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Abstract

We investigate the discretized version of the compact Randall-Sundrum

model. By studying the mass eigenstates of the lattice theory, we demonstrate

that for warped space, unlike for flat space, the strong coupling scale does

not depend on the IR scale and lattice size. However, strong coupling does

prevent us from taking the continuum limit of the lattice theory. Nonetheless,

the lattice theory works in the manifestly holographic regime and successfully

reproduces the most significant features of the warped theory. It is even in

some respects better than the KK theory, which must be carefully regulated

to obtain the correct physical results. Because it is easier to construct lattice

theories than to find exact solutions to GR, we expect lattice gravity to be a

useful tool for exploring field theory in curved space.
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1 Introduction

Warped geometries, such as the background used in Randall-Sundrum model [1, 2],
have provided many insights into general relativity and holography. However, it is
very difficult to find exact solutions to Einstein’s equations, so only a handful of
warped geometries are known. It would be useful to have a tool for constructing
theories that reproduce the features of the warped geometries without having to find
and stabilize an appropriate gravitational source. Discrete gravitational dimensions
could be such a tool [3–6]. If we work in the effective field theory framework with a
cutoff, we may be able to learn a lot about general realtivity without needing exact
solutions, as long as the discrete theory can be trusted. Of course, this will not tell us
about the energy-momentum tensor to generate such a background, but we can use
the discrete model as a tool for investigating stability of the system, the existence of
ghosts, and the strong coupling scale, for example. In this paper, we study the the
discretization of a single extra dimension in which we impose the exponential warp
factor of the Randall-Sundrum model. Although previous work discussed discrete
nongravitational extra dimensions for RS [7–12], so far gravity has not been included
in the discretized model. We will find that many of the features of the continuum
gravitational theory are correctly reproduced, and that some of the problems with
flat space lattice gravity are ameliorated.

The discretized model has a number of sites, each of which has a separate four-
dimensional metric, and, in the minimal case, has only nearest neighbor links. In
the case of flat space, it has been shown that the there is a limit to how small the
lattice spacing can be that depends on the overall size of the lattice. This implies
that there is no good continuum limit and it is impossible to reproduce 5D gravity
all the way up to the five dimensional Planck scale. The absence of the continuum
limit in the flat case could be connected to the absence of a simple local holographic
description. It seems reasonable that a four-dimensional discretized theory should
exist for the warped case, which does have a dual lower-dimensional description.

The flat space strong coupling problems result from two properties of the Kaluza-
Klein spectrum: there is a very light mode and that mode couples equally over the
entire theory space. Both of these properties are the result of the discretized kinetic
term, which introduces large mixing between the additional scalars that were orig-
inally associated with a single site. The mixing leads to a light highly delocalized
mode, whose strong interactions invalidate a low-energy description at a strong cou-
pling scale that lies well below the top of the KK tower. This is a less severe problem
in the warped geometry, because the strong warp-factor dependence in the kinetic
term keeps the modes localized on only a few sites. The absence of strong mixing
means that the localized modes are not lighter than you would naively expect.

However, the warp factor only protects against mixing of modes that are localized
on sites further apart than the AdS curvature scale. When the theory is discretized
on smaller scales, the theory resembles flat space. Within the AdS curvature scale,
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modes do mix and get delocalized. So although it is possible to reproduce many of the
features of the continuum theory with the discretized version, it is still not possible
to achieve the true continuum limit. Nevertheless, we find that the dangerous UV/IR
problem is absent: the lattice is self-consistent for any number of sites.

2 Set-up

We will be concerned with the Poincare patch of AdS5, which is described by the
metric

ds2 = e−2kygµν(x, y)dx
µdxν + dy2. (1)

As in RS, we impose orbifold boundary conditions at y = 0 and y = πR. The 5D
gravitational Lagrangian in this background is

L =M3
5

√
g5(R5 − 12k2) (2)

= M3
5

√
g
[
e−2kyR4 − 12k2 + ∂y(e

−2kygµν)(g
µρgνσ − gµνgρσ)∂y(e

−2kygρσ)
]
. (3)

We are interested in linear fluctuations so we expand gµν = ηµν + hµν . Then, the
terms quadratic in h, after some integration by parts, are

L =
1

4
M3

5

{
e−2ky

[
hµν�hµν + 2h2

µν,α − 2hµν,µh,µ + h2
,µ

]
+ e−4ky

[
(∂yhµν)

2 − (∂yh)
2
]}
.

(4)
To discretize the fifth dimension, we choose points evenly spaced in the y-coordinate:

yj = ja, j = 0 · · ·N, (5)

where N is the number of lattice sites and a = R/N is the lattice spacing. This
is not the only possibility, and discretizing in a different coordinate may result in a
drastically different lattice theory. However, y is in some sense the natural choice,
since it is a geodesic coordinate for the Poincare patch (unlike, say, the conformal
coordinate z). But more importantly, we can justify using y a posteriori because this
discretization will lead to a lattice theory with some of the holographic features of
AdS that we expect to see. We replace derivatives in the y direction by differences.
For example

e−4ky(∂yhµν)
2 → 1

a2
e−4kja(hj+1

µν − hj
µν)

2. (6)

This brings out additional ambiguities related to the evaluation of the warping prefac-
tor, and to boundary terms which appear if we integrate by parts before discretizing.
However, again, our choices will be justified a posteriori. In any case, if the lattice
theory is to be trusted, we should expect that these ambiguities are irrelevant in the
continuum limit, which we discuss below.
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Thus we get

L =
1

4
M2

∑

j

e−2kajhj
µν�h

j
µν + e−4kaj

[
1

a2
(hj+1

µν − hj
µν)

2 − 1

a2
(hj+1 − hj)2

]
, (7)

with M =
√
M3

5a the effective 4D Planck scale on the sites. Going to canonical
normalization

ĥj = Me−kajhj (8)

we get a standard lattice action

L =
1

4

∑

j

ĥj
µν�ĥ

j
µν +Mij(ĥ

i
µν ĥ

j
µν − ĥiĥj) (9)

with mass matrix

Mij =
1

a2
e−2ka(j−1)

[
(e2ka + e−2ka)δij − ekaδi+1,j − e−kaδi−1,j

]
. (10)

Note that this is essentially the same mass matrix as for a gauge boson [7, 9–11].
At this point it is helpful to think about the values for a, k,and M that we would

like to study, which are determined by the continuum limit in which we are interested.
As in flat space, we would like to know whether we can have N → ∞ in such a way
that the lattice matches the continuum between any two scales ΛUV and ΛIR. In the
case of the compact Randall-Sundrum model relevant for the standard model, which
has k ∼ M and R ∼ 30M−1, the limitation a > M−1 implies that N = R/a < 30
in this particular case. This is simply because in RS1 the fifth dimension is only
about 30 Planck units wide. Nonetheless, discretization on the scale of M−1 would
be sufficient in principle to achieve a theory that is valid up to the scale M , the same
scale as the continuum limit.

In flat space, large N allows you to make a theory that is valid deeper in the
infrared. This is also true for the RS model, but only by taking a larger “volume”
(that is R). In this case, ΛIR would be smaller. We will allow k, N , and a to be free
parameters, with the understanding that a will always be greater than M−1 and N
will be taken as large as necessary to achieve any desired IR cutoff.

3 Mass eigenstates

In this section, we will develop insight into the mass eigenstates of Mij . We are
working in the regime with a ≈M−1 and k . M so that the space is highly curved.
First, we make some quick observations about the mass matrix that will uncover the
important qualitative features of the warped lattice. We will afterwards perform a
more careful analysis.
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3.1 Rough, local flat space approximation

Since ka < 1, the mass matrix is crudely approximated by

Mij ≈ Nij ≈
1

a2
e−2kaj [2δij − δi−1,j − δi+1,j] . (11)

We have set eka = 1 but not ekaj , since j may be large. This mass matrix scales
with position and is almost diagonal. The only non-diagonal entries are next to the
diagonal, because of the nearest-neighbor lattice structure we have assumed. But
since the position dependence of the warp factor is exponential, the mass eigenvalues
will be geometrically spaced:

mn ≈ 1

a
e−kan. (12)

We confirm this geometric spacing numerically in Figure 1.

-3.5 -3 -2.5 -2 -1.5 -1 -0.5

0.1

0.2

0.3

0.4

0.5

5 10 15 20

2.5·10-8
5·10-8

7.5·10-8
1·10-7

1.25·10-7
1.5·10-7

Figure 1: The exact eigenvalues for N = 100 and ka = 0.1. On the left is a log plot,
showing the geometric spacing. On the right is a close up of the lowest 20 masses,
in a non-log plot. Note the linear spacing for the first 1/(ka) = 10 modes.

This geometric spacing of the masses is very different from the linear spacing
of eigenvalues for the KK modes in RS. However, the linear RS spacing is decep-
tive, since there are only of order M/k relevant at any site. The remaining modes
are above the local cutoff, and are in fact localized further in the UV. That is, even
though the classical KK tower of RS has an infinite number of linearly spaced modes,
no calculation should ever involve more than M/k of them. In fact, the linearized
RS regime does appear, and the geometric spacing is actually quite natural, repro-
ducing the modes localized throughout the bulk with masses determined by the local
(warped) AdS scale.

To see this, consider the elements of this matrix around Mjnjn
for some fixed site

jn. From Eq. (11),

Mjn−i,jn−j ≈
1

a2
e−2kajne2kaj [2δij − δi−1,j − δi+1,j] . (13)
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For j < (ka)−1 the e2kaj term is approximately 1. Then in this region the mass
matrix looks like flat space. So the eigenstates H(j) (for this jn) are roughly

H
(j)
i ∼ sin(πkaij), jn − 1

ka
< i < jn +

1

ka
(14)

with eigenvalues
mn ≈ j(ke−kajn). (15)

For example, if we look at the lightest modes, with jn = N they are linearly spaced
just as in RS. This linear spacing breaks down around j ∼ 1/(ka) ∼ M/k. This is
exactly what we expect because the M/k mode has a mass of the local Planck scale.
The linear spacing for the low modes is evident in Figure (1).

In the approximation (13), the prefactor e−2kajn implies that there will be little
mixing between modes from an expansion around different sites j1 and j2 if j1 −
j2 > 1/(ka). The linear spacing is reconciled with the geometric spacing which
is transparent in the exponential prefactor, because the linear spacing appears only
when the exponential is roughly constant. We will see that the lack of mixing between
modes localized more than of order k−1 apart is the reason for the larger regime of
validity of the warped discretization, and allows N and R to be taken as large as
desired.

The interesting thing about this way of approximating the modes is that it applies
for modes centered around any site jn. Of course, this is not surprising because of the
conformal scaling of RS as we move from the IR to the UV. But it is remarkable that
we can get information about a dynamical feature of RS, that the relevant modes
change with energy, from a fixed lattice. Indeed, the modes near a site j1 and those
near a site j2 decouple, if j1 − j2 > 1/(ka). This is very different from what happens
to the KK modes χn(y) of the continuum RS. If we take two KK modes with masses
matching the lattice modes, we find that they do have significant overlap in even if
their masses are very different. Of course, the KK picture is not valid at all energies,
so we should never be considering two widely spaced modes at the same time. On the
lattice we can just use all the modes, and the widely spaced ones naturally decouple
from each other. Although to use this rough flat-space approximation, we have to
concentrate on a single site or a single mode, we will see that with a more careful
analysis of the lattice eigenstates, the same qualitative features still hold.

3.2 Improved solutions

Even though this flat space approximation tells us most of what we want to know
about the lattice theory, it is instructive to have a representation of the mass eigen-
states in the region away from where they have most of their support. This both
justifies our approximation, and will be used in the strong coupling calculations
below.
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We want to develop a better understanding of the mass eigenstates of the lattice
theory. We are looking for the eigenstates of

Mij =
1

a2
e−2ka(j−1)

[
(e2ka + e−2ka)δij − ekaδi+1,j − e−kaδi−1,j

]
, (16)

for ka . 1. Let us define a matrix η which goes from position eigenstates to mass
eigenstates

hj = ηn
j Hn. (17)

We have already observed from the flat space approximation, that ηn
j ∼ sin(nj) for

|j − jn| < 1/(ka). Now we will confirm this and also approximate the ηn
j in other

regions.
One approach is to use the bulk Kaluza-Klein modes to guide the search for the

Hn. The KK equation following from the Lagrangian (4), with h(x, y) =
∑
Hn(x)χn(y),

is
χ′′(y) − 4kχ′(y) +m2

ne
2kyχ(y) = 0. (18)

It is not hard to see that the equation (18) maps directly onto the eigenvalue equation
for Mij . The small parameter ka is the step size for the dimensionless continuum
variable ŷ = ky. Then, expanding the derivatives, (18) becomes

1

(ka)2
[χ(ŷ+ka)−2χ(ŷ)+χ(ŷ−ka)]− 4k

(ka)

1

2
[χ(ŷ + ka) − χ(ŷ − ka)]+m2

ne
2ŷχ(ŷ) = 0.

(19)
For the first derivative, we have taken two steps to symmetrize with respect to ±.

On the other hand, we can invert (17)

Hn = ηj
ne

−2kajhj. (20)

We have used the fact that Hn and ĥj = e−kajhj are canonically normalized, so
ηj

ne
−kaj is unitary. Then, hitting Hn with Mij , and projecting out the hj component

we find

1

a2
e−2ka(j−1)

[
(e2ka + e−2ka)ηn

j − e−2kaηn
j+1 − e2kaηn

j−1

]
−m2

nη
n
j = 0. (21)

For small ka this becomes

1

a2

[
ηn

j+1 − 2ηn
j + ηn

j−1 − 2ka(ηn
j+1 − ηn

j−1)
]
+ e2ka(j−1)m2

nη
n
j = 0, (22)

which is the same as (19) for ηn
j = χn(kaj).

In the continuum, the solutions to (18) are KK modes:

χn(y) = e2kyJ2(
mn

k
eky). (23)
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The corresponding discrete modes are

ηn
j = e2kajJ2(

mn

k
ekaj). (24)

We cannot really manipulate these discrete Bessel functions, but we do expect them
to satisfy approximately the same relations as the continuum Bessel functions. For
example, the relation

χ′

n(y) = e3kajmn

k
J1(

mn

k
ekaj) (25)

implies

ηn
j+1 − ηn

j ≈ ka
mn

k
e3kajJ1(

mn

k
ekaj). (26)

Then it is rather trivial to show the modes are eigenstates – they must be because
the equations match up.

But note that matching the continuum solutions onto the lattice works because
we are using only the first term in the Taylor series, in going from (18) to (19). This
is, in fact, all we can do, because we have only included nearest-neighbor links in
the discretization. And that means that the solution will break down when the first
derivative is no longer a good approximation, i.e. when

1 ≈ kaJ ′(
mn

k
eky) ≈ mnae

kaj . (27)

So these solutions should be good until mne
kaj ≈ 1/a. In fact, the exact eigenstates

of this matrix really look like the continuum KK Bessel functions only in this limited
regime. The lattice does not just take a selection of the KK modes, but presents a
fundamentally different structure. However, this structure actually reproduces the
correct physics, as the heavier KK modes in the continuum theory would be cutoff
by the local strong coupling scale.

The Bessel solutions apply for small j < jn. That is, they approximate the
light KK modes at positions corresponding to energies above their mass. The Bessel
functions peak and are localized when

mne
kajn = k, (28)

which defines jn. So, the Bessel approximation is good through the localization
region. We also see that the width of the peak is determined by the width of the
exponential, that is ∆j ≈ 1/(ka), so the region where the Bessel function peaks is
the same as the region where the flat space approximation applies.

In the flat space region, we can take

ηn
j = e2kaj sin(

π

3
j) ∼ e2kajn sin(j), (29)

which satisfies the small ka equation, following from (22):

2ηn
j − ηn

j+1 − ηn
j−1 = e2kaj(amn)2ηn

j , (30)
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with the eigenvalues mn ∼ (1/a)e−kan.
These are not quite the same flat space solutions as the ones derived in the previ-

ous subsection from looking at the modes around a particular site. The difference is
that in the rough approximation, the heavier modes have higher frequency, because
they are the excited states of a box around a particular site. We have seen here that
the actual eigenstates all have the same frequency because each one is effectively the
zero mode of a different box, centered around the site where the mode is localized.
Nonetheless, the important point is that modes of both approximations have the
same qualitative features: oscillating behavior with roughly constant amplitude over
around 1/(ka) sites.

Now we have solutions for small j, in the Bessel regime, and for j ∼ jn, in the
flat space regime. For large j, so that mnae

kaj ≫ 1 the solutions are

ηn
j ≈ (−1)je−kaj2

e−kaj(mna)
−2j . (31)

We can check
ηn

j+1 = −e−2kaje−2ka(mna)
−2ηn

j (32)

ηn
j−1 = −e2kaj(mna)

2ηn
j . (33)

So in this regime ηn
j−1 ≫ ηn

j ≫ ηn
j+1 and thus (21) reduces to

− 1

a2
e−2kajηn

j−1 −m2
nη

n
j = 0, (34)

which is satisfied by our ansatz.
In summary, the solutions for the eigenstates are (up to normalization)

ηn
j ∝






e2kajJ2(
mn

k
ekaj), j < jn

sin(j), j ∼ jn
(−1)je−kaj2

e−kaj(mna)
−2j , j > jn

. (35)

To align and normalize the solutions, note that the Bessel solution is exponentially
growing

e2kajJ2(
mn

k
ekaj) ≈ (

mn

k
)2e4kaj . (36)

And in the third, large j, regime, ηn
j dies as exp(−kaj2). So in both of these regimes,

the modes have most of their support towards the middle. This means that the
normalization is determined almost entirely from the flat space approximation.

Thus we are led back to our original guess. We only need the flat space approxi-
mation. If we are looking near a site jn associated with a mode n then

ηm
j ≈

{ √
ka sin(j), |j − jn| < 1/(ka)

0, |j − jn| > 1/(ka)
. (37)

Some exact eigenvectors are plotted in Figure 2, and the approximation (35) is shown
in Figure 3.
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Figure 2: Exact eigenvectors of the mass matrix as a function of site. The numerical
solutions for the 10th, 100th and Nth eigenstates with N = 200 and 1/(ka) = 10 are
shown. Heavier modes are on the left. The Nth mode is the lightest, and localized
on the Nth, IR, site.
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Figure 3: Approximate solutions, with the same parameters as in Figure 2
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4 Strong coupling

Now that we understand the eigenstates of the lattice theory, we can ask whether
there is any limit in which the lattice is a good approximation to the continuum.
First, let us recall some difficulties that are encountered in flat space [5, 6].

4.1 Flat space

To trust the predictions of the lattice theory, it is essential to know the scale at which
it becomes nonperturbative and the effective theory breaks down. In a gravitational
system, as in a gauge theory, the easiest way to find this scale is to introduce Gold-
stone bosons restoring a non-linear symmetry, a la CCWZ [13]. This procedure is
explained in detail in [4], and we will only briefly review it here. For a massless
graviton, this means restoring general coordinate invariance with vector (Aα) and
scalar (φ) Goldstones:

hµν = gµν − ηµν → gµν − ∂µY
α∂νY

βηαβ (38)

Yα ≡ Aα + φ,α. (39)

Then the Fierz-Pauli mass term generates a kinetic term for the scalar

h2
µν − h2 → h2

µν − h2 + φ2
,µ,ν − (�φ)2 + 2φ,µ,ν(hµν − ηµνh) + (�φ)3 + · · · . (40)

The two four-derivative terms for φ cancel after integration by parts, leaving a proper
two-derivative kinetic term for φ after the h, φ kinetic matrix is diagonalized. The φ
self-interactions are the strongest and indicate where the theory breaks down. The
scales are

L = M2
Ph�h +M2

Pm
2h2 +M2

Pm
2φ�h +M2

Pm
2(�φ)3. (41)

So the canonically normalized fields are hc = MPh and φc = MPm
2φ leading to

L = hc�hc + φc�hc + (MPm
4)−1(�φ)3, (42)

from which we read that the cutoff is Λ = Λ5 ≡ (MPm
4)1/5.

On the flat space lattice, there are many massive gravitons. So we introduce
many Goldstones via ∆hj → ∆hj + �φj + · · · . Then

L =
∑

j

M2hj
µν�h

j
µν +

M2

a2

[
(hj+1

µν − hj
µν)

2 + (hj+1
µν − hj

µν)�φ
j + (�φj)3

]
. (43)

Barring any unforeseen cancellations the strong coupling scale is determined by the
interactions of the lightest mode. On the lattice, the effective higher-dimensional
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modes (the KK modes) get contributions from all the site modes, so there is a corre-
sponding 1/N suppression of the interactions. For example, with hj = exp(2πijn/N)Hn

∑

j

M2hj
µν�h

j
µν →

∑

n

NM2Hn
µν�H

n
µν , (44)

so the Planck scale associated with the sites is lower by a factor of
√
N than the

Planck scale of the modes. For the gravity case, there is an additional N -dependence
for the scalar longitudinal modes because they get their kinetic term from mixing
with differences. Then,

∑

j

M2

a2
(hj+1

µν − hj
µν)�φ

j →
∑

n

N
M2

a2

1

N
H�Φ. (45)

Thus with Hc =
√
NMH we get Φc = M/(

√
Na2)Φ. This means that the strongest

interaction, from the lightest mode, is

∑

j

M2

a2
(�φj)3 → N

N3/2a4

M
(�Φc

1)
3 =

1

NMPm
4
1

(�Φc
1)

3, (46)

where m1 = 1/Na and MP =
√
NM . Thus the strong interaction for the flat space

lattice is at a scale

Λflat = (MN−5/2a−4)1/5 = (NMPm
4
1)

1/5. (47)

Since this MP is the low energy Planck scale, and m1 is the physical mass, we can
see that this scale is higher by a factor of N1/5 than that of a single massive graviton.

The fact that the strong coupling scale is heavier than the mass of the light
mode tells us that this is a good effective theory for the light mode. But for a real
lattice description of flat space, this must be a good effective theory all the way up
to the 5D Planck scale, M3

5 = M2
PR

−1. Since R = m−1
1 we can write the cutoff as

Λflat = (M3
5R

−5a−2)1/10. Then for Λflat > M5 we would need M5a < (RM5)
−5/2.

But since RM5 ≫ 1 this means that a ≪M−1
5 – the lattice spacing has to be much

smaller than the Planck length. But this does not make sense. For the lattice to cut
off the divergences from gravity, we must take a > M−1

5 .
Another way to understand the difficulty is to observe that with the lattice spacing

at its limit, a = M−1
5 , we get Λflat =

√
M5/R ≪ M5. So there will be new effects

at distances much much larger than the Planck length. These non-local effects are
most apparent if we work directly in the continuum limit

a−2(∆hj + �φj + (�φj)
2)2 → (∂yh)

2 + a−1(∂yφ)(�h) + a−2(�φ)3 + · · · . (48)

An integration by parts has been performed on the middle term. This shows that
ψ = ∂yφ is the propagating field, while φ without derivatives is producing the strong
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interactions. In terms of ψ the Lagrangian contains

L = M3
5Rh�h +M3

5Rh�ψ +M3
5Ra

(
�

∂y
ψ

)3

+ · · · . (49)

The long wavelength modes with ∂y ∼ R−1 interact at the scale Λflat = (M3
5R

−5a−2)1/10

we derived above. But we can also now see that the strong interactions are really
non-local in the extra dimension. Formally, as a → 0 (or N → ∞), the strong
coupling problem disappears, as it must if this lattice is to classically reproduce the
continuum. However, Λ does not grow with N fast enough to ensure that the effective
theory is consistent.

4.2 Warped space

Now let us see how these observations change in the warped background. We intro-
duce Goldstones into the warped space Lagrangian in the usual way

L =
∑

j

M2e−2kajhj
µν�h

j
µν +

M2

a2
e−4kaj

[
(hj+1

µν − hj
µν)

2 + (hj+1
µν − hj

µν)�φ
j + (�φj)3

]
.

(50)
The warp factor in front of the kinetic term tells us that the Planck scale on a site
is

Mj = Me−kaj . (51)

This is the warping we expect from the continuum. For the KK modes, we saw that
to a good approximation 1/(ka) modes have support at each site so we expect this
parameter to play the role of N in the previous section. So the effective Planck scale
for the modes will be

Mn =
1√
ka
Mjn

(52)

in agreement with the observation that 1/(ka) in the warped case should play the
role of N .

In fact, because we are approximating the KK modes for warped space by map-
ping to a position-dependent set of flat space solutions, we can simply use the flat
space results if we just complete the map. Looking at the Lagrangian, in the ap-
proximation of Section 3.1, we see that the warped space Lagrangian for the 1/(ka)
modes around mode n is equivalent to a flat space lattice with

Mflat →Mjn
= Me−kajn

1

aflat
→ 1

a
e−kajn Nflat →

1

ka
. (53)

Thus the strong coupling scale becomes

Λflat =

(
Mflat

N
5/2
flat a

4
flat

)1/5

→ Λwarp =

(
(ka)5/2Mjn

1

a4
e−4kajn

)1/5

= (
1

ka
Mnm

4
n)1/5,

(54)
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where mn = ke−kajn is the mass of the lowest mode in the expansion around site j.
This result is superficially similar to that of flat space. The strong coupling scale

is a factor of Nflat ∼ 1/(ka) above the strong coupling scale for a single massive
graviton. But there is a huge difference – the strong coupling scale does not depend
on the size of the space we are latticizing. There is no dependence on the total
number of lattice sites N , or equivalently on the IR scale R = ae−kaN . In flat space,
the strong coupling was determined by the lightest mode, but in warped space, it is
determined by the lightest mode with support on the site j. For a j close to the UV
brane, all the modes which live there are much heavier than the 1/R mode which
would dominate if the space were flat.

However this is not the whole story. In warped space, there is not a single strong
coupling scale; the strong coupling scale depends on the observer. In fact, there is
an important difference between the scale associated with a particular mode and the
scale that an observer on a particular site would see. For a mode of mass mn, the
strong coupling scale is the usual

Λmode ∼ (Mnm
4
n)1/5. (55)

This scale is heavier than mn, so the mode is weakly coupled at energies near its
mass. However, an observer at site j would see 1/(ka) modes. In particular, the
mode of mass mn would be relevant even at energies as high as mn/(ka). When
looking at the strong coupling scale on a site we must use Λwarp of Equation (54).

The relevant Planck scale for the observer is Mjn
=

√
kaMn. For example, with a

lattice spacing 1/a ∼ M we would find that

Λsite = Λwarp = Mjn

√
k

M
< Mjn

. (56)

So, if we only talk about modes, there is no strong-coupling problem in warped space.
But observers localized at some position in the bulk (that is, on a particular lattice
site) must encounter strong coupling before the local Planck scale. In asking about
the lattice theory, it makes sense to consider the site basis, since otherwise the cut-off
is determined solely by the IR regime.

We can understand these results in continuum language as well. In the warped
case,

L = e−4kajM
3
5

a2
(∆hj

µν + �φj)
2 →M3

5 e
−4ky(∂yh)

2 +
M3

5

a
e−4ky(�φ)(∂yh). (57)

When we integrate by parts, the ∂y term hits the warp factor, so there are two pieces

1

a
e−4ky(∂yφ− 4kφ)(�h). (58)

Initially, we might expect that for the long wavelength modes, with ∂y ∼ 1/R, the
kφ piece will dominate and prevent nonlocal effects. However, this would work only
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if there were modes spread out over the whole space. In warped space, there are not
really any 1/R modes. The wavelengths in the extra dimension are in fact limited
by k < ∂y < 1/a – at each site, there are only 1/(ka) modes. So ∂y ≥ k and we can
basically ignore the kφ term in (58).

Using ĥ = exp(−ky)h, and adding the a/(ka) = 1/k volume factor, the La-
grangian becomes

L ⊃ M3
5

k
ĥ�ĥ +

M3
5

k

1

a
e−3kyĥ�(∂yφ) +

M3
5

k

1

a2
e−4ky(�φ)3. (59)

The canonical propagating field is then

ψ = ∂yφ
c =

M
3/2
5

k1/2a
e−3ky∂yφ, (60)

and the cubic scalar coupling becomes

M3
5

ka2
e−4ky(�φ)3 → ak1/2

M
3/2
5 ∂3

y

e5ky(�φc)3. (61)

For a mode of frequency ∂y ∼ ω this gives a strong coupling scale of

Λ5 =
M

3/2
5 ω3

ak1/2
e−5ky. (62)

If we look at the individual modes, then ω ∼ 1/a (cf Eq (37)), and so the mode scale
is

Λ5
mode =

M
3/2
5√
k

1

a4
e−5ky, (63)

which is the same as Mnm
4
n that we derived above. An observer at position y is

sensitive to wavelengths as high as ω ∼ k, which gives

Λsite = (M3
5 k

5a−2)1/10e−ky. (64)

This is the same as the flat space interaction scale Λflat = (M3
5R

−5a−2)1/10 with
k = R−1 the playing the role of the IR cutoff for the warped space.

5 Conclusion

We have shown that a straightforward discretization of the warped AdS geometry
produces a low-energy theory which is valid above the scale of local curvature at
any site. This is in fact sufficient for investigating many physical features, such
as the renormalization group behavior of the theory as in [15–18]. However, the
discretization does not allow us to reach the UV cutoff of the continuum theory. In
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the energy regime between the warped AdS scale and the warped higher-dimensional
Planck scale, the theory acts like flat space and the same strong coupling problems as
in flat space appear. This is not surprising; at energies above the local curvature, the
theory approaches flat space, and therefore we do not expect manifestly holographic
behavior. But it is extremely interesting that some of the holographic behavior of
warped space is also manifested on the lattice; for example, we have found that the
mass eigenvalues are globally geometrically spaced, with only M/k modes localized
near any particular site.

An important distinction from the flat space theory is that we can take the large
volume limit because the UV and IR cutoffs are independent. In flat space, the UV
cutoff goes down as the size of the space, R, is increased. In curved space, the UV
cutoff only depends on the curvature scale, k; the cutoff in a particular region is
completely ignorant of the total volume, or equivalently, the total number of sites.
This cutoff is still below the local Planck scale, so even in the warped case, the
lattice cannot be used as a regulator – divergences must still be cutoff by hand, or
new physics must enter at a scale below the lattice spacing.

As in any non-renormalizable theory with a dimensionful scale, there is a natural
limit to the lattice spacing, and thus a natural limit to the number of sites on the
lattice. In warped space, this is a particularly strong bound. For example, in RS1 [1],
the dimensionful scale is MP , but the size of the space is set by ke−kR = TeV and so
N < 30. Nonetheless, on a larger warped space, approaching RS2 [2], 1/N effects can
be parametrically ignored. Note that it is precisely because we can take the large
volume limit with fixed lattice spacing that large N is interesting. In flat space,
because the UV cutoff decreases as the volume grows, in the large volume limit the
cutoff goes to zero. In warped space, it remains above the local curvature scale.

Because the discretization of RS is sufficiently well behaved, we expect a simi-
lar discrete theory may be a useful tool for studying other geometries that exhibit
holographic behavior. For example, the metric for de Sitter space and some black
holes can be written in a warp-factor notation [14]. Thus their discretizations should
be similar and may help unravel their holographic features. Another interesting ex-
ample is local localization [19], in which the warp factor decreases to a minimum
and then grows again. We expect that sites in the turnaround regime will have a
low cutoff. However, modes localized on these sites will have very little support in
the region where four-dimensional gravity applies. There is no reason to expect the
massive mode of locally localized gravity that plays the role of the massive graviton
to cause problems. Presumably locally localized gravity is far more general. The
discrete version of theories with non-monotonic warp factor could be a useful tool
for studying different examples of locally localized gravity, even with more than one
extra dimension.
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