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Abstract— Datasets used in scientific and engineering applica-
tions are often modeled as dense multi-dimensional arrays. For
very large datasets, the corresponding array models are typically
stored out-of-core as array files. The array elements are mapped
onto linear consecutive locations that correspond to the linear
ordering of the multi-dimensional indices. Two conventional
mappings used are the row-major order and the column-major
order of multi-dimensional arrays. Such conventional mappings
of dense array files highly limit the performance of applications
and the extendibility of the dataset. Firstly, an array file that is
organized in say row-major order causes applications that subse-
quently access the data in column-major order, to have abysmal
performance. Secondly, any subsequent expansion of the array
file is limited to only one dimension. Expansions of such out-
of-core conventional arrays along arbitrary dimensions, require
storage reorganization that can be very expensive. We present
a solution for storing out-of-core dense extendible arrays that
resolve the two limitations. The method uses a mapping function
F∗(), together with information maintained in axial vectors, to
compute the linear address of an extendible array element when
passed its k-dimensional index. We also give the inverse function,
F−1

∗
() for deriving the k-dimensional index when given the linear

address. We show how the mapping function, in combination
with MPI-IO and a parallel file system, allows for the growth
of the extendible array without reorganization and no significant
performance degradation of applications accessing elements in
any desired order. We give methods for reading and writing sub-
arrays into and out of parallel applications that run on a cluster
of workstations, The axial-vectors are replicated and maintained
in each node that accesses sub-array elements.

I. INTRODUCTION

Multi-dimensional arrays constitute the fundamental data
structures used in scientif c computing. They include
1-dimensional structures, sometimes termed vectors; 2-
dimensional arrays referred to also as matrices and arbitrary
k-dimensional arrays of elements. An element is typically an
elementary data type of integer, real or complex. Arrays of ar-
bitrary size and dimensionality are used in a high performance
scientif c computing codes such as molecular dynamics, f nite-
element methods, climate modeling, scientif c simulations,
Astronomy, Astrophysics etc. The extensive use of algebraic
libraries, e.g.., LaPACK, ScaLAPACK BLACS, ATLAS [1],
Global Array (GA) Toolkit [2], attest to the array/matrix data
model used in scientif c computing. Persistent storage of these
arrays are in the form of array f les where the conceptual

model of a multi-dimensional array is still maintained but the
elements are mapped onto consecutive linear locations of the
f le. An array can be either sparse or dense thereby requiring
different formats in the storage. We concern ourselves to only
dense arrays in this paper.

In the last several years the various scientif c domains
have developed various f le formats suitable for their re-
spective applications. These include NetCDF [3], FITS [4]
and HDF [5]. These data formats are self-describing and
provide extensive specif c language application programmers
interface (API’s), for accessing array elements from applica-
tion programs. The data sets either consumed or generated
by these scientif c applications are from observational instru-
ments, scientif c instruments or large scale simulations. They
are generally very large and can grow incrementally to to
become of the order of terabytes. Processing of these data-
sets is done by applications that run as parallel or distributed
programs on a cluster of workstations or massively parallel
machines that involve hundreds to thousands of processors.
More signif cantly, recent advances in hardware and storage
capacity support the incremental growth of array datasets over
time. The use of high performance computing, realized by
low cost computing clusters, now provide the required parallel
processing capabilities for managing these datasets. Not only
should processing of array data be parallelized, but the array
allocation and access of these array f les (i.e., out-of-core
arrays) should be extendible.

An array denoted as A[N0][N1] . . . [Nk−1] is characterized
by the dimensionality or rank k and the bounds of its di-
mensions, {N0, N1, . . . , Nk−1}. Each element is referenced by
a k-dimensional index of the form A〈i0, i1 . . . , ik−1〉, and is
assigned to one of the M =

∏k−1
i=0 Ni, element locations. In

the allocation of the array elements in a f le, a computed-
accessmapping function F : (i0, i1 . . . , ik−1) → j, 0 ≤
j < M, maps each k-dimensional index to one of the M

locations. We say an array realization is weakly extendible
if any bound Ni, can be incremented by appending newly
allocated elements to the f le without modifying the mapping
function or reallocating already stored elements. It is strongly
extendible, if the dimensionality or rank k, can be extended as
well without modifying F(). Our use of the term extendible



array assumes weak extendibilitythrough out the rest of this
paper. We use the notation F() when referring to conventional
array mapping that allows extendibility in one dimension
only and use the notation F∗() when referring to a mapping
function that allows extendibility on all dimensions.

Array f les, such as NetCDF [6] and HDF5 [5] have par-
allel counterparts called parallel netCDF and parallel HDF5
respectively. Other known f le formats that can be processed
via cluster computing and parallel processing are the Disk
Resident Array [7] and Panda [8]. HDF5 f le format allows
for array f le extendibility but this is limited only to the non-
parallel version of the library. HDF5 achieves extendibility
through array chunking with the chunks indexed by a B-
Tree indexing method. Chunking is done by partitioning the
index range Ni of each dimension i into Ii regular intervals
of length ci

r so that
∑

Ii−1 ci
r < Ni ≤

∑
Ii

ci
r. A chunk

is a k-dimensional sub-array of elements whose shape is
characterized by [c0

r, c
1
r, . . . , c

k−1
r ] and its chunk size is given

by Bj =
∏k−1

i=0 ci
j elements. A chunk is the unit of access of

data between memory and f le storage.
Except for HDF5, these array f les allow for extendibility

only in one dimension. The limitation is due to the fact that
the mapping function used is generally one of the conven-
tional array mapping functions often referred to as row-major
ordering (i.e., C-language Order) or column-major ordering
(i.e., FORTRAN language order). Such array mappings exhibit
some restriction with respect to achievable performance. For
example an allocation that uses row-major ordering performs
poorly if an application subsequently desires the array in
column-major order.

We present, in this paper, a new method for allocating
arrays in a parallel f le system and accessing them from a
parallel MPI application programs that run on either a cluster
of workstations or massively parallel systems such as the IBM
SP2. We term this the DRX-MPlibrary which stands for Disk
Resident Extendible Arraylibrary for multi-processing. The
suite of library functions allow for reading and partitioning
of large disk resident array (called the principal array) into
sub-arrays and then distributing these onto the processes of a
parallel program. Any arbitrary dimension of the out-of-core
array can be extended by appending new array elements to the
f le without reorganizing already allocated array elements. The
memory resident sub-arrays of the processes are allocated in
a conventional array order using either row-major or column-
major order. Such an allocation is consistent with the process-
ing model of the Global-Array [2], [9], [10] toolkit. We use
the phrase principal array to refer to the totality of extendible
array elements partitioned into sub-arrays and managed by
the processes to avoid any confusion with the term Global-
Array that refers the GA-Library. DRX-MP is intended to be
an alternative library to the disk resident array (DRA) [11], [7]
which is used for the out-of-core storage of Global-Arrays.

Like HDF5, DRX-MP has a serial processing counterpart
library called simply as DRX and accesses an extendible array
f le that is stored in any POSIX-compliant Unix f le system.
DRX has the added feature that the memory arrays can be

maintained as either conventional arrays or memory resident
extendible arrayswith I/O caching using the BerkeleyDB
Mpool sub-system [12]. This paper focuses on DRX-MP and
considers its details with respect to storing dense extendible
arrays.

The elements of the arrays in DRX-MP are stored by
chunks where each chunk is of some f xed block size. An
array chunk A[I0, I1, . . . , Ik−1] has a k-dimensional index
〈I0, I1, . . . , Ik−1〉 that is mapped onto linear chunk address
locations q∗ using a mapping function F∗(). Given q∗, a corre-
sponding inverse function F−1

∗ () computes the k-dimensional
index of a chunk. The array expands by adjoining hyper-slabs
of array chunks that we call segments of array chunks. Figure 1
illustrates the case of a 2-dimensional array that has been
expanded by adjoining chunks of array segments. Detailed
explanation of the array growth is given in the next section. To
simplify our explanations, we will always assume that a single
process runs on each node of a cluster or a parallel computing
system.

In conventional k-dimensional arrays, eff cient computation
of the mapping function is carried out with the aid of vector
that holds k multiplying coeff cients for the respective indices.
We do the same by storing vectors of the multiplying co-
eff cients of the adjoined array chunks each time the array
expands. Each dimension has one vector. The stored vectors
of multiplicative coeff cients capture the history of the ex-
pansions and are organized as the meta-data information of
the extendible array. By replicating the meta-data information
over the nodes and storing the distribution information on
each node, the address of any element of the principal array
can be computed and each node can determine whether the
element is local or remote. Eff cient collective sub-arrays I/O
is done from the respective processes of a parallel program
by combining irregular distributed array access methods of
MPI-2 [13] with the mapping function presented in this paper.
Memory to memory exchange of array elements are carried out
either with MPI-2 remote memory addressing (RMA) features
or with the portable aggregate remote memory copy interface
(ARMCI) library [14], [15].

DRX-MP and DRX are not f le systems. Rather each is a
library of functions for managing and accessing extendible
multidimensional arrays stored in a f le system. DRX-MP
mimics the I/O interface of DRA so that it is consistent with
Global Array shared memory computational model over both
cluster and massively parallel computing systems.

The main contributions of this paper are that we present a
method for storing an extendible array in a parallel f le systems
such that the array can be extended along any dimension
without reorganizing the already allocated array elements. We
show how the array can be read and distributed as sub-arrays of
the respective processes of a parallel program. The sub-arrays
of the respective processes can also be written int a single
parallel extendible array f le. Such I/O’s can be done both
independently and also as a collective I/O. Further, we show
how one can access these extendible arrays and specify that
the sub-arrays in memory to be in conventional array order;



i.e., either in row-major or in column-major order.
The rest of the paper is organized as follows. Section II gives

an overview of the allocation scheme of the array elements
by chunks. We describe also how the array is partitioned
and distributed onto nodes of a cluster of workstations for
processing. The scheme is illustrated with a 2-dimensional
extendible array that is accessed using BLOCK by BLOCK
array distribution scheme. In Section III, we def ne the de-
tailed mapping function for computing the linear address of a
chunk when given its k-dimensional index and also give the
algorithm for computing the inverse function. The extendible
array f le is described in Section IV where we describe the
chunking technique and the associated meta-data information
maintained. We also discuss how arrays are read, distributed
and transposed to be in the desired ordering in memory and We
give some examples of the programming interface functions
that is used in combination with MPI application program.
We conclude with section V where we also give directions for
future work.

II. OVERVIEW OF ELEMENT ALLOCATION AND ACCESS
OF DRX-MP

A. Basic Concepts

The basic concepts of the allocation scheme of a dense
extendible array, both in-core and out out-of-core, is illustrated
in Figure 1. Consider the 2-dimensional principal array of
Figure 1, that is denoted by A[10][12] and stored in the f le F.
The array is stored in chunks each of shape 2× 3. We denote
a chunk of an array A by A[I0,I1] where I0 denotes the chunk
index of the f rst dimension and I1 denotes the chunk index
of the second dimension. In the illustration of Figure 1, the
emboldened labels denote the linear addresses of the chunks
in the f le. The chunk A[4,2] is assigned to the linear address
location 18 in the f le. Hence the mapping function computes
F∗(4, 2) = 18. The elements within a chunk are assigned
according to the conventional row-major ordering of an array.
Once we access the chunk that an element belongs, computing
the actual location of an element within the chunk is trivial.

The array expands along any dimension by allocating a
segment of array chunks. Which dimension and when an array
is expanded is determined by the application program. The
array of Figure 1 grew from an initial allocation of chunk 0.
It was then expanded by extending dimension 1 with chunk
1. This was followed with the extension of dimension 0 by
allocating the segment consisting of chunks 2 and 3. The same
dimension was then extended by appending chunks 4 and 5.
Each expansion allocates chunks to retain the rectilinear shape
of the array. Observe that the maximum index of a dimension
does not necessarily fall exactly on a segment boundary. In
our illustration, the maximum index value of dimension 1 is
9. The array bound of dimension 1 is N1 = 10.

Partitioning and distributing the array chunks onto processes
is always along chunk boundaries. One instance of a distribu-
tion of the array onto 4 processes is illustrated by the f gure.
We assume each a process is run on a separate node. The
entire array f le is partitioned into disjoint rectilinear regions

where each region is composed of a set of adjacent connected
chunks referred to as a zone. Each process is then assigned
a zone of the array where it becomes the primary owner. A
zone is comprised of a set a chunks that form a rectilinear
k-dimensional sub-array. When an array zone is allocated in
memory, it is mapped onto locations using the conventional
C-order or FORTRAN order.

Must I/O functions that read sub-array elements from disk
into an array region in memory utilize nested loops that scan
the index ranges that cover the sub-array in memory. The effect
is that the linear ordering in memory direct accesses to disk
that are random. Since the chunk layout on disk are sequential
and are in increasing order of the linear addresses, independent
I/O of sub-array regions are done as sequential scan of the
chunks on disk. The inverse mapping function F−1

∗ () is then
used to compute the k-dimensional index of the elements read.
Once the k-dimensional index is known the element can be
assigned to the desired location in memory.

Processes control zones of array elements. For example
the zone of array elements of process P2 is comprised of
chunks 9, 10, 16 and 17. Each processor has the meta-data
information of the entire principal array and can compute the
range of the chunk indices that def ne the zones of every other
process. To access an element from any process, the process
f rst determines which zone the element lies and consequently
which process rank owns the zone. The element can then be
accessed either as a local array element or as a remote array
element. The remote memory access methods and the MPI-
2 windowing features can now be applied for processing the
array as if each process has access to the entire principal array.
This model of programming is exactly the shared memory
programming model of the Global-Array toolkit [9].

The functionalities of DRX-MP subsumes those of the
Disk Residents Array (DRA) [11]. DRX-MP, has the added
capabilities that:

• the principal array can grow indef nitely out-of-core.
• the required layout order of the sub-arrays in memory

(either C-order or FORTRAN-order), can be specif ed
when the f le is read, and do not require out-of-core
array transpositions when used in different application
programs that require different ordering of the array
elements.

• accessing array elements is by a computed access method
which is equivalent to a hashing scheme.

• An element can be accessed either directly from the
f le or via a remote memory access of participating and
cooperating processes.

B. Related Work

DRX-MPcan be perceived as an an alternative to DRA [11],
[7] with the added capability that the array is extendible. DRA
is the persistent storage counterpart of the memory resident
Global-Array and since over the past several years, Global-
Array has developed a considerable library of processing
functionalities and interfaces to a number of mathematical and
scientif c computing libraries, we leverage the GA capabilities
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Fig. 1. An Allocation Scheme of 2-D Extendible Array File both In-Core and Out-Of Core

by providing the equivalent functionalities in DRX-MP as in
the DRA library.

Other related work include a number of scientif c f le
formats. Three of the common scientif c f le formats are
NetCDF [3], HDF5 [5] and Panda [16], [8]. NetCDF is a
standard library interface to data access functions for storing
and retrieving array data. Its basic format is a f le header
followed by an organized data section. The f le header contains
the meta-data for dimensions, attributes, and variables. The
data part consists of f xed size data that contain the data for
variables that don’t have an extendible dimension, followed
by data record of variables that have an expandable dimen-
sion. Only one dimension is extendible. Parallel NetCDF (or
pNetCDF) [6] is a parallel interface for NetCDF.

HDF5 is another f le formatting scheme for multi-
dimensional arrays. It stores multi-dimensional arrays by
chunking and allows for array extendability by manging the
chunks with a B-tree index. It is both a general purpose library
and a f le format for storing scientif c data. A parallel version
of HDF5 has parallel I/O though MPI-IO.

Panda is a library for input and output of multidimensional
arrays for cluster and sequential platforms. Panda’s array
allocation is done using chunking. It strips the f les in chunk
sizes across I/O server nodes of a parallel f le system. Panda
supports HPF-style BLOCK and BLOCK CYCLIC(k) data
distribution across multiple compute nodes on which Panda
clients run. The clients cooperate with the server nodes to
perform collective I/O. Unlike HDF5, Panda’s chunk layout

allows for extendability of the array in one dimension only.
This paper extends some of the earlier methods for realizing

memory resident extendible arrays. Extensive detailed discus-
sions of various techniques can be found in [17], [18], [19],
[20], [21], [22].

III. COMPUTING THE LINEAR CHUNK ADDRESSES

A. Some Allocation Schemes for Arrays

The mapping function for addressing the regular sized array
chunks on disk is very much similar to that for direct allocation
of array elements on either disk or linear consecutive locations
in memory. Consider the allocation of chunks as the cells of
Figure 2. Some possible allocation schemes for an array are
shown in Figures 2a - 2d. The labels in the cells indicate
the linear addresses to which the chunks are assigned relative
to the f rst chunk that is assigned to location 0. Figure 2a
shows the conventional row-major order. Since this allows
extendibility in one dimensional, this is not a mapping function
of choice. Figure 2b illustrates another possible mapping with
the standard Z-order (or Morton sequence order). It is one of a
number of space-f lling curves [23] whose mapping functions
are well def ned. An allocation scheme based on the Z-order
mapping function is constrained to have exponential growth
since the array can grow by doubling its size and only in a
cyclic order of its dimensions. A linear expansion of an array
is possible with the symmetric linear shell sequence order of
Figure 2c. A mapping function is well def ned but restricts
expansions to be in a cyclic order otherwise chunk locations



0

2

3

4

5

7

0 1 2 3 7654

1

6

0 1 765432
0

1

2

3

4

7

6

5

0

1

2

7

6

5

4

3

0 1 765432
0

1

2

3

4

7

6

5

0 1 2 3 4 5 6 7
0 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 22 23

24 25 26 27

21

29 30 31

32 33 34 3635 39

4241 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 62 6361

40

0

2 3

1 4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 2728

28 29

30 31

32 33

34 35

36 3737 38

38 39

40 41

42

44

43

45

46 47

48 49

50 51

52 53

54 55

56 57

58 59

60 61

62 63

0

1

3

8

24

35

48

1

2

4 5

6

7

159 10 11

12

13

14

16 17 18 19

20

21

22

23

25 26 27 28 29

30

31

32

33

34

36 37 3938 40 41

42

43

44

45

46

47

49 50 51 52 53 54 55

56

57

58

59

60

61

62

63

0 1

2 3

4

5

6

7

8 9 10 11

12 13 14 15

16

17

18

19

20 21 22 23 24

25 26 27 28 29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48 49 50 535251 54 55

56 57 58 59 60 61 62 63

(a) Row−major sequence order b) Z (or Morton) sequence order

c) Symmetric linear shell sequence order d) Arbitrary linear shell sequence order

Fig. 2. Some Element Allocation Schemes for Arrays

may be assigned but unused. A much desired allocation
scheme is that shown in Figure 2b. Any dimension can be
extended in an arbitrary manner, The axial-vector technique
uses k one dimensional vector of records to store information
that allows us to compute the linear address of any chunk.

B. The Axial-Vector Approach

Suppose we now consider an allocation of the chunks of a
3-dimensional extendible array shown in Figure 3. Figure 3a
depicts shows the cells as f xed size chunks. The computation
done is for the linear address location of a chunk. Figure 3b
shows the three Axial-Vectors of the respective dimensions
and the records contained in each vector. We explain the f elds
of these records subsequently. Let A[N∗

0][N
∗
1][N

∗
2], denote the

array in units of chunks, where N
∗
j represents the fact that the

bound has the propensity to grow. In this paper we address
only the problem of allowing extendibility in the array bounds
but not its rank. The labels shown in the cells represent the
linear addresses of the respective chunks, as a displacement
from the location of the f rst chunk.

Consider an initially array that is allocated as A[4][3][1],
where the dimensions D0, D1 and D2 have the respective
instantaneous bounds of N

∗
0 = 4, N∗

1 = 3 and N
∗
2 = 1.

Suppose the array is then extended along dimension D2 by
two chunk indices; one immediately followed by another. The
sequence of the two consecutive extensions along the same
dimension, although does occur at two different instances, this
is considered as an uninterrupted extensionof the dimension.
Repeated extensions of the same dimension, with no interven-
ing extension of a different dimension, is referred to as an
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Fig. 3. Illustration of a storage allocation of a 3-D extendible array

interrupted extension and is handled by only one expansion
record entry in the axial-vector.

Since the labels in the cells denote the chunk’s linear
addresses the chunk A[2,1,0] is assigned to address 7 and chunk
A[3,1,2] is assigned to address 34. Let the array be subsequently
extended along the D1 dimension by one index, then along the
D0 dimension by 2 indices and then along the D2 dimension
by 1.

Suppose that we now have a k-dimensional extendible array
A[N∗

0][N
∗
1] . . . [N

∗
k−1], for which dimension l is extended by

λl, so that the index range increases from N
∗
l to N

∗
l +λl. The

strategy is to allocate a segmentof chunks such that addresses
within the segmentare computed as displacements from the
location of the f rst chunk of the segment. Let the f rst chunk
of a segment of dimension l be denoted by A[0,0,...,N∗

l
,...,0].

Address calculation is computed in row-major order as before,
except that now dimension l is the least varying dimension in
the allocation scheme while all other dimensions retain their
relative order. Let us denote the location of A[0,0,...,N∗

l
,...,0]

as ℓM∗

l
where M

∗
l =

∏k−1
r=0(N∗

r). Then the desired mapping



function F∗() that computes the address q∗ of a new chunk
A[I0,I1,...Ik−1] during the allocation is given by:

q∗ = F∗(I0, I1, . . . Ik−1) = M
∗
l + (Il − N

∗
l )C

∗
l +

k−1∑

j=0
j 6=l

IjC
∗
j

where C∗
l =

k−1∏

j=0
j 6=l

N
∗
j and C∗

j =
k−1∏

r=j+1
r 6=l

N
∗
r

(1)

We need to retain for dimension l the values of M
∗
l - the

location of the f rst element of the segment, N
∗
l - the f rst

index of the adjoined segment, and C∗
r , 0 ≤ r < k - the

multiplying coeff cients, in some data structure so that these
can be easily retrieved to compute an chunk’s address within
the adjoined segment. These pieces of information is what
is kept in the records of the axial-vectors. The axial-vectors
denoted by Γj [Ej ], 0 ≤ j < k, and shown in Figure 3b, are
used to retain the required information. Ej is the number of
stored records for axial-vector Γj . Note that the number of
records in each axial-vector is always less than or equal to the
number of chunk indices of the corresponding dimension. It
is exactly the number of uninterrupted expansions along the
dimension. In the example of Figure 3b, E0 = 2, E1 = 2, and
E2 = 3.

The information of each expansion record of a dimension
is a record comprised of four f elds. For dimension l, the
ith entry denoted by Γl〈i〉 consists of Γl〈i〉.N

∗
l ; Γl〈i〉.M

∗
l ;

Γl〈i〉.C[k] - the stored multiplying coeff cients for computing
the displacement values within the segment; and Γl〈i〉.Sil

- the
displacement from the beginning of the f le where the segment
begins. Note however that for computing record addresses of
array f les, this last f eld is not required, since new records
are always allocated by appending to the existing array f le.
i Given a k-dimensional chunk index 〈I0, I1, . . . , Ik−1〉, the
main idea in correctly computing the linear address is in de-
termining which of the records Γ0〈z0〉, Γ1〈z1〉 . . . Γk−1〈zk−1〉,
has the f rst maximum starting address of its segments. The
index zj is given by a modif ed binary search algorithm
that always gives the highest index of the axial-vector where
the expansion record has a maximum starting address of the
segment less than or equal to Ij .

For example, suppose we desire the linear address of the
chunk A[4,2,2], we f rst note that z0 = 1, z1 = 0, and z2 = 1.
We then determine that

M
∗
l = max(Γ0〈1〉.M

∗
0, Γ1〈0〉.M

∗
1, Γ2〈1〉.M

∗
2)

= max(48,−1, 12);
(2)

from which we deduce that M
∗
l = 48, l = 0, and N

∗
l = N

∗
0 =

4. The computation F∗(〈4, 2, 2〉) = 48 + 12 × (4 − 4) + 3 ×
2 + 1 × 2 = 48 + 0 + 6 + 2 = 56. The value 56 is the linear
address relative to the starting address of 0.

The above calculations is equally applicable if the ex-
tendible array is realized in memory. In [22] we discuss

the equivalent memory resident extendible array allocation
function and formalize the characteristics of the extendible
array realization functions. The essential algorithm to compute
the chunk linear address is given below.

FunctionF∗ (〈Γ0, Γ1, . . . ,Γk−1〉, 〈I0, I1, . . . , Ik−1〉
)

input : k: number of dimensions
〈Γ0, Γ1 . . . Γk−1〉: a vector of k axial-
vectors
〈I0, I1 . . . Ik−1〉: the k-dimensional index

output : q∗ The linear address of the k-dimensional
index

begin
Initialize:
z ← 0 ;
iz ← bsearch(Γz, Iz) ;
S0 ← Γz〈iz〉.S

0
iz ;

for j ← 1 to k-1 do
ij ← bsearch(Γj , Ij) ;
if S0 < Γj〈ij〉.S

0
ij then

z ← j ;
iz ← ij ;
S0 ← Γj〈ij〉.S

0
ij ;

prodsum ← 0 ;
for j ← 0 to k − 1 do

if j = z then
prodsum← prodsum + (Ij−Γz〈iz〉.x)∗
Γz〈iz〉.Cj ;

else
prodsum ← prodsum + Ij ∗ Γz〈iz〉.Cj ;

return prodsum +Γz〈iz〉.x ;
end

C. The Inverse Mapping FunctionF−1
∗

The basic idea of deriving the k-dimensional index from the
linear location address of an array element is easily explained
with a conventional array mapping function. In row-major
order allocation, an element A〈i0, i1, . . . ik−1〉 is assigned to
location ℓq, where q is computed by the mapping function
def ned as
q = F(〈i0, i1, . . . ik−1〉) = i0 ∗ C0 + i1 ∗ C1 + · · ·+ ik−1 ∗ Ck−1

where Cj =

k−1∏

r=j+1

Nr, 0 ≤ j ≤ k − 1.

(3)

with A〈0, 0, . . . 0〉 assigned to location 0.
In most programming languages, since the bounds of

the arrays are known at compilation time, the coeff cients
C0, C1, . . . , Ck−1 are computed and stored during code gener-
ation. Consequently, given any k-dimensional index, the com-
putation of the corresponding linear address using Equation 3,
takes time O(k).



Suppose we know the linear address q of an array element,
the k-dimensional index 〈i0, i1, . . . ik−1〉 corresponding to
q can be computed by repeated modulus arithmetic with
the coeff cients Ck−2, Ck−3, . . . , C1 in turn, i.e., F−1(q) →
〈i0, i1, . . . ik−1〉. The same idea is carried over in computing
the inverse mapping function when given the linear chunk
address q∗, relative to the address of the chunk address 0.
First, we need to determine which record of the axial-vectors,
holds the coeff cients that we must apply. This is given by
the record whose starting chunk address of its segment is the
maximum lower boundof q∗. Be performing k independent
binary searches of the axial-vectors, we can locate this record
and consequently the necessary stored coeff cients. The rest
of the calculation is similar to computing the inverse of
a conventional array mapping function. The complexity of
computing this function is O(k + log E), where E is the total
number of axial records.

IV. MANAGING EXTENDING ARRAY FILES

The current implementation of the DRX-MPstorage scheme
is simply as a pair of f les in regular parallel f le system, such
as PVFS2 [24], that is accessed with MPI-IO. If a user requests
the creation of a f le named xyz, the corresponding pair of f les
created in the specif ed directory are xyz.xmdand xyz.xta. The
f le xyz.xmdholds the meta-data information while the xyz.xta
holds native binary f le of the principal array elements. The
array elements can be of three basic data types: integer, double
and complex. These correspond to the basic data types that can
be def ned and accessed via MPI-2 remote memory access
operations of MPI Get(), MPI Put() and MPI Accumulate().
From an application’s perspective, the extendible array f le
is referred to only as 〈dir path〉/xyz where 〈dir path〉 is
the relative or absolute directory path that is a pref x to the
f le’s name. The implementation of DRX-MPis targeted for an
eventual interface with the Global-Array toolkit so that it can
leverage all the array manipulation and scientif c computing
capabilities of the GA-toolkit. The current testbed of DRX-
MP is a cluster of workstations running PVFS2 and MPICH2.
Application programs are MPI programs that use MPI-IO
either exclusively or in combination with other libraries such
as Global-Arrays [2], HDF5 [5] and parallel NetCDF [6].
The library provides functions for creation, opening, closing,
accessing sub-arrays, etc., of the dataset maintained as an array
f le.

A. The Meta-Data File

The meta-data f le of the extendible multidimensional stor-
age scheme, maintains a persistent copy of the content of
the axial-vectorsused in the linear address calculation. Other
relevant pieces of information that are kept include the number
of dimensions of the array, the data type, values of the chunk
shape, the instantaneous bounds of the array, the number of
chunks in the principal array f le, etc. When a f le is opened,
the content of the meta-data f le is replicated in all participating
processes. When an application opens a f le, it obtains a handle
of a meta-data structure with which subsequent operations on

the datasets can be carried out. All subsequent operations on
the extendible array f le specify this handle as a one of its
parameters. Memory resident arrays are also associated with
a meta-data structure pointer irrespective of whether it is an
extendible array or a conventional array. It gives a handle for
communicating data between the disk resident extendible array
and the in memory resident array. The role of pointers to the
meta-data structure is similar to the use of a FILE handle in C
or the use of an MPI File() object in MPI IO. Various f elds
of the DRX-MPmeta-data object can be accessed and set via
various meta-data functions. We discuss some of the functions
for operating on the principal extendible array f le.

B. Parallel Access of Sub-Arrays

First the principle array of DRX-MP and its meta-data
f le can be initialized either from a single serial process or
from a parallel program. The array is partitioned into chunks
and written onto disk with chunks laid out either in row-
major order or in the symmetric linear shell order. Subsequent
expansion of the arrays can also be done by a serial process
that expands the array by extending any abrtitrary dimension.
Parallel expansions of the array can be done but by collective
writes of processes that controls zonesof array chunks that
can be extended.

Accessing the principal array as a collection of sub-arrays
into the distributed memories of a clusters requires using a
function call that requires parameters of group communicator,
the DRX-MP handle, an in-memory ordering of the indices
of array, the in-memory base address of the arrays, etc. The
manner in which the array is partitioned can be by default
load balancing algorithm of DRX-MP or controlled by the
application’s algorithmic requirements.

We illustrative how some of these functions are imple-
mented with MPI and MPI-IO calls with an example of how in
Figure 1, we get the 4 processes to read the chunks of arrays
in their respective zones. The sub-array chunks of Figure 1
are collectively read into the respective buffers of 4 processors
P0, P1, P2 and P3 with code listing shown below. We utilize
the irregular array method for collective I/O [25]. Note that
distibution of the chunks and mapping of chunks in memory
can be computed dynamically at run time. In the example code,
we assign these statically.

# i n c l u d e ” mpi . h ”
# i n c l u d e <s t d i o . h>
# i n c l u d e < s t d l i b . h>
# i n c l u d e < s t r i n g . h>
# d e f i n e ChunkSize 6
# d e f i n e ChunksPerPoc 5
# d e f i n e NDims 2
# d e f i n e BUFSIZE 256
i n t main ( i n t argc , c h a r ∗ a rgv [ ] )
{

i n t g l o b a l S i z e [ NDims ] ,
g loba lS i zeByChunks [ NDims ] ,
chunkShape [ NDims ] ;

i n t i , j , myRank , nprocs , noOfChunks ,
i e r r , memBufSize , count , n d b l s ;

i n t c h u n k D i s t r i b [ ] = {6 , 6 , 4 , 4} ;



i n t globalMap [ ] [ 6 ] = {{0 , 1 , 2 , 3 , 4 , 5} ,
{6 , 7 , 8 , 12 , 13 , 14} ,
{9 , 10 , 16 , 17 , −1, −1} ,
{11 , 15 , 18 , 19 , −1, −1} } ;

i n t inMemoryMap [ ] [ 6 ] = {{0 , 1 , 2 , 3 , 4 , 5} ,
{0 , 2 , 4 , 1 , 3 , 5} ,
{0 , 1 , 2 , 3 , −1, −1} ,
{0 , 1 , 2 , 3 , −1, −1}} ;

/ / n e g a t i v e e n t r i e s a r e n o t used
i n t ∗map , ∗inmemmap , ∗ b l o c k l e n s , mapSize ;
MPI Data type chunk , f i l e t y p e , memtype ;
MPI Comm comm ;
c h a r ∗ f i l e n a m e =

” / mnt / p v f s 2 / chunkedArray4 . d a t ” ;
MP I F i l e fh ;
M P I S t a t u s s t a t u s ;
MP I Of f se t d i s p ;
doub le ∗memBuf ;
M P I I n i t ( &argc , &argv ) ;
/∗ T hi s code f o r 2 x 2 p r o c e s s decomp . ∗ /
i e r r = MPI Comm size (MPI COMM WORLD,

&n p r o c s ) ;
i f ( n p r o c s != 4) {

p r i n t f ( ” S i z e must be 4 \n ” ) ;
MPI Abort ( MPI COMM WORLD, i e r r ) ;

}
/∗ C r e a t e c a r t t o p o l o g y of t h e p r o c e s s e s ∗ /
/ / −−−− I g n o r e c r e a t i n g t o p o l o g y −−−−
MPI Comm rank (MPI COMM WORLD, &myRank ) ;
i e r r = M P I F i l e o p e n (MPI COMM WORLD,

f i l e n a m e , MPI MODE RDONLY,
MPI INFO NULL , &fh ) ;

i f ( i e r r ) {
p r i n t f ( ” open f a i l u r e %s\n ” , f i l e n a m e ) ;
f f l u s h ( s t d o u t ) ;
MPI Abort ( MPI COMM WORLD, i e r r ) ;

}
/∗ For each p r o c e s s o r rank , we s h o u l d
∗ g e n e r a t e t h e chunk a d d r e s s e s . For t h i s
∗ i l l u s t r a t i o n we a s s i g n them s t a t i c a l l y ∗ /

noOfChunks = c h u n k D i s t r i b [ myRank ] ;
mapSize = ( noOfChunks +1) ∗ s i z e o f ( i n t ) ;
map = ( i n t ∗ ) ma l loc ( mapSize ) ;
inmemmap = ( i n t ∗ ) ma l loc ( mapSize ) ;
b l o c k l e n s = ( i n t ∗ ) ma l loc ( mapSize ) ;
f o r ( j = 0 ; j < noOfChunks ; j ++) {

map [ j ] = globalMap [ myRank ] [ j ] ;
inmemmap [ j ] = inMemoryMap [ myRank ] [ j ] ;
b l o c k l e n s [ j ] = 1 ;
p r i n t f ( ” Rank %d : map[%d ] = %d , \

inmemmap[%d ] = %d\n ” , myRank , j ,
map [ j ] , j , inmemmap [ j ] ) ;

}
MP I Type con t iguous ( ChunkSize ,

MPI DOUBLE, &chunk ) ;
MPI Type commit (&chunk ) ;
MPI Type indexed ( noOfChunks , b l o c k l e n s ,

map , chunk , &f i l e t y p e ) ;
MPI Type commit (& f i l e t y p e ) ;
MPI Type indexed ( noOfChunks , b l o c k l e n s ,

inmemmap , chunk , &memtype ) ;
MPI Type commit (&memtype ) ;

d i s p = 0 ;
/∗∗ Thi s i s how t o s e t f i l e view ∗∗ /
M P I F i l e s e t v i e w ( fh , d i sp , chunk ,

f i l e t y p e , ” n a t i v e ” , MPI INFO NULL ) ;

n d b l s = noOfChunks ∗ ChunkSize ;
memBufSize = ( n d b l s +1) ∗ s i z e o f ( doub le ) ;
memBuf = ( doub le ∗ ) ma l loc ( memBufSize ) ;

f o r ( i = 0 ; i < n d b l s ; i ++) {
memBuf [ i ] = −1.0 ;

}
M P I F i l e r e a d a l l ( fh , memBuf , 1 ,

memtype , &s t a t u s ) ;
MP I Get coun t (& s t a t u s , chunk , &c o u n t ) ;
p r i n t f ( ” Rank %d : Number r e a d = %d\n ” ,

myRank , c o u n t ) ;
i f ( myRank == 3) { / / Check chunks of r ank 3

f o r ( j = 0 ; j < n d b l s ; j ++) {
p r i n t f ( ” Rank %d : %d−>v a l = %f \n ” ,

myRank , j , memBuf [ j ] ) ;
}

}
M P I B a r r i e r (MPI COMM WORLD ) ;
M P I F i l e c l o s e (& fh ) ;
f r e e ( memBuf ) ; f r e e ( map ) ;
f r e e ( inmemmap ) ; f r e e ( b l o c k l e n s ) ;
M P I F i n a l i z e ( ) ;
r e t u r n EXIT SUCCESS ;

}

C. Disk Resident Extendible Array File Library

The library provides a f le header drxmp.h, that is included
in any application wishing to use functions of the library.
A pointer to the memory resident header of the meta-data
DRXMDHdrPtr is def ned. Some functions may return error
codes that are def ned in the context of the extendible array
f le environment. The meanings of most of the parameters
can be inferred from the names and data types used in the
prototype def nitions. All DRX-MPfunctions must be enclosed
by MPI Init() and MPI Finalize() routines. Some examples of
the extensive list of functions are given below.

Initialization:
int DRXMPInit(DRXMDHdl *drxhdl, int kdim,
size t *initsize, int *chkshape, DRXType dtype, DRX-
Comm comm);
This is a collective call that gives each process
access to their respective meta-data handle. All other
parameters are inputs. kdimstates the rank or number
of dimensions of the array, chkshapeis an array of
the chunk shapes, dtypespecif es the data type of the
array elements,

Opening:
int DRXMPOpen(DRXMDHdl *drxhdl, char *file-
name, char *mode )
This function opens an extendible array f le. The f le
must exists otherwise it returns and error. Failure to
open the f le returns an error. A successful opening
reads the content of the meta-data into the contents of
the structure given by the f le handle drxhdl. Access
permission mode is specif ed in mode.

Closing:
int DRXMPClose(DRXMDHdl drxhdl)
This function closes the disk resident extendible
array f le whose handle is given by drxhdl.



Terminating:
int DRXMPTerminate()
The function closes all opened extendible arrays and
frees the DRX-MPallocated structures.

Reading:
int DRXMPRead(DRXMDHdl drxhdl, DRXMD-
MemHdl memhdl, DRXMPStatus *stat)
int DRXMPReadall(DRXMDHdl drxhdl, DRXMD-
MemHdl memhdl, DRXMPStatus *stat)
These functions read the content of the extendible
array given by the handle drxhdl, into the memory
resident array whose base address can be extracted
from the memory resident array handle memhdl. A
collective reading version is given by the function
DRXMPReadall().

The above set only gives some examples of the functionality
of DRX-MP library. Most of the functions are implemented
using MPI IO functions.

V. CONCLUSION AND FUTURE WORK

We have presented some preliminary work on managing
out-of-core dense extendible arrays in a parallel f le system.
Any array name specif ed is considered as a pair of f les; one
containing the principal array with suff x ”.xta” and the other
containing the meta-data information and has suff x ”.xmd.”
It is possible to combine the meta-data f le and the principal
array f le as a single f le in which the meta-data information
is kept as the header content of the DRXMP f le but this is
left for future work.

We have shown how the extendible array can be accessed
and distributed using collective I/O as sub-arrays over a cluster
of a workstations. The suite of functions for storing and
reading elements of the array f le is referred to as the DRX-MP
library.

The array elements are stored out-of-core by regular chunks
of some specif ed shape. We have presented the essential map-
ping function for accessing each array chunk and consequently
the array elements. Some interesting features of our method
are that:

• Instead of managing the chunks by an index scheme, the
chunks can be addressed by a computed access function
in a manner similar to hashing.

• There is no need for out-of-core array element transposi-
tion since this can be done on the f y as the array elements
are read into core.

• The model of partitioning the array for distribution into
memory is consistent with the computational model of the
global-array toolkit. This allows the library to leverage the
memory resident functions of global-arrays in manipulat-
ing the array once the array is read into memory.

.
Future work intends to develop the interface functions to

work with Global-Array library. Further we intend to explore
how the array distribution method can be generalized to ensure
relative balanced data distribution and how to distribute the

array by BLOCK Cyclic(K) methods. More importantly, we
intend to pursue extensive performance testing and comparison
with other f le formats used in storing array f les; namely
parallel HDF5, parallel NetCDF and Disk Resident Arrays.

Optimizing the access by reconciling the chunk size with
the strip size of the parallel f le system for optimal chunk
accesses.
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