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Abstract—We present a fully 3D atomistic quantum me- In recent years, various kind of simulation approaches have
chanical simulation for nanometered MOSFET using a coupled peen developed to simulate the MOSFET devices. Most notica-

Schrodinger equation and Poisson equation approach. Empirical 1,y these include Drift-Diffusion Model and Density-Gradient
pseudopotential is used to represent the single particle Hamil- ’

tonian and linear combination of bulk band (LCBB) method is Mod'el [71- .They arg based on Bolzma'nn equation and Ioc.al
used to solve the million atom Schrédinger’s equation. We studied S€Mi-classical density of state calculations. The local density
gate threshold fluctuations and threshold lowering due to the of state calculation is not valid in true quantum mechanical
discrete dopant configurations. We compared our results with regime. A much better approach is to solve the electron
semiclassical simulation results. We found quantum mechanical eigenstates and occupied carrier densities based on the carrier's

effects increase the threshold fluctuation while decreases theS hrodi , fi d solve th tential self istentl
threshold lowering. The increase of threshold fluctuation is in chrodinger's equation, and solve the potental seficonsistently

agreement with previous study based on approximated density With the carrier charge density via a Poisson equation. This
gradient approach to represent the quantum mechanical effect. Schrodinger-Poisson equation approach has been used to study
HOWEVQF the decr_ease in_ threshold I(_)wering is in contrast with MOSFET devices for continuous dopmg model, and the ran-
the previous density gradient calculations. dom dopant fluctuation in approximated model [8]. However,
Index Terms—Dopant fluctuation, MOSFETSs, 3D, threshold, only simple effective mass Schrodinger's equation was used,

LCBB, quantum mechanical. which might not be very accurate when the variation of the
potential is sharp, as in the perpendicular direction of the gate.
|. INTRODUCTION Recently, we have developed an Schrodinger-Poisson equation

. approach based on empirical pseudopotential method (EPM)
A t(?)?gizg?lai to the roadmap of the semiconductor Indu%r the electron Schrodinger’s equation [9]. The atomistic EPM

tor field t st on [ﬁ]’ MC)IleE'I'témg':Ial Ox'ldedsem'cgndu%aescription is much more accurate than the effective mass
205r e ttrsnss gr) fctha}nnde e(;]g | W shcae oyvndc:jsg description for the electronic structure, and its atomistic feature

nm at the end of this decade. In such nanosized deviCes, os it natural to study the dopant fluctuation effects. This
guantum mechanical effects play a big role in determini

. .approach use the linear combination of bulk band (LCBB)
the properties of the system. The new quantum mechani

foat like the fact that the elect ¢ th thod [10], [11] to calculate the electron structure, which
eatures, fike the tact that tne electron mean ire€ path dyapies it to solve million atom systems, hence to simulate

larger than the device dimensions and t.he single quam%d\AOSFET model. Here, we will use this approach to study
state levels, can be _u_sed to enhance device performance A dopant fluctuation effects in a nanometered MOSFET.

form new functionalities [2], [3], [4]. On the other hgnd, The single dopant random fluctuation effect was first re-
as the size reduces, new obstacles emerge [3], [5], like &, ;04 by Mead and Hoeneisen in the 1970s [12]. It has

short channel effects, source/drain off-state quantum tunneliggen intensely studied in the last 10 years. As the device
current, barrier current leakage and single dopant rand(y-npn '

; . . imension scales down to nanosize, the number and position
fluctuation [6]. The single dopant random fluctuation poseg
a fundamental challenge to the device down scaling. H%r

. 2 : , y among devices. As a result, the macroscopically same
to reduce this fluctuation is an intensely researched toplc.d vices become microscopically different, and demonstrate
this paper, we present an atomistic simulation to study t ’

) . . - erent device characteristics, like in the I/V curves and
fluctuation effect, especially to investigate whether quantu%

the dopant atoms in the sensitive channel region will

hanical effect h d thi dom fluctuati te threshold voltages. This is a major challenge for device
mechanical etiects enhance or reduce this random fuctuatl ustry. It is possible that this alone will stop the device down
and what is the cause of the fluctuation change.

scaling before the other technical difficulties take into effects.
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is treated as an continuous function, thus, there were no
individual dopant atoms. In the present work, we have chosen
Si02(1.5nm) the individual acceptor positiof R;} randomly according
to the average doping concentration. In average, there are
169 dopant atoms in the simulated region. No dopant-dopant
position correlation is assumed. Then the acceptor nuclear
charge at a given temperature T is:
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here £, is the donor binding energy position, ardd; is
the Fermi energy. We have used an finite= 0.3nm to
Fig. 1.  (Color online) Geometry of the MOSFET structure along Witﬁ’epresent Fhe eﬁeCt,'Ve donor nuclear Charge and to make
electrostatic potential contour lines witl,, = 0.0V andV, = 2.0V in the numerical solution stable. But our results do not de-

one of the random doping cases. The average doping density in subﬁtratpénd sensitively on the value af. The Boltzman factor
type) is 10'%c¢m 3. Schridinger equation and Poisson equation are solved 1 . o
self-consistently in the dashed line box. o~ By = (=B /T | | represents the occupation probability of

an acceptor. Near the channel, for the gate voltage we are

considering, almost all the acceptor are occupied, thus the
Schrédinger-Poisson equation results for simple systems l&eltzman faCtOf@(ErwﬁEf)/kT - is almost one, and sim-
2D device models. It is found that [13] one has to use a fittirigarly the hole densityp(r) is negligible.V(r) in Eq.(2) is a
parameter as the electron effective mass in order to reproddiect sum of the EPM pseudopotential of each atvig, (r)
the Schrodinger-Poisson equation results. This exemplifies tbea confinement potential representing the goemetry and
short comings of such approximated approaches. It is rthe SiG layer of the device. The additional self-consistent
clear how such equations with fitted parameters from simpectrostatic potential.,:(r) = ¢ is solved from Poisson
systems (e.g, continuous doping models and 2D systems) ffuation (1). We have used LCBB'!! method to calculate
play out in actual 3D simulations. It is thus desirable to dothe eigenstates$);(r), £;}. The LCBB method expands the
direct Schrodinger-Poisson equation simulation for the samdevice wavefunctiony;(r) with the bulk Bloch state wave-
physical problem. Further more, in our case the Schrodingefisictions. We have used 2 conduction band states at each
equation is based on EPM, thus much more accurate than lagoints, and k-points around the 6 X-point valleys as our

Sub:strate

- — 25nm  ——

simple effective mass model expansion basis to represepi(r). In a typical calculation,
this amounts to 8810 basis functions. To calculate the potential
II. SIMULATION APPROACH ¢(r) selfconsistently, we have calculated the carrier charge

The MOSFETSs we simulated are of n-carrier reverse tyS§nsityn(r) from carrier wavefunctions); (r) as:
and have 25 nm channel length with oxide thickngss= ) 1
1.5nm. In such a device, the nominal doping is p-type, with n(r) = 20i(r)] B ET 1 4)
the average acceptor concentration in the channel region as i
Np = 1.0 x 10"e¢m~3. Fig.1 shows the geometry of the In the current study, to simplify the situation, we have
MOSFETs we simulated. Schrodinger equation and Poissésed a zero bias between the source and drain. As a result,
equation were solved in the region included in the dashé#tere is only a single Fermi enerdy;, determined from the
line box. We take 27 nm in the z direction for the simulategource/drain potential. Egs (1)-(4) were solved self consis-
box. Thus, there are 0.85 million atoms in the simulatgéntly until convergence is achieved using a Pulay DIIS po-
system. Fig.1 also shows the electrostatic potential distributitgntial mixing iteration scheme [16] to update the potential in
at gate voltagel, = 2.0V with no bias voltage. In our Eq(2). Dirichlet and Neumann boundary conditions were used
fully 3D atomistic quantum mechanical model, we solvetd solve the Poisson eq(1). Further details of our calculation
self-consistently the 3D Poisson equation (1) for electrostatiocedure can be found in [9].
potential¢(r) and exact 3D Schrodinger equation (2):

=4 - (r) = N

VEOVe) TP =)+ N () =N (O] (@) A comparison of the total mobile charge density versus gate
(—1V2 + V(1) + Vi (1) 4 Veae (N)1hs(r) = Esu(r)  (2)  Voltage for different doping schemes and different simulation
2 approaches is shown in Fig.2. The total mobile charge density

Here n(r) is the occupied electron carrier density to b€ is just an integral ofa(r). To compare with the uniform
determined by the electron wavefunctigrr) is a small hole continuous doping model, we have chosen a random doping
density calculated by local equation of stafé, (r) is the configuration for our "atomistic” doping case. The same con-
donate nuclear charge density, and (r) is the acceptor figuration is used for our qguantum mechanical calculation and
nuclear charge density. In our simulation, we havelégt(r) a semi-classical calculation. In the semi-classical calculation,
to be zero, i.e., no donor. In our previous simulatidf, (r) the coupled drift diffusion and Poisson equations are solved

Ill. RESULTS ANDDISCUSSION
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Fig. 2. Comparison of mobile charge density between quantum mechanical
calculation and semi-classical calculation. The 'atomistic’ curves refer to the
same discrete doping case.

selfconsistent without using the gradient correction for the
guantum mechanical effects. This is equivalent to calculate
the carrier charge density(r) at a given pointr based on
the local potentiaky(r) and the Fermi energ¥; using the
Fermi-Dirac distribution.

By comparing the continuous doping result with the atom-
istic doping result, we see that the gate voltage threshold has
been decreased by about 0.15 V due to the atomistic nature of
the doping. This is roughly true for both quantum mechanical
simulation and the classical simulation, although this lowering
is slightly larger in the quantum mechanical simulation, for this
particular dopant configuration. Comparing with the classical
simulation result, the quantum mechanical threshold voltage
is about 0.4 V higher, as found in our previous calculations
[9]. The lowering of the gate voltage in the atomistic doping
case is due to some local potential minimum (valley) which
holds carrier charge density before the average potential reach
the carrier inversion threshold. Such local carrier density can
form percolation to conduct current [13]. To illustrate the
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carrier density in real space, we have shown in Fig.3 the a 0032

cross section perpendicular to the gate substrate and along the z Potential

channel direction. One can see that, in the atomistic doping o g0z 006 7
case, there is a lump of charge in the middle of the channel due T TR ey vy o T PETS

to a local potential minimum at that spot. Such local charge X [bohr]

reduces the threshold of the carrier inversion. In Fig.3, we also

show the selfconsistent potential for the continuous doping

case and the atomistic dOplng case. We see that, corresponggn.gs_ Mobile Charge Density and Selfconsistently Solved Electrostatic

to the charge density lump, there is a potential minimum Bfential Comparisons on Y Section. Subfigure (a) is for the quantum

that place. simulation of continuous doping case, subfigure (b) is for quantum simulation

The bi t diff bet th t h . of discrete doping case, and subfigure (c) is for classical simulation of discrete
€ biggest difference between the quanium mechanig ing case. These figures refer to the middle cross section perpendicular to

simulaiton and the semi-classical simulation is the average— SiO, surface and parallel to the source-drain direction.
distance of the occupied electron charge density to the Si-

SiO, interface. This is due to the quantum confinement effects

as discussed in [9]. One can calculate the center of mass

of n(r) (charge centroid) and plot its position versus the

applied gate voltage. The results are shown in Fig.4 for our



effect smearing out the potential local minimum effects, one

7517 - - - - - - - - ] might think the fluctuation in the quantum mechanical case
Zg . . ] should be smaller than the classical cadet is just opposite
60 :;: (Ci‘l?snctr‘;‘;"(‘;sp‘izglng ] of what is shown in Table I, where the 0.04552 V quantum
= 551 ] mechanical fluctuation is 15.2% larger than the 0.03952
£ 5.0 ] V semi-classical fluctuation.This increase of the threshold
2 451 \ fluctuation due to quantum mechanical effects has also been
‘;Ej 401 \'\ ] found in density gradient method [13]. This seemly puzzling
‘-:) 2(5) . e phenomina can be explained by the following due to another
% 55 ] o\ ] guantum mechanical effect. In the quantum simulation, the
= 20 O\O . ] average charge density is away from the Si-Sitterface as
15 08000 ] shown in Fig.3 and Fig.4. This is equivalent to having a larger
1.0 1 SiO, layer in the semi-classical simulation. The threshold
05 ——7—— T T fluctuation however has an direct relationship to the ;SiO

— T T T T T T T T
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thickness. For small SiQthickness, the potential near the Si-
Gate Voltage [V]

SiO, interface (where the carrier charge is) is pinned by the
gate potential. Thus, the randomness of the acceptor positions
lays a small role in determining the potential at the inteface
(?Wence the random fluctuation of the threshold is small). Thus,
for quantum simulation, where the effective charge distance to
the gate substrat is large, the fluctuation is also large. To test

i hanical simulation. A ted th IIhi hypothesis more quantitatively, we have taken the electron
quantum mechanical simulation. AS e€xpected, as the apply rge centroid; (measure from the Si-SiQOinterface) near

gate voltage increase, the charge centroid is more closetﬁg threshold gate voltage f, — 2V, and convert that into

the Si-SiQ interface. At the end, it saturated at about 1nMig. e extra Si@ thickness ash — e,,2/cs; [14]. We
away frpm th? Si-Sig interface. What interesting IS that thg ave done three different semi-classical simulations using this
atomistic doping case has a closer charge centroid to the o test different effects of this phenomina

SiO;, interface than the continuous uniform doping case. This First, we have used an average — 0.6nm from the

is.a.gain probably because. there C.OUId be some local p‘?te”H&Lntum mechanciad; for all the configuration cases, then
rrrm:num t::lose to the Si-SPwhich host some OCCUpIeo'we repeat the semi-classical calculations for all the previous
electron charge. o _individual configurations, and recalculate the average threshold
In the above, we only presented one atomistic dopingy;, and threshold fluctuationV;;,. The results are listed
configuration. To get an statistical averaging, we have carrigflihe fourth row of Table.l. We can see that the threshold
out both quantum mechanical and semi-classical simulatioggering with this simulation (from the classical continuous
for nineteen different individual configurations. The averaggodel with tox = 2.1nm) is much larger than the gquantum
threshold lowering £V;;,(V)) is shown in Table 1. Here we mechanical simulaiton result. This indicate that this effective
see that the average lowering is smaller than that shown;jprease ofox cannot be used to explain the small;, of
Fig.2. This is because that, in Fig.2, we chose one of t@antum mechanical calculation compared to semi-classical
nineteen configurations which has the most severe threshglgciation. On the other hand. the threshold fluctuation,
lowering to highlight discrete dopant induced effect. Althouggs thjs classical simulation agree perfectly with the quantum
the threshold lowerings of quantum and classical simulatiofsschanical result.
seem o be comparable3 the averaged threshqld Iov_vering$n above, we have used an averageHowever, there is also
shown in TABLE.I. are different for these two simulationsgp, fiyctuation of/A among different dopant configurations, in
We see that, the lowering due to random dopant distributigRe range of 0.5258 nm to 0.6363 nm. To investigate the effect
in quantum mechanical simulation is smaller than in sem thjs fluctuation, we have done semi-classical simulation for
classical simulation. This is probably because in quantudch configuration with its owr\ from the corresponding
mechanical simulation, due to quantum confinement effect, t§gantum mechanical simulation. The results are shown in row
electron cannot occupy some narrow potential local minimumg ot Taple |. As one can see, the results are essentially the same
while they can do that in semi-classical simulation. Thus, ifs in row 4 where this\ fluctuation is ignored. To further
the semi-classical simulation, the electron can take the fdlhnfirm that the effect of fluctuation is small, we have done
advantage of the local potential minimum effects, while sucpmi-classical simulations with uniform continuous doping
effects have been smeared out in some degree in quaniy®ile while using the different for different individual
simulation by quantum confinement effect. This explains whypping configurations from the quantum mechanical simula-
semi-classical simulation has a larger threshold reduction. ion. The results are shown in row 6 of Table I. This time
With the nineteen different simulations, we can calculate the threshold fluctuation is extremely small, indicating that
the threshold fluctuation as oVi, = [> 2, y(Vin,; — the effective thickness fluctuation doesn't play a role. Instead,
Vih.ave)2 /(N — 1)]1/2. The results are also listed in Tablethe increase fluctuation of the quantum mechanical simulation
I. According to the above argument of quantum confinemeist purely due to the increased average distance of the carrier

Fig. 4. Comparisons of the inversion layer centroid versus gate voltage, fr:
quantum mechanical simulations.



TABLE |
GATE THRESHOLD LOWERINGAV;;, (AVyy, = Vimf”"Ld"pmg - \/tcflfsc’“e”‘d”pmg) AND GATE THRESHOLD FLUCTUATION o V;}, FROM DIFFERENT
SIMULATION METHODS. FOR ROW5, THE AV}, 1S MEASURED FROM CLASSICAL SIMULATION OF UNIFORM CONTINUOUS DOPING WITH

CORRESPONDING FLUCTUATED o x -

model quantum 'atomistic’ | classical 'atomistic’| classical 'atomistic’ | classical 'atomistic’| classical 'continuous’
tow () 15 15 2.1 1.5+ATuctuated 1.5+AfTuctuated
AV, (V) 01 0.05566 0.065 0.09984 0.10213 —
AV, (V) 02 -0.00172 0.05125 0.06333 0.06744 —
AV, (V) 03 0.08472 0.07096 0.06239 0.06216 —
AV, (V) 04 0.09277 0.07071 0.07771 0.07959 —
AV, (V) 05 0.07144 0.13389 0.19347 0.19265 —
AV, (V) 06 0.06005 0.08073 0.0773 0.0745 —
AV, (V) 07 0.05666 0.09808 0.12219 0.12427 —
AV, (V) 08 0.06473 0.07354 0.08262 0.07988 —
AV, (V) 09 0.06036 0.07597 0.12034 0.12005 —
AV, (V) 10 0.08653 0.12169 0.16308 0.16313 —
AV (V) 11 0.03646 0.04056 0.10271 0.10466 —
AV (V) 12 -0.00905 0.05906 0.06227 0.06465 —
AV (V) 13 -0.01508 -0.00425 0.01042 0.00472 —
AV (V) 14 0.18534 0.16087 0.17156 0.17191 —
AVip (V) 15 -0.00203 0.0599 0.05617 0.05798 —
AV (V) 16 0.06877 0.14914 0.16084 0.16207 —
AV (V) 17 0.03134 0.05942 0.05289 0.05201 —
AV (V) 18 0.05601 0.09512 0.09225 0.0938 —
AV (V) 19 0.05707 0.10239 0.11767 0.11878 —
average AV, (V) 0.05474 0.08232 0.09942 0.09981 —
oVin (V) 0.04552 0.03952 0.04742 0.04794 0.00239

Fig.2, Fig.3, and Fig.4. Fig.5 also shows the average density

2500 - - - - - of states of the nineteen different configurations. Two major
gy_iform Sop_ing features can be seen from Fig.5. First, the discrete doping case
2000+ e DOS o sandom doping . possesses a smoother density of states. Second, the discrete

dopant shift the tail of the density of states lower toward the
1500 Fermi energyFr. In the continuous doping case, the potential

N is symmetric and uniform in the z direction of Fig.1. Due
1000 i to these symmetry, there are degeneracy of the eigenstates,
/[\[\A and the density of state shows big peak structures. A random

Density of States

5001 E, i dopant configuration and its corresponding random potential
destroy these symmetries, thus result in an overall smoother
0 XN DOS. The down shifting of the DOS in the discrete dopant case
is due to local potential minimum. This DOS down shifting
corroborates well with the lowering of the gate threshold
voltage.

490 485 -480 -475 -470 -465 -4.60
Energy [eV]

Fig. 5. Density of states comparison between continuous doping and discrete IV. CONCLUSION
doping. Both cases are at gate voltdge= 2.0V with no bias. The averaged In this paper, we have presented fully 3D quantum mechan-

gﬁgfg))//, of states is also shown here. The downward arrow shows the Ferggl atomistic simulations to study_ the random d_opant induced
effects such as threshold fluctuation and lowering. We solved
single particle wavefunction§y;(r), E;} from the empirical
pseudopotential Schrodinger equation using LCBB method
charge to the Si-SiQinterface. In summary, comparing togng calculated the occupied carrier charge density from these
semi-classical simulation, the decrease in quantum mechanigglefunctions. This is then coupled with the Poisson equation
simulation for average threshold loweringV;, from the to form a self-consistent simulation. Our results show a
uniform continuous doping case is due to quantum smearifg 294 |arger threshold fluctuation of the quantum mechanical
of the local potential minimum effects, while the increase @fimulation than that of semi-classical method, while a smaller
the threshold fluctuation is due to the increased distance of #ieeshold lower than the semi-classical result. We found that
carrier charge density to the Si-SiGnterface. the smaller threshold lower is due to effective smearing of the
Our fully 3D quantum mechanical model enables us to stughptential local minimum due to quantum confinement effect,
the details of quantum mechanical effects, such as the electvdnile the increase threshold fluctuation is due to increase
density of states. Fig.5 compares the density of states betweetance of the carrier charge density to the Si-SiQerface
continuous doping case and the one discrete doping casdas a result, the potential in the large carrier charge density



area cannot be pinned down by the gate potential). Thym)] L. W. Wang and A. Zunger, "Linear combination of bulk bands method
unfortunately, quantum mechanical effect does not reduce for large-scale electronic structure caculations on strained nanostruc-

tures,” Phys. Rev. B, vol.59, pp.15806-15818, 1999.

the gate threshold random fluctuation, instead it exacerb 8§ J.W. Luo, S. S. Li, J. B. Xia, and L. W. Wang, "Comparative study for
the problem. This finding for the threshold fluctuation is colloidal quantum dot conduction band state calculations,” Appl. Phys.
qualitatively similar to the previous study using approximated_ Lett, vol.88, pp.143108, 2006.

B. Hoeneisen, C. A. Mead, "Limitations in microelectronics t II. Bipolar

) . i 12]
density gradient method t_o 'nCIUde the quantum meChaméa% technology ,” Solid State Electronics, vol.15, pp.891-897, 1972.
effects [13]. However, our finding for threshold lowering (from13] Asen Asenov, Gabriela Slavcheva, Andrew R. Brown, John H. Davies,
the continuous doping case) is Opposite from the density and Subhash Saini, "Increase in the Random Dopant Induced Threshold

Fluctuations and Lowering in Sub-100 nm MOSFETs Due to Quan-

grad'em. method. |.I"I th? density gradient meth(_)d* th? quantum ¢, Effects: A 3-D Density-Gradient Simulation Study,” IEEE Trans,
mechanical lowering is larger than the semiclassical lower Electron Dev, vol.48, no.4, pp.722-729, 2001.
[13], while in our simulation, the quantum mechanical lowef}4] M. G. Ancona and G. I. lafrate, "Quantum correlation to the equation

of state of an electron gas in a semiconductor,” Phys. Rev. B, vol.39,

ing is smaller than the semiclassical results. This highlight the 9536 9540, 1989.
needs for accurate and direct quantum mechanical simulations} M. G. Ancona and H. F. Tiersten, "Macroscopic physics of the silicon
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