

HOW TO RANK THE TOP500 LIST?

Lin-Wang Wang
Computational Research Division
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
e-mail address: lwwang@lbl.gov

With the increasing interest in green computing, power efficiency in supercomputer becomes an
important issue. In the high performance computing (HPC) community, the TOP500 list of the fastest
500 computers in the world has been published twice a year for 15 years. So far, the ranking of this list
is based solely on the total speed of the computer. With the increased emphasize on power efficiency,
one question emerged: how to rank the computers according to both the speed and the power
efficiency? One can of cause produce two lists, one according to speed, another according to power
efficiency, but there are many advantages to produce a single ranking based on both properties. In this
report, we present one approach to sort the TOP500 list. We also show the results using the recently
published TOP500 list of June 2008 [http://www.top500.org/lists/2008/06].

The goal of the method is to avoid human factors as much as possible, and to make the formalism as
nature as possible. Let’s first assume we have selected N=500 best computers from the world. This
initial selection can be made based on speed. Our task is to sort these N computers from a given set.
Note, we will not produce an absolute “greatness” number for each computer, independent of the rest
of the computers in this N computer set. Instead, for the purpose of the sorting, we will produce a
score for each computer, “normalized” against the whole computer set. Thus, the value of the score for
each computer depends on the whole set. But for the sorting purpose, that is appropriate.

Let’s use Pm(i) to denote the property of computer i (i=1,N), and m=1,q is the index of the property,
e.g., speed, memory, power efficiency, etc. We will assume, larger Pm(i) means better. Now, given the
q properties, how can we sort the N computers? The question is: how to combine Pm(i) into a single
score function S(i).

Our first task is to normalize Pm(i). Since different m means completely different properties, with
different units and distributions, it is difficult to combine them. We like to convert Pm(i) into Am(i).
One requirement for Am(i) is that, it must be unit-less. Besides, different properties might have
different distributions. Some property might all cluster around a single value, while another property
can have a wide distribution. In order to use these properties to distinguish different computers, one
likes Am(i) to have similar width of distribution. To make Am(i) unit-less, it is reasonable to ask its
average from the whole set to be 1. To make it having a given width of distribution, we can require the
distribution of Am(i) to have a given standard deviation around its average value. After some tests, we
believe a standard deviation of one is a reasonable choice. Now, we will use the following simple
power law to map Am(i) from Pm(i):

mailto:lwwang@lbl.gov

miPiA mmm
βα)()(= (1)

and we have the following requirement:

1)(1
,1

=∑
=

iA
N Ni

m (2)

1]1)([1 2

,1

=−∑
=

iA
N Ni

m (3)

It is easy to determine the αm and βm from equations (2) and (3) for a given m.

Fig.1 shows the distribution of A1(i) for speed (maximum flops) and A2(i) for power efficiency
(maximum flops divided by total powers (watts)). We called them normalized scores based on speed
and power efficiency respectively. The original Pm(i) is taken from the recently published June 2008
TOP500 list. Unfortunately, only 247 computers have power efficiency data. So, instead of sorting the
original 500 computers, here we only deal with the 247 computers. Thus, N=247. For speed (m=1), we
found β1=0.6136. For power efficiency (m=2), we found β2=1.321. The αm values can be found easily
as the normalization factors. The distribution of speed A1(i) is between 0.5 to 10, while the distribution
of power efficiency A2(i) is between 0.1 to 5.

 Figure 1, the distribution of the

normalized properties (scores) and
the overall score.

Our next task is to combine A1(i) and A2(i) into a single score (here we only have two properties. But
the formula works the same if more properties exist). For this purpose, we propose to use a weighted
harmonic mean. That is:

1

,1
]

)(
[)(−

=
∑=

qm m

m

iA
WiS (4)

Here . The harmonic mean is used, so in order to get the high overall score S(i), every

individual score Am(i) for all m need to be high. We have also used a weight function Wm. These
weight functions represent the emphases on different properties in the HPC community. It should be
decided based on community consensus. In the following, we will discuss a way to estimate the
community consensus on Wm. Here however, let’s first simply assume W1=W2=0.5, which means we
emphasize equally on the computer total speed and power efficiency. We like to know how does it
change our sorting.

1
,1

=∑ = qm mW

In Figs.2, 3, 4, we show the correlations between the overall score S(i) and the score A1(i) based on
computer speed, and score A2(i) based on power efficiency. We see that, there is not much correlation
between A1(i) and A2(i) in Fig.2, but as expected, there are some correlation between A1(i), A2(i) and
S(i) as shown in Figs.3 and 4 respectively. Interestingly, as shown in Fig.2, for those top speed
computers, the power efficiency is reasonable. There is no one with very low power efficiency,
probably representing the fact that for large computers, power efficiency becomes important. On the
other hand, for the low speed computers, some of them have very low power efficiency, although there
are also ones with very high power efficiency.

Figure 3, correlation
between the normalized
scores of speed A1(i) and
overall score S(i).

Figure 4, correlation
between the normalized
scores of power efficency
A2(i) and overall score
S(i).

Figure 2, correlation
between the normalized
scores of speed A1(i) and

com

power efficiency A2(i).
Each cross represents one

 puter.

Finally, the new ranking is shown in Fig.5. This ranking is compared with the original ranking which
is solely based on the total computer speed. We see that, although there is still a strong correlation
between the new and old ranking, the ranking for individual computer has been changed dramatically.
This is especially true for the low ranking computers. In Table.I, we show the top 10 computers and
their new rankings. We also listed their flops and power efficiencies [P1(i) and P2(i)].

In the above discussion, we have chosen W1=0.5 and W2=0.5, representing equal emphases for these
two properties. An intriguing question is: whether we can determine W1,W2 in a natural way. One way
to ask this question is: whether there is a community consensus about the value of W1,W2. Instead of
doing a survey, here we will try to calculate their values based on some economic and cost/benefit
assumptions.

The choice of W1 and W2 represents a balance between these two properties. We will use the monetary
cost to improve P1(i) and P2(i) as a measure for this balance. We will assume, for each machine i, the
user (builder of the machine) has reached their own balance. Thus, we will first find for each machine,
what is its corresponding w1(i), w2(i). Then we will take an average over all the machines to get the
overall W1 and W2 for the whole community. For a given machine i, there is a fixed budget. If more

money is spent to improve P1(i), there will be less money to improve P2(i). So, let’s use xm(i) to denote
the money used for Pm(i). Let’s assume that the users (builders) know what they are doing.

Table.I, the old and new rankings for the first 10 computers.

Old rank
(based on
speed)

New rank
(W1=0.5)
(W2=0.5)

New rank
(W1=0.92)
(W2=0.08)

Rmax
(Gflops)

Rmax/power
(Mflps/Watt)

1 1 1 1,026,000 437.433
2 6 3 478,200 205.271
3 2 2 450,300 357.380
4 9 4 326,000 163.000
5 20 6 205,000 129.689
6 3 5 180,000 357.142
7 16 7 133,200 154.591
8 54 12 132,800 82.884
9 4 8 112,500 357.143
10 7 9 106,100 240.045

Figure 5, the new ranking (horizontal axis)
versus old ranking (vertical axis). W1=0.5,
W2=0.5. Each point represents one computer.
The lower panel is a blow up of the upper
panel at the left-lower corner. Index 1
means the first computer, 2 means the
second computer, so on.

We can assume that they are maximizing their machine’s score (overall greatness) S(i) by adjusting
money xm(i) among different properties m while keeping the overall money)(

,1
ix

qm m∑ =
fixed. They

are doing this maximizing using (consciously or subconsciously) the weight values wm(i) proper to
their problems. Thus we have the condition for the maximum:

)(
)(
)(i
idx
idS

m

λ= (5)

Here λ (i) is the Lagrangian multiplier for the constant)(

,1
ix

qm m∑ =
constraint. Now, using Eqs.(4)

and (1), we have:

)()(
)(

)(
)(

2 iiS
iw

idx
idS

m

m

m θ
= (6)

and here,

)(
)(

)(
1

)()(

idx
idP

iP

iAi

m

m

m
m

m
m

β
θ = (7)

In deriving Eq(6), we have ignored the derivatives of αm and βm respect to xm(i). Because αm and βm
depend on all the computer properties within a N computer set. The change caused by a single
computer is small, thus their derivatives by xm(i) can be ignored. Now, combine Eq(5) and (6), and
notice that , we have: 1)(

,1
=∑ =

iw
qm m

∑
=

=

qm
m

m
m i

iiw

,1
)(

)()(
θ

θ
 (8)

After all the wm(i) are obtained for all the computer i, we can take an average to get the global Wm.
The average should be weighted by the overall score S(i) of the computer, so larger the computer,
more weight it has on taking this average:

∑
∑

=

==

Ni

Ni
m

m iS

iSiw
W

,1

,1

)(

)()(
 (9)

Note that, since S(i) calculated from Eq(4) depend on Wm, thus Eq(4) and Eq(9) have to be solved
together iteratively. Fortunately, a simple direct iteration converges the problem quickly, and wm(i) do
not depend on S(i).

The above formalisms are rigorous. But the final result depends critically on

)(
)(ln

)(
)(

)(
1

idx
iPd

idx
idP

iP m

m

m

m

m

= . This derivative denotes how much the property Pm(i) can be improved by

one dollar (or a thousand dollar, the unit is not important, it will cancel out in Eq(8)). Note that,
Eq.(7) makes sense in that, if this derivative is small (which means it is costly to make improvement),
but despite of that, the Am(i) for that property m is still high, then it means this property m is important
in this computer i builder’s mind, thus the corresponding θm(i) [hence wm(i)] will be large.

Let’s now try to estimate . If we assume there is a market value, then we can drop
index i, i.e, this derivative is machine independent. For computer speed, nowadays, one can buy a
100Tflop computer by about 20M dollar (or say a petascale computer by 200M dollar). Thus, roughly
we have

)(/)(idxidP mm

MTflps
M

Tflops
dx
dP $/5

20$
100

1

1 == (10)

It is more difficult to estimate what is the cost to improve the power efficiency, since it might depend
on R&D for new technology. Nevertheless, let’s assume that there are readily available technologies to
improve the power efficiency, but it just cost money to do it. There is a balance between the up front
cost on these techniques and the electric bill saving over the life time of the computer (~3 years). If the
up front cost is smaller than the saving, then we can assume that the builder will use those
technologies, thus, the efficiency keeps increasing, until further technology improvement are more
expensive than the electric bill saving. Thus, at this crossing point (which corresponds to the current
computer configuration), the cost of further improving the power efficiency should be equal to the
additional electric bill saving. Let’s use ΔPtot to denote the total power saving. For each kwatt saving,
over three year’s life time, and assuming 10 cents per kwatt hour (an international average), the
electric bill saving is about $ 2.628K. That should be the ∆x2. Actually, there might be some other
benefits by improving the power efficiency besides the electric bill, for example, removing the need to
build a power station, special power line, or other non-monetary reasons, e.g., to develop new
technology, save global warming, or to race to the greenest computer. Thus, it is probably safe to say
that the cost of improving the efficiency is probably higher than the possible electric bill saving for
most of our current computer. Thus, we can add a factor of 2 to take into account of those factors.
Thus, our estimation is:

M
Mwatt

dx
dPtot

$2628.2
1

2 ×
−= (11)

Note Ptot is the total power, not the power efficiency. Thus, we have used a minus sign in Eq(11) to
represent the fact the investment on power efficiency will reduce the total power. The power
efficiency equals to totPPP /12 = , here the P1 is the total speed of the computer. Thus, we have:

MMwatt
P
P

dx
dP

P
P

dx
dP tot

tot

$/19.0
1

2
2

2

2

2

2 ×=−= (12)

Now, using Eq(10) and Eq(12), we can plug into Eq(7) to calculate θm(i), thus wm(i), and eventually
Wm.

Using the June 2008 TOP500 data, and the above formalism, we get W1=0.92, and W2=0.08. This is
far from treating them equally. In other words, at this moment, the HPC community believes that total
speed is still far more important than the power efficiency. If in the future, the computer electric power
cost becomes more expensive (not only electric bill, but also the cost to build new power transition

station, power lines, or even dedicated power plants), then the weight factor for power efficiency will
increase. Using the above new Wm, we have calculated the new ranking. The result is shown in Fig.6.
This time, the ranking change is not as dramatic as in Fig.5. Nevertheless, it has changed the ranking
of many of the computers. The new rankings are also listed in Table.I for the first 10 computers.

Figure 5, the new ranking (horizontal axis)
versus old ranking (vertical axis) using
W1=0.92, W2=0.08. The lower panel is a blow
up of the upper panel at the left-lower
corner.

The advantage of the above approach to calculate Wm is that, it doesn’t depend on any human
decision. Instead, the computer systems, the cost to improve different components, and the market
price determine the importance (Wm) of each property. Further investigation for Eq(11) and (12) might
be necessary. For example, when the power efficiency is already high, it might be difficult to further
improve it due to technology bottleneck, thus there might be a P2 dependence in Eq.(11). There might
also be a Ptot dependence in Eq.(11) representing the nonlinear dependence of the electricity cost due
to the need for additional equipments (special power transition station, power line, etc).

There could be another way to think about Eqs.(7) and (8). Note that, Eq.(7) can also be written as

)(ln
)()(

iAd
dxiAi

m

m
mm =θ . This is basically how much money it will be involved (cost or saved) if

property Pm(i) [hence Am(i)] is changed by some amount. The factor Am(i) is interesting, it comes
because we calculated the overall score S(i) by a harmonic mean. It is logic to use this (the money
involved) as the measure of importance for different properties. As the result, in the following
discussion [e.g., Eqs.(11) and (12)], it is more proper to think about dxm/dPm, i.e., for speed, this will
be how much it will cost to increase the speed by a certain Mflops, and for power efficiency, this will
be how much it will save (electric bill) to increase the power efficiency by certain amount. Thus, the
calculation for these will be more certain, and have more straight forward meaning (although the end
result will be the same as above). For example, if the electric bill is extremely cheap, then the power

efficiency should not be an issue. Another even more straight forward way is to use the total amount
of money currently spend on the speed (to be approximated by the up front cost for the whole
computer), and the total amount of money to pay the electric bill in the computer’s life time, add them
up separately for all the computers in the set, and use the ratio of these two total number to determine
W1 and W2. If we use TflpsMP 5/$1× to calculate the total computer cost, and

to calculate the electric bill (we have kept our factor of 2 to take into
account the other electricity related cost), then we end up with W1=0.814, W2=0.186. This means, for
the community as a whole, we have used about 20% of our money on electricity related costs. The
resulting W2 is twice as large as the W2 calculated from Eq.(8) due to different ways of sampling
things. But overall, they are in the same order. It is however this author’s belief that Eq.(8) is
probably more appropriate because it takes into account the proper scaling and distributions of
different properties, etc. Using Eq.(8) makes the whole approach more self-consistent.

MwattMPtot 1/$2628.2 ××

Acknowledgments
This work was supported by DOE-SC-ASCR office under Contract No. DE-AC02-05CH11231, and
National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National
Laboratory. The author likes to thank Dr. Erich Strohmaier for providing the TOP500 data.

