
  

 

 

Search for neutrino-induced cascades 
from gamma-ray bursts with 

AMANDA 
 
 

The IceCube Collaboration 
 
 

 

This work was supported by the Director, Office of Science, Office 
of Basic Energy Sciences, of the U.S. Department of Energy under 

Contract No. DE-AC02-05CH11231. 

 

 

 

DISCLAIMER 

    This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the United 
States Government nor any agency thereof, nor The Regents of the University of California, nor 
any of their employees, makes any warranty, express or implied, or assumes any legal 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by its trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof, or The 
Regents of the University of California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government or any agency thereof or 
The Regents of the University of California. 



ar
X

iv
:a

st
ro

-p
h/

07
02

26
5v

2 
 3

0 
M

ar
 2

00
7

February 4, 2008

Search for neutrino-induced cascades from gamma-ray bursts with
AMANDA

IceCube Collaboration: A. Achterberg1, M. Ackermann2, J. Adams3, J. Ahrens4, K. Andeen5,
J. Auffenberg6, J. N. Bahcall7,a, X. Bai8, B. Baret9, S. W. Barwick10, R. Bay11, K. Beattie12,

T. Becka4, J. K. Becker13, K.-H. Becker6, P. Berghaus14, D. Berley15, E. Bernardini2,
D. Bertrand14, D. Z. Besson16, E. Blaufuss15, D. J. Boersma5, C. Bohm17, J. Bolmont2, S. Böser2,
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ABSTRACT

Using the neutrino telescope AMANDA-II, we have conducted two analyses
searching for neutrino-induced cascades from gamma-ray bursts. No evidence of as-
trophysical neutrinos was found, and limits are presented for several models. We also
present neutrino effective areas which allow the calculation of limits for any neutrino
production model. The first analysis looked for a statistical excess of events within a
sliding window of 1 or 100 seconds (for short and long burst classes, respectively) dur-
ing the years 2001-2003. The resulting upper limit on the diffuse flux normalization
timesE2 for the Waxman-Bahcall model at 1 PeV is 1.6×10−6 GeV cm−2 s−1 sr−1

(a factor of 120 above the theoretical prediction). For thissearch 90% of the neu-
trinos would fall in the energy range 50 TeV to 7 PeV. The second analysis looked
for neutrino-induced cascades in coincidence with 73 bursts detected by BATSE in
the year 2000. The resulting upper limit on the diffuse flux normalization timesE2,
also at 1 PeV, is 1.5×10−6 GeV cm−2 s−1 sr−1 (a factor of 110 above the theoretical
prediction) for the same energy range. The neutrino-induced cascade channel is com-
plementary to the up-going muon channel. We comment on its advantages for searches
of neutrinos from GRBs and its future use with IceCube.

Subject headings: Gamma-Ray Burst, Neutrinos, Neutrino Telescopes

1. Introduction

Gamma-ray bursts (GRBs) have been proposed as one of the mostplausible sources of ultra-
high energy cosmic rays (Waxman 1995; Wick et al. 2004). In addition to being a major advance in

30Institut für Physik, Humboldt Universität zu Berlin, D-12489 Berlin, Germany

31Blackett Laboratory, Imperial College, London SW7 2BW, UK

32Dept. of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508,
USA

33Dept. of Physics, University of Oxford, 1 Keble Road, OxfordOX1 3NP, UK

aDeceased
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neutrino astronomy, detection of high energy neutrinos from a burst would provide corroborating
evidence for the acceleration of ultra-high energy cosmic rays within GRBs.

AMANDA-II (Andrés et al. 2001), the final configuration of the Antarctic Muon And Neu-
trino Detector Array, is located at the South Pole. It was commissioned in the year 2000 and
consists of a total of 677 optical modules. Each module contains a photomultiplier tube and sup-
porting hardware inside a glass pressure sphere. These are arranged on 19 strings frozen into the
ice, with the sensors at depths ranging from 1500 m to 2000 m ina cylinder of 100 m radius.
The optical modules indirectly detect neutrinos by measuring the Cherenkov light from secondary
charged particles produced in neutrino-nucleon interactions. AMANDA is being integrated into
the IceCube detector which is currently under construction.

Searches for neutrino-induced muons in coincidence with GRBs have been performed with
the AMANDA detector for the years 1997-2003 (Achterberg et al. 2006; Stamatikos et al. 2005;
Kuehn et al. 2005; Hardtke 2002; Bay 2000). Cascades, which are electromagnetic and hadronic
particle showers, provide a complementary channel to muon detection (Ackermann et al. 2004).
This paper presents two analyses which have searched for neutrino-induced cascade signals from
GRBs. In therolling search, 3 years (2001-2003) of AMANDA-II data were scanned for a clus-
tering of signal events in time. In thetriggered search, AMANDA-II data were analyzed for a
neutrino signal in temporal coincidence with 73 bursts reported by the Burst and Transient Source
Experiment, BATSE (Paciesas et al. 1999), during the year 2000.

Compared to AMANDA cascade analyses, neutrino-induced muon searches have higher over-
all event rates because the muon’s long range allows detection even if it is produced far outside the
detector, while a cascade has to happen at least partially within the detector array. Muons can also
use directional constraints to reduce background because their linear, track-like shape gives them
much better pointing resolution. This allows the identification of muons originating from up-going
neutrinos, as these are the only known particles to propagate through the Earth.

However, these disadvantages are balanced by several arguments in favor of cascades. Since
cascades are topologically distinct from AMANDA’s primarybackground of down-going atmo-
spheric muons, it is not necessary to use the Earth as a filter as in the case of muons. Hence,
cascade analyses have full sky (4π sr) coverage, as opposed to 2π sr for muon analyses. This dou-
bles the number of bursts that can be studied by a single detector. For the triggered analysis, this
number is more than doubled, since bursts which do not have good directional localization based
on satellite information can still be used in the cascade search. Additionally, the energy resolution
for cascades is better than that for muons because of the calorimeter-like energy deposition in the
detector. For cascades produced via charged current channels which produce only showers (νe

andντ ) the energy of the final state can be completely measured. Finally, on average the cascade
energy is more closely correlated to that of its parent neutrino than for muons because for muons
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the interaction vertex is typically in an unknown place outside of the detector.

While neutrino-induced muon tracks are only caused by charged currentνµ interactions, cas-
cades can be produced by interactions of all 3 neutrino flavors. Processes producing cascade sig-
natures includeνx + N neutral current interactions of any neutrino flavor,νe + N charged current,
ν̄e+e− around 6.3 PeV (the Glashow Resonance) andντ +N charged current interactions. The last
case results in isolated cascade-like events when theτ decays into an electron (∼18% branching ra-
tio) or into mesons (∼64% branching ratio) and theτ energy is below∼100 TeV (Yao et al. 2006).
The decay length of aτ with an energy of 100 TeV is approximately 5 m, so the showers produced
by the neutrino interaction and by theτ decay cannot be spatially resolved by AMANDA. For neu-
trinos above 100 TeV, topological searches can be used to detectντ (Learned and Pakvasa 1995),
but in the analyses presented here we optimize for the searchof isolated cascades and ignore other
ντ event topologies. Charged currentνµ interactions can produce cascades in addition to tracks,
but this channel is ignored in these analyses in favor of cascades which are not contaminated by
track-like signatures.

2. Neutrinos from Gamma-ray bursts

It is believed that gamma rays produced by GRBs originate from electrons accelerated in
internal shock waves associated with relativistic jets (with a bulk Lorentz boostΓ of 100-1000)
(Mezsáros and Rees 1994; Paczynski and Xu 1994). These gamma rays have energies ranging
from 10 keV to 10 MeV or more. The gamma-ray spectrum can be generically described as a
broken power law, with a softer spectrum above a break energywhich is typically 30 keV-1 MeV.
Gamma-ray bursts can last anywhere from a few milliseconds to around 1000 s. The distribu-
tion (as observed by BATSE) of durations is bimodal. For the puposes of these analyses, we
define asshort bursts those that last less than 2 s and aslong bursts those that last longer than 2 s
(Paciesas et al. 1999). Other types of bursts have been proposed, but the searches presented here
do not apply to these classes. Reviews of the observational and theoretical status of gamma-ray
bursts may be found in Zhang and Meszáros (2004) and Piran (2005).

If protons and/or nuclei are also accelerated in the jets, then high energy (TeV-PeV) neutrinos
are produced via the process (Waxman and Bahcall 1997):

p + γ → ∆+
→ π+[+n] → νµ + µ+

→ νµ + e+ + ν̄µ + νe. (1)

The kinematics of this reaction are such that the average energy of each neutrino is approx-
imately the same, so the neutrino flavor ratioνe:νµ:ντ is 1:2:0 at the source. Taking into ac-
count neutrino oscillations, the flavor ratio observed at Earth is 1:1:1 (Athar et al. 2005). However,
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Kashti and Waxman (2005) point out that at energies greater than∼ 1 PeV, theµ+ in Equation (1)
loses energy through synchrotron radiation before decaying. This effect changes the source neu-
trino flavor ratio from 1:2:0 to 0:1:0 as energy increases, leading to a ratio at Earth of 1:1.8:1.8 at
high energies for the Waxman-Bahcall neutrino spectrum.

Even at energies where the flavor ratio is 1:1:1, theν:ν ratio is not 1:1. This is because
neutrinos are produced via the pγ interaction. At the source the neutrino flavor ratio (excluding
antineutrinos) is 1:1:0 and the antineutrino flavor ratio is0:1:0. After taking into account preferred
values of mixing angles (Maltoni et al. 2004) for neutrino oscillations the flux ratios at Earth are
0.8:0.6:0.6 and 0.2:0.4:0.4 for neutrinos and antineutrinos respectively. Theν:ν flux ratio is rele-
vant in the calculation of the total number of expected events by the detector.

TeV-PeV neutrinos are expected to be simultaneous with prompt gamma-ray emission. The
neutrino spectrum is described by a broken power law. For both searches presented in this paper
we will use the Waxman and Bahcall (1997) broken power law spectrum as a reference hypothesis
and to optimize our data selection criteria. This spectrum is:

dΦν

dE
= A







E−1/Eb E < Eb

E−2 Eb < E < Eπ

E−4E2
π E > Eπ

, (2)

whereA is the flux normalization,Eb is the break energy corresponding to the break in the parent
photon spectrum andEπ is the energy break due to pion energy losses. Following Waxman and Bahcall
(1997) and Waxman (2003) we setEb=100 TeV,Eπ=10 PeV andA=1.3×10−8 GeV cm−2 s−1 sr−1

at the Earth for all neutrino flavors combined. In reality, each GRB is unique and the spectral
shape and normalization of individual GRBs may vary significantly from this assumed “typical”
spectrum (Guetta et al. 2004; Stamatikos et al. 2005). The rolling search, however, is conducted
independent of external triggers. This frees the search from detector selection effects introduced
by the gamma-ray satellites, but makes optimizing on an averaged spectrum the only viable option.
For the triggered analysis we have chosen to optimize the selection criteria with the mean spectrum
as well. Also, selection criteria optimization is not strongly dependent on the exact shape of the
signal spectrum.

Newer models update the Waxman-Bahcall model with current knowledge. Murase and Nagataki
(2006a) have performed a detailed simulation of neutrino production in internal shocks in GRBs.
The authors use several models for the redshift distribution of GRBs, e.g. one assumption is that
the (long duration) GRB rate follows the star formation rate. They vary several parameters, such
as spectral hardness, to reflect current unknowns. In this paper we present limits on the Murase-
Nagataki model. Guetta et al. (2004) have improved on Waxman-Bahcall with a phenomenological
approach. They have used information specific to bursts reported by the BATSE detector on the
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Compton Gamma Ray Observatory satellite to predict neutrino fluences on a burst by burst ba-
sis. However, Guetta et al. (2004) do not provide neutrino fluences for all 73 bursts used in the
triggered analysis.

Many theoretical predictions also account for neutrino emission following different spectral
shapes both before and after the burst. These include precursor neutrinos coming from the GRB
jet while it is still within the progenitor (Meszáros and Waxman 2001; Razzaque et al. 2003a) and
afterglow neutrinos resulting from interactions with the interstellar matter encountered by the rel-
ativistic GRB jet (Waxman and Bahcall 2000). The analyses presented in this paper, however, are
optimized for the Waxman-Bahcall prompt neutrino emissionspectrum only.

3. Reconstruction and Simulation

In both the rolling and triggered analyses, events were reconstructed with iterative maxi-
mum likelihood reconstructions using both cascade and muonhypotheses, the latter to reject
background. The cascade hypothesis reconstruction provides a vertex, while the muon hypoth-
esis reconstruction provides a vertex as well as zenith and azimuth angles. In addition to these,
the triggered analysis uses a cascade hypothesis energy reconstruction. For simulated signals we
obtain a cascade vertex resolution of about 6 m horizontallyand slightly better vertically. The
cascade energy resolution, defined as the RMS of thelog10(Etrue/Ereco) distribution is approxi-
mately equal to 0.15, whereEtrue is the actual energy andEreco is the reconstructed energy. For
simulated downgoing muons the zenith resolution is approximately 5◦. The down-going muon
angular resolution is worse than for other analyses becausea simpler muon reconstruction is suf-
ficient for muon rejection. Cascade and muon reconstructionmethods are described in Kowalski
(2004),Taboada (2002), Ahrens et al. (2003a) and Ahrens et al. (2004). Cascade reconstruction al-
gorithms have been tested using artificial signals created by LEDs and lasers deployed in different
locations of the array. These sources produce photonic signatures similar to cascades (Kowalski
2004; Taboada 2002). These tests give us confidence that we understand the detector sensitivity to
neutrino-induced cascades.

Both analyses used ANIS (Gazizov and Kowalski 2004) for signal simulation. All 3 neu-
trino flavors were simulated with anE−1 signal spectrum, which was then reweighted to a broken
power law. Muon background (including multiple muons) was simulated using CORSIKA (Heck
1998). Propagation of muons through ice was simulated usingMMC (Chirkin and Rhode 2001)
and detector response was simulated using AMASIM (Hundertmark 1998). For both analyses the
background is measured experimentally (see sections 4 and 5). However, background simulation
was used to verify our understanding of the detector by comparing the distribution of selection
parameters in experimental data and simulation.
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4. Rolling Analysis

While satellites detect many GRBs each year, it is clear thatthe photonic signatures of many
bursts are missed by gamma-ray satellites. This was especially true during the years 2001-2003,
the timeframe during which the rolling analysis was conducted, which was after BATSE ceased
operations in 2000 and before Swift launched in 2004. Ratherthan rely on satellite coincidence, the
rolling analysis searches for a statistical excess of events in close temporal coincidence by sliding
a time window of fixed duration over the entire data set. Sinceno satellite triggers were used,
this analysis could also potentially identify neutrino signals from previously unknown photon-dark
transients and hence is not limited exclusively to GRBs. Furthermore, it is still an unresolved
question if neutrinos arrive in coincidence with the promptphotons or if there is a time offset. In
either case, the rolling analysis would be sensitive to GRB neutrinos.

Since BATSE results demonstrate that the distribution of GRBs is bimodal (Paciesas et al.
1999), two separate time windows were used, with durations of 1 and 100 seconds. Although
these choices do truncate the signal from some longer bursts(assuming the neutrino burst duration
is identical to the gamma burst duration), they are the most appropriate. By studying an ensemble
of real light curves from the BATSE 4B catalog, we conclude that the gain in signal efficiency for
a small percentage of the bursts from widening the time windows would not justify the increase
in average background rate for all windows. The numbers are kept at round values because the
optimization process is not precise enough to distinguish optimal durations to within a few percent.

Without an external trigger, the most efficient search for a clustering of events is conducted
by starting a new window at the time of each event that remainsafter cuts and counting the number
of additional events in the following 1 or 100 seconds.

4.1. Data Selection

Data used in the rolling analysis come from the 2001, 2002 and2003 AMANDA-II data sets.
To ensure stability of the data, the austral summer periods from late October to mid February when
the South Pole station was open were omitted. Significant work was being done on the detector
and the surrounding area at this time, which could potentially interfere with the long term stability
of the data sample during that period. Bad files were removed from the analysis applying the
same standards as AMANDA point source searches (Ackermann et al. 2005b). Runs less than
5000 seconds and files with a large number of gaps (due to unstable periods in the data) were
also excluded. Deadtime percentages were 21.3% for 2001, 15.0% for 2002 and 15.3% for 2003.
Adjusting for deadtime, the livetimes for the datasets usedin this analysis were 183.4 days for
2001, 193.8 days for 2002 and 185.2 days for 2003, yielding a total livetime of 562.4 days.
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Since there are no spatial or temporal constraints in this analysis, background rejection is
extremely important. The first step is the application of a high energy filter, which cuts out events
with fewer than 160 hits1 or events where fewer than 72% of optical modules had 2 or morehits.
This was followed by a process referred to as “flare checking,” which is designed to remove non-
physical events resulting from short-duration detector instabilities or detector malfunction (Pohl
2004).

To further reduce the background, a loose cut was made on the variableNdirect, which is the
number of hits for which there has been no scattering of the photons in the ice. For the 2001
dataset, the exact definition used for this cut wasNmuon

direct/Nhits, whereNmuon
direct is the number of

direct hits using the iterative muon fit andNhits is the total number of hits. TheNdirect cut is useful
because cascade-like events will generally have fewer direct hits under the muon hypothesis than
good muon tracks would. Dividing byNhits removes the tail of high energy events which have
a large value ofNmuon

direct simply because of the large number of total hits in the event.After the
2001 data had been analyzed, a somewhat improved cut, definedas(Nmuon

direct −N cascade
direct )/Nhits, was

developed and applied to the 2002 and 2003 data sets, but was not retroactively applied to the
2001 data because this sample was previously unblinded and we did not wish to introduce trials
factor penalties by altering the selection criteria. As theagreement between data and simulation
is imperfect in this variable (see Fig. 1) cutting too close to the signal peak would introduce large
systematic uncertainties. Therefore, this variable is notincluded in the final cut optimization where
its position cannot be controlled, but rather used as a conservative initial cut.

The final step in data reduction is a six variable support vector machine (SVM) trained with
the program SVMlight (Joachims 1999). A support vector machine uses a mathematical kernel
function to find optimal cuts in a multidimensional variablespace. The user is allowed to adjust
a variable called the “cost factor”, by which tighter or looser cuts can be obtained. Five days of
data were used from each year as background to train the support vector machine, while ANIS
simulation was used as signal. Cuts were finalized using onlythis subsample, which was not
used for the final analysis. This was done because of the standards of blindness applied to all
AMANDA analyses. These require that all analysis criteria are decided before looking at the
data in order to avoid artificially increasing the significance of an observation through biased cut
selection. The six variables used in the SVM are a combination of topological cuts, which keep
cascade-like signatures and reject muon signatures, and energy-related cuts, which keep events that
have properties consistent with higher energies. These variables are as follows:

1. Likelihood ratio between the muon and cascade iterative likelihood reconstructions: This

1A “hit” occurs each time an optical module’s voltage rises above a pre-set threshold, generally resulting from the
detection of a photon.
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variable provides a useful means of distinguishing betweenevents with cascade and track-
like properties. This variable is shown in Figure 2. As with the 5 other variables used
in the support vector machine, good agreement is observed between data and background
simulation.

2. Percentage of optical modules with 8 or more hits: This is influenced by both the energy
and type of event, as both high energy events and events producing a significant shower of
particles will tend to produce multiple hits in each opticalmodule.

3. Length along the track spanned by the direct hits: This is the length over which the direct hits
are distributed. This track length will naturally be shorter on average for the more spherically
shaped cascades.

4. N cascade
late −Nmuon

late : This variable compares the number of hits which arrive morethan 150 ns
late relative to the fit using the cascade and muon hypotheses.

5. Nhits/NOM: This variable gives the average number of hits per optical module with hits. Like
the percentage of modules with eight or more hits, this variable selects high energy cascades
which produce on average more hits per module than other events.

6. Velocity of the line fit: The line fit is a relatively fast algorithm which fits a line with velocity
v to each event (Ahrens et al. 2004). Cascade-like events willyield smaller velocities than
muon events, which should ideally have line speeds close to the speed of light.

The output of the SVM is displayed in Fig.4, showing good agreement between data and
simulated background.

4.2. Optimization

The primary observable in the rolling analysis isNlarge, the largest number of events occurring
in any search window during the 3 year period. Based on the distribution of predicted neutrino
fluences, detection of a single burst with exceptionally high neutrino fluence is statistically more
probable than detection of events from multiple bursts. Theanalysis is optimized for discovery
as described in Hill et al. (2005), selecting the final cut (i.e. support vector machine cost factor)
to minimize the source neutrino flux required to produce a 5σ observation with better than 90%
probability. The final sensitivity, however, is only∼7% above the value obtained for sensitivity-
optimized cuts. Short and long time windows were optimized independently. It was assumed that
background events were distributed according to Poissonian statistics. The data are quite consistent
with this assertion (see Fig. 3). Background rates are not identical over the entire year, since the
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downgoing muon rate varies with atmospheric temperature. Therefore, rather than assuming a
single average Poissonian background rate, the backgroundwas characterized by using different
mean background rates for several periods during each year.

With the chosen selection criteria, a cluster of 5 events in a1 second window or 7 events in a
100 second window would be required for a 5σ detection. Passing rates for the various cut stages
in this analysis are shown in Table 1. We now turn to a discussion of the previously mentioned
triggered analysis.

5. Triggered Analysis

AMANDA-II began routine operation on Feb. 13, 2000. The lastBATSE burst was reported
May 26, 2000. We have used this period of time for a coincidentsearch of neutrino-induced
cascades and GRBs.

The Large Area Detectors (LADs) of BATSE had 4 energy channels: Channel 1: 20-50 keV,
Channel 2: 50-100 keV, Channel 3: 100-300 keV and Channel 4:> 300 keV. After Feb 14, 2000,
the trigger condition for BATSE was a 5.5 sigma deviation from background on the sum of chan-
nels 3 and 4 for three different time scales: 64 ms, 256 ms and 1024 ms. Except for one burst,
GRB000213, all bursts used in this paper were triggered as described. For GRB000213 triggering
was done with channel 3 only.

Since the GRB start time,S90, and duration,T90, are well known, the separation of neutrino-
induced cascade signals from the down-going muon background is simplified. We use three se-
lection criteria based on the two reconstruction hypotheses to discard the down-going muon back-
ground and keep the neutrino-induced cascade signal.

These criteria are:

1. Reconstructed muon zenith angle,θµ: This is the reconstructed zenith angle of the muon
hypothesis. We reject events that are consistent with down-going muons, corresponding to
0◦ < θµ < 90◦. For simulated cascade signals there is no correlation between neutrino zenith
angle and the reconstructed muon zenith angle.

2. Cascade reconstruction reduced likelihood,Lmpe: This is the likelihood parameter (or re-
duced likelihood) of the multiple photo-electron cascade-vertex reconstruction. Smaller val-
ues correspond to events that match the cascade hypothesis and large values correspond to
events that are not cascade-like.

3. Reconstructed cascade energy,Ec: This is the energy of the cascade hypothesis. Because the
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energy spectrum of the Waxman-Bahcall model is hard, the selection criterionEc > Ecut is
good at separating signal from background.

A total of∼7800 s per burst were studied. A period of 600 s, theon-time window, centered at
the start time of the GRB, was initially set aside in accordance with our blind analysis procedures.
The hour just before and the hour just after the on-time window, called theoff-time windows, are
also studied. We optimize the selection criteria using the off-time windows and signal simulation.
Thus the background is experimentally measured. We only examined the fraction of the on-time
window corresponding to the duration of each burst. Keepingthe rest of the on-time window blind
allows for other future searches, e.g. precursor neutrinos. We useT90 as the duration of the burst,
where the time window starts when the GRB has emitted 5% of itstotal fluence and ends when
95% have been emitted. As a precaution against possible uncertainties in the timing of the bursts
we expandedT90 by 1 s on both sides and by the uncertainty of the durationU90. We will call
1 s+T90+U90+1 s thesignal window. The values forU90 were obtained from the BATSE catalog
and the typical value is 1 s.

5.1. Data Selection

We applied the selection criteria in two steps, a filter and the final selection. The filter rejects
down-going muons withθµ > 70◦, and keeps events that are cascade-like,Lmpe < 7.8. The filter
was selected so as to maximize signal efficiency while reducing the background. The procedure
for establishing the final set of selection criteria will be explained in section 5.2. Table 2 shows the
passing rate of the filter.

We determined the detector stability using the off-time window experimental data after the
filter was applied. Only GRBs for which the detector is found to be stable in the off-time windows
were used for the neutrino search.

To establish the stability of the detector, first, bad observation runs were removed from the
year 2000 data set following the same collaboration-agreedscheme used for the rolling analysis.
For GRB000508a, AMANDA fails this test. We also checked thatthere are no data gaps, i.e. times
the detector was off within theT90 of the burst. For GRB000330a there are gaps in AMANDA
data. We also checked the stability of the detector by studying the off-time windows. Two quan-
tities were examined, the number of events/10s that pass thefilter as a function of time and the
frequency distribution of events/10s after applying the filter. Figure 5 shows the distribution of
event rates around a good burst. Visual inspection of the events/10s versus time showed a problem
with AMANDA data corresponding to burst GRB000331a. Several AMANDA strings failed to
collect/report data for periods of time on the order of 10-100 s. For this reason, GRB000331a was



– 14 –

excluded from this analysis. We have also looked at the plotsof time difference between events
to check for possible detector problems. No new problems were found. Finally, we also exclude
GRB000217a and GRB000225 from the list of bursts because AMANDA was not operational for
these two bursts.

After all these criteria are used we find 73 BATSE bursts for which the detector is behaving
stably. Of these bursts, 53 are long bursts (T90 > 2 s) and 20 are short bursts (T90 < 2 s). In the
BATSE catalog (Paciesas et al. 1999)T90 were not available for 13 bursts. The lack ofT90 may be
caused by gaps in the BATSE data not being treated properly byautomatic procedures. In this case
the light curves for the bursts withoutT90 were obtained from BATSE’s web page. The comments
in the web page were also studied. Based on visual inspectionof the light curves and the comments,
conservative, i.e. large, values for burst duration were chosen. For 12 of the bursts with missing
T90 we examined the light curves for the combined channels 1-4. For burst GRB000517 we used
the light curve for the combined channels 1-3 since channel 4was missing. Table 3 summarizes
the characteristics of the 78 bursts (73 used in this analysis) reported by BATSE between February
13 and May 26, 2000.

5.2. Optimization

The selection criteria were optimized on the off-time windows for discovery in a procedure
similar to that of the rolling analysis but with the difference that we optimize two selection criteria
simultaneously. The final selection criteria areLmpe < 6.9 andEc > 40 TeV. Figure 6 shows the
Lmpe andEc distribution after the filter has been applied for the data inthesignal window, along
with simulated background and simulated neutrino signal. After all selection criteria are applied,
one event remains in the 73 burst combined off-time windows.This is equivalent to an expected
background ofnb = 0.0054+0.013

−0.005 (stat) in the 73 burst combinedon-time window. Passing rates
for the various cut stages in this analysis are shown in Table2. Three or more on-time, on-source
events would be required for a 5σ detection.

The totalsignal window is 2851.44 s corresponding to 2591.61 s forT90, 113.83 s for the
sum of the uncertainty onT90 and 146 s for the padding of the on-time window. The totaloff-time
window is 529329 s. For the specific set of runs used in this search the AMANDA-II dead-time is
17.8%.
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6. Systematic Uncertainties

Multiple effects have to be considered when estimating the systematic uncertainties: proper-
ties of the ice, detector effects, neutrino-matter cross-sections, etc. We have used signal simula-
tions to estimate the uncertainties and artificial light sources to verify that the detector is sensitive
to cascade-like signals (Kowalski 2004; Taboada 2002).

The actual optical properties of ice at the South Pole are known with a reasonably high degree
of precision (Ackermann et al. 2006), but this knowledge is not fully incorporated into the signal
simulation software that was available for this paper. The IceCube collaboration is working on
improved simulation software so that better optical ice models are available for future analyses.

To estimate the systematic uncertainty due to the optical properties of the ice we have per-
formed signal simulations supposing a Waxman-Bahcall spectrum using the most and least trans-
parent ice that has been measured at AMANDA depths. In the triggered analysis we find 30%
more signal events than with average optical properties forthe clearest ice and we find 65% fewer
events than with average optical properties for the least transparent ice. In the rolling analysis we
find 50% more signal events in the clearest ice and 50% fewer events in the least transparent ice. It
should be noted that these systematic uncertainties are notRMS ranges, instead they are extreme
values. We will suppose that systematic uncertainties havea flat distribution between the extrema
found. The equivalent RMS values are+9%

−19%
for the triggered analysis and±14% for the rolling

analysis. The systematic uncertainties due to ice properties in this paper are larger than in our
previous publications on neutrino-induced cascades (Ahrens et al. 2003a; Ackermann et al. 2004).
This is because for the previous publications anE−2 spectrum was assumed. For hard spectra
such as Waxman-Bahcall (see Equation 2), the uncertainty due to optical properties of ice is larger.
Additionally, we use different selection criteria.

We followed a similar procedure for estimating the effect ofthe uncertainty in the absolute ef-
ficiency of the optical modules. A 10% uncertainty in the absolute efficiency results in a change of
3% in the number of signal events in the triggered analysis and a 5% change in the rolling analysis.
Similarly, a 5% uncertainty in the neutrino-matter cross section (Gandhi et al. 1999) results in a 4%
change in the number of signal events. Other effects like OM pre-pulsing (Ahrens et al. 2003a),
electronic crosstalk, and differences between data and simulation make negligible contributions to
the systematic uncertainties.

In the case of the rolling analysis, there is also a±20% percent uncertainty in the final limit
resulting from the uncertainty in the burst-by-burst spread of neutrino fluxes. This uncertainty
results from several factors, primarily variations in the distribution of events depending on what
model parameterizations are used and uncertainty in the fit applied to the data. This procedure is
explained in more detail in section 7.1.
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We thus find that the simulation of optical properties of ice is the single most important con-
tribution to the systematic uncertainties. Adding in quadrature the signal systematic uncertainties
results in a global signal uncertainty of+31%

−65% for the triggered analysis and±54% for the rolling
analysis.

7. Results

For both the rolling and triggered analysis we do not find evidence of neutrino-induced cas-
cades from gamma-ray bursts. We derive limits on the total diffuse neutrino flux due to all GRBs
using the Feldman and Cousins (1998) unified procedure. We include systematic uncertainties
following Conrad et al. (2002) and Hill (2003). Our limits depend on the modeling of the distribu-
tion with redshift of gamma-ray bursts (Jakobsson 2005). For the triggered analysis the models use
burst distributions that follow the experimental selection effects of BATSE. The rolling analysis is
not constrained by these selection effects and thus long duration bursts should be modeled as fol-
lowing the star formation rate. In practice, however, we usethe same distribution for both analyses
because the difference between the two options is extremelysmall. This is probably because only
bursts with relatively high fluence contribute significantly to the neutrino flux.

We present Model Rejection Factors2, MRF, (Hill and Rawlins 2003) for Waxman and Bahcall
(1997), Razzaque et al. (2003b), Meszáros and Waxman (2001) and Murase and Nagataki (2006a)
model A. For the Waxman-Bahcall model we assume 1:1:1 flavor flux ratio, pγ neutrino generation,
666 bursts per year and a flux normalization3of Aνe+νµ+ντ

= 1.3×10−8 GeV cm−2 s−1 sr−1. We
ignore the transition from 1:1:1 flux ratio to 1:1.8:1.8 withincreasing energy, which would change
the limits by∼10% in both analyses. For the Razzaque et al. (2003b) supranova model we assume
445 bursts per year (or 2/3 of 666, the fraction of long duration bursts), pp neutrino generation
below 2 PeV and p-γ above this energy. It should be noted that this supranova model is not well
supported by observational data because it assumes a delay of ∼1 week to several months between
the supernova and the GRB. Observations of supernovae associated with gamma-ray bursts, e.g.
GRB060218, have placed limits to this delay to be as small as afew hours (Campana et al. 2006).
Model A of Murase and Nagataki (2006a) assumes that the GRB rate is tied to star formation rate.

2 The Model Rejection Factor is the multiplicative factor by which a predicted flux would need to be scaled in
order to be ruled out by an analysis at a 90% confidence level.

3Note that it is also possible to base the normalization on theaverage photon fluence (as opposed to ultra high
energy cosmic rays) ofFγ ∼ 6 × 10−6 erg/cm2 and 666 bursts per year as observed by BATSE. This results in
a flux normalization ofAνe+νµ+ντ

= 2.3×10−9 GeV cm−2 s−1 sr−1 including all flavors and oscillations. This
normalization takes into account the selection effects of BATSE.
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We have also been provided (Murase and Nagataki 2006b) with the flux for the same model but
for bursts following the redshift distribution of long duration BATSE-like bursts. In both analyses
we use the latter distribution, which corresponds to a rate of 445 long-duration bursts per year.
In practice, the difference in the predicted neutrino spectra in these two cases is very small. The
model parameters used include a beamed energy per burst of 2×1051 ergs and the baryon loading
factor is taken to be 100, a value which assumes GRBs are the primary source of cosmic rays. It
should be noted that, since Murase and Nagataki (2006a) Model A is available for both electron
and muon neutrino fluxes at the source, for this model these fluxes are used to calculate the flavor
flux ratio at Earth taking into account full neutrino mixing.Because the electron and muon flux
spectra are different, the flavor flux ratio at Earth is not strictly 1:1:1 for this model, but rather
varies as a function of energy.

Limits for models that are not presented here can be tested bycalculating:

Nexpected = T

∫

dEνdΩφ(Eν)Aeff(Eν , θν), (3)

whereT is the exposure time,φ is the neutrino flux at the Earth’s surface according to the model,
Aeff is the effective area andNevents is the number of events predicted by the model. Given an
expected number of events and the 90% c.l. upper signal eventlimit, N90, the MRF for the model
to be tested is:

MRF =
N90

Nexpected

. (4)

Figures 7 and 8 show the neutrino effective area of AMANDA after all selection criteria for
the rolling and the triggered analyses respectively have been applied.

7.1. Rolling Analysis

Upon unblinding the rolling analysis, the maximum number ofevents observed in any bin for
the 1 second search was 2, while the maximum in any bin in the 100 second search was 3. These
were the most likely outcomes of the analysis assuming no signal was present (with probabilities
70.2% and 75.4%, respectively, based on computer simulation). Further, the number of doublets
and triplets, i.e. 2 or 3 events in a single time window, was very consistent with predictions
assuming Poissonian statistics. The number of doublets in the 1 second search was 311 on an
expected background of 310±20. The number of doublets in the 100 second search was 1000 on
an expected background of 1020±30 and the number of triplets was 20 on an expected background
of 22±5.
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Because this analysis looks for a cluster of temporally correlated events, it is not just the
overall neutrino flux that determines the level at which we can observe a neutrino signal, but also
the way that the neutrino flux is divided among discrete bursts. For example, it is statistically
much more probable to obtain a cluster of several events fromone very strong, nearby burst than
from 100 bursts occurring at different times, even if the netneutrino fluxes at Earth for the two
scenarios are equivalent. It is therefore necessary in thiscase to make an assumption about the
relative distribution of neutrino events among all GRBs. Thus, the MRF for each model tested is
determined using a signal simulation which varies the average expected neutrino flux by a random
factor for each burst. These factors are weighted accordingto a gaussian fit to the distribution
of predicted event rates for individual GRBs from the BATSE catalog, which were obtained from
Guetta et al. (2004). This accounts for several factors affecting neutrino flux, including distance
from Earth and electromagnetic fluence. The majority of bursts therefore have a signal flux near the
average rate while a few have either much higher or lower fluxes. The total year-long flux is thus
divided into a number of unequal discrete bursts, with the number of bursts per year determined
from the burst rate observed by BATSE.

The MRF for the Waxman-Bahcall method is 120 (100 without systematics), with 90% of
events in the 70 TeV to 8 PeV energy range. For this model, 1/3 of the bursts were assumed to be
short (applied to both time windows) and 2/3 assumed to be long (applied to the 100 second time
window only), with corrections made for the lower average fluence from short bursts relative to
long bursts. The MRF relative to the Razzaque et al. (2003b) supranova model is 27, while relative
to the Murase-Nagataki Model A flux, the MRF is 95. Since thesemodels pertain only to long
bursts, only the 100 second window was used for these models and the number of bursts per year
was assumed to be 445.

One possible additional class of sources without direct photon signatures is choked bursts,
which would emit precursor neutrinos like a conventional GRB, but have noγ-ray emission or
prompt neutrinos because the fireball never escapes from theinterior of the stellar progenitor
(Meszáros and Waxman 2001). The rolling analysis cuts are not optimized for the energy spec-
trum predicted for choked bursts, which peaks at a few TeV rather than∼100 TeV. The MRF
calculated for this model is 72, assuming a choked burst rate100 times greater than the rate of
conventional GRBs (tied to the rate of type II supernovae) and assuming the progenitor to have an
external hydrogen envelope (Razzaque et al. 2003a). Figure9 and Table 4 summarize the limits
presented here.
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7.2. Triggered Analysis

After applying all selection criteria, for a simulated Waxman-Bahcall spectrum, we expect
0.03 events from 73 bursts. The final events sample is composed 55% byνe and ν̄e, 7% byνµ

andν̄µ and 38% byντ andν̄τ . The central 90% of the events from the Waxman-Bahcall flux are
between 70 TeV and 8 PeV. Taking into account that the ratio ofsignal to off-time windows is
5.387×10−3, we expected a background of 0.0054+0.013

−0.005.

After examination of thesignal windows, no events are found in the combined 73 signal
windows, so we find no evidence for neutrino induced-cascades in coincidence with GRBs reported
by BATSE from February 13, 2000 to May 26, 2000. The signal event upper limitN90 is 3.5 (2.4
without systematics).

In order to determine what fraction of the total year-long isotropic neutrino flux comes from
the bursts included in our sample, we simply divide the number of bursts studied by the expected
total number of relevant bursts occurring per year. For the Waxman-Bahcall model, we have in-
cluded both long duration GRBs and short duration GRBs, because the original model does not
distinguish between the two classes. Thus, we assume our 73 burst sample contains 73/666, or
11%, of the year’s total neutrino flux. The supranova and Murase-Nagataki models, however, ap-
ply only to long bursts. Since there are 53 long bursts in our sample and an expected rate of 445
long bursts per year, 12% of the total long burst neutrino fluxis assumed to be contained in our
burst sample.

The MRF for the Waxman-Bahcall model is 110 (78 without systematics). For the supranova
model the expected signal after applying all selection critera is 0.067 and the MRF, corrected by
systematic uncertainties, is 25. For Murase-Nagataki Model A we expect a signal of 0.0038 events.
This signal expectation corresponds to a MRF of 94.

8. Conclusions

We have performed two searches for neutrino-induced cascades with AMANDA-II. The trig-
gered analysis searched for neutrinos in coincidence with 73 gamma-ray bursts reported by BATSE
in 2000. The rolling analysis searched for a statistical excess of cascade-like events in time rolling
windows of 1 and 100 s for the years 2001, 2002 and 2003. No evidence for neutrino-induced
cascades from gamma-ray bursts is found. We present MRFs forthe Waxman-Bahcall model, the
supranova model, a choked-burst model and Murase and Nagataki Model A. For the Waxman-
Bahcall model the MRF is 110 from the triggered analysis and 120 from the rolling analysis. At
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1 PeV the triggered analysis limit is:

E2 dΦ

dE
≤ 1.5 × 10−6 GeVcm−2s−1sr−1, (5)

and the rolling analysis limit is:

E2 dΦ

dE
≤ 1.6 × 10−6 GeVcm−2s−1sr−1. (6)

Although there are advantages to the search methods discussed in this paper, our limits are
not as constrictive as the muon neutrino limit, which lies at1.7×10−8 GeV cm−2 s−1 sr−1 for the
Waxman-Bahcall spectrum at 1 PeV (Achterberg et al. 2006). This value is for a single neutrino
flavor only and should therefore be multiplied by a factor of∼3 to obtain a more direct comparison
to cascade all-flavor limits.

For the triggered analysis this difference is in large part due to the fact that the neutrino-
induced muon search uses a much higher number of approximately 400 bursts reported between
1997 and 2003. Because the triggered analysis has a very low background rate the sensitivity
should grow linearly with the number of bursts studied. Given the same set of bursts, the sensi-
tivity of the triggered analysis is only a factor∼4 worse than that of the neutrino-induced muon
search. But, unlike the triggered up-going muon search, thetriggered cascade analysis is sensitive
to gamma-ray bursts in both the Southern and Northern Hemisphere. This can potentially double
the sensitivity. In the case of the rolling analysis, the lack of spatial and temporal constraints results
in a reduced per-burst sensitivity relative to triggered analyses, yet allows it to sample from a larger
group of transients. This analysis therefore has the potential to detect sources missed by other
methods. It thus serves as a useful complement to triggered GRB searches, especially during peri-
ods without large satellite experiments dedicated to GRB study. It should be noted that AMANDA
searches for diffuse fluxes of extraterrestrial neutrinos using cascades (Ackermann et al. 2004;
Ahrens et al. 2003b) can also be used to establish limits on neutrino emission by GRBs. But given
the same exposure the analyses presented here have better sensitivity because time correlations
significantly reduce the background.

Future searches with the AMANDA and IceCube detectors may include bursts reported by
Swift, GLAST and other IPN satellites. The capabilities of IceCube are particularly promising.
Preliminary studies indicate that a triggered search for 300-500 bursts with IceCube would suffice
to set limits at levels lower than predicted by Waxman-Bahcall or would find evidence of the
existence of neutrinos in coincidence with GRBs with betterthan 5σ confidence. Also, bursts
that are particularly bright and close may result in signalsthat are strong enough to provide an
unequivocal discovery from a single burst (Razzaque and Mezsáros 2004). If such a burst were to
occur in the southern sky, only the cascade channel would be available to study this burst.
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Razzaque S. ,Meszáros P. and Waxman E. 2003b, Phys. Rev. Lett.90, 241103
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Table 1. Passing rates for experimental data and simulated Waxman-Bahcall spectrum,νe + ν̄e.

Exp Data νe + ν̄e

Initial 100% 100%
Filter 0.80% 62%
Ndir cut 0.10% 62%
SVM short window search 0.0027% 58%
SVM long window search 0.00040% 43%
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Table 2. Simulatedνe + ν̄e passing rates following a Waxman-Bahcall spectrum andoff-time
window passing rates for the triggered analysis.

Off-time νe + ν̄e

Initial 100% 100%
Filter 0.91% 67%
Lmpe < 6.9 0.05% 35%
Ec > 40 TeV 4×10−6% 25%
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Table 3. List of Bursts used for the triggered analysis.

BATSE ID Burst T90(s) RA (J2000) (deg) Dec (J2000) (deg)

7988 GRB000213 0.41 4.80 225.14
7989 GRB000217a 30.57 36.51 126.25
7990 GRB000217b n/ad -56.97 337.12c

7991 GRB000219 1.00 84.14 116.37a

7992 GRB000220 2.45 65.95 129.86
7994 GRB000221 26.18 77.70 136.20
7995 GRB000222 0.61 60.60 141.82
7997 GRB000225 16.70 0.53 215.99c

7998 GRB000226a 10.24 29.82 197.28
7999 GRB000226b 0.53 16.89 74.58
8001 GRB000227 75.14 -7.49 184.37
8002 GRB000228 15.00 65.16 99.50a

8004 GRB000229 32.51 47.87 81.33
8005 GRB000301 25.00 72.68 120.17a

8008 GRB000302a 22.66 54.28 147.47
8009 GRB000302b 14.34 30.66 196.18
8012 GRB000303 17.66 62.05 91.46
8018 GRB000306a 0.13 -10.17 206.83
8019 GRB000306b 51.20 40.92 68.39
8022 GRB000307 22.53 6.80 200.18
8026 GRB000310a 327.30 -10.86 234.59
8027 GRB000310b 1.54 -1.46 106.10
8030 GRB000312a 23.87 37.92 83.64
8031 GRB000312b 45.00 11.04 200.09a

8033 GRB000313a 0.13 -19.37 343.91a

8035 GRB000313b 0.77 10.25 319.57
8036 GRB000314 110.85 50.66 167.77
8039 GRB000317 83.52 32.66 136.70
8041 GRB000319 0.08 -13.86 275.00
8045 GRB000320 44.16 4.44 199.27
8047 GRB000321 0.89 36.39 153.04
8049 GRB000323 72.45 48.08 126.91
8050 GRB000324 3.90 -24.04 319.19
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Table 3—Continued

BATSE ID Burst T90(s) RA (J2000) (deg) Dec (J2000) (deg)

8053 GRB000326a 1.92 -26.36 24.96
8054 GRB000326b 21.25 -63.47 330.45
8056 GRB000330a 26.00 32.00 74.84c

8057 GRB000330b 0.40 39.26 110.80a

8058 GRB000331a 25.00 -15.02 271.73c

8059 GRB000331b 78.66 -46.29 290.09
8061 GRB000331c 26.94 59.77 132.44
8062 GRB000401 133.44 80.60 112.87
8063 GRB000402 106.62 6.65 78.59
8064 GRB000403 148.22 24.69 166.48
8066 GRB000407 28.93 -70.06 291.50
8068 GRB000408a 0.62 -71.85 319.61
8069 GRB000408b 4.78 67.22 146.61
8071 GRB000409 41.34 80.82 112.91
8072 GRB000410 0.35 -12.48 327.83
8073 GRB000412 33.02 -59.78 307.21
8074 GRB000415a 11.00 68.27 132.37a

8075 GRB000415b 20.80 69.42 144.65
8076 GRB000415c 0.22 -29.98 309.64
8077 GRB000417 1.66 2.93 357.46
8079 GRB000418 2.29 76.15 135.19
8080 GRB000420a 140.00 -44.66 267.84a

8081 GRB000420b 46.00 -14.59 238.81a

8082 GRB000420c 10.11 -63.01 332.47
8084 GRB000421 82.18 16.98 240.68
8085 GRB000424a 3.58 71.80 107.62
8086 GRB000424b 18.43 53.98 162.56
8087 GRB000429 164.35 -4.81 216.02
8089 GRB000502 0.12 -46.68 339.87
8097 GRB000508a 1.00 3.78 326.62c

8098 GRB000508b 136.19 -20.38 0.51
8099 GRB000508c 15.49 2.39 204.79
8100 GRB000509 20.00 -39.27 358.61a
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Table 3—Continued

BATSE ID Burst T90(s) RA (J2000) (deg) Dec (J2000) (deg)

8101 GRB000511a 115.01 -36.11 8.02
8102 GRB000511b 38.98 -8.70 30.83
8104 GRB000513a 0.38 -45.11 350.24
8105 GRB000513b 11.33 -12.01 260.19
8109 GRB000517 51.00 76.74 137.86a

8110 GRB000518 10.30 53.91 153.22
8111 GRB000519 14.59 3.33 78.40
8112 GRB000520 14.98 -0.31 5.64
8113 GRB000521 2.00 -6.25 104.25a b

8116 GRB000524 49.98 -41.36 252.93
8120 GRB000525 1.41 -39.44 355.92
8121 GRB000526 36.86 -10.32 353.05

aDuration selected by visual inspection of the light curves

bWe classify this burst as short

cBurst not used for triggered analysis

dNo T90 in catalog
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Table 4. Model Rejection Factors.

Model Triggered Analysis Rolling Analysis Energy Range (90% of events)

Waxman-Bahcall 110 120 70 TeV to 8 PeV
Razzaque et al. 25 27 50 TeV to 7 PeV

Murase-Nagataki (model A) 94 95 100 TeV to 10 PeV
Choked Bursts n/a 72 8 TeV to 61 TeV
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Fig. 1.— The cut variable (Nmuon
dir -Ncascade

dir )/Nhits. Values above 0.14 are removed. Ndir is the
number of hits for which there has been no scattering of the photons in the ice.
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Fig. 2.— The likelihood ratio compares the likelihood of a given event being a muon to the
likelihood of it being a cascade. This variable is shown as a representative example of the six
variables used in the support vector machine cut.
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Fig. 3.— Time difference∆t between surviving events for both the 100 second (left)and1 second
(right) searches. The solid line shows experimental data for all three years in which the analysis
was conducted. The dotted line shows the theoretical prediction, modeling the background with
a Poisson distribution and dividing each year into 5 periodswith unique Poissonian average rates.
Because the two time windows were optimized independently,these curves correspond to different
average event rates: 1 event per 2404 seconds for the long window search (left) and 1 event per
427 seconds for the short window search (right).
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Fig. 4.— Support Vector Machine output for experimental data, simulated background and sim-
ulated signal resulting from the three neutrino flavors. Values above zero are considered signal,
while those below zero are considered background and rejected. Muon neutrino signal simulation
corresponds to neutral current interactions .
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Fig. 5.— The upper left panel shows the distribution of frequency of events/10s after the filter has
been applied for GRB000312b. The lower left panel shows events/10s versus time. The gap in the
middle of the lower left panel corresponds to the on-time window. The upper right panel shows
the distribution of time difference,∆t, between consecutive events in the range 0-2 s. The lower
right panel is the same as the upper right but in the range 0-0.1 s. The gap observed near∆t=0 is
due to DAQ dead time.
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Fig. 6.— The left panel shows the distribution of the likelihood parameter,Lmpe. Data to the
right of the vertical line are excluded. The right panel shows the reconstructed cascade energy
distribution,Ec. Data to the left of the vertical line are excluded. The signal simulation, following
a Waxman-Bahcall spectrum, has been scaled up by a factor of 100,000. In both panels the vertical
line corresponds to the final selection criteria. The background simulation has been scaled to match
the number of events in the signal window.
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Fig. 7.— Neutrino effective areas as function of neutrino energy (at Earth surface) andcos θν for
the rolling analysis after all selection criteria have beenapplied, for both 1 and 100 second search
windows. The peak at 6.3 PeV is due to the Glashow resonance for ν̄e. The effective areas for
ντ for upgoing events are larger than forνe because of charged current regeneration. Effective
areas forνµ andν̄µ are much smaller, because neutrino-induced cascades are produced via neutral
current interactions only.
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Fig. 8.— Neutrino effective areas as function of neutrino energy (at Earth surface) andcos θν for
the triggered analysis after all selection criteria have been applied. The peak at 6.3 PeV is due to
the Glashow resonance forν̄e. The effective areas forντ for up-going events are larger than forνe

because of charged current regeneration.
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Fig. 9.— Predicted all-flavor diffuse neutrino fluxes and experimental limits. Models are shown in
dashed-dotted lines: Waxman (2003) (Entry W 03, red line in electronic version), Razzaque et al.
(2003b) (Entry R 03b, green line in electronic version), Murase and Nagataki (2006a) Model A
(Entry MN 06, blue line in electronic version) and and Meszáros and Waxman (2001) (Entry
MW 01, magenta line in electronic version). All theoreticalpredictions have been adjusted for
vacuum oscillations. Also shown are theRolling search limits (labeled Roll) in solid line (black
in the electronic version), andTriggered search limits (labeled Trigg) in dashed line (black in the
electronic version).
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