test only the 

data corresponding to the peak wavelength were used, simply to yield a poorer starting set of 

phases.  

The AutoSol Wizard was used to re-solve the structure of gene 5 protein, yielding a 

starting density-modified SAD-phased electron density map with a correlation coefficient of 

0.71 to the model electron density map calculated from the refined gene 5 structure (Fig. 2A).  

The AutoSol Wizard uses the initial density-modified map for model-building and does not 

do iterative model-building and refinement. It built 64 of 87 residues of the protein, and 

(correctly) docked 9 residues into sequence. The R and Rfree for this model were 0.46 and 

0.47, respectively. The AutoBuild Wizard was then used to calculate an iterative-build 

composite OMIT map (Fig. 2B).  During refinement the experimental phases were used as 

restraints (Pannu et al., 1998). The mean R and Rfree for the final models built to construct 

the 132 OMIT regions were 0.26 and 0.34, respectively.  The composite iterative-build map 

has an improved correlation coefficient of 0.82 to the model electron density map calculated 

from the refined gene 5 structure. This improvement relative to the starting density-modified 

SAD-phased map comes from including model information from outside each omit region in 

the phase calculation for that omit region. In effect, both the map in Fig. 2A and the map in 

Fig. 2B can be thought of as density-modified maps. They differ in that the density 

modification used in Fig. 2B includes model information, while that in Fig. 2A does not, and 

both are essentially free of model bias.   

We note that iterative-build OMIT maps may normally be unnecessary for models 

autobuilt into experimental electron density maps. The procedures typically used in 

autobuilding have a high cutoff for density, and incorrectly-placed atoms are normally 

removed in subsequent cycles, so that it is uncommon for atoms to be repeatedly placed in 

very incorrect positions, as would be required to introduce model bias. A map for this 

structure can also be calculated by carrying out the iterative building procedure with no 
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OMIT regions; this map is slightly better than the OMIT map, with a correlation coefficient 

with the model map of 0.85. 

 

3.3. Using iterative-build OMIT maps to remove existing model bias 

Although the principal intent of the iterative-build OMIT procedure described here is to 

avoid model bias entirely, it seemed possible that the process of rebuilding a model outside an 

OMIT region might be useful in removing existing model bias as well. In particular, we 

would expect that extensive rebuilding should effectively remove adjustments to atoms in the 

rest of the model that compensate for incorrectly-placed atoms. To test this idea, we identified 

an entry in the PDB with some features that were likely to be incorrect, but which remained in 

a σA-weighted (2mFo-DFc) eiφc map (Read, 1986) calculated after refinement of the structure.  

PDB entry 1ZEN (Cooper et al., 1996) was such a structure (G. Kleywegt, personal 

communication) It was obtained at a resolution of 2.5 Å, and the closely-related structure 

1B57 (Hall et al., 1999), determined later at a resolution of 2 Å, differs in the sequence 

register of residues 6-16 by one residue. 

Fig. 3, panels A and B show a σA-weighted (2mFo-DFc) eiφc map calculated after re-

refinement of 1ZEN (without omitting any atoms) with phenix.refine using deposited 

structure factors and re-generating a test set of reflections for refinement (the original test set 

was not available). The final R/Rfree after refinement was 0.25/0.29. Fig. 3A shows the map 

with residues 5-10 from 1ZEN, centered on residues F6 and K8 which are likely to be mis-

aligned by one residue in this structure. Fig. 3B shows the map with residues 3-10 of chain A 

from PDB entry 1B57, after superimposing this chain from 1B57 on the structure from 1ZEN 

by least squares. The σA-weighted (2mFo-DFc) eiφc map has features in common with both 

the structure used to generate the phases for this map (1ZEN) and with the structure derived 

from the higher-resolution model (1B57), including several features that appear to be 

examples of model bias in the map. In particular the map shows density for the side chain of 

K8 from the 1ZEN structure even though the more likely 1B57 structure has only a carbonyl 

oxygen pointing towards this location. Overall, in the neighborhood of residues 5-10 of 

1ZEN, the σA-weighted (2mFo-DFc) eiφc map is somewhat more similar to a model map 

calculated from the higher-resolution structure, 1B57, than to a model map calculated from 

1ZEN. This is shown numerically by local map correlation coefficients, summarized in Table 

1 for this map and the maps discussed below.  
iφcIt seemed possible that the model bias found in the σA-weighted (2mFo-DFc) e  map  

shown in Figs. 3A and 3B could be due in part to the fact that we did not have access to the 

original test set used in refinement. To examine this possibility, we carried out a second 
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refinement in which the atoms in the structure were displaced by an rms distance of 1.0 Å  

with the “shake” procedure (Brünger et al.,1998; Guncar et al., 1998), yielding a starting 

R/Rfree of 0.48/0.47, followed by 6 cycles of refinement with phenix.refine, leading to a final 

R/Rfree of 0.25/0.30. The resulting σA-weighted (2mFo-DFc) eiφc map is shown in Figs. 3C 

and 3D. It appears to have slightly less model bias than the map calculated after standard 

refinement, but overall the maps are very similar.  

Next we carried out a more extensive re-refinement procedure to try to reduce model bias. 

The partially-randomized model from the “shake” procedure above was taken as a starting 

point, all solvent molecules (waters) were removed, and 10  cycles of refinement and water 

picking, including two cycles with simulated annealing, were carried out. Once again the 

starting R/Rfree was 0.48/0.47 and the final R/Rfree was 0.25/0.30. The resulting map has 

less model bias than the starting σA-weighted (2mFo-DFc) eiφc map (Figs. 3E, 3F), and 

lowered correlation with the 1ZEN model (Table 1), but it would still be difficult to decide 

which of the two models is correct because of the model bias showing density for the entire 

side chain of K8 from the 1ZEN structure. 

Three types of OMIT maps were then calculated using the coordinates and structure 

factors from 1ZEN. In each case, the occupancies of all the atoms inside a small OMIT box 

were set to zero before initial refinement and throughout the procedures. The OMIT box was 

defined as a region with edges parallel to the cell edges and 4 Å from the nearest atom in 

residues 5-9 of 1ZEN. The OMIT maps calculated in these procedures are therefore not based 

on any density coming from any atoms in residues 5-9 of 1ZEN.  

The first OMIT map calculated (Figs. 3G, 3H) was a simple omit map, in which the 

structure of 1ZEN was refined with zero occupancies for the atoms in the OMIT region and a 

σA-weighted (2mFo-DFc) eiφc map was calculated. This map still shows model bias from 

1ZEN at the side chain of K8 (Fig. 3G, Table 1).  

The second OMIT map was a simulated-annealing OMIT map (Brünger et al.,1998) 

calculated with phenix.refine (Afonine et al., 2005b; Figs. 3I, 3J). In calculating this map the 

refinement started at a pseudo-temperature of 5000K and cooled to a final temperature of 

300K. This map shows substantially less model bias but has relatively weak density for the 

entire segment, resulting in lower correlations with the density from both models (Table 1).  

The third OMIT map was an iterative-build OMIT map (Figs. 3K, 3L). To create this map 

the model, with zero-occupancy atoms in the OMIT region, was rebuilt three times using the 

PHENIX rebuild-in-place algorithm. In this rebuilding procedure the polypeptide chain is 

rebuilt by iteratively removing a segment and retracing the chain for that segment. Then the 

parts of the resulting models that best fit a density-modified map are combined and side-
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chains are re-fit into the density. This iterative-build OMIT map shows little model bias from 

1ZEN (Fig. 3K), and matches the model from 1B57 well (Fig. 3L, Table 1).  

We also tested whether a σA-weighted (mFo-DFc) eiφc map calculated from the 1ZEN 

model might be as informative as the OMIT maps we have calculated. We downloaded σA-

weighted (2mFo-DFc) eiφc and σA-weighted (mFo-DFc) eiφc maps from the EDS server 

(Kleywegt et al., 2004). Fig. 3M shows the (2mFo-DFc) eiφc map, which is as expected 

essentially identical to the map calculated by phenix.refine and shown in Fig. 3A. Fig. 3N 

shows the difference (mFo-DFc) eiφc map, however there is no negative (or positive) 

difference density at the coordinates of the mis-placed lysine side chain. 

 Considering all of these maps, along with the differences between the lower-resolution 

1ZEN and higher-resolution 1B57 models, the simplest interpretation of these results is that 

the higher-resolution 1B57 model is the more accurate of the two in the region that we have 

examined, and that the iterative-build OMIT map is particularly useful in reducing model bias 

without much cost to overall map quality.   

4. Conclusions 

The iterative-build OMIT procedure can be thought of as a type of density modification 

that involves the use of a model outside of the OMIT region. In statistical density-

modification procedures, model density can be used as the expected value of the electron 

density. Phases are then adjusted to better match the map to this expected density 

(Terwilliger, 2003). In the iterative-build OMIT procedure, the model is built wherever it 

exists, but only model density outside the OMIT region is used in density modification. In this 

way the model density can improve the quality of the crystallographic phases, yet not directly 

bias the density in the OMIT region. 

The iterative-build OMIT procedure can be of substantial use in molecular replacement in 

situations where initial refinement of the molecular replacement model yields relatively poor 

R-factors, but in which iterative model-building, density modification and refinement yields a 

greatly improved model with lowered R-factors. In such a case a σA-weighted (2mFo-DFc) 

eiφc OMIT map calculated after initial refinement may be relatively uninformative because the 

model is not yet good enough to produce phases that lead to a clear map (e.g., Fig. 1A). On 

the other hand, after iterative model-building, density modification and refinement, the model 

built outside the OMIT region can be accurate enough to yield phases that clearly show the 

density inside the OMIT region (e.g., Fig. 1B). In the case shown in Fig. 1 for example, the 

starting R-factor after refinement of the model was 0.41, but the iterative building procedure 

yielded much lower R-factors (mean of 0.29) , and produced a very clear map for the omitted 

region. 
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The generation of iterative-build composite OMIT maps can be computation-intensive, 

particularly in cases where there is only just enough phase information for the iterative 

model-building procedure to improve upon the starting model. In such cases, the size of the 

OMIT regions must be very small or no phase improvement results. Consequently in some 

cases many OMIT regions must be constructed, and the entire iterative model-building 

procedure must be carried out many times (132 OMIT regions were combined in the case 

shown in Fig. 2B). The procedure is readily made parallel, so as highly parallel machines and 

large clusters become increasingly available, the procedure may become practical for even 

very large structures. At present, the procedure can be time-consuming for a very large 

structure when run on a single processor, as several cpu-days can be required for each OMIT 

region. A use of the iterative-build OMIT procedure that is quicker is to construct an unbiased 

map for a small region within an electron density map, such as for the density in the vicinity 

of a ligand or side-chain of interest.  In such a case a single OMIT map can often be 

calculated, setting to zero the occupancies of all atoms in a box containing the region of 

interest during the iterative-build process. This local application of the iterative-build OMIT 

procedure may also be of substantial use in checking for errors that may be partially masked 

by model bias in completed structures, as shown in Fig. 3. 

An additional potential use of composite iterative-build OMIT maps is as a source of 

relatively unbiased phasing information. The density in each OMIT region of these composite 

maps is not biased by the model within that OMIT region. Consequently it seems possible 

that the phase information obtained by using these maps as a target for density modification 

(Terwilliger, 2001) might be of high quality. It might also have lowered model bias compared 

to that obtained directly from a model. It would not necessarily be completely unbiased, 

however, because the inverse Fourier transformation would combine phase information from 

different OMIT regions and the separation of model information within each OMIT region 

from the map in that region would therefore no longer be complete. Preliminary experiments 

indicate that these maps can be improved over standard density-modified maps. 

We conclude by noting that increasing use of automated procedures for iterative model-

building, density modification and refinement (Perrakis et al., 1999; Terwilliger, 2003; 

DePristo et al., 2005; Ondráček, 2005) has the potential for reducing the effects of model bias 

and the incidence of significant errors to very low levels, particularly for experimentally-

phased structures, because a complete check of the fit of model to electron density map can be 

easily carried out during every cycle of automated building.  If poorly-fitted parts of a model 

are removed promptly, instead of remaining for many cycles of refinement in which the 

remainder of the model adjusts to compensate for errors in building, then subsequent electron 

density maps will be unlikely to have substantial model bias. 
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Figure 1 Iterative build OMIT and composite iterative-build OMIT maps for molecular replacement 

solution of 1HP7 (Kim et al., 2001). Maps are contoured at 1σ. A. OMIT map calculated with σA-

weighted (2mFo-DFc) eiφc coefficients (Read, 1986) after refinement of molecular replacement model, 

omitting all atoms in one OMIT region. The atoms in the structure that were not omitted are shown. B. 

Iterative build OMIT map for the same region shown in A, after 10 cycles of iterative model-building, 

density modification and refinement. Shown is the model that was built outside of the OMIT region. C. 

Composite iterative-build OMIT map constructed by combining all OMIT regions obtained as in B. 

The model is the same as shown in B. D. Composite iterative-build OMIT map as in C with refined 

structure of 1AS4 superimposed.  E. Composite iterative-build OMIT map shown in C and D with MR 

starting model superimposed.  F. Standard iterative-build density-modified map and model built 

starting from MR starting model after removing all the atoms that are omitted in panel A. 

 

Figure 2 RESOLVE density modified and composite iterative-build OMIT maps for SAD 

experimental phasing solution of 1VQB (Skinner et al., 1994).  Maps are contoured at 1.5σ.  A. 

RESOLVE density-modified SAD-phased map (Terwilliger, 2000). B. Iterative build OMIT map for 

the same region shown in A. The model shown is the refined structure of 1VQB. 

iφc-weighted (2mFo-DFc) eFigure 3 σA  and OMIT maps for 1ZEN (Cooper et al., 1996) compared 

with structures 1ZEN and of chain A from 1B57 (Hall et al., 1999) superimposed on the structure from 

1ZEN. Maps in A-M are contoured at 1σ.  A, B. σ -weighted (2mFo-DFc) eiφc
A  map (Read, 1986) 

calculated after refinement of the 1ZEN structure with phenix.refine (Afonine et al., 2005b), compared 

with structure of 1ZEN (A) and with chain A from 1B57 (B). C, D, as in A and B, except that the 

atoms in the 1ZEN structure were moved randomly by an rms distance of 1 Å  (“shake” procedure), 

then refined for 6 cycles with phenix.refine.  E, F, as in C and D, except that solvent water molecules 

were removed after the shake procedure and 10 cycles of refinement including simulated annealing 

were carried out. G, H, as in A and B, except the map shown is a simple OMIT map calculated by 

omitting all atoms in an OMIT box with edges parallel to the cell edges and 4 Å from any atom in 

residues 5-9 of 1ZEN (setting their occupancies to zero), refining the resulting structure, and 

calculating a σ -weighted (2mFo-DFc) eiφc
A  map. I, J, SA-OMIT map calculated as in G, H except the 

map is a simulated-annealing OMIT map in which the refinement step in C and D is replaced by 

simulated-annealing refinement (Brünger et al., 1998). K, L, Iterative build OMIT map calculated as in 

G, H except that the 1ZEN structure was iteratively rebuilt using the rebuild-in-place option of the 

PHENIX AutoBuild Wizard, always setting the occupancies of all atoms in the OMIT box to zero 

during the procedure. M, N. Maps downloaded from the EDS density server (Kleywegt et al., 2004).  

M,  σA-weighted (2mFo-DFc) eiφc iφc-weighted (mFo-DFc) e map and model for 1ZEN. N, σA  map for 

1ZEN, contoured at ±2σ, with coordinates of 1ZEN (green) and 1B57 (blue) superimposed. 

Table 1 Map correlation coefficients near residues 3-10 of 1ZEN 
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Map (all based on 1ZEN 

structure except as noted) 

map correlations* with 

 1ZEN model 1B57 model 

0.68 0.75 Initial σA map, no OMIT 

0.67 0.74 σA map after “shake” 

procedure, no OMIT 

0.64 0.75 σA map after “shake” , 

removal of waters, 

refinement and water 

picking, no OMIT 

Simple refined OMIT 0.63 0.71 

Simulated-annealing 

OMIT 

0.60 0.71 

Iterative-build OMIT 0.65 0.75 

1B57 Fcalc map 0.66 0.98 

*Map correlations were calculated with RESOLVE (Terwilliger, 2000), including grid points within 2 

Å of each atom in the corresponding model. Residues 3-10 from 1ZEN were chosen because they were 

largely within the OMIT region, and residues 3-10 from 1B57 were selected to match the 1ZEN 

fragment. 
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