
A special purpose computer for ab initio molecular
dynamics simulations

Lin-Wang Wang
Computational Research Division
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
e-mail address: lwwang@lbl.gov

I. INTRODUCTION

Density functional theory (DFT) [1] based ab initio simulation has become a major
matured research tool for material science and chemical science. It amounts for about
75% of all the computer time in the material science [2] and chemical science categories
[3] in major computer centers like the National Energy Research Scientific Computing
Center (NERSC). It has also been widely used in biology and other scientific areas like
environmental science and nuclear energy research. In recent years, due to the concern of
computational energy efficiency, and the newly available designing tools for special
computers, there is a revised interest in special purpose computers [4]. This is
exemplified by the Anton machine [5] for classical molecular dynamics simulations for
biological studies, and the proposed special machine based on energy efficient embedded
processor technology for climate simulation [6]. In the field of physics, there is a long
history of building special purpose machines for lattice quantum chromodynamics (QCD)
simulations[7]. In this paper, we will discuss the possibility of building a special purpose
machine for DFT simulations. The construction of such a machine will speed up the DFT
molecular dynamics simulations by a thousand times, making it as cheap as current day
classical force field simulations, enabling us to study many critical material science
problems which are unfeasible using our current computers. Unlike some of the other
special purpose machines which are built for a handful number of scientific problems, a
DFT simulation machine can be used for a large class of problems. In a way, it is the rival
of the Anton machine for quantum mechanical simulations. In this paper, we will discuss
the computer specifications needed to construct such a machine, and the best computer
architecture to realize our goal. We will see that by focusing on the DFT problem and the
specific algorithms, the DFT machine can parallelize a fixed size problem much beyond
what is possible for a general purpose machine [8]. We will also show that, on such a
computer, some of the algorithms need to be changed accordingly. Overall, we believe it
is possible to construct such a special purpose machine in the near future.

Our scientific goal is to perform a molecular dynamics (MD) simulation for 10ns within a
week for a typical 1000 atom system. This goal is chosen due to its relevance to many
critical material science problems. We expect high demands for such simulations based
on the current trends in ab initio and classical MD simulations. In terms of the length
scale, 10ns MD simulation can be used to study (among others things): simulated
annealing, surface atomic structures and passivations, catalytic process, growth/synthesis
steps, diffusion steps. All these are current day critical scientific problems, and many of

mailto:lwwang@lbl.gov

them are poorly understood, awaiting for accurate numerical calculations. The 10ns MD
can be used to get the local thermal dynamical fluctuations (free energies) (typically 10-
50ps length will be enough for that purpose for homogeneous systems like gas or liquid),
it is also long enough to perform some local geometry searches, and to find the minimum
energy geometry close to the starting point. In some other cases, the direct 10ns MD
might still not be long enough. But the corresponding computational capability (which is
10 million MD steps) can be combined with other techniques (e.g., transition path
sampling [9], accelerated molecular dynamics [10]) to study such problems in a much
longer time scale. Currently, these techniques are mostly used in classical force field
simulations because the DFT calculation cannot provide sufficient computational steps to
make these techniques useful. Our new machine can change this scenery. This machine
will make the DFT calculation as cheap as the classical ones. Thus, many of the classical
simulations done today can be carried out with ab initio accuracy and reliability. More
importantly, many other problems where reliable force field parameters do no exist can
also be studied by the ab initio simulations on this machine.

In terms of the system size, a thousand atom might not be very large, but it can capture
many important physical features. It roughly corresponds to a 25 A size cubic. Since the
atomic force (due to a local atomic displacement) decays faster than 25 A, this size scale
can guarantee that the local chemistry will not be affected by the boundary situation at
the other side of the system. Thus, this size should be large enough to study impurity,
surface, catalysis, growth, and many other local chemistry and atomic structure problems.
Besides, 1000 atom is the limit where direct DFT simulation algorithm might still be
appropriate. For larger systems, O(N) scaling methods will be more efficient [11]. There
are many O(N) methods, like the linear scaling three dimensional fragment method
(LS3DF) we developed [12], which can be used to calculate much larger systems (e.g,
10,000 atoms) on the current general purpose machines. Here, we will focus on the 1000
atom systems, and try to make them run faster. Thus, this is a more challenging strong
scaling problem.

Finally, we have requested that the calculation to be finished within one week. This is
because we plan to use the whole machine in a dedicated mod. Thus, only one job can be
run in a given time. In order for the machine to be shared by a community (e.g., with 50
users), and each user to use the machine for at least one project a year, each simulation
must be finished within one week. This is an operation mode used in many other large
user facilities, like the X-ray source from cyclotron radiation.

Currently, the fastest ab initio density functional code is VASP [13]. It can do 10 ps
simulation within a week for a 1000 atom system using thousands of processors [14].
Thus, our goal is to push it one thousand times faster, to do 10 ns simulation within the
same time. The parallelization of the VASP code reaches its limit by 1000 or 2000
processors for a 1000 atom system (more processors will make it slower). In this range of
problem size, the rule of thumb for maximum number of processors to run VASP is one
processor per atom. Our goal is to use concurrency beyond the one processor per atom
limit, instead reach the limit of about 1 million processors for the 1000 atom problems.
The reason for the feasibility of such large concurrency comes from the special design of

the computer architecture, and a direct and careful mapping between the software
algorithm and the hardware design. To reach our goal, the hardware and software need to
be developed in a coherent way as will be discussed below.

In a MD simulation for systems with hydrogen, the typical time step is 1fs. Currently,
VASP can perform a selfconsistent calculation (during the MD simulation) for a 1000
atom system within 1 minute [14]. As a result, it finishes a 10 ps simulation (10,000 steps)
in about a week. In order to speed this up a thousand fold, we need to perform a self-
consistent calculation in 0.06 second. This is a daunting task. It is in the time realm of
classical simulations. In this work, we will focus on plane wave pseudopotential approach
to solve the DFT equations [15]. Not only the plane wave approach is the most mature
approach, we also believe that in this size regime, the plane wave approach could still be
faster than, for example, the real space grid approach [16,17] or finite element approach
[18] for the same accuracy. This is especially true if a well designed algorithm is used
and mapped uniquely to the computer architecture so that the global communication in
the FFT ceases to be a bottleneck. As will be shown below, in our analysis, we found that
the bottleneck comes from the wave function orthogonalization and subspace
diagonalization. These are not the problems of the plane wave methods. On the contrary,
using plane wave basis will reduce the number of basis functions for the same accuracy
(e.g., compared with real space grid method [17]). As a result, it will help the
orthogonalization and subspace diagonalization steps. We will base many of our
discussions on our own plane wave pseudopotential code PEtot [19] and the all-band
conjugate gradient method we developed recently. PEtot can handle both norm
conserving pseudopotential and ultrasoft pseudopotential. It now has three levels of
parallelizations: k-points, reciprocal G-vectors, and band index. It has three different
algorithms to solve the Schrodinger’s equation: band-by-band conjugate gradient method,
residual minimization method, and all-band conjugate gradient method. It can relax the
atomic positions (much like in a molecular dynamics) using the ab initio atomic forces.

II. BASIC FORMALISM FOR PLANE WAVE DFT CALCULATIONS

In order to design the architecture which fit best for the algorithm, it is necessary to first
describe the basic formalism of DFT [1], and the corresponding algorithm steps [15]. To
calculate a system under density functional theory, especially under its local density
approximation (LDA) [20], one needs to solve the minima of the total energy as a
function of the single particle wave function {ψi}:

∑∫

∫∫ ∑

−
++

−
+⎥

⎦

⎤
⎢
⎣

⎡ +∇−=

',

'3

3332*

|'|
))(()(

'
|'|
)'()(

2
1)()()()(

2
1][

RR

RR
XC

i
ionii

RR
ZZrdrr

rrdd
rr
rrrdrrVrrE

ρερ

ρρρψψψ
 (1)

here the occupied charge density is

2|)(|)(rr
i

i∑= ψρ (2)

and Vion(r) is the ionic potential, and ZR is the nuclei charge at R, and the function εXC(x)
is the LDA exchange correlation function. If there are 2M electrons, there will be M
occupied states (wave functions) ψi (i=1,M) assuming that the system is not spin
polarized, thus one wave function can be occupied with two electrons, one spin up, one
spin down. The wave functions {ψi} satisfy the following orthonormal condition:

jiji rdrr ,
3*)()(δψψ =∫ (3)

Finding the minimum of the energy in Eq.(1) is equivalent to finding the solution of the
following Kohn-Sham equation (sometime it is also called Schrodinger’s equation):

)()()(]ˆ)(
2
1[2 rrHrVrV iiiiNL ψεψψ =≡++∇− (4)

here the total potential V(r) has the following expression:

))(('
|'|

)'()()(3 rrd
rr

rrVrV XCion ρμρ
+

−
+= ∫ (5)

here the second term is the Coulomb potential due to charge density ρ(r), and the third
term is the LDA exchange correlation potential coming from the derivative of ρεXC(ρ). In
Eq.(4), we have also introduced a nonlocal potential , which is a nonlocal operator
acting on the wave functions. This nonlocal potential is needed for pseudopotential
calculations.

NLV̂

In the plane wave (PW) method, the wave functions (also called orbital) are expanded by
plane wave basis set as:

riq

q
ii eqCr •∑=)()(ψ (6)

Usually a periodic box (supercell) is chosen. Then the reciprocal lattice of the supercell
defines a grid of q in the Fourier space. As a convention, all the q points within a sphere

defined by a kinetic energy cutoff 2

2
1

cc qE = are chosen in the summation of Eq.(6). In

the PW method, the wave functions are kept in reciprocal space (q-space), represented by
the coefficients Ci(q). Major operations, like the enforcement of the orthonormal
conditions of Eq.(3) are carried out in this reciprocal space representation. However, to
carry out operations like the V(r)Ψi(r), the wave function is transformed via FFT into the
real space on a regular real space grid. After the V(r) and Ψi(r) multiplication, the result is

Fourier transformed back to the reciprocal space. This dual space representation is
illustrated in Fig.1.

 Fig.1, the dual space representation of the PW method. The reciprocal space (right box) and

real space (left box). The wave function q vectors (G=q in this figure) inside the cutoff Gc1
are chosen in the summation of Eq.(6), while the potential V and charge density ρare
represented by the plane wave q inside a larger cutoff Gc2. Gc1 is half of Gc2. FFT is used to
transform the wave functions from the reciprocal space representation onto the real space grid.

One computationally important term is the nonlocal potential in Eq(4). Using the
Kleinman-Bylander approximation, the nonlocal potential is implemented as a reference
function projection:

)(|)(ˆ

,
,

, rrV lRi
lR

lRiNL φψφψ ∑= (7)

Here ΦR,l are the atomic reference functions, and subscripts R, and l stands for atoms and
angular moments. The dot product ilR ψφ |, can be evaluated either in reciprocal space or
in real space. The ΦR,l is localized in real space around each atom R. Thus, for large
systems as discussed here, a real space evaluation can be much cheaper. Thus, we will
use real space evaluation in the current paper.

A major computational task using the PW method for large scale parallel computer is the
requirement for the FFT. While the number of floating point operation is moderate, the
global communication for the FFT can be a serious bottleneck. Efficient FFT have been
demonstrated using a few thousand processors in electronic structure calculations [21].
But for even larger number of processors, the communication message size can be very
small, hence the communication latency can significantly slow down the FFT. This will
be a major factor in determining the computer design and data layout for parallelization.

Fig.2. the flow chart of a DFT selfconsistent calculation.

Most modern DFT calculations follow a self-consistent charge mixing scheme [15] as
shown in Fig.2. Under this iterative scheme, the wave functions {ψi} are solved from the
Schrodinger’s equation [Eq.(4)] for a given input potential V(r), then the charge density
ρ(r) is calculated from the wave functions, and a density functional (e.g., the local density
approximation formula) is used to calculate the output potential V(r) [Eq.(5)]. This output
potential is mixed with previous potentials to generate the input potential for the next
self-consistent iteration [22]. The selfconsistency is reached if the input and output
potentials are the same in this self-consistent loop. We will use Nsc to denote the number
of self-consistent iterations. Note that, in practice, the Schrodinger’s Eq.(4) needs not to
be solved exactly at each outer self-consistent loop. Thus, the Schrodinger’s equation is
also solved using iterative methods. Although many iterative schemes exist, their
computational costs can all be characterized by the number of Hψ steps (iterations,
denoted here as Niter) and the number of times for the enforcement of the orthonormal
condition [wave function orthogonalization, Eq(3)], and the number of orthogonalization
projection between the new search direction Pi=H ψi and ψj [thus jiP ψ|]. Usually, at
the end of Niter iterations, there will also be a subspace diagonalization among the wave
functions, which requires the calculation of matrix ji H ψψ ||| and diagonalization of
the resulting M x M matrix H(i,j).

In modern codes, for one MD step where good initial charge density and wave functions
can be obtained from previous MD step, Nsc can be 5 to 10, while Niter is about 2 to 5.
One example is given in Fig.3, where a 1000 atom Si crystal with small random
displacements is calculated with an all-band conjugate gradient method (as one of the
algorithms to be used below). Here the system is initialized with random wave functions,
and the self-consistent charge mixing scheme only starts from the 4th self-consistent field
iteration (within Nsc, not Niter). In the example shown in Fig.3, Niter=5. In a MD step,
since good initial wave functions and charge density can be obtained from previous step,
usually the self-consistent charge mixing can start from the first iteration, and the total

energy errors of the 5 to 10 Nsc steps are likely correspond to the 7th to 14th iterations
shown in Fig.3. For a given Nsc and Niter, there will be Nsc*(Niter+1)=10 to 50 Hψ (for
each wave function) per MD step. Note, there will be Niter+1 Hψ for Niter conjugate
gradient steps. However, there is no need for further Hψ for the subspace diagonalization.

Fig.3, the total energy convergence of a 1000 Si atom system as a function of the self-consistent iterations.
The convergence error is defined as the total energy difference between the current iteration and the
previous iteration.

Table.I the major computational tasks, and the number of times they have to be executed for each
molecular dynamic step within 0.06 seconds.
Task Num Note
Hψ 35 Equals Nsc*(Niter+1)
FFT 70 Within Hψ , 2FFT per Hψ, size (200)3,
nonlocal 35 Within Hψ, Eq.(7).
P-orth-ψ 28 or 0 Equals Nsc*Niter or 0, dep. on the algorithm
Ψ-orth-ψ 7 Equals Nsc in our new algorithm
Sub diag ψψ || H 7 Equals Nsc in our new algorithm

In the following, we will use Nsc=7, Niter=4, thus 35 Hψ for our computer time analysis.
This means that the time for each Hψ step must be less than 0.06/35=0.0017 second. In
Table.I, we listed the major computational tasks, and how many times needed to perform
these tasks for each MD step (within 0.06 second). We have chosen the numbers for each
task based on two possible algorithms. One is a new all-band conjugated gradient
algorithm we developed recently [23], and implemented in our newest version of the
PEtot code [19]. In this algorithm, there is no need to perform Gram-Schmidt
orthogonalization for each conjugate gradient step. Instead, only one wave function
orthogonalization step is needed for each self consistent step. Another algorithm is the
residual minimization algorithm [24], which is implemented in PEtot code and the VASP
code. This residual minimization algorithm is also called direct inversion of iterative
subspace (DIIS) method in quantum chemistry [24]. Note that, if the residual
minimization algorithm is used, there is no need for P-orth-ψ, thus its number is zero as
shown in Table.I. In the following sections, we will design the computer architectures to
reduce the computational time for each task listed in Table.I.

III. PARALLELIZATION SCHEME AND COMPUTER ARCHITECTURE

In our discussion, we will assume that there is only one k-point needed for our 1000 atom
system. For a one k-point calculation, there could be two levels of parallelization based
on the plane wave DFT formalism. If there are Ntot number of processors, they can be
divided into Ng groups, each with NP processors. Each group will calculate a subset of
the wave functions (i.e, the number of wave function per group is m=M/Ng). This is
called parallelization among the states (or say wave function index parallelization).
Another level of the parallelization is the division of the q space (Gc1 sphere in Fig.1) by
the Np processors within a group. This is done usually based on a column by column
distribution to achieve load balance. This distribution is illustrated in Fig.4(a). Since the
V(r)ψi(r) will be carried out in real space, the real space grids also need to be distributed
among the Np processors. This is done by dividing the real space grid into slices, and
each slice belongs to one processor in Np. This is illustrated in Fig.4(b). The 3D FFT will
be performed among the Np processors within each processor group.

 Fig.4 (a) the distribution of the q-space point to different processors (p0,p1,p2); (b) the distribution of real-
space points to different processors.

To map the above two level parallelization in the algorithm into hardware, we have
designed the following computer architecture, illustrated in Fig.5. In this architecture, the
computer nodes will be divided into Ng groups, just like the wave function index
parallelization in the algorithm. Within each group, there will be Nn nodes, each node
will have Nc core. Thus, Np=Nn x Nc. The corresponding computer nodes in neighboring
groups are connected by high speed data pipes (they will be called inter-group links). The
connection within the group can be constructed in different ways, either as a 3D torus, or
as a fat tree. A main task for the connection inside a group (in-group) is to perform the
3D FFT, and to have a fast global sum (all reduce) within the group. The FFT requires an
all-to-all communication. In the next section, we will determine the parameters for the
number of processors, interconnect speeds, the CPU speed, memory access rate and
cache sizes, in order to achieve our goal of 0.06 second per MD step.

Fig.5, the computer architecture. Np is the number of processors within one group. Np=Nn x Nc, where Nn
is the number of nodes within one group, and Nc is the number of cores within one node (socket). Ng is the
number of processor groups. The connection between the corresponding nodes in neighboring group is
denoted by a thick horizontal line, while the connection inside each group is not specified here. The links
and communications between different processor groups are designated as inter-group, while the links and
communications within a group are designated as in-group.

IV. COMPUTATIONAL COSTS AND HARDWARE REQUIREENTS

For a common semiconductor system, we will take the plane wave cut off Ec=35Ryd. If
ultrasoft pseudopotential is used, this Ec can also be used for first row elements and
transition metals. For most calculations, some kind of vacuum space exists, e.g., for a
surface, or for a quantum dot calculation. Thus, we will assume a half space for vacuum,
and half space for solid material. As a result, in average, there will be 1000 plane waves
for each atom when Ec=35Ryd. For a 1000 atom system, this will also lead to a real
space grid like n1 x n2 x n3=(200)3 (assuming a cubic periodic supercell). If we are
dealing with s-p atomic orbital systems, in average, each atom will have 4 electrons. That
leads to 4000 electrons, thus M=2000 for the wave function index i. Note, if transition
metal and d state is involved, this number can be increased by a factor of 3. For the rest
of the paper, however, we will use M=2000. The total number of plane waves ng for each
wave function is 1000x1000=1 million. Then the number of plane wave coefficients per
processor for each wave function is ng_n=106/Np. From the past experience, we know
that Np can easily be up to 256 for efficient FFT parallelization [21]. With better
hardware parameters, we will push Np to be 1000.

Now, with Ng processor groups, we will have m=M/Ng wave functions per group. In the
extreme case, we can have Ng=M, thus m=1, i.e, each group will deal only with one
wave function. Actually, that is the parallel configuration recommended in VASP manual
[25], especially when the algorithm of residual minimization is used. Now, if we also
take Np=1000, then we have 2000 x 1000 =2 million processors. In terms of floating
point operation, this will be a petascale computer, like the Roadrunner just released in the
TOP 500 list [26]. Our computational parameters are summarized in Tabl.II. In the
following, we will analysis the computational times for the major tasks listed in Table.I,
and figure out the corresponding hardware requirement. As will be discussed below, each
task in Table.I will involve two to three most time consuming major sub-tasks. This will
amount for about 10 sub-tasks. Thus, in order to achieve the 0.06 second time for one
MD step, we will require each sub-task to be finished within one tenth of the 0.06 second.
This will also lead to a balanced algorithm and hardware design, which usually result in
optimized the total performance.

Table.II, the basic computational parameters for a 1000 atom system and a 35Ryd plane wave cutoff. We
have used 2000 processor groups each with 1000 processors.
Parameters Value Note
Ec 35 Ryd Plane wave energy cut off
ng 1,000,000 Total number of PW per wavefunction
ng_n 1000 PW coeff. Per processor
nr_n 8000 Number of real space grid in each processor
Ng 2000 Number of processor group
Np 1000 Number of processors within each group
M 2000 Total number of wavefunctions
m=M/Ng 1 Number of wavefunctions per group
n1 x n2 x n3 (200)3 FFT grid

(1) FFT calculations

Each Hψi for one wave function i requires two FFTs, one forward, and one backward.
Each FFT will be performed within one processor group, and there is one wave function
for each group. Thus, assuming 70 FFT within each MD step as listed in Table.I, and
assume FFT will only take one tenth of the total time, we have the time for each FFT:
0.06/70/10=0.0000857~0.0001 second. There are two major time consuming steps with
one FFT. One is the data communication, another is the floating point operation. Each
FFT requires at least one global transpose. Thus, the time for one transpose among the
Np cores within one group must be smaller than 0.0001 second. Each wave function will
have ng=106 complex coefficients, thus 16MB of data. The transpose is done on a
cylinder after the first 1D fft (the 3D fft is broken down into 3 1D fft), which is three
times of the q-space sphere shown in Fig.3. Thus, the total amount of data for the
transpose for one wave function is 48MB. This will require a bidirectional (counting
traffic in both direction) bisection bandwidth (among the group of Np processors) of
48MB/(0.0001 second)/2=240 GB/s. This is achievable if we form a 3D torus within the
Np processors. With a 10x10x10 3D torus for the 1000 processors (assuming one core

per node/scoket), the bisection bandwidth should be about 10x10x2xBw=200Bw (factor of
2 for the bidirectional connection between two points in a torus), where Bw is a
bandwidth for each link in the torus. Modern link can have Bw in a few GB/s, thus the
bisection bandwidth should be achievable. This, however is assume that Nc=1 (i.e, one
core per socket). If the number of multicore Nc per node is large, and the different core
has to share the same link, the situation might change. But if Bw is about 5GB/s, there are
still room for multicores, e.g, Nc can be 5. If Nc is very high, e.g, 10 or 100, then the
number of node Nn will be small, an all-to-all connection among Nn should be used. In
that case, the concern is not the bisection bandwidth, but individual node to node
bandwidth. Such bandwidth should be: 48MB/Nn2/(0.0001 second)=480/Nn2 GB/s Thus,
as long as Nn is larger than 10 (i.e, Nc is less than 100), this bandwidth is less than 5GB/s.
Thus, with an all-to-all connection, this should be achievable. All these discussions are
based on the assumption that the interconnects are between nodes (sockets), not directly
between cores. In summary, for the requirement in FFT, if Nc < 10, we can have a 3D
(or even higher dimension) torus connection. However, if Nc > 10, we should have an all-
to-all connection among the Nn nodes. However, as we will see in later discussions, there
will be stronger demand on interconnects (both inter-group and in-group) than on CPU
speed. Since multi-core mostly increase the CPU speed, but not inter-connects speed
(which are based on node/socket), we believe for our computer, it is better to keep Nc to
be 1 or 2, unless the inter-connect speed (both latency and bandwidth) can increase
proportionally with the number of cores. Thus, in many of our following discussions, we
will implicitly assume Nc=1, thus Nn=Np. We will also assume a 3D torus interconnect
within a processor group.

While the bandwidth might not be a problem, another concern is the latency time for the
communication. Note, the average message size from one processor to another is only
48/Nn2 MB. If Nn=1000, this is just 48 Byte, i.e, three complex numbers. But the
communication time required is less than 0.0001 second, i.e, 100 µs. If the all to all
communication is done in a serial fashion (e.g, like a isend-ireceive pair), and if Nn=1000,
then the latency time for each pair need to be 0.1 µs. Current machines often have the
latency time around one µs [27]. Then there could be a problem. However, the all-to-all
communication can be implemented better than a serial of one-to-one communications.
Thus, we believe 100 µs should be long enough. We also note that, the hard ware latency
is in the order of 30 ns. The one µs latency in the current machine [27] comes mostly
from the software layers. These layers are necessary to guarantee the reliability in a
general purpose machine. But for a special purpose machine, and for a dedicated run for
the whole machine, we believe the layers can be simplified significantly. It is reported
that the communication latency between Anton processors is about 60 ns [5]. There, for
classical simulations, the message size is also extremely small. Thus the latency is a
major issue. The technology used in Anton can be applied in the current DFT machine.

As for the floating point operation for the FFT, each processor will get n1 x
n2/Np=200x200/1000=40 columns. Each column perform a 1D fft for the length of 200
(which is about 3*n3*log2n3 FP operation, thus about 4000 operation). So, in total one
processors needs to perform 40*4000*1.5=240,000FPO (1.5 is used because there are 3
1D FFT, but the numbers of other 2 1D FFTs are much smaller). To do this within 0.0001

second requires for 2.4 Gflops. This is just the normal speed of modern CPU. Thus,
floating point operation should not be a problem for the FFT.

In actually FFT, we found that the data arrangement within each processor after the
global data transpose might take significant time. This time is mostly caused by data
access from the RAM. However, in our calculation, ng_n=1000, thus the wave function
data is only about 16KB in reciprocal space. The real space data is nr_n=8000, thus
128KB. All these can be stored in the cache. Again, similar to the Anton machine, we can
store the frequently needed data in the cache (if not the primary L1 cache, it will be
stored in the secondary L2 cache) throughout the whole calculation. Note that, modern
day computer (e.g, Cray XT4) has a 64KB L1 data cache, and 1MB L2 data cache [27].
For our computer, if we require L1 data cache to be about 300KB, then we can store two
real space wave function in the cache, that should be enough for all our calculations, and
ensure that all the wave functions stay in L1 data cache through out the whole calculation.
This will be a major feature in our design, and it is a key step to reduce the
communication time and data access time. For example, if all the data are in the cache,
there is no difference between blas2 and blas3 libraries.

Overall, we found no intrinsic obstacle for the FFT calculation. This justifies our initial
assumption that using plane wave basis is a good choice, and the FFT will not be a
bottleneck in our calculation. Even in current computer and current code, for a thousand
atom calculation, the FFT is not a computational bottleneck. In practice, we found that
the float point operation (FPO) is not a problem, and the communication bandwidth
should be fine if we have a 3D torus structure among the Np processors. We do need to
be careful for how to implement the all-to-all communication for a given latency.
Certainly, it should not be implemented in a serial isend/ireceive fashion. Finally, all the
wave function data, both in real space and reciprocal space, should be stored in the cache,
and remain in the cache through out the whole calculation.

(2) The nonlocal potential projection

As shown in Table.I, besides two FFT, the other heavy operation step for each Hψ
operation is the nonlocal potential projection as described by Eq.(7). Assuming that the
projectors ΦR,L are all stored in local memory, then there is no communication needs
among different groups of processors. Using a radius cut off Rc=3.2 Bohr for the real
space sphere of nonzero ΦR,L around each atom R, the number of grid point for each real
space ΦR,L is about 8000. Each atom will have 9 different L (1s+3p+5d states) if one
reference state per angular momentum is used as in norm conserving pseudopotential,
and 18 L if two reference states per angular momentum are used as in ultrasoft
pseudopotential. For a conservative estimation, we will assume two reference states for
each angular momentum in the following discussions. As a result, in total, the operation
count for ilR ψφ |, for all {R,L} and one ψi is 8000*18*1000=1.44*108. We need to do
this at least twice, one to get the dot-product, another to add the projectors back to the
wave function as described in Eq.(7). Thus the total FPO count is about 3*108.

Each real space projector function ΦR,L will be distributed among the Np processors
within each processor group according to the portion of its real space sphere located at
different nr_n real space division. For an averagely load balanced distribution (the load
imbalance could be 50%), the FPO for each processor is 2*3*108/Np=6*105 (the factor of
two account for the possible 50% load imbalance). Now we need to finish this within
0.06/35/10=0.00017 second, thus the CPU flops for each processors is
6*105/0.00017=3.5 Gflop. This is within the realm of current day CPU.

One issue however, is to perform a global sum. Since each ΦR,L is distributed among
different processors, the values for P(R,L)= ilR ψφ |, need to be summed up from its
parts in different processors within a processor group. In the most brute force algorithm,
the result for P(R,L) will be globally summed up from all the Np processors for all {R,L}.
The data amount for P(R,L) is 18*1000*16=0.29MB. So, the question is: whether we can
do a global sum of 0.29MB within the Np processors within 0.00017 second. To just send
the 0.29MB data out from one processor within 0.00017 second, the bandwidth will need
to be 1.7GB/s. To do an all-reduce global sum, it is likely that many times of such
communications are needed. If we take a binary tree, that means 2*log2Np =20
communication steps. Then the bandwidth for each interconnect will need to be 34GB/s.
Although not impossible, this is about 10 times larger than the currently used
interconnects. One possibility is to improve the brute force algorithm, because it is likely
that one processor will not have all the atoms R. Thus, the relevant P(R,L) amount will be
reduced, and the number of processors needed in the global sum for a given R will be
smaller than Np. But very careful algorithm consideration is needed to take the advantage
of these facts.

Another simpler way to solve the above problem is to store the whole sphere of each ΦR,L
for a given atom within one processor. Thus, one processor will take care of one atom,
and no global sum is needed. This time we need to reassemble ψi from other processors
for all its values within the sphere for a given processor. This is necessary, because after
the wave function ψi is FFT from the reciprocal space to real space, the real space
function is distributed evenly among the Np processors, and each processor has its own
nr_n data point. The total amount of data to be sent (and to be sent back later) to a given
processor is 8000*16=0.128MB (8000 is the number of grid point within each sphere).
Thus, the require bandwidth is 0.128MB/0.00017s = 0.75GB/s. Thus, the bandwidth is
not a problem in this regard. The latency should also not be a problem because probably
only a dozen’s other processors will send wave function data to this one processor, and
the allowed total time is 170 μs. Note it is not efficient to do a standard global all-to-all
operation for this purpose because each processor will not send data to all other
processors. In summary, we believe that doing one atom by one processor is much
cheaper than doing the atoms in a distributed fashion. Thus, in our requirement for the
computer architecture, we will adopt this method. Nevertheless, the discussion of doing
an in-group global sum in the above paragraph will still be useful, as it is pertinent to
many other calculations to be discussed later.

Another issue for the nonlocal potential projection operation is its memory requirement.
The memory requirement for ΦR,L for each processor will be: 8000*18*8=1.2MB (here,

the ΦR,L can be made real, thus 8 Byte real number is used, this accounts for the factor of
8). If we want to store ΦR,L inside the L2 cache, we need it to be larger than 1.2MB. We
thus recommend 3MB L2 cache in order to store some other variables. This is not much
larger than the L2 cache used in current computers (i.e., 1MB L2 cache in Cray XT4
[27]).

Finally, there is an issue of generating ΦR,L when the atom moved after each MD step.
We can distribute this task among the Ng groups. Thus, roughly one group will deal with
one atom. To generate ΦR,Lfor one L, we need to do one FFT (from q-space to real space).
Thus, we need to do 18 FFT for each Ng group. This is 70/18=4 times smaller than the
FFT inside Hψi within each MD step. Thus, this should not be a problem. After ΦR,L is
generated for one R within one processor group, we need to transfer it into all the other
processor groups. This is very much like in the jiP ψ| orthogonalization or wave
function orthogonalization tasks to be discussed below. The data amount to be transferred
is 8000*18*8=1.2MB. This is to be compared with the wave function in G-space which
is 16MB. Besides, the ΦR,L only needs to be transferred once for each MD step, thus, if
this is not a problem for the orthogonalization steps (there are 7 such steps within each
MD step), it should not be a problem for ΦR,L either. Finally, one might be able to
develop algorithms to map ΦR,L directly to the real space grid from radial and spherical
Harmonics functions, without doing FFT. But more numeral tests are needed to establish
the accuracy of such procedures for total energy calculations [28].

(3) jiP ψ| projection

Depending on the algorithm used, each Hψi step might or might not need one jiP ψ|
projection. If residue minimization is used, there is no need for this projection. On the
other hand, if the all-band conjugate gradient method is used, each Hψi step corresponds
to one jiP ψ| projection. The conjugate gradient step is more robust, thus let’s first
assume this project is used, and then to show what is the corresponding architectural
requirements.

In this step, Pi=Hψi , then we have

jj
ij

iii PPP ψψ|'
,1
∑
=

−= (8)

The challenge of this step is that each Pi needs to be projected for the wave functions of
all j (from 1 to i). For the purpose of estimating the computing time, we can replace j=1,i
by j=1,M, thus treat all the wave functions in an equal footing. This step is the most
computational and communicational demanding step. It is the most likely bottleneck of
the whole calculation.

One major task to carry out Eq(8) is the data communication between different processor
groups. This is because Pi is located at each processor group, while it needs to have a dot-

product with all the wave functions {ψj}which are located in other processor groups as
shown in Fig.5. In order to carry out this operation, we can pass each ψj from one
processor group to next neighboring processor group (e.g., from left to right) in a round-
robin fashion. After Ng such steps (hops), one ψj will have traveled through all the
processor groups, and allow the jiP ψ| to be carried out for all the Pi in different
processor groups. In order to finish this within the time of each Hψi (which is 0.00017
second), the time to pass one wave function from one group to its neighboring group
should be: 0.00017 second/Ng ~ 0.1 μs. The corresponding requirement for bandwidth of
each inter-group interconnect in Fig.5 is: Nc*16KB/0.1 μs=160*Nc GB/s, here the Nc is
the number of cores within each node. This is certainly the most stringent requirement.
Even for Nc=1, the 160GB/s bandwidth interconnect is more than 10 times larger than
what is deployed in current computers [27]. Note that, this bandwidth requirement cannot
be reduced by reducing the number of processor groups Ng. When Ng is smaller, there
are less steps for each wave function to hop, but for each step, there are more (m=M/Ng >
1) wave functions to be transferred. Also notice the advantage of using plane wave as the
basis, instead of using real space grid (where the number of wave function coefficient can
be 5 times larger for the same accuracy). Otherwise, the requirement for this bandwidth
can be 5 times larger.

One possible solution for the above problem is to relax the requirement for asking this
step to take 1/10th of the total computational time. Instead, recognizing the large
communication and computational demand, we can ask this step to take ½ of the total
computational time. This will reduce the bandwidth requirement to 32 GB/s for Nc=1.
This requirement is inline with the other requirements to be posed later.

For the latency, as stated above, each communication has to be done within 0.1 μs. Thus,
the latency needs to be less than 0.1 μs. This should be achievable as we discussed above.
The shortest latency demonstrated by the Anton machine is about 60 ns [5]. The key is to
reduce the communication layers used in general purpose multi-user communication
protocols. If ½ computing time requirement is used, then the latency time can be
increased to 0.5 μs.

For the FPO, the number of multiplication on each processor for one wave function hop
(within 0.1 μs) is 2*ng_n=2000 (two, for both to get the dot-product, and then to
calculate the projection). Thus the FPO is 2000/(0.1 μs) = 20 Gflops. This is 4 times
larger than the modern CPU. Since the CPU speed is not likely to be increased
significantly, one possibility is to increase the number of cores within one node, but keep
the number of Nn to be 1000 (thus to increase Np beyond 1000, and the total number of
core beyond 2 million). On the other hand, as we discussed before, if we allow this step
to take half of the computing time, then the flops requirement will reduce to 4 Gflop,
which is within the realm of current day CPU. Also notice that, the floating point
operation and the wave function communication can be overlapped to save time.

There is another global sum issue within each processor group. In order to get the dot-
product jiP ψ| , we need to perform an all-reduce global sum with the Np processors in

each processor group. This is just one complex number, thus the bandwidth should not be
a problem. But it has to be finished within 0.1 μs (if we require jiPjp ψ|)(= to be
calculated for each j while ψj is still there). This is almost an impossible request, because
if we use the 20 communication steps analysis of Sec.IV(2) for a global sum with the Np
processors, that will require the interconnect latency to be 5 ns. This is far less than
anything available now, and it is probably impossible to achieve any time soon. However,
one can wait for p(j) for all {ψj } have passed, then to do a global sum of p(j) for all the j
at the same time. This time, the time allowed for the global sum is 200 μs, thus the
latency is not an issue. Again, following the argument of Sec.IV(2), since the data size
for the global sum is only 32KB, that will lead to an interconnect bandwidth requirement
of 3.8GB/s, which is within the realm of current interconnect. Again, if we allow this step
to take half of the total computing time, the all the relevant request will be 5 times
smaller. One result of doing the global sum of p(j) for all j is that, the wave function ψj
either need to be passed again when Eq.(8) is calculated, or they need to be stored in the
memory, where a large memory access rate will be needed, see the discussion in the next
section.

Overall, as we will see from the following discussions, the jiP ψ| projection step is the
most demanding step. Its computations demand is similar to the wave function
orthogonalization and subspace diagonalization as to be discussed below, however, each
of the jiP ψ| need to be calculated in 1/4th of the time as requested for the

orthogonalization and diagonalization steps. This is because one jiP ψ| needs to be
done for each Hψi, where the orthogonalization and subspace diagonalization need only
to done once for every Niter (=4) Hψi. There are two solutions for this problem. One is to
allow this step to take ½ of the whole computational time (since it is the most time
consuming step) in the all-band conjugate gradient method, or we will use the residual
minimization algorithm for most of the calculations (where the jiP ψ| step is not used).
In reality, we might use a combination of these strategies, since the all-band conjugate
gradient method is more stable, but the residual minimization method can be twice as fast
due to the lack of this jiP ψ| step.

(4) Wave function orthogonalization

The next task in Table.I is wave function orthogonalization among {ψi}. Although the

jiP ψ| projection step can be eliminated if we chose the residual minimization
algorithm, the wave function orthogonalization step will always be there no matter what
algorithm do we chose. This should be a Gram-Schmidt orthogonalization scheme. For
the two algorithms we considered here, either the all-band conjugate gradient method, or
the residual minimization method, there need to do only one orthogonalization for each
self-consistent step. Thus, within each MD step, in average, we only need to do about 7
orthogonalizations. This is about 5 times less than the jiP ψ| projection step.

In both of the our algorithms, the fastest way to carry out the Gram-Schmidt
orthogonalization is first to calculate the overlapping matrix: jijiS ψψ |),(= , then do a
Cholesky decomposition for matrix S: S=UH*U. Here, U is an upper triangle matrix. Now,
we can invert U to get U-1, so that U*U-1=I. Note, U-1 is still an upper triangle matrix.
Now, we have (U-1) H*S*U-1=I. The new wave functions can be calculated as:

j
ij

i ijU ψψ),(' 1∑
≤

−= (9)

It is easy to show: jiji ,| δψψ = , and since in Eq.(9), the summation is only done for j
less or equal to i, thus this is a Gram-Schmidt orthogonalization procedure.

The main computational parts to carry out this orthogonalization procedure include the
calculation of the matrix S, the Cholesky decomposition of S to get U-1, and carrying out
Eq.(9).

The main cost to calculate S matrix is to transfer {ψi} crossing the processor groups,
much like in the jiP ψ| projection step. In our current layout, each processor group has
only on ψi.. Again, we will do a round-robin style communication for {ψi}. Each ψi will
pass from one processor group to its neighboring group in one hop. There will be Ng
hops to finish the round-robin loop. Thus, the time allowed for each hop is (using the
1/10th of the computing time rule): 0.06/7/10/Ng=0.43 μs. The bandwidth requirement
for the inter-group interconnect link is: 16KB/0.43 μs=37 GB/s. Again, this is about a
factor of 5 larger than the currently used interconnect links [27]. But this might be
possible in the next generation interconnect.

The latency for the above communication is 0.43 μs. Although this is shorter than the
communication latency in most current day computers, but as we discussed above, this
should be possible as demonstrated by the Anton computer.

There is also some communication issues for S(i,j). First, there is a need for a global sum
within the Np processors within a group (in-group) for a given row of S(i,j) (i.e, a fixed i).
This is much like the global sum issue for p(j) for jiP ψ| . Here, the data amount is
16M=32KB. As for p(j), to reduce the latency, this can be done after all the ψj has passed
through the group. Thus, we need to do this within 0.43 μs*Ng=860 μs. The demand for
the in-group global sum can be referred to the global sum discussion in Sec.IV(2) for
P(R,L) in nonlocal potential calculation. But here, the data amount is 9 times smaller, and
the allowed time is 5 times longer. As a result, the in-group interconnect link bandwidth
requirement is only 0.75GB/s, thus it is not a problem. After this global sum operation,
each processor within a processor group will have the whole row of S(i,j) for a fixed i. In
order to perform the Cholesky decomposition, we need to pass all the other rows from all
the other groups to any given group. This can be done in the same way as we pass the
wave functions {ψi} through the processor groups. Now, the data amount on each
processor is one row of S(i,j), thus 16*Ng=32KB. This is twice as much as the wave

functions, thus the bandwidth requirement for the inter-group interconnect link is
32KB/0.43 μs=74 GB/s. This is quite large. Another option is to only transfer part of the
row from each processor (since all the processors within one group have the same row of
S(i,j)), but different processors transfer different part of the row. Thus, the bandwidth
requirement for the inter-group interconnects can be reduced. Then the task will be
shifted to a broadcast within the group after different parts of the row have arrived in
different processors within a group. It is not clear whether this will be faster than the
transfer of the whole row from each processor. However, the best strategy is to realize
that, later on we will use scalapack to do the Chelosky decomposition with Np processors
within the group. The scalapack requires that the matrix to be divided into a

3232×=× Pp NN grid, with each processor having one block of the matrix for its
corresponding grid point. Thus, it is not necessary to ask each processor to have the full
matrix. As a result, for a given processor (and all the corresponding processors from the
other groups on a given horizontal line of Fig.5), the data amount needed to be
transported for each hop is not a full row of the matrix, instead, it is only 1/32 of a row
for its corresponding block. As a result, the corresponding inter-group interconnect
bandwidth requirement is only 2.3 GB/s, well within the current day capability, and this
requirement is much smaller than the requirement from wave function transportation.
Note that, if only a block of the matrix is stored inside each processor, the data size for S
is only M/32 x M/32 x 16 = 64KB. Thus, it can be stored inside the L1 cache, which will
make all the calculations and communications faster.

After the S is decomposed and U-1 is found, Eq.(9) need to be carried out. At this stage,
{ψi} will be needed again at each processor group. There are two approaches. One is to
do another round-robin communication, another is to store {ψi} from the previous
communication loop when S was calculated. The total data size for all the wave functions
at a given processor is 16*ng_n*M=32MB. This cannot be stored in the cache. Thus, has
to be stored in the RAM (another option is to request a L3 cache with 32MB). The
floating point operation to calculate S and to carry out Eq.(9) is: 2*ng_n*M/(0.06s/7/10)
= 4.6 Gflops (the factor of two: one for calculating S, another for calculating Eq.(9) for
the wave function ψi’ in this processor group). This is within the range of modern day
CPU. When calculating Eq.(9), one challenge is to access the wave function data ψi from
the memory (if we store the wave function from the first round-robin loop into the
memory). Eq.(9) is essentially a matrix-vector multiplication (for each processor group
“i”). Thus, in order to keep up the floating point operation of the CPU, we require a CPU
to memory access rate of 16*ng_n*M/(0.06s/7/10)=37 GB/s. This is basically the same
requirement as we have for the bandwidth for the inter-group interconnect. Now, the
requirement is for the CPU to memory access. Current day memory access bandwidth is
typically around 10 GB/s [27]. Thus, the required memory access might become possible
in next generation machine. Besides, if such memory access is not available, but the high
speed inter-connect link is available, then we can carry out Eq.(9) by transferring ψi
between processor groups, instead of getting them from the memory. This is the same
procedure as for calculating the S matrix. One thing we can learn here is that, if the
memory is going to be used to store large data, then the memory access speed should be
similar to the inter-connect speed in order to have a balanced machine.

So far, we haven’t discussed how to decompose the 2000x2000 S matrix within the time
of 0.06/7/10=0.001 second. One conventional way is to use Scalapack to do this
Cholesky decomposition. This will be done within one processor group. Although this
results in 2000 time repetition (all the processor groups are doing the same thing), but we
believe it is difficult to use more than 1000 processors for a Scalapack application for a
2000x2000 matrix. According to Scalapack manual [29], the time to run a Scalapack
routine can be estimated as:

m
B

m
v

V
f

f t
N

NCt
P
NCt

P
NC

PNT ++=
23

),((10)

Here N is the size of the matrix. For us, N=2000. P is the number of processors, NB is the
size of the communication block. Usually it is assumed that the P processors divide the
NxN matrix on a grid m x n, then the size of each grid is NB. Thus, if we assume a
square division, we have PNNB /= . tf in Eq.(10) is the CPU time for one floating
point operation. tv is the time to communicate one item (i.e, a complex number here), this
is determined by the bandwidth, and tm is the communication latency time. In the
formula, it is not specified what is the topology of the processor connections, and it does
not distinguish the communication time and latency time from one processor to its
neighboring processor, or to far away processors. It is assumed that there is a
homogeneous connection from one processor to any other processors, and the times tv and
tm are the times from one processor to any other processors in the P processor group.
Thus, let’s use our upper limit of our requirements discussed above to estimate T(N,P).
Let’s assume a 5 Gflops CPU, thus tf=2*10-10 second. Let’s assume the in-group inter-
connection bandwidth is 37GB/s, thus tv=4.4*10-10 second. Finally, let’s assume the
latency tm to be 0.1 μs. The coefficients Cf, Cv, and Cm depend on the subroutines. We
can use the PxPOSV scalapack routine for Cholesky decomposition. The corresponding
coefficients are: Cf=1/3, Cv=2+0.5log2P, and Cm=4+log2P. Plug these parameters into
Eq.(10), if we assume that P=1000 (i.e., using all the processors in one group for this
task), then NB=63, we have: T(N,P)=(5.3+3.8+0.4)*10-4 =0.00095 second. This is just
within the 0.001 second limit. There is a question about whether when P=1000, the
estimation in Eq.(10) is still valid. Judged by the data block size NB=63, we believe the
estimation formula should still be good, especially as we discussed above, all the matrix
can be stored in L1 cache. Although actual tests might be necessary to confirm the above
conclusion, especially the dependence on the connection topology within Np, and the
possible difference for the bandwidth and latency between neighboring processors and far
away processors (if we use a 3D torus structure within each group), our estimation
indicate that it is feasible to use scalapack to do the Cholesky decomposition. In the
above estimate, we have not included the time to invert U. However, inverting a triangle
matrix U should take less time than Cholesky decomposition itself. Thus, we believe this
should not be a problem.

There is another possible way to find U-1. Using our current LDA PEtot code, and the
1000 atom Si example shown in Fig.3, we found that the 2000x2000 S matrix is very
close to I in almost all the self-consistent iterations. Thus, it is possible to find U-1 by

using expansion serial. Basically, for the first order, U-1(i,j)=2δi,j-S(i,j). Then, one can
calculate S’=(U-1)H*S*U-1. We found that in S’ is usually much closer to I than S. This
procedure can be repeated for several times (i.e, doing the same thing for S’). Eventually
the resulting matrix is I. Then, the final U-1(final)=U-1(1)*U-1(2)… (which is still an
upper triangle matrix). Unless the first perturbation formula is already good enough, this
procedure however requires matrix-matrix multiplications, which is N3 operations. Since
the Cholesky decomposition in lapack and Scalapack requires only N3/3 operations, looks
like this way will be slower, unless the first order perturbation is already good enough, or
the whole machine (for all the processor groups) can be used for the matrix-matrix
multiplication. But then the problem shifts to data communication between the processor
groups. Thus, we will chose to use the Scalapack routine for the Cholesky decomposition
step.

(5) Subspace diagonalization

Our last major task listed in Table.I is the subspace diagonalization. This involves the
calculation of ji HjiH ψψ ||),(= matrix, then diagonalize this matrix and find out the
eigen vectors Vi(j), and construct the new wave function as

jj ii jV ψψ)(' ∑= (11)

Usually, the subspace diagonalization step is done after the wave function
orthogonalization step. One Hψi is carried out for the wave function ψi in its own
processor group, and then the dot-product is calculated when other wave functions ψj
passing through this processor group in the round-robin loop.

The passing of the wave functions from different processor groups through each
processor groups in the round-robin style, the calculation of dot-product, the in-group
global sum to get H(i,j) (for a given i), and the calculation of Eq.(11) are all the same as
in the wave function orthogonalization step. Thus, the corresponding architecture
requirement in that step is also the architecture requirement in this step.

The issue for how to transport the H(i,j) from other processor groups (for different i’s) to
a given processor group might be different from that of S(i,j). If Scalapack will be used
as for S, then the data layout (one block of the matrix for each processor) will be the
same, hence the transporting procedure and requirement will be the same. But as we will
find out below, we will probably use an iterative procedure to diagonalize H. For that
purpose, each processor within a processor group will only need to have two column (or
two rows, they are the same due to the symmetry) of the matrix. Since different
processor groups have different rows, this results in a transporting of only two complex
numbers within each round-robin hop. Thus the corresponding requirement for inter-
group interconnect bandwidth is much smaller than that of S.

The more important difference than the wave function orthogonalization is the
diagonalization of matrix H(i,j). The computational cost for diagonalizing a matrix is

much higher than Cholesky decomposition. Again, let’s assume to use the Scalapack to
diagonalize the matrix. Eq.(10) will be used to estimate the time. We will use the routine
PxSYEV for the diagonalization. In this case, the coefficients in Eq.(10) are: Cf=22/3,
Cv=5log2P, Cm=17/2*NB+2. Again, we will use N=2000, P=1000, NB=63. Plug in
Eq.(10), we have: T(N,P)= (117+28+17)*10-4 = 0.0162 second. This is about 15 times
larger than the 0.001 second we set for each step. As we see from the formula, the most
time comes from the floating point operation (the first term in the formula). Since we
don’t expect the CPU speed to increase ten times in the near future, this matrix
diagonalization step might pose a problem.

However, the above estimation is based on the fact that all the processor groups will work
on the same matrix independently. Thus, there is a tremendous waste of computing
resources due to repetition. On the other hand, it is hard to imagine to use more than 1000
processors to work on an 2000x2000 matrix in the Scalapack routine. In current
computers, the experience is that the Scalapack will stop to scale up after about 200-400
processors for such sized matrix. Assuming faster interconnect (as in our proposed
computer), and faster data access (we store the matrix in the cache), it might be possible
to extend this to 1000 processors as we assumed in the Cholesky decomposition time
estimate. But beyond one thousand processor, this might not scale, and the time given by
Eq.(10) will probably not be reliable. Thus, we cannot solve this problem by simply
increasing P in Eq.(10).

Using the 1000 atom Si example shown in Fig.3, we have tested a different algorithm
which can potentially solve this matrix diagonalization problem. One important point is
that, during the self-consistent iteration, the matrix H(i,j) are always very close to be a
diagonal matrix. Thus, what we have is a small perturbation. One might imagine to use
perturbation theory to diagonalize this matrix. However, perturbation theory is not
always stable. Instead, we have chosen a conjugate gradient (CG) method. Each
processor group will work on one eigen vector Vi(j) which is relevant to its wave function
ψi (the same i). We have asked the conjugated gradient to minimize

ii
H

ii VhHVE 2)(−= (12)

where hi=H(i,i). Usually, the convergence for such CG steps is slow due to the squaring
of the matrix. However, we can use the diagonal part of H: H(j,j) as a preconditioner.
Since the matrix H is almost diagonal, this preconditioner is extremely effective. The CG
convergences for some of the eigen vectors i and for a few self-consistent iteration steps
are shown in Fig.6 for the 1000 Si atom system shown in Fig.3. We see that the
convergences almost fall into different categories. For higher self-consistent iteration
steps (thus, H is more close to diagonal), the convergence is faster. Besides, lower vector
index i also has faster convergence. Overall, we can see that, usually 100-200 CG steps
will be enough to yield a converged solution. However, we cautious that more research is
needed to study the stability of this method, especially to ensure all vectors can be
converged to high accuracy and two neighboring i will not converge to the same state.
We have found some slow convergence cases, and also some eigen vectors shifted away
from their original values (these two facts are often connected). The eigen vector shifting

can be checked by seeing whether Vi(i) element has a dominant weight for the whole
vector. If not (it is shifted), then it might be necessary to check the neighboring vector i’
which is calculated by the neighboring processor groups. It might be possible to develop
iterative schemes which requires the final eigen states to have a high component in Vi(i),
so it is not shifted. Note that, this algorithm is very close to the residual minimization
algorithm used in solving the Schrodinger’s equations of the wave functions. Also note
that, in our iterative scheme, it is not necessary to diagonalize the matrix H exactly. As
we see, at higher self-consistent iteration steps, this H tends to be diagonal by itself. Thus,
although further studies might be necessary, here we have demonstrated that such
iterative algorithm is quite feasible.

Fig.6, the eigen energy error, defined as VVHVHV |]||[| 2− as a function of the CG iteration

for eigen state Vi of subspace matrix H(scf-iter). The system tested is the 1000 Si atom system shown in
Fig.3. Each self-consistent (SCF) iteration in Fig.3 will generate one H(scf-iter). The two numbers in
bracket are the indexs for self-consistent iteration and the eigen vector, respectively. For a MD simulation,
the SCF iterations are probably correspond to the 7 to 14 SCF iteration shown here (which is started from
random wavefunction).

Note that, different processor group will work on Vi for different i, thus there is no
repetition for the whole machine. The computational cost is thus 400 matrix-vector
multiplications [each (H-h)2V is obtained by multiplying (H-h) twice]. This computing
cost will be distributed among the Np processors within a group. As a result, the floating
point operation requirement for each processor is: 400*M2/Np/0.001s = 1.6 Gflops. This
is a rather small. By distributing the matrix-vector multiplication W=(H-h)2V, each
processor will only have M/Np=2 elements (two complex numbers) of the resulting W
vector. There is a special task of distributing these two elements (32 Byte) to all the other
processors in the group. The time allowed to do this is: 0.001 s /200=5 µs. The success to
accomplish this task might critically depend on how it is implemented. In a very crude
way, this task can be converted to a global sum of the whole vector W (with each
processor has two elements in its initial value). We can follow the in-group global sum
argument in Sec. IV(2) for P(R,L) in the nonlocal potential calculation. Now, the data
amount (the full W vector) is 32KB, but the allowed time is 5 µs. Then the in-group

interconnect link bandwidth needs to be: 128 GB/s. This is quite large, a bit impractical.
However, this algorithm is quite wasteful since a lot of zeros are communicated at the
initial communication steps (we have assumed 20 communication steps for the global
sum). Note that, theoretically each processor needs only to receive 32KB within 5 µs,
which is 6 GB/s, which is much smaller than 128GB/s. Besides, if we assume 0.1 µs
latency time for processor-to-processor communication, 50 such communications are
possible within 5 µs. Combining all these factors, we believe this task is achievable if the
in-group interconnect bandwidth is 37GB/s, as assumed in the Cholesky decomposition
for S matrix using the Scalapack. However, special algorithms (perhaps implemented in
low hardware level) need to be designed carefully for this task. Overall, we believe, with
the given architecture requirement discussed above, this CG method will enable us to
diagonalize the matrix.

(6) Other calculations

Potential calculations
The evaluation of Eq.(5) needs only two FFTs. Thus the computational requirement is not
large. Besides, one only needs to do this once for each self-consistent iteration, thus the
cost is small compared to Hψi. If ultrasoft pseudopotential is used, then the real space
grid for potential can be twice as big (in each direction) as the grid used for the wave
functions. But even this should not cause any big problem. Besides, the whole machine
can be used for this evaluation, not just one group especially if generalized gradient
approximation (GGA) is used to calculate the exchange correlation potential, where many
FFTs are needed. In that case, different processor groups can calculate different FFTs.
We also don’t expect the charge mixing (or potential mixing) step takes time because the
total amount of data involved is small.

Atomic force calculations
After the self-consistent solutions are reached, the force on each atom can be calculated
using the Hellman-Feynman theory. This can be done relatively easily. The most time
assuming part comes from the wave function projector for the nonlocal potential. The
total computational cost is similar to that of Eq.(7). If each processor group calculates the
projections for all the atoms with the wave function ψi in this group, then there need to be
a global summation from all the processor groups. This can be done by passing the forces
of the 1000 atoms through the Ng groups in a round-robin fashion. We can reduce the
data among significantly by passing only the force of one atom from one processor (in a
horizontal line of Fig.5) within a processor group. Besides, the atomic forces need to be
evaluated only once every MD step, thus overall, the requirement from this step is
minimum.

V. CONCLUSION

We have listed the architecture requirements in Table.III derived from different tasks
listed in Table.I. In order to achieve the high speed on the proposed 2 million processor

computer, we have to adjust our algorithms accordingly. Overall, the P-orth-ψ is the most
expensive task both in terms of floating point operation and data communication. If we
use the residual minimization algorithm for solving the Schrodinger’s equation through
out the MD steps, the algorithm can be twice as fast as the all-band conjugate gradient
method due to the elimination of this P-orth-ψ task. However, the all-band conjugate
gradient method is more reliable. If the all-band conjugate gradient method is used, this
P-orth-ψ task needs to take half of the whole computational time in order to have
balanced hardware requirements from different parts of the algorithm. For nonlocal
potential implementation, we need to treat each atom (and all its angular momentum
projection functions) within one processor, instead of using the distributed treatment.
Otherwise, the nonlocal potential task will also pose a higher hardware requirement than
the rest parts of the program. Finally, in the subspace diagonalization, the MxM matrix H
needs to be diagonalized with an iterative method using conjugate gradient method. The
current Scalapack will take too long to diagonalize this matrix. On the other hand, to
perform Cholesky decomposition for the overlap matrix S, the Scalapack routine is fast
enough.

From Table.III, we see that the FFT does not present any hardware challenge. This
confirms our initial believe that plane wave method is a good choice. Since some of the
most stringent requirements come from wave function communication between processor
groups, if real space grid method is used for the calculation, for the same accuracy, 5
times larger amount of wave function data needs to be communicated. Then the inter-
group connection bandwidth requirement will be 5 times larger. For all the tasks (except
for P-orth-ψ if we request it to take 1/10 of the whole computing time), the demand for
CPU speed is not high. This is understandable. As we discussed in the introduction,
current VASP program can do one MD step within one minute for a 1000 atom problem
on 1000 processors. Here, we are working on the same size problem (thus essentially the
same amount of floating point operations), requesting 1000 fold speed up. On the other
hand, we have 2000 times more processors. Thus, floating point wise, the request for the
CPU speed is the same as the current day computer. The challenge for our strong scale
computation is the data communication as we have the data fragmentation 2000 times
worse than the current day VASP calculation [14]. Thus, our communication bandwidth
and latency have requirement more than those used in current day computers. We also
require a careful mapping from the data layout in software to the hardware architecture.
Another important feature for our proposed computer is to use the cache more effectively.
Due to the massively distribution, the data amount on each processor is also small. This
can be taken advantage with by storing the wave function (belonging to each processor)
in the L1 cache through out the whole calculation. This will increase the floating point
operation speed (thus, no difference between blas2 and blas3 routines), and the
communication speed.

One interesting feature evidence in Table.III is that, as the computation becomes very
fragmented, besides the P-orth-ψ task, some of the most stringent hardware requirements
come from the handling of the MxM dimension matrices (e.g, the overlapping S matrix,
its decomposition U, and the subspace Hamiltonian matrix H and its vectors V and W). In
terms of total amount of data, they are 1000 times less than the wave functions. However,

because each processor group will possess the same matrices as other processor groups,
there is a 2000 time redundancy. Such redundancy is necessary because it is hard to treat
such matrices (with 4 million elements) concurrently by the 2 million processors of the
whole machine. Otherwise the communication latency requirement will be even stronger.

Table.III, summary of the hardware requirement in order to carry out each computational task listed in
Table.I. The requirement for the jiP ψ| projection is based on the assumption that it will take half of

the total computational time. It is only used in the all-band conjugate gradient scheme, not used in the
residue minimization scheme. The third column describes what is the main reason for a given hardware
requirement.
 FFT (inside one processor group)
CPU speed 2.4 Gflops 1D FFT
In-group bisection bw 240GB/s For data transpose
In-group all-to-all 48byte within 100 µs For data transpose
In-group connect latency 0.1 µs For data transpose
In-group connect inject. rate 0.5GB/s For data transpose
L1 cache 300 KB To store real-space wavefunc.
In-group topology 10x10x10 3D torus For data trans. and global sum
 Nonlocal (one atom per processor algorithm)
CPU speed 3.5 Gflops Projection multiplication
In-group connect bw 0.75GB/s Send wavefunc. to diff. proc.
L2 cache 3MB To store projector ΦR,L
 < P | ψ > projection (assuming it take ½ of the whole computing time)
CPU speed 4 Gflops For calc. <P|ψ>
Inter-group link bw 32 GB/s Transfer wavefunct.
Inter-group link latency 0.5 µs Transfer wavefunct.
 Wave function orthogonalization
CPU speed 5 Gflops Calc. overlap matrix, wavefunc.
Inter-group link bw 37 GB/s Transfer wavefunc., round-robin
Inter-group link latency 0.43 µs Transfer S matrix and wavefunc.
In-group global sum 32KB in 860 µs For one row of S matrix
In-group connect bw 37 GB/s Scalapack Cholesky for S
In-group link latency 0.1 µs Scalapack, can be 3x larger
L1 cache 300 KB To store S, and U, blocking
Memory size 300 MB To store wavefunc.
Memory access rate 37 GB/s If wavefunc is stored, feed CPU
 Subspace diagonalization (using CG to diagonalize subspace matrix)
In-group mutual broadcast 32byte within 5 µs To distribute W after H*V
In-group connect bandwidth 37 GB/s For mutual broadcast
In-group connect latency 0.1 µs For mutual broadcast

Another stringent requirement comes from communication wave functions from the
different processor groups. This poses a 37 GB/s bandwidth request for the inter-group
connection, and a corresponding 0.43 μs latency request. Due to the amount of data

involved, there is no way such request can be reduced. Finally, the memory requirement
is 300 MB. This is to provide the flexibility to store all wave functions {ψj} in a
processor. It also provides the capability to store the whole matrices S, U, H in each
processor if necessary. Although the use of careful algorithms can avoid this (e.g., only
store the corresponding block of S, U in each processor for Scalapack Cholesky
decomposition, and only one row or column of H in each processor), but providing this
capability should be useful for program development. This is after all a very modest
request. Finally, if all the wave functions {ψj} are stored in the memory (after one round-
robin loop), the memory access rate should be 37GB/s to keep it with the CPU speed in
the calculation of S and H matrices, and the calculation of new wave functions in Eq.(9)
and Eq.(11). This access speed is the same as the inter-group connection bandwidth, this
is because another way to do this is not to store the wave function after each round-robin
pass, instead, a new round-robin pass is performed whenever all the wave functions are
needed. However, the intuition is that, accessing the data from one CPU’s own memory
maybe easier than accessing it from its neighbore’s cache. If this is true, then it makes
sense to store the wave functions in the memory. In any case, providing this capability
will greatly increase the programming flexibility. Given all the uncertainties in real
program performance, it is a big plus to have such leeway.

Table.IV, a summary of the hardware requirement for the whole machine. The third column describes what
is the main reason for each hardware requirement.
CPU speed 5 Glops Orth, subspace diag.
Inter-group link bw 37 GB/s Transfer wavefunc., round-robin
Inter-group link latency 0.4 µs Transfer S, H, and wavefunc.
In-group link bw 37 GB/s Scalapack for S, and W distribution
In-group link latency 0.1 µs FFT all-to-all, scalapack for S, W distrib.
In-group bisection bw 240GB/s FFT all-to-all
Memory access rate 37 GB/s Calculate S, H, keep up with CPU speed
L1 cache size 300 KB FFT, to store real space array
L2 cache size 3 MB To store nonlocal projector
Memory size 300 MB To store wavefunctions and others
In-group topology 10x10x10 3D torus For all-to-all and global sum
Core per node 1 - 2 For faster interconnect, not to share link

Finally, combining the requests in Table.III from all the tasks, the overall architecture
hardware requirements are summarized in Table.IV. Comparing to current supercomputer
architectural parameters, the most challenging requirements are: 37 GB/s inter-group
interconnect bandwidth; the 37 GB/s in-group interconnect bandwidth; the 0.1 µs point-
to-point in-group communication latency (however, it might be possible to relax this to a
neighbore-to-neighbore latency in a 3D torus structure depending on the detail
implementations of in-group global sum and Scalapack operations); and the 37 GB/s
memory access rate. All these requests are pertinent to data communications and access
rate, not to floating point operation speed. In such a largely massive parallel computer,
floating point operation usually is not a problem. In contrast, data manipulation and

communication is a big challenge. Fortunately, we believe all these requirements are
within the reach of next generation interconnect and memory access. Another advantage
can be taken with is the dedicated nature of the computer. Since only one code is running,
and since there is a rigid one-to-one mapping between the data structure and the computer
hardware, the communication protocol can be significantly simplified. As a result, the
achievable speed can be more close to the real hardware limit, instead of being delayed
by the software layers. Again, one recent example is the dedicated Anton computer.
Many of the characteristics (short latency and small message size) of the communication
in Anton applications are similar to our current application. It is reported that 60 ns point-
to-point communication latency can be achieved in Anton [5]. This is half of the time we
requested in our proposed computer. Thus, we believe our proposed computer is within
the reach of current day technology.

Acknowledgements

This work was supported by DOE-SC-ASCR office under Contract No. DE-AC02-
05CH11231, and National Energy Research Scientific Computing Center (NERSC) at
Lawrence Berkeley National Laboratory. This research topic was proposed by Dr. John
Shalf. There were extensive stimulating discussions with Dr. J. Shalf during the write-up
of this paper. There were also helpful discussions with Dr. Andrew Canning. Finally, the
author likes to thank Dr. James Demmel for taking the interest to develop new algorithms
to diagonalize the subspace matrix, and for pointing out the relevant literatures. Such on-
going algorithm developments will not only benefit the computations proposed in this
paper, it will also benefit currently existing codes.

References
[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2] L.W. Wang, “A survey of codes and algorithms used in NERSC material science
allocations”, LBNL, technical report, LBNL-61051 (2005).
[3] L.W. Wang, “A survey of codes and algorithms used in NERSC chemical science
allocations”, LBNL, technical report, LBNL-59066 (2006).
[4] S, Gottlieb, Comp. Sci. & Eng. 8, 15 (2006)
[5] D.E. Shaw, et.al., Commun. of the ACM, 51, 91 (2008).
[6] M. Wehner, L. Oliker, J. Shalf, Int. Journal of High Performance Computing
Applications, 22, 149 (2008).
[7] A. E. Terrano, “The QCD machine” (Academic Press Ltd, London, 1988).
[8] F. Gygi, et.al., Proc. 2005 ACM/IEEE conf. on supercomputing (2005).
[9] C. Dellago, P. Bolhuis, F.S. Csajka, and D. Chandler, J. Chem. Phys. 108, 1964
(1998).
[10] A.F. Voter, J. Chem. Phys. 106, 4665 (1997).
[11] G. Goedecker, Rev. Mod. Phys, 71, 1085 (1999).
[12] L.W. Wang, Z. Zhao, J. Meza, Phys. Rev. B 77, 165113 (2008).
[13] http://cms.mpi.univie.ac.at/vasp/
[14] P. Kent, “Computational challenges in nanoscience: an ab initio perspective”,
presentation in Peta08 workshop, Hawaii (2008).

[15] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod.
Phys. 64, 1045 (1992).
[16] A. Stathopoulos, S. Ogut, Y. Saad, J. Chelikowsky, and H. Kim, Comput. In Sci.
Eng. 19, July/Aug. (2000).
[17] L.W. Wang, “A brief comparison between grid based real space algorithms and
spectrum algorithms for electronic structure calculations”, LBNL tech. report, LBNL-
63794 (2006).
[18] J. E. Pask, B.M. Klein, C.Y. Fong, and P.A. Sterne, Phys. Rev. B 59, 12352 (1999).
[19] http://hpcrd.lbl.gov/~linwang/PEtot/PEtot.html
[20] W. Kohn and L.J. Sham, Phys. Rev. 136, B864 (1964).
[21] A. Canning, “Scalable parallel 3D FFTs for electronic structure codes”, Vecpar08,
Toulouse (2008).
[22] D. Raczkowski, A. Canning, L.W. Wang, Phys. Rev. B 64, 121101 (2001).
[23] B. Lee and L.W. Wang, “A new all-band algorithm for density functional theory
electronic structure calculations” (unpublished).
[24] P. Pulay, J. Comp. Chem. 3, 556 (1982).
[25] VASP manual: http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
[26] http://www.top500.org/lists/2008/06
[27] “Cray XT4 datasheet”, Cray Inc. (2006).
[28] A. Canning, L.W. Wang, A. Williamson, A. Zunger, J. Comp. Phys. 160, 29 (2000).
[29] http://www.netlib.org/scalapack/scalapack_home.html

	A special purpose computer for ab initio molecular dynamics simulations

