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Abstract. Physical property measurements of sediment cores containing natural gas 

hydrate are typically performed on material exposed at least briefly to non-in situ 

conditions during recovery.  To examine effects of a brief excursion from the gas-hydrate 

stability field, as can occur when pressure cores are transferred to pressurized storage 

vessels, we measured physical properties on laboratory-formed sand packs containing 

methane hydrate and methane pore gas.  After depressurizing samples to atmospheric 

pressure, we repressurized them into the methane-hydrate stability field and remeasured 

their physical properties. Thermal conductivity, shear strength, acoustic compressional 

and shear wave amplitudes and speeds are compared between the original and 

depressurized/repressurized samples.  X-ray computed tomography (CT) images track 

how the gas-hydrate distribution changes in the hydrate-cemented sands due to the 

depressurizaton/repressurization process.  Because depressurization-induced property 

changes can be substantial and are not easily predicted, particularly in water-saturated, 

hydrate-bearing sediment, maintaining pressure and temperature conditions throughout 

the core recovery and measurement process is critical for using laboratory measurements 

to estimate in situ properties. 

 

1. Introduction 

 
Pressures and temperatures in continental margin and permafrost sediments can 

stabilize gas hydrate, a crystalline solid in which hydrogen-bonded water molecules 

enclose individual guest molecules [Kvenvolden and Lorenson, 2001].  The most 

common guest molecule in naturally occurring gas hydrate is methane.  Hydrate-bound 

methane represents a potential energy resource [Kerr, 2004; Ruppel, 2007], and may play 
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a role as a greenhouse gas in the global climate [Kvenvolden, 1993].  Sediment 

weakening caused by gas-hydrate dissociation has the potential to cause submarine 

slumps or slides, endangering seafloor infrastructure [Hovland and Gudmestad, 2001; 

Nixon and Grozic, 2007]. 

Interest in methane hydrates has motivated several large-scale field efforts to recover 

and study hydrate-bearing sediment from marine environments and beneath permafrost.  

Pressure coring systems represent a significant advance toward recovering pristine cores 

from which to infer in-situ physical property values.  The Fugro and HYACE systems 

used aboard Ocean Drilling Program (ODP) Leg 204 [Leg 204 Shipboard Scientific 

Party, 2003] and International Ocean Drilling Program (IODP) Expedition 311 

[Expedition 311 Scientists, 2006] are designed to retrieve and preserve meter-long core 

samples near their in situ hydrostatic stress.  Although some physical property testing can 

be accomplished without ever releasing the hydrostatic stress [Yun, et al., 2006], 

specialized measurements, such as triaxial shear-strength tests, are not yet possible 

without a brief hydrostatic stress release. 

To accommodate these and other laboratory tests, pressure cores containing hydrate-

bearing sediment have been rapidly subsectioned and transferred at one atmosphere to 

storage and transfer vessels, in which they are subsequently repressurized and stabilized 

with methane gas [Collett, et al., 2006; Expedition 311 Scientists, 2006].  This process 

takes approximately five minutes to complete (P. Schultheiss, personal communication, 

2007). 

Pressure cores containing hydrate-bearing sediment have also been subsectioned and 

transferred into storage and transfer vessels through ball valves, which allow the process 
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to be completed with almost no loss of hydrostatic pressure [Collett, et al., 2006; Winters, 

et al., 2005].  Although core manipulation and measurement systems can be designed and 

built to accommodate sample transfers, many existing laboratory systems have not been 

designed with this capability.  For some measurements, pressurized transfer may never be 

possible.  In such cases, samples must undergo a one-atmosphere transfer to the 

laboratory apparatus prior to repressurization and the measurement of physical properties.  

In this work, we focus primarily on effects from a single one-atmosphere transfer, though 

we also consider a case involving a second transfer, as would be required to transfer 

material from a storage vessel into some laboratory systems. 

Rapidly venting a pressure core stored above 0°C to atmospheric pressure exposes the 

core to pressure well below the hydrate stability pressure, inducing hydrate dissociation 

and gas bubble formation.  Repressurization with methane once the subsectioned sample 

is placed in a storage and transfer vessel stabilizes hydrate remaining in the sample, but 

also provides gas for additional hydrate formation.  The net effect of such a transfer on 

the distribution of water, gas and hydrate within a core and the corresponding changes in 

the core’s physical properties must be evaluated to determine whether measurements on 

disturbed core provide values representative of the undisturbed core. 

To limit hydrate dissociation, cores have also been frozen prior to depressurization, or 

have been depressurized and subsequently stored in liquid nitrogen at atmospheric 

pressure.  Though hydrate dissociates more slowly when depressurized below 0°C [Stern, 

et al., 2001], pore water expansion during the freezing process can generate a network of 

cracks that significantly disturb the sediment fabric.  We discuss these effects in Section 
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5 with regard to recovering natural core material, but our laboratory work is focused on 

unfrozen material. 

To examine the alteration of hydrate-bearing sediment that undergoes hydrate 

dissociation caused by sample depressurization above 0°C and subsequent hydrate 

formation following sample repressurization, we measured physical properties of 

methane hydrate-cemented sands formed in the laboratory.  As discussed in Section 3, X-

Ray computed tomography (CT) imagery, thermal conductivity, shear strength, acoustic 

compressional and shear wave speeds and amplitudes were measured first on undisturbed 

hydrate-cemented sand samples, and then again after the samples equilibrated following a 

brief exposure to atmospheric pressure.  These results are presented in Section 4. 

By construction, our laboratory samples were combinations of sand, methane hydrate, 

water and free methane gas, formed in the presence of free gas as discussed in Section 2.  

Naturally-occurring hydrate formed in the presence of free gas is thought to occur in the 

shallow sediments of actively venting regions such as the Cascadia margin [Bohrmann, et 

al., 1998], and at the base of the hydrate stability zone where gas can be recycled into the 

hydrate stability field [Guerin, et al., 1999; Yuan, et al., 1999]. 

The extent to which hydrate cements sediment grains is still debated, even with regard 

to studies of a single site [Guerin and Goldberg, 2005; Lee and Collett, 2005], but the 

strong intergranular bonding observed in our laboratory-formed samples is analogous to 

the bonding observed highly hydrate-saturated sands [Yun, et al., 2007].  Sands 

containing pore-space hydrate saturations exceeding 50% have been found in permafrost 

[Lee and Collett, 1999; Lee and Collett, 2005; Mount Elbert Science Team, 2007] and 

marine settings [Matsumoto, 2002; Smith, et al., 2006], and represent potential resource 
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targets.  We discuss connections between our laboratory observations and the behavior of 

highly hydrate-saturated sands in Section 5. 

In sediment with lower hydrate saturations, particularly in fine-grained sediment, a 

brief depressurization can alter sediment physical properties via gas bubble formation and 

effective stress loss [Yun, et al., 2006] in addition to the hydrate redistribution we observe 

in our laboratory samples.  These processes are discussed in Section 6. 

 

2. Sample Preparation 

 

We created samples containing quartz sand, methane hydrate and methane gas in the 

pore space. The hydrate-bearing sand samples were all formed according to a single 

procedure for the physical property measurements conducted at the U.S. Geological 

Survey facility in Massachusetts and the CT scanning experiments carried out at 

Lawrence Berkeley National Laboratory in California.  Samples were not transferred 

between institutions.  

Ottawa sand with a grain size range of 50-300 µm for the CT scanning and 250-500 

µm for the physical property testing, was premixed with water, adding water in steps 

until the desired initial water content was reached.  Samples were formed by tamping 

~1cm lifts of the sand+water mixture into the measurement vessel.  This packing process 

produced samples with ~38% porosity, as determined from the overall sample volume 

and mass of sand and water used.  Sample-specific porosities and initial water saturations 

are given in Table 1.  The choice of quartz grain size represents the on-site availability, 

not intrinsic requirements of either the CT or physical property measurement systems. 
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Samples were then pressurized with methane gas and cooled into the hydrate-stability 

field.  Hydrate formation was allowed to continue until the formation rate became 

insignificant.  Apparatus-specific measurements, described below, were used to 

determine when the sample was equilibrated, so the formation times differ between 

systems.  Hydrate formed in this fashion within gas-rich, water-limited samples 

surrounds and cements sediment grains [Waite, et al., 2004]. 

The one-atmosphere transfer was simulated by depressurizing to one atmosphere, then 

repressurizing using methane gas.  The sample was then allowed to re-equilibrate until 

the hydrate formation rate became insignificant.  Timing for the depressurization and 

repressurization steps was guided by the five-minute transfer accomplished in the field.  

In practice however, depressurization and repressurization rates were limited by the 

complexity of the laboratory instrument used, and therefore varied from system to system 

as noted below. 

 

3. Measurement Technique 

 

Three separate systems were used to assess the effects of a brief depressurization on 

hydrate-bearing sands.  Schematics for all three systems are given in Figure 1, with 

details of their use given below. 

3.1. X-Ray Computed Tomography (CT):  CT was used to map the initial hydrate 

distribution as well as the hydrate distribution within the cemented sand resulting from a 

simulated one-atmosphere transfer.  A complete description of the CT imaging technique 

is given in Kneafsey et al. [2007].  To summarize, CT images were collected using a 
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modified Siemens HiQ medical X-ray computed tomography scanner (Fig. 1B), scanning 

0.5 cm slices over the length of the sample (Fig. 1A).  A CT image captures the sample 

density, with a resolution given by the voxel size.  For scans shown here, the voxel size 

was 0.25 x 0.25 x 5 mm.  The 5 cm diameter, 37 cm long cylindrical sample was jacketed 

in a rubber sleeve and surrounded by confining fluid in a pressure vessel.  The pressure 

vessel itself was housed in a temperature-controlled PVC jacket and placed in an 

insulating box. 

Methane hydrate was initially formed in sample CT 1 (see Table 1) at approximately 

4°C and 5.2 MPa methane pore pressure.  After 20 hours, the sample was scanned to 

obtain the initial gas-hydrate distribution.  From mass balance, it was determined that 

~67% of the initial pore water had converted to hydrate.  The average pore-space hydrate 

saturation was 35 ± 4%, with hydrate saturations ranging from 26% near the sample 

perimeter to 46% near the sample's axis (Figure 2).  The sample was then depressurized 

over the course of 10 minutes, held at atmospheric pressure for 6 minutes, then 

repressurized over a 10-minute period.  The sample was out of the methane hydrate 

stability field for 19 minutes.  CT scans were taken 1.66 and 24 hours after 

repressurization was completed.  Measured density changes in the sample before and 

after the simulated one-atmosphere transfer reflect both the redistribution of methane 

hydrate and any additional hydrate growth from previously unreacted water.  

 

3.2. Thermal Conductivity, λ:  Thermal conductivity is a measure of how easily heat 

travels through a material.  We measured λ using an axially-positioned probe in a 41-

mm-diameter, 133 mm long cylindrical sample as described by Waite et al. [2006].  The 
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measurement vessel is shown schematically in Figure 1C.  A resistive wire in the probe 

heats the sample, and λ is calculated from the temperature change measured by a 

thermistor in the probe.  The uncertainty in our thermal conductivity measurements is 

conservatively estimated to be ±1% [Waite, et al., 2006].  In a sand containing gas, λ is 

sensitive to the pore-space hydrate saturation [Waite, et al., 2002] and can be expected to 

change in response to a redistribution of hydrate around the thermistor. 

Two pore-space hydrate saturations were tested for thermal conductivity changes 

during a simulated one-atmosphere core transfer.  Characteristics of samples Thermal 1 

and 2 are given in Table 1.  Methane hydrate was formed at 5°C and 12 MPa methane 

pore pressure from initially partially water-saturated sand.  The confining pressure 

balanced the pore pressure, meaning the samples experienced no effective stress.  After 

11 days, the measured λ showed no further change, and hydrate formation was deemed 

complete.  Sample conditions were changed to 6.1°C and 12 MPa methane pore pressure 

and allowed to equilibrate overnight at the test conditions used in the acoustic and 

strength measurements described below. 

The simulated one-atmosphere transfer was carried out by dropping the pore and 

confining pressures to atmospheric pressure over a 1-minute period.  Three minutes later, 

the pore and confining pressures were increased to 12 MPa over 1 minute.  To examine 

the effects of a second one-atmosphere transfer, as would occur if a core were transferred 

out of a storage vessel and into a laboratory system, a second 

depressurization/repressurization cycle was carried out, 7 days after the first simulated 

transfer. 
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3.3. Acoustic wave speed:  Compressional and shear waves contain information about 

the rigidity of grain-to-grain contacts, which in turn is affected by the extent to which 

hydrate binds grains together [Helgerud, et al., 1999].  We used the Gas Hydrate And 

Sediment Test Laboratory Instrument (GHASTLI), described by Winters et al. [2000], to 

perform compressional and shear wave analysis on methane-hydrate-cemented sands 

containing two different pore-space hydrate saturations (GHASTLI 1, 1a, 2 and 2a in 

Table 1).  As with the thermal property samples, the remaining pore space was filled with 

pressurized methane gas. 

Cylindrical samples approximately 14 cm high and 7 cm in diameter were prepared as 

described above by tamping premixed, wet sand into a flexible liner, subsequently capped 

at each end by a metal endcap.  Figure 1D shows a prepared sample, ready to be raised 

into the GHASTLI pressure chamber. 

The endcaps house axially-positioned, 1 MHz compressional and shear wave 

transducers. Acoustic waves were produced in the top endcap and were detected by the 

transducer crystal in the bottom endcap.  Wave speed was calculated by dividing the 

acoustic travel time through the sample by the sample length, as measured using a linear 

voltage displacement transducer.  The acoustic wave speed uncertainty is ±0.5% for 

compressional wave speeds, Vp [Waite, et al., 2004].  Because of uncertainties in 

choosing the shear wave arrival, the uncertainty in the shear wave speed, Vs, is 

conservatively estimated to be ±3%. 

In the GHASTLI pressure vessel, the sample's methane pore pressure, controlled by a 

syringe pump connected through a line in the endcap, was held at 12 MPa while the 

temperature was lowered from room temperature and held at 6.1°C.  The independently-
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controlled confining pressure was held via syringe pump at 12.25 MPa to impart an 

effective pressure of 250 kPa.  As hydrate formed in the sample, the acoustic signal 

increased in amplitude and the measured wave speed increased [Waite, et al., 2004].  

Hydrate formation was deemed complete when the acoustic amplitude and measured 

wave speed stabilized, 5 days after onset of hydrate formation for the low-saturation 

sample, 14 days for the higher-saturation sample. 

To simulate a one-atmosphere core transfer, we reduced the pore pressure and 

confining pressure together over the course of 3 minutes, held them at atmospheric 

pressure for 1.5 minutes, and repressurized them over the course of 5.5 minutes.  The 

samples were out of the methane-hydrate stability field for 7.5 minutes.  They were then 

allowed to equilibrate at the original formation conditions until the acoustic signal 

restabilized, which took 2 days for the low hydrate saturation sample, and 3 days for the 

high hydrate saturation sample. 

 

3.4. Shear Strength:  Triaxial shear-strength measurements provide a means of 

assessing sediment stability.  In hydrate-bearing sediment, strength loss resulting from 

hydrate dissociation can cause localized failures in drilling and seafloor pipeline 

applications [Hovland and Gudmestad, 2001; Moridis and Kowalsky, 2006], or regional-

scale slope failure [Paull, et al., 2000].  Undrained shear strength was measured by using 

a ram to axially strain the sample while the confining pressure, pore pressure, and load 

supported by the sample were recorded.  The ram extended at a constant 5.6 mm/hour, 

equivalent to an initial strain rate of 4.4 %/hour.  We ran the shear-strength test in the 
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undrained configuration, meaning the pore space was isolated and the pore pressure 

changed as the sample length decreased.  

Unlike the other property measurements described here, shear-strength measurements 

are destructive and therefore cannot be carried out on a single sample both before and 

after a simulated one-atmosphere transfer.  We estimate the effect of a one-atmosphere 

transfer on shear strength by comparing the shear strength for samples GHASTLI 1 and 

2, which undergo the transfer procedure, with nominally identical samples that do not 

undergo the simulated one-atmosphere transfer (GHASTLI 1a and 2a in Table 1).  Shear-

strength measurement uncertainties in hydrate-bearing sediment are difficult to quantify 

because shear strength depends sensitively on how sediment grains are packed, the extent 

to which they are interlocked, and their degree of cementation [Bowles, 1979]  

Difficulties in precisely replicating the distribution and sediment bonding by methane 

hydrate increases sample-to-sample variations in shear strength.  Extensive work by 

Hyodo et al. [2005] on laboratory-formed mixtures of methane hydrate and sediment 

suggests uncertainties of ±15% are to be expected.  

 

4. Laboratory results for gas-rich, methane hydrate-bearing sediment 

 

In a one-atmosphere transfer, methane-hydrate-cemented sediment first undergoes a 

depressurization-induced dissociation that can disrupt or destroy the sediment fabric and 

radically alter a range of physical properties [Francisca, et al., 2005].  Subsequent 

hydrate formation following repressurization will not likely restore all of the sample's 

physical properties, particularly if the initial and final hydrate distributions differ. 
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Here we look at the net physical property changes resulting from a brief pressure 

excursion to one atmosphere.  Conclusions are drawn by comparing measurements on a 

given sample before and after a brief depressurization, meaning sample-to-sample 

variations are not responsible for the observed property changes.  The exception is the 

undrained shear strength, Su, which as noted previously, requires a destructive test of two 

samples to evaluate the effects of a brief depressurization.  Sample-to-sample variability 

increases the Su analysis uncertainty relative to the other measured properties (see Table 

2).  Following the discussion of property changes resulting from a brief depressurization, 

we comment in Section 4.5 on the dependence of the sample's initial physical properties 

on hydrate saturation. 

 

4.1. X-Ray Computed Tomography (CT):  Density changes resulting from the 

simulated core retrieval process were observed in CT images taken 1.66 and ~24 hours 

after briefly depressurizing the sample.  Figure 3A is a cross section of sample C1 

showing the average density change 1.66 hr after the simulated core transfer, relative to 

the sample density after the initial hydrate formation.  Figure 3B shows the average 

density change measured ~24 hr after the depressurization/repressurization procedure, 

relative to the sample density after the initial hydrate formation.  The density changes are 

small enough that, in spite of the constant level of measurement noise, speckling is more 

apparent in the density difference profiles shown in Figure 3 than in the sample density 

profile shown in Figure 2.  

Figure 3 shows the average over 56 of the 78 scanned sections of the sample.  The 

remaining 22 sections contained serious scanning artifacts that rendered them unusable in 
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this study.  In any given slice, measurement noise tends to obscure the hydrate-

redistribution pattern, but a sensitivity analysis shows that density changes exceeding 

0.01 g/cm3 observed in regions of 0.04 cm2 in the averaged cross section have nearly a 

90% level of confidence and can be considered real.  The white holes in the center top of 

the cross-section are from thermocouples embedded in the sample.  The speckled pattern 

on the left side of the figures results from averaging scans down the length of a sample 

with a slightly non-uniform diameter. 

As discussed in Section 4.5, capillary action can cause water to migrate during the 

initial hydrate formation, leading to the radial inhomogeneity observed in Figure 1 prior 

to the brief depressurization.  The initial density distribution is not responsible for the 

density change pattern resulting from the brief depressurization, however.  Because the 

density change profiles shown in Figure 3 are the density difference between the post- 

and pre-depressurization densities, the initial sample's inhomogeneities are removed.  

Both the density increase near the sample's central axis, and the observed decrease at the 

sample's perimeter represent sample inhomogeneity caused by the brief depressurization. 

A density increase near the sample's central axis, combined with a density decrease 

observed at the sample perimeter, can be explained by a net inward migration of material.  

We propose the hydrate redistribution process illustrated in Figure 4 accounts for much 

of the observed density change.  Figure 4A represents a cross section of an essentially 

uniform distribution of sand grains, methane hydrate and methane gas.  Depressurizing 

the sample destabilizes the hydrate, which begins dissociating to methane gas and water 

(Fig. 4B).  Hydrate dissociation is endothermic, and because the surrounding bath 

provides the most readily available heat source to fuel dissociation, dissociation initially 
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occurs most efficiently on the outer sample perimeter.  Time-lapse CT imagery during 

hydrate dissociation shows the dissociation front propagates toward the central axis of the 

sample over time [Kneafsey, et al., 2007]. 

The sample is repressurized with methane gas before the dissociation front reaches the 

sample's central axis.  Hydrate persisting near the sample's central axis forms a surface 

for rapid growth of new hydrate following the repressurization step [Osegovic, et al., 

2006].  Capillary forces draw water to the hydrate formation front [Gupta, et al., 2006; 

Kneafsey, et al., 2007] (Fig. 4C), reducing the water available for hydrate formation near 

the sample perimeter.  Overall, the process increases the pore-space hydrate saturation 

near the sample's central axis, while reducing the hydrate saturation near the sample's 

perimeter (Figs. 3 and 4D). 

Two additional hydrate formation processes contribute to the density increase near the 

sample's central axis, though as shown below, neither process can account for the density 

decrease at the sample perimeter.  The two processes are: 1) new hydrate formation from 

water that had not yet formed hydrate just prior to the brief depressurization, and 2) 

hydrate formation from water that does not migrate during the brief depressurization. 

Prior to the brief depressurization of sample C1, approximately 67% of the initial 

water was thought to have been converted to hydrate.  Depressurization can crack hydrate 

layers that isolated portions of the remaining initial water volume from the surrounding 

methane gas [Kneafsey, et al., 2007].  Subsequent repressurization exposes methane gas 

to that previously unreacted water, allowing new hydrate growth.  This growth is in 

addition to growth from water liberated via hydrate dissociation during the brief 

depressurization.  The volume increase associated with converting a volume of water to 
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gas hydrate in sands at these pressures means low-density methane pore gas is replaced 

by higher-density hydrate, resulting in a net density increase. 

Because the water/methane interface is an active hydrate growth zone, a portion of the 

available water likely forms hydrate in place, without first migrating toward the sample's 

central axis.  Hydrate forming in place from water liberated during dissociation returns 

the local density to pre-depressurization levels, resulting in no net density change.  

Hydrate forming in place from previously unreacted water increases the sample density 

everywhere it occurs.  The relative contribution of this mechanism to the observed 

density increase near the sample's central axis is not known, but this mechanism has been 

observed in CT scans of similar samples in which the pore gas pressure was changed, but 

remained within the methane-hydrate stability field [Kneafsey, et al., 2007]. Without 

water migration resulting from the brief depressurization, however, hydrate formation 

following the brief depressurization cannot cause the density decrease noted at the 

sample's perimeter in Figure 3. 

We attribute the observed density changes induced by a brief depressurization to a 

combination of hydrate growth from water that has migrated toward the sample's central 

axis, in place hydrate re-growth from water liberated from hydrate during the 

depressurization, and new hydrate growth from previously unreacted water. 

As we show in Sections 4.1-4.5, physical property changes resulting from a brief 

depressurization of gas-rich, hydrate-bearing sand vary with the initial hydrate content, 

the amount of unreacted water prior to depressurization, and pore-size dependent 

capillary forces.  We therefore use the CT results to visualize hydrate redistribution, but 
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not to predict the magnitude of physical property changes occurring in other gas-rich, 

hydrate-bearing sands as a result of hydrate redistribution.  

 

4.2. Effect on thermal conductivity measurements:  Because we measure λ using an 

axially positioned probe, our measurement is most sensitive to changes occurring near the 

sample's central axis.  The hydrate redistribution observed in the CT scans should 

increase the measured λ for two reasons: (1) λ of methane hydrate is ~0.62 W/m·K 

[Waite, et al., 2007], more than an order of magnitude larger than that of the methane gas 

(0.045 W/m·K [Vargaftik, et al., 1993]) being replaced by hydrate; (2) methane hydrate 

provides a more efficient thermal bridge between the high-thermal-conductivity sand 

grains than does methane gas [Waite, et al., 2002]. 

The 5.4% increase in thermal conductivity for a pore-space hydrate saturation, Sh, of 

~20% is significantly less than the 13.8% increase observed for the Sh ≈ 34% case (Table 

2).  The dependence on initial hydrate saturation likely reflects differences not only in the 

extent of the hydrate migration toward the sample's central axis, but also in the amount of 

new hydrate growth from pore water that became isolated from the methane gas and did 

not form hydrate during the initial hydrate synthesis. 

A second one-atmosphere transfer was carried out on both samples, causing an 

additional increase in λ. The effect was smaller than for the first cycle, resulting in an 

additional 3.6% increase for the low-hydrate-saturation sample and an additional 2.5% 

increase for the higher-hydrate-saturation sample.  Hydrate redistribution following the 

first depressurization cycle reduces the hydrate saturation in the outer portions of the 

sample.  Reducing the volume of hydrate near the outer surface of the sample, where 
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hydrate is most susceptible to alteration from a brief depressurization, mutes the impact 

of a subsequent brief depressurization on the sample's physical properties.  

The impact of a one-atmosphere transfer on λ depends on the location at which λ is 

measured.  If we had adopted a guarded-plate measurement scheme in which the sensor is 

placed on the sample surface rather than the interior [Cook and Leaist, 1983; Taylor, et 

al., 2007], our measurement sensitivity would have been highest in the zone of hydrate 

depletion.  We would therefore have expected a decrease rather than increase in λ.  The 

physical property variation with measurement location in a sample further complicates 

the estimation of in situ properties from property measurements of disturbed core 

material. 

 

4.3. Effect on acoustic wave speed measurements:  As with thermal conductivity 

measurements, our acoustic measurements are most sensitive to changes occurring along 

the sample's central axis because of the central location of our transducers in their 

endcaps.  Increasing the hydrate saturation along the sample's axis is expected to more 

effectively cement sand grains, stiffen the sample, and thereby increase the measured 

wave speed [Dvorkin, et al., 2000] in the central portion of the sample where the 

transducers are most sensitive.  As the sample stiffens with increasing hydrate 

cementation of the sand grains, acoustic transmission should be more efficient, increasing 

the observed acoustic amplitude [Waite, et al., 2004]. 

Figure 5 compares the acoustic signal produced by the shear wave crystals before and 

after the brief excursion from the hydrate stability field.  Results from the higher of the 

two hydrate saturations tested are shown, but both samples display the same basic 
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waveform changes: (1) acoustic travel times generally decrease, meaning the associated 

wave speeds increase; (2) acoustic amplitudes generally increase, by 66% in the case of 

the shear wave shown in Figure 5. 

As noted in the CT results, hydrate forms rapidly following repressurization.  Even 

just 3 hours after repressurization, the waveform amplitude surpassed the pre-

depressurizaton amplitude (blue curve in Fig. 5).  The waveform required only 3 days to 

fully develop and equilibrate following repressurization (red curve in Fig. 5), as 

compared to the 14 days required for the initial waveform to grow and stabilize. 

As shown in Table 2, the P-wave speed, Vp, for the GHASTLI 2 sample decreased by 

2.4%.  The correspondingly large 47% increase in shear wave speed, Vs, suggests hydrate 

redistribution and new hydrate growth significantly increased the grain-to-grain stiffness 

along the central axis of the sample.  In the presence of free gas this stiffness increase 

could indicate enhanced intergranular cementation, but the corresponding P- wave speed 

and amplitude increase [Lee, 2004] is not observed.  An enhanced S-wave speed response 

coupled with a muted P-wave speed response to an increased hydrate saturation has been 

observed in laboratory studies of THF hydrate-bearing sand [Yun, et al., 2005].  Yun et 

al. [2005] show how such a response can be modeled assuming hydrate forms initially on 

the surface of grains, with subsequent growth into the pore space rather than at grain 

contacts.  As discussed in Section 5, an insensitivity of Vp to a brief depressurization has 

also been observed in naturally-occurring, highly-cemented sands [Winters, et al., 1999]. 

 

4.4. Effect on shear strength measurements:  The hydrate saturation increase along the 

sample axis resulting from a brief depressurization has the potential to stiffen the sample 
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by strengthening bonds between sand grains, but that strengthening comes at the expense 

of cement lost from between grains near the sample perimeter during the brief 

depressurization.  Despite changes in hydrate distribution, the average equilibrium 

concentration of gas hydrate within any cross section may therefore be similar before and 

after a brief depressurization. 

Figure 6 compares the shear-strength response to axial strain in four different samples.  

The simulated one-atmosphere transfer appears to reduce the peak shear stress each 

sample can support, but even the peak stress decrease of 18% for the Sh ≈ 20% case is 

within the expected sample-to-sample variation of ±15%. 

Other shear characteristics do not correlate with the effects of hydrate redistribution.  

Prior to failure, for instance, the slope of shear stress versus strain is nearly independent 

of hydrate saturation, in agreement with measurements on methane-hydrate-bearing 

sediment by Hyodo et al. [2005], and that slope does not change dramatically as a result 

of hydrate redistribution.  The shear-stress decrease following the peak stress also does 

not correlate with the hydrate redistribution, becoming more pronounced for the Sh ≈ 20% 

case, but less pronounced for the Sh ≈ 43% case.  Based on our study, the shear-strength 

measurement changes are not significantly correlated with effects of hydrate 

redistribution in cemented, gas-rich sand samples.  This lack of correlation complicates 

the assessment of in situ shear properties based on measurements of briefly depressurized 

samples. 

 

4.5. Hydrate formation controls on the initial physical property measurements:  In the 

same fashion that a brief depressurization induces water migration via capillary action 
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within a sample, capillary action causes water to migrate within a sample during the 

initial hydrate formation procedure [Kneafsey, et al., 2007].  As shown in Figure 2, an 

initially uniform sample of partially-water-saturated sand can form a slightly 

inhomogeneous hydrate-bearing sand.  While it is possible that our higher-hydrate-

saturation samples exhibit lower thermal conductivity and shear wave speed than their 

lower-hydrate-saturation counterparts because of differences in their formation-induced 

inhomogeneities, the inhomogeneities have not yet been quantified in terms of the extent 

to which they depend on initial water saturation, hydrate formation rate, and other factors. 

 
5. Implications for highly hydrate-saturated sand 

 

The weak effect a brief depressurization has on Vp in our laboratory-formed, hydrate-

bearing sands has also been observed in a hydrate-bearing sand sample recovered beneath 

permafrost at the Mallik 2L-38 site in the MacKenzie Delta region of the Canadian 

Northwest Territories [Winters, et al., 1999].  In spite of obvious differences in sample 

character and handling, the Mallik sample provides a link between our laboratory results 

and expectations for highly hydrate-saturated sands. 

The Mallik 2L-38 core contained pore space hydrate saturations of 70-74% [Lee and 

Collett, 1999].  Collected as a conventional core, the sample was depressurized during its 

recovery from depth.  The sample also froze during retrieval through the overlying 

permafrost.  The sample was stored in a methane-pressurized vessel and kept frozen 

during transport to the GHASTLI facility.  The sample was then depressurized briefly 

below the freezing temperature before being transferred into GHASTLI at room 

temperature. 
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The core's transfer into GHASTLI is similar to the brief depressurization experienced 

by our laboratory-formed, hydrate-bearing sands.  The Mallik sample was depressurized 

while it was frozen, which limits the hydrate dissociation rate [Stern, et al., 2001].  The 

sample partially thawed during the room-temperature transition into GHASTLI, however 

[Winters, et al., 1999].  Similar to Fig. 4, the sample was most susceptible to dissociation 

near its cylindrical surface prior to being repressurized into the methane hydrate stability 

field.  In spite of the potential for sample disturbance during retrieval, transport and 

transfer into GHASTLI, Vp for the Mallik 2L-38 core measured in GHASTLI was in 

agreement with downhole logging results [Winters, et al., 1999]. 

A key similarity between our laboratory-formed, hydrate-cemented sands and the 

Mallik sample is the extent to which methane hydrate bonds sediment grains.  Naturally 

occurring hydrate in sand is generally thought to be a load-bearing sediment component 

[Kleinberg, et al., 2005], rather than providing the strong intergranular bonding seen in 

out hydrate-cemented laboratory samples.  Nevertheless, in laboratory studies of non-

cementing THF hydrate sediments with pore-space hydrate contents exceeding 50% 

appear to maintain intergranular bonding by hydrate during a reduction in effective stress, 

limiting the sample alteration during sample recovery as long as the sediment is returned 

to its in situ effective stress state prior to measuring the acoustic wave speeds [Lee, et al., 

2008].  Pore space hydrate saturations exceeding 50% in sands have been found not only 

at the Mallik site, but also beneath permafrost at the Mt. Elbert site on the Alaskan North 

Slope [Mount Elbert Science Team, 2007], as well as in marine sands in the Nankai 

Trough offshore Japan [Matsumoto, 2002], and at the Tigershark well in the Gulf of 

Mexico [Smith, et al., 2006]. 
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Our laboratory technique, forming methane hydrate from partially water-saturated 

sands, cements sand grains with hydrate, providing strong intergranular bonding.  

Following the primary hydrate formation stage, Vp in the 43% hydrate saturation sample 

is 3430 m/s (see Table 2), more than triple the value for the partially-water-saturated sand 

pack prior to hydrate formation [Waite, et al., 2004].  Even in even our 20% hydrate 

saturation sample, Vp, changes by less than 5% in response to a brief depressurization.  

This resilience in Vp is not expected in non-cementing hydrate cases for all hydrate 

saturation levels, however.  For pore-space hydrate contents below ~40%, intergranular 

bonding by hydrate is less significant and effective stress changes can alter the sample 

[Yun, et al., 2007]. 

An important difference between our laboratory samples and the Mallik 2L-38 core is 

the temperature during depressurization.  Our laboratory samples were above freezing 

prior to depressurization, while the Mallik core was frozen.  Depressurization below the 

freezing point preserves hydrate by lowering the dissociation rate [Stern, et al., 2001], but 

freezing also causes interstitial pore water to expand, potentially fracturing the sediment. 

In highly hydrate-saturated sands such as the Mallik 2L-38 sample, consistent Vp 

results from laboratory and downhole logging measurements [Winters, et al., 1999] imply 

pore water volumes were low enough that pore-water freezing did not significantly alter 

the sample.  Prior to depressurization, freezing high hydrate-content sands even from 

marine environments may preserve hydrate without significantly altering the host 

sediment fabric.  Lower hydrate-content sediments, however, may contain enough water 

that expansion due to pore-water freezing does significantly disturb the host sediment 

fabric. 
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6. Implications for water-saturated, methane hydrate-bearing sediment 

 

A critical difference between the gas-rich, hydrate-bearing sand samples discussed 

above and water-saturated hydrate-bearing core recovered in the field is the extent to 

which gas produced during a brief depressurization escapes the sample.  Our gas-rich, 

hydrate-bearing sands were permeable, containing gas-filled pathways through which gas 

produced via hydrate dissociation could escape the sample during depressurization.  In 

water-saturated sediment, particularly fine-grained sediment, such vent pathways are 

restricted.  These restrictions lead to bubble formation and effective stress reduction [Yun, 

et al., 2006], both of which are exacerbated by methane hydrate dissociation.  As 

discussed below, bubble formation and effective stress reduction, combined with hydrate 

redistribution, can lead to physical property changes that vary from sample to sample and 

are therefore difficult to correct for. 

 

6.1. Bubble formation:  Depressurizing water-saturated, hydrate-bearing sediment 

draws gas dissolved in the pore water out of solution in addition to producing gas via 

hydrate dissociation.  Repressurization can force gas back into the dissolved phase, but 

the maximum quantity of dissolved gas is limited by the gas's solubility in water.  In a 

sample containing gas produced from hydrate dissociation, the solubility limit can be 

exceeded, allowing hydrate-forming gas to remain in the gas phase immediately 

following repressurization.  The persistence of gas bubbles following pressurization can 

lead to hydrate formation, because the bubble's gas-water interface provides an efficient 

hydrate growth surface [Freer, et al., 2001].  Because bubble location and volume depend 
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on the sample's lithology, pore-water methane saturation, and hydrate content, hydrate 

formed from bubbles will be distributed according to those sample-dependent 

characteristics.  As shown in our laboratory samples, hydrate redistribution can alter the 

sample's physical properties. 

Bubble growth itself can alter a sample's physical properties, attenuating 

compressional waves and reducing the measured wave speed relative to in situ values.  

The magnitude of the change depends on the extent of bubble formation, which itself 

depends on the sample's lithology, pore-water methane saturation, and hydrate content.  

Although hydrate dissociation can significantly increase the amount of free gas produced 

as a result of core depressurizaton, bubble growth is a concern for any water-saturated 

core with dissolved gas, regardless of whether hydrate is present. 

By maintaining near in-situ hydrostatic pressure throughout the core-acquisition and 

property-measurement process, bubble formation and hydrate redistribution can be 

curtailed.  Compressional wave-speed measurements made using the Instrumented 

Pressure Testing Chamber (IPTC) on clay-rich Gulf of Mexico sediment recovered and 

measured while maintaining near in-situ pressure are only 2% below the logging while 

drilling (LWD) results [Yun, et al., 2006]. 

 

6.2. Loss of effective stress: Although current pressure-coring technology is able to 

preserve near-in situ hydrostatic pressure, the effective stress pushing sediment grains 

against each other is not maintained.  Particularly in fine-grained sediment, bubble 

formation caused by hydrate dissociation can increase the pore pressure, further reducing 

the effective stress [Xu and Germanovich, 2006], weakening grain-to-grain contacts and 
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reducing the sediment frame stiffness [Francisca, et al., 2005].  As a result, the 

compressional and shear wave speeds as well as the sediment strength are all reduced 

[Yun, et al., 2006].  As described above, bubble formation varies from sample to sample, 

complicating efforts to predict or account for the ensuing degradation of the matrix 

stiffness.  By maintaining the hydrostatic pressure, however, pressure coring can avoid 

the additional matrix weakening caused by bubble formation and expansion. 

 

7. Conclusion 

 

We have shown that in gas-rich, laboratory-formed methane-hydrate-cemented sands, 

even a brief depressurization to one atmosphere induces hydrate redistribution within the 

sample.  This redistribution creates a sample with new physical properties that can differ 

significantly from those of the original sample.  Measured changes depend on whether a 

given property is measured near the sample perimeter, which loses hydrate during the 

simulated core transfer, or near the sample center, which gains hydrate.  Briefly dropping 

the pressure to one atmosphere a second time, to simulate the transfer of core from a 

storage vessel into a laboratory measurement apparatus, leads to continued hydrate 

redistribution, though to a lesser extent than the initial simulated transfer. 

Estimating in situ properties from initially water-saturated recovered core that has 

experienced a depressurization cycle is further complicated by bubble formation and loss 

of effective stress, with hydrate dissociation exacerbating both processes.  Property 

changes therefore vary not only based on which portion of the sample is being measured, 

but on sample-to-sample differences in initial hydrate saturation and lithology.  
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Unpredictable location- and sample-dependent property changes complicate the 

assessment of in situ properties based on recovered core material.  Accurate in situ 

property estimates from recovered cores require careful preservation of the in situ stress 

state throughout the recovery and measurement process, even in non hydrate-bearing 

material. 
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Table 1.  Porosity, φ, and pore-space hydrate saturation, Sh, of hydrate-bearing Ottawa 

sands in this study prior to the brief depressurization.  Remaining pore space 

contains pressurized methane gas.  Full conversion of pore water to methane 

hydrate is assumed for all samples except CT 1, which contains a 14.5% pore-

space saturation of residual water in addition to methane hydrate.  GHASTLI 

samples 1a and 2a were not subjected to a brief depressurization.  Uncertainties 

are ±4%. 

 
Sample φ (%) Sh (%) 
CT 1 38 35 

Thermal 1 37 20 
Thermal 2 42 34 

GHASTLI 1 37 20 
GHASTLI 1a 38 19 

GHASTLI 2, 2a 37 43 
 
 
 
 
 
Table 2.  Physical property changes in methane-hydrate-cemented sands resulting from a 

brief depressurization to one atmosphere, followed by a repressurization into the 

methane hydrate stability field.  Measured properties include thermal conductivity, λ, 

compressional and shear wave speeds, Vp and Vs respectively, and triaxial undrained 

shear strength, Su. 

Property Porosity (%) Sh (%) Initial Value Final Value Change (%) Uncertainty(%) 
λ 37 20 1.67 W/m·K 1.76 W/m·K 5.4 ±1 
λ 42 34 1.60 W/m·K 1.82 W/m·K 13.8 ±1 
Vp 37 20 2830 m/s 2960 m/s 4.5 ±0.5 
Vp 37 43 3430 m/s 3350 m/s -2.4 ±0.5 
Vs 37 20 1580 m/s 1770 m/s 11.7 ±3 
Vs 37 43 1320 m/s 1945 m/s 47.0 ±3 
Su 37/38† 20/19† 2.31 MPa 1.89 MPa -18 ±15 
Su 37 43 2.94 MPa 2.81 MPa -4.5 ±15 

 †The two samples required for undrained shear strength differed slightly in their initial 
porosity and hydrate saturation, Sh (see Table 1). 
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Figure Captions 
 
Figure 1.  A:  Schematic of the X-Ray CT sample vessel.  The sample is 37 cm long, by 5 

cm in diameter.  B: The CT sample vessel and surrounding temperature control 

bath are positioned in the X-Ray CT scanner using a translating table.  C:  

Cutaway schematic of the thermal conductivity pressure vessel. Cylindrical 

hydrate samples 13.3 cm long by 4.1 cm in diameter are formed around a thermal 

probe (enlarged to show detail).  D: View of a 14 cm long, 7 cm diameter sample 

prior to raising the sample up into the main pressure chamber of the Gas Hydrate 

And Sediment Test Laboratory Instrument (GHASTLI).  Acoustic measurements 

are made using axially-positioned sensors in the top and bottom endcaps.  Shear 

strength measurements are made by axially straining the sample using a ram 

brought into contact with the heat exchanger.  The load supported by the sample 

during shear is measured by the load cell beneath the sample. 

 

Figure 2.  Cross-section of a methane-hydrate-cemented quartz sand containing methane 

gas in the pore space.  Figure represents the average of 56 CT scans along the 

length of the sample. The pore-space hydrate saturation ranges from 26 to 46%, 

with an average of 35 ± 4%. Speckling in the center top portion of the scan is 

caused by thermocouples embedded in the sample. 

 

Figure 3.  Density change in a methane-hydrate-cemented quartz sand as a result of a 

brief depressurization to one atmosphere and subsequent repressurization with 

methane gas.  Figure represents the average of 56 CT scans along the length of the 
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sample.  Hydrate reforms rapidly, measurably increasing the density near the 

central sample axis while decreasing the density near the sample surface within 

1.66 hours of repressurization (A).  The redistribution pattern becomes more 

accentuated ~24 hours after repressurization (B).  White holes in the center top 

portion of both scans are thermocouples embedded in the sample. 

 

Figure 4.   Cross-sectional schematic (not to scale) of methane hydrate redistribution in a 

quartz sand (grey circles) during a depressurization and subsequent 

repressurization with methane gas:  (A) Initially, methane hydrate (red) and 

methane gas (white) are fairly uniformly distributed;  (B) Depressurization 

induces hydrate dissociation to water (dark blue) and methane gas.  Dissociation 

front moves inward (black arrows) as heat is supplied from the surrounding bath;  

(C) Hydrate growth following repressurization is most efficient where hydrate 

persists, drawing water inward via capillary action (black arrows);  (D) Final 

hydrate distribution is concentrated near the sample’s central axis and depleted 

near the sample perimeter. 

 

Figure 5. Hydrate redistribution resulting from a brief depressurization followed by 

repressurization changes certain aspects of the acoustic signal.  The original 

shear-wave arrival near 110 ms travel time (dotted blue curve) increases in 

amplitude by ~66%, and travels 47% faster (solid red curve) as a result of the 

hydrate redistribution.  A possible normal mode feature initially arriving near 80 
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µs (M. Lee personal communication, 2007), experiences a similar shift, but the 

small P wave arrival near 40 µs remains nearly unchanged. 

 

Figure 6. Triaxial shear testing for hydrate-cemented sands that have (dotted curves) and 

have not (solid curves) experienced a brief depressurization.  A brief 

depressurization does not significantly alter the shear stress dependence on strain 

prior to shear, but does reduce the peak shear stress.  The stress drop following 

the peak stress does not correlate with whether samples have experienced a brief 

depressurization. 
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