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Abstract. It is now well established that a number of terrestrial and aquatic 

microorganisms have the capacity to oxidize and precipitate Mn as phyllomanganate. 

However, this biomineralization has never been shown to occur in plant tissues, nor has the 

structure of a natural Mn(IV) biooxide been characterized in detail. We show that the 

graminaceous plant Festuca rubra (red fescue) produces a Zn-rich phyllomanganate with 

constant Zn:Mn and Ca:Mn ratios (0.46 and 0.38, respectively) when grown on a 

contaminated sediment. This new phase is so far the Zn-richest manganate known to form in 

nature (chalcophanite has a Zn:Mn ratio of 0.33) and has no synthetic equivalent. Visual 

examination of root fragments under a microscope shows black precipitates about ten to 

several tens of microns in size, and their imaging with backscattered and secondary electrons 

demonstrates that they are located in the root epidermis. In situ measurements by Mn and Zn 

K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction 

(XRD) with a micro-focused beam can be quantitatively described by a single-phase model 

consisting of Mn(IV) octahedral layers with 22% vacant sites capped with tetrahedral and 

octahedral Zn in proportions of 3:1. The layer charge deficit is also partly balanced by 

interlayer Mn and Ca. Individual crystallites have a domain radius of 33 Å in the ab plane and 

contain only 1.2 layers (~8.6 Å) on average. Since this biogenic Mn oxide consists mostly of 

isolated layers, basal 00l reflections are essentially absent despite its lamellar structure. 

Individual Mn layers are probably held together in the Mn-Zn precipitates by stabilizing 

organic molecules. Zinc biomineralization by plants likely is a defense mechanism against 

toxicity induced by excess concentrations of this metal in the rhizosphere. 
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Graminaceous plants, like other so-called metal-tolerant plants, mostly sequester 

metals in roots to protect reproductive and photosynthetic tissues (Li et al., 2000; Simon, 

2005). The ability to store metals in underground tissues is used in phytoremediation to 

reinstall a vegetation cover on heavily contaminated areas and limit the propagation of metals 

into the food chain (Smith and Bradshaw, 1992; Cunningham et al., 1995; Vangronsveld et 

al., 1995; Ma et al., 2003; Mench et al., 2003; Krämer, 2005). Panfili et al. (2005) showed that 

the grass species Festuca rubra (red fescue) and Agrostis tenuis (colonial bentgrass) 

accelerate the weathering of zinc sulfide when grown on contaminated dredged sediment, thus 

increasing Zn bioavailability in the rhizosphere. After two years of plant growth, micrometer-

sized Mn-Zn black precipitates were observed at the surface of Festuca rubra roots, but not 

characterized (Panfili, 2004). Zinc precipitation may be a bioactive tolerance mechanism in 

response to metal toxicity, or a passive mineralization at the soil-root interface (Cotter-

Howells et al., 1999). Clarifying this issue and determining the mineralogy and structure of 

this natural precipitate is important to enhance the effectiveness of using graminaceous plants 

in phytoremediation. These questions are addressed here with electron microscopy and 

synchrotron-based microanalytical tools, including X-ray fluorescence (μ-XRF), extended X-

ray absorption fine structure (μ-EXAFS) spectroscopy and X-ray diffraction (μ-XRD) 

(Manceau et al., 2002b). Micro-XRD was employed to determine the nanocrystalline structure 

of the Mn-Zn precipitates and the nature of defects (layer stacking faults, cationic vacancies 

and occupancies, Mn, Zn, and Ca site configuration, stoichiometry) through modeling of their 

scattering properties (Villalobos et al., 2006; Drits et al., 2007). We show that the root 

precipitates are present in the root epidermis (the outermost layer of root cells) and consist of 

a poorly crystallized phyllomanganate with a constant Zn:Mn ratio higher than reported so far 
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for any natural and synthetic manganate. A structure model is proposed for this new 

biomineral. 

 

2. MATERIALS AND METHODS 

 

2.1 Materials 

The composition in major elements of the dredged sediment was 68.3 % SiO2, 6.9 % 

CaO, 4.8 % Al2O3, 2.4 % Fe2O3, 0.7 % P2O5, and 7.2% organic carbon, and the composition 

in a trace metals was 4700 mg.kg-1 Zn, 700 mg.kg-1 Pb, and ~270 mg.kg-1 Mn. Seeds of F. 

rubra were sown in plastic pots filled with 40 kg of either the untreated sediment, the 

sediment amended with 3 wt. % hydroxylapatite, or the sediment amended with 5 wt. % 

Thomas basic slag. The pots were placed in a greenhouse without artificial lighting and daily 

irrigated with tap water in an amount similar to the mean rainfall in northern France. After 

two years of culture, the pots were dismantled to collect samples. The texture and color of the 

sediment in areas colonized by the roots (upper 30 cm of the pots) were similar to a brown 

silty soil, whereas the initial sediment was black and compact. Roots of F. rubra from the 

treated and untreated pots were washed meticulously with distilled water to remove soil 

particles from the surface and then freeze-dried. 

The speciation of zinc in the initial sediment and in the rhizosphere of F. rubra after 

the two years of vegetation was described previously (Panfili et al., 2005). Briefly, in the 

untreated and unvegetated sediment, Zn was distributed as ~50% (mol ratio of total Zn) 

sphalerite, ~40% Zn-ferrihydrite, and ~10 to 20% (Zn-Al)-hydrotalcite plus Zn-phyllosilicate. 

In the presence of plants, ZnS was almost completely dissolved, and the released Zn bound to 

phosphate (~40–60%) and to Zn phyllosilicate plus (Zn,Al)-hydrotalcite (~20–40%). The co-

addition of mineral amendment did not affect the Zn speciation in the vegetated sediment. 
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2.2 Methods 

2.2.1 Electron microscopy 

Regions of the roots rich in black precipitates were carbon-coated and examined in 

secondary and backscattered electron modes by high-resolution scanning electron microscopy 

(JEOL JSM-6320F with a field emission gun) and analyzed with energy dispersive X-ray 

spectroscopy (EDS, Tracor analyzer). 

 

2.2.2 X-ray fluorescence, diffraction, and absorption spectroscopy 

The Zn:Mn and Ca:Mn ratios were measured with an Eagle III µ-XRF spectrometer 

(Röntgenanalytik Messtechnik GmbH) equipped with a Rh anode and a 40 µm poly-capillary. 

The spectrometer was operated under vacuum at 20 kV and 400 µA, and fluorescence was 

measured for 300 s per point. Micro XRF, XRD and EXAFS data were collected on beamline 

10.3.2 at the Advanced Light Source (ALS, Berkeley – Marcus et al., 2004a). Short root 

fragments were attached to the tips of glass capillaries and cooled down to 110-150 K 

(Oxford CryoSystems Cryo-Stream) to minimize radiation damage (Manceau et al., 2002b). 

X-ray fluorescence maps were taken at 10 keV incident energy, with a beam size ranging 

from 5×5 µm to 16×7 µm (H×V). Fluorescence counts were collected for K, Ca, Mn, Fe and 

Zn with a seven-element Ge solid-state detector and a counting time of 100 ms per pixel. For 

µ-EXAFS measurements, the vertical beam size ranged from 5 to 7 µm. A maximum of two 

spectra per precipitate were taken at either the Mn or the Zn K-edge to prevent the reduction 

of tetravalent to divalent Mn and the increase of structural disorder under the beam (Manceau 

et al., 2002b). Diffraction data were collected with a CCD camera (Bruker SMART6000, 

SMART software) at 17 keV (λ = 0.729 Å) and exposure times of 120-240 seconds. At this 

energy, the incident flux and absorption cross-sections are low enough to make radiation 

damage during an exposure negligible even at room temperature. A background pattern was 
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recorded next to each precipitate to subtract the scattering contribution from the root so as to 

obtain the precipitate pattern. Diffraction patterns collected on different precipitates were all 

statistically identical, and thus summed up to optimize data quality. Calibration of the energy 

and camera distance were obtained using an Al2O3 standard and Fit2D software 

(Hammersley, 1998). This software was also used to calculate the one-dimensional XRD 

traces from the radial integration of the two-dimensional patterns.  

 

2.2.3 Data processing 

The EXAFS data were analyzed according to standard procedure (Teo, 1986; Marcus 

et al., 2004b). The µ-XRD patterns were simulated following the trial-and-error approach 

developed by Drits and Tchoubar (1990), and applied previously to natural and synthetic 

phyllomanganates (Chukhrov et al., 1985; Manceau et al., 1997; Drits et al., 1998; Lanson et 

al., 2000, 2002a, b; Gaillot et al., 2003, 2005, 2007; Villalobos et al., 2006). Details on the 

program and fitting procedure can be found in the articles by Drits et al. (1998) and Plançon 

(2002). The scattering background was considered to be linear in the 0.35-0.80 Å-1 1/d 

interval (2.86-1.25 Å). The fit quality was evaluated over this interval using the conventional 

RWP and RExp values (Howard and Preston, 1989). 

 

3. RESULTS AND INTERPRETATION 

 

3.1 Optical and electron microscopy 

Under the optical microscope, the Mn-Zn precipitates appear as black stains about 

ten to several tens of micrometers in size on the root surface (Fig. 1a, EA-1). They are also 

observed in backscattered electron microscopy (Fig. 1b) due to the presence of high-Z 

elements (Mn, Zn, Ca, and minor Pb), but always are hardly noticeable in secondary electron 
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imaging mode (Fig. 1c). This suggests that the precipitates are engulfed in the root epidermis 

(Cotter-Howells et al., 1999) and do not coat the root surface as iron and manganese plaques 

do (Otte et al., 1989; St-Cyr and Campbell, 1996). No differences were observed among 

precipitates from plants grown in the untreated and mineral amended sediments. This result, 

together with the compartmentation of the precipitates inside the roots, suggests a biological 

origin. This interpretation is supported also by the absence of Zn-rich phyllomanganates in the 

surrounding soil matrix (Panfili et al., 2005). 

 

3.2 Micro-XRF 

Elemental mapping of F. rubra roots shows that Zn is associated with Mn in 

localized spots, and uniformly distributed without manganese in the vascular cylinder as 

expected for this nutritive element (Fig. 2 – Rout and Das, 2003). All roots have Zn in their 

central stele, but not all are speckled with Mn-Zn precipitates. Some root fragments are partly 

covered by Zn-free Fe-rich plaques (Fig. EA-2). These plaques are made of ferric 

oxyhydroxides, as indicated by their optical rusty color (Fig. 1a top right). In Zn-Mn-Ca 

tricolor representation all Mn-Zn precipitates generally have the same color (Fig. 2), even 

among different roots (Fig. EA-2), meaning that the relative proportions of Zn, Mn and Ca are 

about the same. The correlation coefficient between Zn and Mn counts for the precipitates is 

0.8, with P-value < 0.0001 for the Anova F-test (Fig. 2). The Zn:Mn atomic ratio was 

calculated from the relative absorption jumps measured at the Mn and Zn K-edges on four 

particles. For each particle, a pre-absorption edge background was removed first, and then a 

linear fit to the post-edge region was extrapolated back to the edge to measure edge jumps. 

The ratio of the Zn to Mn edge jumps is 0.310(7), which translates into a Zn:Mn ratio of 

0.46(1) when taking into account the atomic absorptions of the two elements. A consistent 

0.44 value was obtained independently with the Eagle III spectrometer. This analysis also 
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confirmed that root precipitates have a constant Ca:Mn ratio. An atomic ratio of 0.41 was 

calculated after correction of the Ca-fluorescence from the root. 

 

3.3 Micro-EXAFS spectroscopy 

The Mn and Zn μ-EXAFS spectra for all precipitates were indistinguishable from 

each other, and thus averaged to improve the signal-to-noise ratio. If the precipitates consisted 

of an assemblage of distinct Zn and Mn species, the proportions of these species would most 

likely vary among the analyzed grains, and this variability would be detected by μ-EXAFS 

(Panfili et al., 2005). However, this was not the case, suggesting that all root precipitates 

consist of a single species, hereafter referred to as "Mn-Zn precipitate", in agreement with μ-

XRF data. 

 

3.3.1 Mn-EXAFS in Mn-Zn precipitate 

Fig. 3 compares the EXAFS spectrum of Mn-Zn precipitate with those of reference 

compounds. The references used are hollandite (Hol) and todorokite (Todo), two 

tectomanganates with 2×2 (Hol) and 3×3 (Todo) tunnel structures, TcBi, a triclinic birnessite 

with 31% Mn3+ in the layers, [Na+
0.31(H2O)0.40(Mn4+

0.69Mn3+
0.31)O2 – (Silvester et al., 1997; 

Lanson et al., 2002a)], Lit, a synthetic lithiophorite [(Al0.67Li0.32)(Mn4+
0.68Mn3+

0.32)O2(OH)2 – 

(Manceau et al., 2005)], HBi, a hexagonal birnessite prepared by equilibrating TcBi at pH 4 

[H+
0.33Mn2+

0.043Mn3+
0.123(OH)-

0.013(Mn4+
0.722Mn3+

0.111Vac0.167)O2 – (Silvester et al., 1997; 

Lanson et al., 2000)], chalcophanite (Chalco), a Zn-rich phyllomanganate with one in seven 

octahedral sites vacant and capped on each side of the surface layer by interlayer octahedral 

Zn atoms [ZnMn3O7•3H2O – (Wadsley, 1955)], and dBi, a turbostratic birnessite with no 

interlayer Mn and no layer Mn3+ [Na+
0.24(H2O)0.72(Mn4+

0.94Vac0.06)O2 – (Villalobos et al., 
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2006)]. TcBi and Lit have a similar content of layer Mn3+, but different Mn4+-Mn3+ cation 

ordering (Drits et al., 1997; Manceau et al., 2005). 
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Mn-Zn precipitate is not a tectomanganate because i) the second EXAFS oscillation 

of tectomanganates is split or has a shoulder at 6.5 Å-1, depending on the tunnel size 

(Manceau and Combes, 1988; Mckeown and Post, 2001; Manceau et al., 2007b), and ii) their 

[7.3-9.5 Å-1] indicator region (Marcus et al., 2004b) does not match the data (Figs. 3a-b). In 

the indicator region, Mn-Zn precipitate has a single maximum at 8.0-8.1 Å-1 like dBi, HBi, 

and Chalco. The shape and position of this maximum is diagnostic of Mn4+-rich manganate 

layers with hexagonal symmetry (Gaillot et al., 2007). For example, this maximum is shifted 

to 7.9 Å-1 (i.e., consistent with longer distances) in Lit (Manceau et al., 2004) due to the large 

amount of Mn3+ in the hexagonal layer. TcBi has a distinctive double peak with a minimum at 

7.9-8.0 Å-1 as a result of the split of the Mn-Mn distances induced by the linear ordering of 

Mn3+ and Mn4+ cations in the layer (Drits et al., 1997; Lanson et al., 2002a; Gaillot et al., 

2003, 2007; Manceau et al., 2005). This cation ordering lowers the layer symmetry from 

hexagonal to orthogonal. Thus, the Mn-Zn precipitate is a phyllomanganate having hexagonal 

layer symmetry and little layer Mn3+. The subtle differences between Mn-Zn precipitate and 

some phyllomanganate references are more obvious when the data are Fourier transformed 

(FT, Fig. 4). The phase of the Mn1E peak matches those of dBi, Chalco, and HBi, and is 

shifted to a shorter distance relative to Lit. In phyllomanganates, the Mn1E peak represents 

Mn atoms in the first-neighbor layer octahedra (Manceau and Combes, 1988). Therefore, its 

phase depends on the nearest Mn-Mn distance (Mn-Mn1 pair), and is sensitive to the amount 

of Mn3+ in the layer similarly to the phase of the O peak. However, the sensitivity of the phase 

of this peak to the presence of Mn3+ is not high enough to distinguish HBi (11% layer Mn3+ 

per octahedral site) from dBi and Chalco (0% – Fig. EA-3). The Mn3E peak is twice as 

sensitive as the Mn1E peak because it arises from the third-neighbor octahedra at twice the 
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Mn-Mn1 distance (see for example Fig. 11 in Manceau et al., 2005). The sensitivity is now 

high enough to differentiate HBi from dBi and Chalco, as shown in Fig. 4. Thus, using the 

phase of the Mn1E and Mn3E peaks as chemical probes to the layer composition, we conclude 

that Mn-Zn precipitate has less Mn3+ in the octahedral layers than HBi (11%), if any. 

Confirming evidence is found in the comparison of the frequency of EXAFS spectra. Fig. 3 

shows that the overall EXAFS frequency, and hence interatomic distances, increase from 

dBi/Chalco/Mn-Zn precipitate, to HBi, to Lit/TcBi, as a result of the increasing amount of 

layer Mn3+ (Gaillot et al., 2007). 

In contrast to the Mn1 peak, the phase of the O peak (i.e., average Mn-O distance in 

the layer and interlayer) matches those of the two Mn3+-free references (dBi, Chalco) and is 

slightly shifted to lower distance relative to both HBi and Lit. This shift is barely visible in 

Fig. 4, but clearly apparent when the [1-3 Å] R+ΔR interval is expanded (Fig. EA-3). Thus, 

Mn-Zn precipitate has no detectable Mn3+ in the layer similarly to dBi and Chalco, nor in the 

interlayer, in contrast to HBi. 

The FT of Mn-Zn precipitate also differs from that of HBi by the absence of the 

Mn1TC peak from Mnlayer-Me pairs at ~3.5 Å (R + ΔR ~ 3.1 Å), where Me is an interlayer 

metal cation, such as Mn, Zn, or Pb, in triple-corner sharing position above or below vacant 

layer sites (TC linkage – Manceau et al., 2002a). When there are interlayer Mn atoms, this 

peak is intense because each interlayer Mn is surrounded by as many as six Mnlayer neighbors. 

In contrast, Mnlayer atoms near an octahedral vacancy have fewer interlayer Mn neighbors, 

their exact number depending on the density of layer vacancies and composition of the 

interlayer. Here, the lack of Mn1Tc peak in Mn-Zn precipitate suggests that it has no 

detectable Me cations on either side of the layer vacancies. The Mn5E peak is also absent in 

the FT of Mn-Zn precipitate, as in dBi, but not HBi nor Chalco. This peak arises from the 5th 

Mn shell at about 2.90 × 3 = 8.7 Å, and is enhanced by forward scattering from two 
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intervening Mnlayer (Manceau et al., 2005). The absence of this peak in Mn-Zn precipitate 

indicates that the octahedral layers have a small lateral dimension. This peak is also absent in 

Lit, but in this case because the Mn-Mn5 shell is split as a result of the Mn4+-Mn3+ ordering in 

the layer (Manceau et al., 2005). 

 

3.3.2 Zn-EXAFS in Mn-Zn precipitate 

The best spectral match of Mn-Zn precipitate to our Zn species database was 

obtained with tetrahedrally coordinated Zn (IVZn) sorbed above/below octahedral vacancies of 

a phyllomanganate (IVTC site – Fig. 5a). This Zn complex is common in nature and its local 

structure has been described previously (Manceau et al., 2000b, 2002a; Marcus et al., 2004b; 

Isaure et al., 2005; Toner et al., 2006). Although the IVZn-sorbed phyllomanganate reference 

provides a good approximation of Zn local structure in Mn-Zn precipitate, there are 

significant differences between the two spectra, particularly in the phase mismatches between 

6.5 and 10 Å-1, and the symmetry of the first and second oscillations. These differences have 

been documented previously and result from the mixed occupancy of the TC site by 

tetrahedral and octahedral Zn (Manceau et al., 2002a, 2007b). Adding the chalcophanite or 

VI/IVZn-sorbed dBi reference (Fig. 5b – Toner et al., 2005a, 2006) in a two-component linear 

fit to the data compensated for the phase shift and asymmetry of the first oscillation, but not 

entirely for that of the second (Fig. 5c). All attempts to suppress this residual by adding a 

third component to the linear fit failed. Therefore, although there is some uncertainty on the 

exact configuration of the minor VIZn site, the IVTC + VITC model is the best description of 

the data we can offer. Consideration of an edge-sharing complex (VITE) at layer edges did not 

reproduce the phase as well as the VITC surface species. The VITC species may occur also at 

the edge of the Mn-Zn precipitate layer, instead of the basal surface, in which case it has a 

slightly different binding environment from that of dBi. Thus, the dBi and chalcophanite 
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3.3.3 Zn-EXAFS in Zn-only precipitate 

A few spots in the µ-XRF maps contained Zn and little else detectable. EXAFS 

spectroscopy identified zincite (ZnO) and sphalerite (ZnS), two mineral species originally 

present in the untreated sediment (Isaure et al., 2002). These grains are likely residual slag 

material stuck to the root surface that were not removed by washing. None of the Zn species 

formed in the rhizosphere of F. rubra after the two years of experiment were detected in or at 

the root surface. 

 

3.3.4 Zn-EXAFS in the root vascular cylinder 

Micro-EXAFS spectra were recorded in the vascular cylinder of four distinct roots, at 

spots containing little Mn. All spectra were indistinguishable, indicating that Zn speciation is 

uniform, and thus averaged. The resulting Root spectrum has the same frequency as the Mn-

Zn precipitate spectrum, which suggests that Zn is also mostly tetrahedral in the roots (Fig. 

5d). However, in contrast to Mn-Zn precipitate, the second and third oscillations of the Root 

spectrum are not split, indicative of “light” backscatters from second-shell contributions. 

Consistently, the best spectral match to our organic and inorganic database of the Root 

spectrum was provided with Zn in a biofilm (Zncell7, Fig. 5e). This reference has 80 ± 10% 

Zn complexed to phosphoryl groups and 20 ±10% to carboxyl groups (Toner et al., 2005b). 

Consistent with this other study, consideration of carboxyl (citrate, Fig. 5f) and phosphate 

(phytate, Fig. 5g; Zn-sorbed Penicillium chrysogenum, Fig. 5h – Sarret et al., 1998a) ligands 

alone, did not yield an optimal fit to the data. Zinc preferential binding to phosphate groups 

has been reported also in the roots of Arabidopsis halleri and A. lyrata grown hydroponically, 
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on bacterial and fungi cells, and in biofilms (Sarret et al., 1998b, 2002; Fein et al., 2001). 

These studies have shown that Zn has a higher affinity for phosphate than for carboxyl 

groups, which is consistent with the predominance of the phosphate species in F. rubra roots. 

 

3.4 Micro-XRD 

3.4.1 Qualitative description of the data 

According to µ-XRF and µ-EXAFS, Mn-Zn precipitate is a phyllomanganate with 

hexagonal layer symmetry, little to no layer Mn3+, less interlayer Mn3+ than HBi, and as much 

as 0.46 interlayer Zn per total Mn, of which 87 ± 10% is tetrahedral and 27 ± 10% octahedral. 

Despite its lamellar structure, the XRD pattern of Mn-Zn precipitate shows no patent basal 

reflections (Fig. 6). The XRD trace is dominated by two reflections at ~2.45 and ~1.42 Å, the 

first one being asymmetric towards higher 1/d values. This profile is characteristic of lamellar 

compounds with turbostratic stacking, i.e., lacking well-defined displacement/rotation 

between successive layers (Warren, 1941; Biscoe and Warren, 1942; Brindley, 1980). The 

positions, profiles, and relative intensities of the two peaks match the [20,11] and [02,31] 

scattering bands of turbostratic birnessite, choosing a C-centered cell for their crystallographic 

assignment (Drits et al., 1997, 2007; Villalobos et al., 2006). Their d-spacings are in the ratio 

of 1.73, close to the √3 value for hexagonal symmetry. Their profiles are controlled by the 

structure factor and can thus be used for structural determinations (Villalobos et al., 2006; 

Drits et al., 2007), as shown below. 

 

3.4.2 Simulation of the 0.35-0.80 Å-1 1/d interval 

XRD simulations were performed with the C-centered unit-cell parameters b = 

2.850 Å, a = b√3 = 4.936 Å, γ = 90° derived from the position of the [20,11] and [02,31] 

bands, d(001) = 7.20 Å, and a random layer stacking (Wr = 100%, Fig. EA-4). The atomic 
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coordinates for the IVTC and VITC sites were considered to be the same as those in Zn-sorbed 

birnessite (Table 1 – Lanson et al., 2002b). The Ca position was assumed to be close to that in 

Ca-rich birnessite (Drits et al., 1998), that is in the mid-plane of the interlayer almost above a 

tetrahedral surface site (TE position – Fig. EA-5). Thus, parameters optimized in the 
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interlayer Zn2+ and Mn2+,3+, the xy coordinates of Ca2+, the position of water molecules, and 

the size of the coherent scattering domains (CSDs) in the ab plane. The CSDs were 

considered to have a disk-like shape, whose average radius was constrained by fitting the 

maximum at ~2.45 Å (Villalobos et al., 2006). 
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Since the phyllomanganate has 0.46 interlayer Zn per total Mn, at least 0.186 vacant 

layer sites per octahedron are needed to accommodate all Zn [(0.186 × 2) / (1.00 - 0.186) = 

0.46]. In this case, every vacant site is capped by one Zn on either side. No satisfactory 

agreement between theory and experiment could be obtained with this model, regardless of 

the amount and position of Ca2+. In particular, the high 1/d tail of the [20,11] band at ~0.43-

0.45 Å-1 was poorly reproduced (Fig. 7a – RWP = 3.57%; RExp = 1.57%). To reproduce this 

feature it was necessary to increase the density of vacant sites to 0.22, and thus to introduce 

interlayer Mn in TC and TE sites to keep the Zn:Mn ratio constant. Our best theoretical model 

to the data is shown in Fig. 7b (RWP = 3.49%; RExp = 1.57%), and structural parameters are 

listed in Tables 1 and 2. The structural formula is 

[(Mn0.78Vac0.22)O2]TCMn0.010
TEMn0.046

VIZn0.088
IVZn0.300Ca0.318(H2O)0.972], and the  structure 

model is schematized in Figs. 8 and EA-5. The refined model contains 0.38 Ca per Mn, in 

agreement with μ-XRF data (0.41), at a position [(-0.410, 0, ½) and symmetric positions] 

slightly shifted from the ideal TE position [(-0.333, 0, ½) – Fig. EA-5]. Interlayer H2O 

molecules that are not bound to Zn and interlayer Mn are located in (0.220, 0, ½) and 

symmetric positions. This position is similar to ordered (Lanson et al., 2002a) and disordered 
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(Villalobos et al., 2006) Na-exchanged birnessite varieties. It allows for the formation of 

strong H-bonds with Olayer atoms [d(Olayer-H2Ointer.) = 2.66 Å, Table 2]. Overall, only the Mn 

TE position is new, all others have been described previously for other birnessite varieties. 

 

3.4.3 Sensitivity of calculated XRD patterns to structural parameters 

As the optimal fit to data was obtained using a trial-and-error approach, the 

sensitivity of the XRD simulations to key structural parameters needs to be assessed. A key 

parameter for birnessite's ability to sorb trace metals is the origin of the layer charge. In the 

present model, the layer charge arises from layer vacancies only, not at all from substitution 

of  Mn3+ for Mn4+ in the layer, because the hexagonal layer symmetry and small b unit-cell 

dimension (2.85 Å) are incompatible with appreciable amount of Mn3+ in the layer (Gaillot et 

al., 2005, 2007; Manceau et al., 2005). When birnessite contains ~25% layer Mn3+ per 

octahedral site with the long Mn-O bonds oriented at random, b = 2.895 Å (Gaillot et al., 

2007) and the [20,11] and [02,31] bands are shifted to lower 1/d values relative to data (RWP = 

7.15%; Fig. 7c). Mn-Zn precipitate has the same b value as HBi (2.850 Å) which contains 

11% layer Mn3+ per octahedral site (Lanson et al., 2000). Based on EXAFS results, this 

amount is regarded as an upper limit. Also, if the layer contained a high proportion of Mn3+ 

cations ordered in rows, as in triclinic birnessite, a similar b value (2.84-2.85 Å) would be 

measured but the [02,31] band would be a doublet due to the departure from hexagonal 

symmetry (Drits et al., 2007; Gaillot et al., 2007). Calculations show that the band splitting 

decreases with the layer dimension, but that it should still be observed for a CSD dimension 

of 33 Å, the optimal CSD value (Fig. 7d – RWP = 6.79%). 

The sensitivity of XRD profiles to the amount, coordination, and position of high-Z 

interlayer scatterers, and to the number of vacant layer sites is illustrated next. If interlayer 

Mn atoms are located only in VITC sites (0.056 per octahedron) rather than distributed over 
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VITE and VITC sites (0.046 and 0.010, respectively), the dip at ~0.52 Å-1 is deeper and the 

intensity of the broad hump at ~0.60 Å-1 is increased (Fig. 7e – RWP = 3.60%). When the 

number of interlayer Ca2+ is decreased from 0.318 to 0.240, there is a deficit of intensity in 

the 0.43-0.45 Å-1 region (Fig. 7f – RWP = 3.54%). Similarly, decreasing the number of 

interlayer Zn from 0.388 to 0.244, and that of vacant layer sites from 0.22 to 0.15 broadens 

the high 1/d tail of the [20,11] band and shifts the hump at ~0.60 Å-1 to lower 1/d values (Fig. 

7g – RWP = 4.92%). Increasing the proportion of octahedrally coordinated interlayer Zn from 

23% to 50% also broadens the high 1/d tail of the [20,11] band and increases the intensity of 

the broad hump at ~0.60 Å-1 (Fig. 7h – RWP = 3.99%). Finally, the sensitivity of XRD profiles 

to IVZn, VIZn, and Ca coordinates is shown in Figure EA-6. 
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3.4.4 Simulation of the 0.05-0.35 Å-1 1/d interval 

Despite the lamellar structure of Mn-Zn precipitate, its XRD pattern lacks well-

defined 00l reflections. To assess the possible origin of this oddity, the 001 and 002 

reflections were calculated for crystallites with extremely small CSD dimension along the c* 

axis (Fig. 9). Calculations show that at least two layers are required to modulate the scattering 

profile at low 1/d values, otherwise the X-ray intensity steadily decreases with increasing 1/d 

(Fig. 9). The best fit to data was obtained with a mixture of crystallites containing 1, 2, and 3 

layers in the ratio of 20:3:1, respectively, leading to an average CSD dimension along the c* 

axis of 1.2 layers (~8.6 Å). 

 

4. DISCUSSION 

 

4.1 Structure model 
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4.1.1 Amount of vacant sites and Zn loading 385 
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Except for one sample obtained by metal sorption on poorly crystalline Mn oxides 

(Nelson et al., 1999), the new Zn-rich phyllomanganate contains higher amounts of vacant 

layer sites (0.22 per layer octahedron) and transition elements (0.44 total Mn and Zn per layer 

octahedron) than any other natural and synthetic variety described so far (0.167 and 0.22, 

respectively; Lanson et al., 2000, 2002b; Villalobos et al., 2006). The constant Zn:Mn ratio of 

Mn-Zn precipitate suggests that Zn co-precipitated with Mn by a yet unknown mechanism to 

form a chemically well-defined phase as natural solids formed by metal sorption on pre-

existing mineral surfaces are chemically heterogeneous (see for example Manceau et al., 

2007b). 

 

4.1.2 Presence of heavy scatterers above and below vacant layers sites 

According to XRD and Zn-EXAFS, Mn-Zn precipitate has 0.300 IVZn and 0.088 

VIZn per octahedron in TC position (Table 1). The Zn-Mn pairs are detected at the Zn K-edge 

(Fig. EA-7) but not at the Mn K-edge for two possible reasons. In a vacancy-free layer, each 

Mn has six nearest-neighbor Mn atoms. In Mn-Zn precipitate, this number is 4.25 if two 

vacancies cannot be adjacent which is always the case in layered structures (Manceau et al., 

2000a).  Thus, each Mn octahedron is surrounded statistically by 1.75 vacant sites. With 80% 

of these vacant sites capped by Me cations on both sides, and 20% on one side only, Mnlayer 

atoms are coordinated on average to 1.75 × (0.2 + (0.8 × 2)) = 3.15 Me in TC sites. This 

number is about half the value for Zn, as each Zn is linked to six Mnlayer. Structural disorder 

also can be invoked to explain the absence of Mn-Zn pairs in Mn-EXAFS. The TC position is 

occupied by at least three types of complex: 0.300 IVZn, 0.088 VIZn, and 0.010 VIMn, and the 

TE position by 0.046 Mn. Each Mnlayer-(TC,TE)Me pair has a different distance, and this broad 

distribution results in an apparent loss of coordination. 

 16



 

410 

411 

412 

413 

414 

415 

416 

417 

418 

419 

420 

421 

422 

423 

424 

425 

426 

427 

428 

429 

430 

431 

432 

433 

434 

 

4.2 Intensity of basal reflections 

Birnessite and vernadite minerals were given different names because the basal 

reflections of birnessite at 7.2-7.0 Å (001) and 3.6-3.5 Å (002) were not observed originally in 

the diffraction pattern of vernadite (Chukhrov and Gorshkov, 1980; Chukhrov et al., 1980). 

However, recent studies have shown that natural vernadite and its biogenic and chemical (δ-

MnO2) analogs most often display a 001 reflection when their XRD pattern is recorded on 

modern diffractometers (Mandernack et al., 1995; Villalobos et al., 2003, 2005; Jurgensen et 

al., 2004; Webb et al., 2005b; Bodeï et al., 2007; Manceau et al., 2007a, b), thus confirming 

the view of Arrhenius et al. (1978) and Giovanoli (1980) that this mineral is a c-disordered 

variety of birnessite. Villalobos et al. (2006) showed that basal reflections are present when 

the diffracting crystallites have only 2-3 layers, on average. Here, this number is as low as 1.2 

layers, meaning that Mn-Zn precipitate is essentially an assemblage of isolated layers. 

Measurements of the Mn edge jumps on different Mn-Zn precipitates provide an inkling of 

how the constitutive nanoparticles are joined at particle or so-called grain boundaries. The Mn 

edge jump was typically between 0.2 and 0.3 for aggregates ~15-25 µm in diameter, which 

indicates that the phyllomanganate represents only a small fraction (~20 volume %) of the 

black precipitates, thus revealing a high micro-porosity. This porosity is possibly filled, at 

least partly, by organics that may help disrupt the parallelism of the layers, but also to tie 

them together. 

 

4.3 Biologically induced oxidation of manganese 

Many microorganisms have the capacity to oxidize and precipitate Mn as manganate 

(Tebo et al., 2004, and references therein). Since biological oxidation of Mn is generally 

faster than abiotic oxidation, most natural Mn oxides are considered to be biogenic. 
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Pseudomonas putida (Villalobos et al., 2003, 2006; Toner et al., 2005a), Leptothrix 

discophora (Nelson et al., 1999, 2002; Nelson and Lion, 2003; Jurgensen et al., 2004; 

Saratovsky et al., 2006), and Bacillus sp. strain SG-1 (Mandernack et al., 1995; Tebo et al., 

1998; Webb et al., 2005a, b) are the three fairly-well characterized bacterial model systems 

for the oxidation of manganese in the environment. Manganese oxidation and the subsequent 

precipitation of Mn(III,IV) bioxides by microscopic fungi is also well documented (Krumbein 

and Jens, 1981; Emerson et al., 1989; Schulze et al., 1995; Tani et al., 2003, 2004; Miyata et 

al., 2004, 2006a, b; Thompson et al., 2005). Here, we showed that Mn can be biomineralized 

also in higher living organisms, such as plants. Except for its atypical high Zn content and the 

structural consequences thereof, this new manganese biomineral is no exception to the 

intrinsic nanocrystalline nature of biogenic phyllomanganates. 
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Although the mechanism of Mn(II) to Mn(IV) oxidation is presently unknown, the 

constant Zn:Mn ratio of the new Mn biooxide suggests the existence of a well-defined 

bioactive process, likely in response to metal toxicity. The occurrence of Zn-Mn precipitate 

only in the root epidermis and the absence in the roots of any Zn-rich species from the soil 

matrix (Panfili et al., 2005) suggest that Mn oxidation did not occur in the rhizosphere, and 

thus does not result from bacterial activity or abiotic reaction. Divalent manganese may have 

been complexed and transported to the roots by phytosiderophores (Römheld, 1991), and then 

oxidized by the plant itself or by endomycorrhizal fungi, as shown for wheat and soybean 

(Schulze et al., 1995; Thompson et al., 2005, 2006).  

Knowing how to stimulate the formation of this new phase in biological systems, or 

how to synthesize it abiotically, would be a significant progress towards Zn immobilization in 

contaminated environments and their (phyto-)remediation. Formation of this new phase could 

in particular facilitate the growth of plants in highly contaminated environments in lowering 

the concentration of bio-available Zn in the rhizosphere. 
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Fig. 1. Roots of Festuca rubra grown on a Zn-contaminated sediment. Optical 

microphotograph (a), and scanning electron microscope image with (b) 

backscattered electrons and (c) secondary electrons. 

Fig. 2. Tricolor (RGB) µ-XRF map of a root with Mn-Zn precipitates. Red codes for Ca, 

green for Zn, and blue for Mn. Each pixel is colored in proportion to Ca-, Zn- and 

Mn-Kα signals. Pixel size is 7 × 7 µm2. The graph is a pixel-by-pixel scatterplot of 

Zn counts vs. Mn counts, showing the constant Zn:Mn ratio. 

Fig. 3. Manganese K-edge EXAFS spectra of Mn-Zn precipitate (dotted lines) and the 

following references (solid lines): hollandite (Hol), todorokite (Todo), triclinic 

birnessite (TcBi), lithiophorite (Lit), low-pH hexagonal birnessite (HBi), 

chalcophanite (Chalco), and δ-MnO2 (dBi, synthetic turbostratic birnessite). 

Fig. 4. Fourier transforms (FTs) of the k-weighted Mn-EXAFS spectra for the Mn-Zn 

precipitate (dotted lines) and synthetic VIZn-sorbed δ-MnO2 (dBi), chalcophanite 

(Chalco), hexagonal birnessite (HBi), and lithiophorite (Lit). E and TC subscripts 

denote Mn-Mn contributions from octahedral linked by edges and triple-corners, 

respectively. 

Fig. 5. Zinc K-edge EXAFS spectra. (a-c) Overlay plots of the Mn-Zn precipitate spectrum 

(dotted line) with natural IVZn-containing turbostratic birnessite (vernadite, sample 

6KR) from Manceau et al. (2007b; a, solid line – Sum-sq = 0.12), VI/IVZn-sorbed δ-

MnO2 (dBi) from Toner et al. (2006; b, solid line – Sum-sq = 0.83), and a least-

squares fit of the Mn-Zn precipitate spectrum to a linear combination of the model 

compounds in (a) and (b) (c, solid line – Sum-sq = 0.06). The arrows in (a) point out 

the phase misfit when the VITC Zn species is omitted in the simulation. The dBi 
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sample contains 42 (±5) mol% IVTC Zn and 58 (±5) mol% VITC Zn (Toner et al., 

2006). Substituting chalcophanite for dBi in the two-component fit yielded the same 

fraction of TC species and a similar Sum-sq residual (0.07). (d) Overlay plot of the 

Mn-Zn precipitate spectrum (dotted line) and of the Root spectrum (solid line – Sum-

sq = 0.10). (e-g) Overlay plots of the Root spectrum (dotted line) with organic model 

compounds (solid line): Zn sorbed on a biofilm at 5.6 10-4 mol of Zn per gram of 

biosorbent from Toner et al. (2005b; e, Zncell7 – Sum-sq = 0.052), Zn citrate from 

Sarret et al. (2002; f, – Sum-sq = 0.089), Zn phytate from Sarret et al. (2002; g, – 

Sum-sq = 0.089), Zn sorbed on Penicillium chrysogenum at 1.5 10-4 mol of Zn per 

gram of biosorbent from Sarret et al. (1998b; h, – Sum-sq = 0.13). The Sum-sq 

values are calculated as the squares of the residuals, normalized to the sum of the 

squares of the data values over the [3.0 - 10.5 Å-1] k interval. 
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Fig. 6. XRD pattern of Mn-Zn precipitate after subtraction of the scattering from the root. 

Fig. 7. Simulations of the [20,11] and [02,31] X-ray scattering bands (C-centered layer cell). 

Black crosses are experimental data, and red lines are calculated profiles. Small but 

significant misfits between experimental and calculated patterns are pointed out with 

arrows. Diffracted intensities were calculated with a turbostratic layer stacking (no 

interlayer correlation). (a) Initial model with 0.186 vacant layer sites and no 

interlayer Mn. (b) Optimal model (Table 1; Figs. 8 and EA-5). (c) Model with a = 

5.014 Å and b = 2.895 Å (hexagonal layer symmetry). (d) Model with a = 5.100 Å 

and b = 2.850 Å (orthogonal layer symmetry). (e) Model with all interlayer Mn 

cations (0.056 per octahedron) located in VITC sites, instead of 0.046 and 0.010 in 

VITE and VITC sites, respectively, in the optimal fit. (f) Model with 0.240 Ca per 

layer octahedron instead of 0.318 in the optimal model. (g) Model with 0.150 vacant 

sites and 0.244 interlayer Zn2+ (Zn:Mn = 0.27), compared to 0.220 and 0.388 
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(Zn:Mn = 0.46) in the optimal fit. (h) Model with 50% tetrahedral and 50% 

octahedral Zn2+, instead of 77% and 23% in the optimal fit. Unless specified, all 

parameters used in calculations are those of the optimal model. 

Fig. 8. Idealized structure for the Mn-Zn root precipitate with structural formula 

[(Mn0.78Vac0.22)O2]MnVITC
0.010MnVITE

0.046ZnVITC
0.088ZnIVTC

0.300Ca0.318(H2O)0.972]. The 

layer charge deficit due to vacant layer sites is balanced by interlayer Zn and Mn 

above and/or below layer vacancies, and by Ca in the interlayer mid-plane (see Fig. 

EA-5 for details). 

Fig. 9. Calculation of the 001 and 002 reflections for crystallites composed of one (dashed 

line), two (dotted-dashed line) and three (dot-dot-dashed line) parallel layers 

randomly stacked perpendicular to the ab plane, and optimal fit (red line) to the data 

(crosses) obtained with an assemblage of diffracting particles containing 1, 2, and 3 

layers in the ratio of 2.0:0.3:0.1. Atomic coordinates of the optimal structure model, 

derived from the simulation of the [20,11] and [02,31] reflections, were used in all 

calculations (Figs. 7b and 8, Table 1). 



 

Table 1. Structural parameters of Mn-Zn precipitate derived from the simulation of XRD 

data. 

Atom x y ζ Occ. x y ζ Occ. 

Mnlayer (Mn1) 0 0 0 0.780 - - - - 

Olayer (O1) 0.333 0 1.00 1.00 -0.333 0 -1.00 1.00 

TCMninter (Mn2) 0 0 2.20 0.005 0 0 -2.20 0.005 

H2Ointer. (O2) -0.333 0 3.45 0.015 0.333 0 -3.45 0.015 

TEMninter (Mn3) -0.333 0 2.20 0.023 0.333 0 -2.20 0.023 

H2Ointer. (O3) 0 0 3.45 0.069 0 0 -3.45 0.069 

VIZninter (Zn1) 0 0 2.20 0.044 0 0 -2.20 0.044 

H2Ointer. (O2) -0.333 0 3.45 0.132 0.333 0 -3.45 0.132 

IVZninter (Zn2) 0 0 1.77 0.150 0 0 -1.77 0.150 

H2Ointer. (O4) 0 0 3.70 0.150 0 0 -3.70 0.150 

Cainter (Ca1) -0.410 0 3.60 0.053 0.410 0 -3.60 0.053 

Cainter (Ca1) -0.295 0.115 3.60 0.053 0.295 0.115 -3.60 0.053 

Cainter (Ca1) -0.295 -0.115 3.60 0.053 0.295 -0.115 -3.60 0.053 

H2Ointer. (O5) 0.220 0 3.60 0.04 -0.220 0 -3.60 0.04 

H2Ointer. (O5) -0.110 0.330 3.60 0.04 -0.110 -0.330 -3.60 0.04 

H2Ointer. (O5) -0.110 -0.330 3.60 0.04 0.110 -0.330 -3.60 0.04 

 
Note: b = 2.850 Å, a = b√3 = 4.936 Å, γ = 90°, and d(001) = 7.20 Å. x and y coordinates are 

expressed as fractions of the a and b parameters, respectively. Coordinates along the c* 
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axis, ζ, are expressed in Å to point out the thickness of layer and interlayer polyhedra. 

The average dimension of the coherent scattering domains (CSDs) along the c* axis is 

1.2 layers (8.6 Å). The average radius of the disk-like CSDs in the ab plane is 33 Å. This 

value was calculated by fitting the [20,11] reflection. Un-refined thermal B factors are 

0.5 Å2 for Mnlayer, 1.0 Å2 for Olayer, interlayer Mn, and interlayer Zn, and 2.0 Å2 for Ca2+ 

and H2O. 

 

Table 2. Selected interatomic distances for the optimal structure model. 

Atomic pair Distance (Å) Atomic pair Distance (Å) 

Mnlayer-Olayer 1.925   

TC,TEMninter.-Olayer 2.04 TC,TEMninter.-H2O 2.07 

VIZninter.-Olayer 2.04 VIZninter.-H2O 2.07 

IVZninter.-Olayer 1.82a IVZninter.-H2O 1.93 

Cainter.-Olayer 2.89 H2Ointer-Olayer 2.66 

Mnlayer-VIZninter 3.60 Mnlayer-IVZninter 3.35 

Mnlayer-TCMninter. 3.60 Mnlayer-TEMninter. 2.75b 

 
(a) The IVZninter.-Olayer distance should be increased by ~0.1 Å to provide more realistic Zn-O 

bond valence (Table EA-1). This cannot be achieved by changing the z coordinate 

of IVZn (Fig. EA-6b). Alternatively, moving apart the three oxygen atoms 

delimiting the underlying vacancy by 0.15 Å in the [110], [100 ], and [010 ] 

directions increases the IVZninter.-Olayer distance from 1.82 Å to 1.95 Å, as discussed 

in Manceau et al. (2002a). 
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(b) The Mnlayer-TEMninter. distance can be increased by ~0.1 Å by shifting Mninter in the ab plane 

from its ideal TE position towards the nearest vacant site (see Fig. EA-5). This shift 

occurs along the a ±120° directions with equal probabilities resulting in an 

increased Debye-Waller B factor without significant alteration of the fit quality. 



 

Table EA-1. Empirical bond-valences for Mn-Zn precipitatea. 

 O1b O1c O1d O1e O2, O3 O3 O4 Σ Formal 

valence 

Mn1 
0.628 ×6→

×3↓ 

 

0.628 ×2↓ 

 

0.628 ×2↓ 

 

0.628 ×2↓ 

   3.8 4 

Mn2, 

Mn3 

 
0.469 ×3→   0.433 ×3→   2.7 3 

Zn1   0.403 ×3→   0.372 ×3→  2.3 2 

Zn2    0.731 ×3→   0.543 2.7 2 

H+ 0.11f         

Σ 1.9 – 2.0g 1.7 1.7 2.0      

(a) Bond valences in valence unit (v.u.) were calculated using the Valence for Dos program (v. 2.0 - 

http://www.ccp14.ac.uk/solution/bond_valence/index.html) and the parameters from Brese and O' Keeffe (1991). 
(b) O1 coordinated to 3 Mn4+ in Mn1 (Table 1). 
(c) O1 coordinated to 2 Mn4+ in Mn1 and 1 Mn3+ in Mn2 or Mn3. 
(d) O1 coordinated to 2 Mn4+ in Mn1 and 1 Zn2+ in Zn1. 
(e) O1 coordinated to 2 Mn4+ in Mn1 and 1 Zn2+ in Zn2. 
(f) O5-H-O1 H-bond. 
(g) Depending on whether this O1 receives additional valence from H+ through H-bond. 
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Fig. EA-1: Roots of Festuca rubra grown on a Zn-contaminated sediment. (a) Close-up 
photograph from Fig. 1a. (b) Lower magnification of Fig. 1c.
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Fig. EA-2: Tricolor (RGB) μ-XRF map of a bundle of roots. Red codes for Fe, green for Zn,
and blue for Mn. Each pixel is colored in proportion to Fe-, Zn- and Mn-Kα signals. Pixel 
size is 18 × 15 μm2.
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Fig. EA-4: Simulations of the [20,11] and [02,31] X-ray scattering bands (black crosses, 
C-centered layer cell). Intensities (red lines) were calculated for the optimal structure model
(Table 1) with different occurrence probabilities of random stacking faults (Wr). Arrows 
indicate the positions of hkl reflections.



Fig. EA-5: Idealized structure of Mn-Zn precipitate. (a) Projection on the ab plane. The upper 
surface of the layer is shown as light shaded triangles, and the atomic notations are the same 
as in Table 1. (b) Projection along the b axis. Open and solid symbols indicate atoms at y = 0 
and y = ±½, respectively. Squares represent vacant layer octahedra.The Mn3 and Zn2 atoms 
can be shifted from their positions as indicated by the dashed arrows to obtain more realistic 
interatomic distances (see Table EA-1). 
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Fig. EA-6: Simulations of the [20,11] and [02,31] X-ray scattering bands (C-centered layer cell, 
black crosses). Small but significant misfits between experimental and calculated patterns are 
pointed out with arrows. Intensities (red lines) were calculated with a turbostratic layer stacking 
(no interlayer correlation). (a) Optimal model (Table 1; Figs. 8 and EA-5); Rwp = 3.49%. 
(b) Model with IVZn (Zn2) in (0, 0, 1.97 Å), instead of (0, 0, 1.77 Å) in the optimal fit, so as to 
increase the Zn-O bond length from 1.82 À (Table 2) to 1.91 Å. Coordinated H2O molecules 
(O4) were moved from (0, 0, 3.70 Å) to (0, 0, 3.90 Å); Rwp = 3.92%. (c) Model with VIZn (Zn1) 
in (0, 0, 2.30 Å), instead of (0, 0, 2.20 Å) in the optimal fit so as to decrease the sum valence of 
Zn1 from 2.3 (Table EA-1) to 2.0. Coordinated H2O molecules (O2) were moved from 
(-0.333, 0, 3.45 Å) to (-0.333, 0, 3.65 Å); Rwp = 3.55%. (d) Model with Ca in (-0.333, 0, 3.60 Å), 
instead of (-0.410, 0, 3.60 Å) and equivalent positions in the optimal fit; Rwp = 3.51%. Unless 
specified, all parameters used in calculations are those of the optimal model.
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Fig. EA-7: Fourier transform of the EXAFS spectra for the Mn-Zn precipitate at the Mn 
and Zn K-edges. The average Mn-O and Zn-O EXAFS distances (R values) are 1.90 Å 
and 2.00 Å, respectively.
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