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ABSTRACT

The pore-scale effects of seismic stimulation on two-phase
flow are modeled numerically in random 2D grainOpack ge-
ometries. Seismic stimulation aims to enhance oil production
by sending seismic waves across a reservoir to liberate im-
mobile patches of oil. For seismic amplitudes above a well-
defined (analytically expressed) dimensionless criterion, the
force perturbation associated with the waves indeed can lib-
erate oil trapped on capillary barriers and get it flowing again
under the background pressure gradient. Subsequent coales-
cence of the freed oil droplets acts to enhance oil movement
further because longer bubbles overcome capillary barriers
more efficiently than shorter bubbles do. Poroelasticity theo-
ry defines the effective force that a seismic wave adds to the
background fluid-pressure gradient. The lattice-Boltzmann
model in two dimensions is used to perform pore-scale nu-
merical simulations. Dimensionless numbers (groups of ma-
terial and force parameters) involved in seismic stimulation
are defined carefully so that numerical simulations can be ap-
plied to field-scale conditions. Using the analytical criteria
defined in the paper, there is a significant range of reservoir
conditions over which seismic stimulation can be expected to
enhance oil production.

INTRODUCTION

The hope of seismic stimulation is that in a declining oil reservoir,
seismic waves sent across the reservoir can cause oil production to
increase. Quite literally, the idea is to shake the stuck oil loose and
getit flowing again toward production wells.

Because oil reservoirs are often at kilometers or more of depth, it
is common practice to use a downhole seismic source in a dedicated
stimulation well. An often-used source is one that compresses then
rapidly releases borehole fluid over a small depth range of the well.
This creates seismic waves at relative proximity to the oil reservoir.

Our analysis suggests there is no need for this source to inject water
into the formation, as sometimes is assumed. One should use the
most powerful seismic source available and place it as close as possi-
ble to the reservoir.

Beresnev and Johnson (1994) provide a review of field evidence
for and possible physical mechanisms behind seismic stimulation.
On the theoretical front, Hilpert et al. (2000), Iassonov and Beresnev
(2003), Beresneyv et al. (2005), Beresnev (2006), and Hilpert (2007)
give analytical models for how a single bubble stuck in a capillary
tube might be mobilized if the capillary walls are shaken by a pass-
ing sound wave. Analysis or simulations for more realistic pore ge-
ometries and oil distributions are not available.

Laboratory evidence of seismic stimulation is rather limited. Rob-
erts et al. (2001) performed laboratory experiments on cylindrical
sand packs (5-cm diameter by 50-cm length) saturated with water
and small amounts of TCE (a dense nonaqueous phase liquid at sev-
eral percent volume fraction in the sand column). With water steadi-
ly flowing through the sand pack, axial time-harmonic (10- to 100
-Hz) displacements were applied to one end of the sand pack, and the
other end was clamped. TCE production increased significantly
while time-harmonic stimulation was applied. To obtain an observ-
able effect, the applied displacements needed to be greater than ap-
proximately 10 microns, which corresponds to seismic strain greater
than 102, In addition, TCE production increased as stimulation fre-
quency decreased.

In a different laboratory study, Li et al. (2005) performed water
flood experiments across a glass plate that had a rectangular network
of grooves etched into the surface. At the start of each water flood,
the grooves were filled completely with TCE. Floods were carried
out with and without in-plane vibrations applied to the plate in the di-
rection of the flood. Photography was used to monitor how the satu-
ration levels of TCE decreased through time. Researchers observed
that the rate of TCE production was enhanced when the acceleration
amplitude of the vibrations was greater than 0.5 m/s? and when the
frequency of vibration was less than 60 Hz. This corresponds to see-
ing a stimulation effect for a seismic-strain equivalent greater than
approximately 1075, The point of the Li et al. (2005) experiments
was to determine whether vibrational stimulation increases the rate
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of production of the nonaqueous phase liquid (NAPL) during a water
flood and not to determine whether stimulation can recover some
fraction of the residual NAPL left behind after a water flood.

We will simulate numerically the effect of a passing seismic wave
on the pore-scale two-phase flow. We use the lattice-Boltzmann
model to perform the simulations and poroelasticity theory to define
the effective forcing that the seismic wave adds to the background
fluid-pressure gradient. Presently, simulations are done in two di-
mensions on cells that are typically 10 X 10 grains in size. However,
extension to three dimensions and to larger systems is straightfor-
ward.

The simulation protocol is as follows: (1) Let the two immiscible
fluids spontaneously separate with no external forces applied. (2)
Turn on a background static pressure gradient and let both fluids flow
until the nonwetting fluid (the oil) becomes stuck. (3) Turn on the
seismic stimulation for several wave periods. (4) Then turn off the
stimulation and see what new steady state emerges with only the
background pressure gradient remaining. Over a significant parame-
ter range, stimulation is observed to mobilize oil by causing coales-
cence of smaller droplets into bigger ones that flow more easily.

In the next section, we attempt to quantify the pertinent poroelas-
tic effects of a passing wave. We keep only those effects of dominant
importance. The arguments are based on 3D considerations of actual
waves in real reservoirs. Subsequently, the appropriate dimension-
less grouping of parameters and forces that control the mechanics of
seismic stimulation are identified. This is essential in comparing nu-
merical simulations to actual field conditions. Analytical conditions
for stimulation to mobilize trapped oil also are given. Finally, the lat-
tice-Boltzmann numerical simulations are discussed and presented.
Despite the 2D nature of the simulations, we seek to draw conclu-
sions concerning what types of reservoir conditions and seismic am-
plitudes are required for seismic stimulation to work.

Diffusion (or "slow-wave")

penetration
[ |
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Figure 1. Schematic of applying a fluid-pressure perturbation AP
over a certain depth range of a stimulation well with the goal of stim-
ulating flow at points in the reservoir a distance » away. The seismic
waves can deliver significant perturbation to a flow cell; however,
the diffusional penetration from the borehole is totally negligible.
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THE POROELASTICITY OF SEISMIC
STIMULATION

General context of the problem

We imagine an oil reservoir being produced through the use of in-
jection and extraction wells. Oil production in the field through time
has fallen to low levels. Water is flowing, but much of the oil became
effectively trapped when the water flood passed through. Such re-
maining oil patches (ganglia) might be present at economically sig-
nificant volume fractions: Commonly, 30% or more of the pore
space in a reservoir might be occupied by such trapped oil. We focus
on an arbitrarily chosen small region within the reservoir that we call
a “simulation” or “flow cell.” Distribution of wells in the field is cre-
ating a net fluid pressure gradient F, across this flow cell. However,
any further details of the production wells are not required in what
follows.

As proposed by Beresnev et al. (2005), an oil ganglion of down-
stream length /4 (typically much larger than grain sizes) becomes
stuck when the downstream-pressure drop along the bubble iF, just
is balanced by a capillary-pressure increase o (1/Ryown — 1/Ry)-
Here, o is the oil-water surface tension, and R, and R, denote the
radii of curvature of the farthest downstream and farthest upstream
menisci that bound the stuck bubble of oil. Throughout this work,
water is taken as wetting the solid grains and oil as nonwetting. For
the oil bubble to be trapped, either the downstream meniscus has a
radius of curvature (multiplied by the cosine of the contact angle)
greater than the radius of the pore-throat constriction through which
itis trying to pass or the upstream meniscus has a radius of curvature
(multiplied by the cosine of the contact angle) smaller than the main
poreitis trying to enter. The goal of seismic stimulation is to displace
these menisci enough that they can pass through their respective cap-
illary barriers and begin to flow again under the background force F,,.
Subsequent linking up with other bubbles to make longer and more
efficiently transported bubbles is shown here, by means of numerical
simulations, to be a very important effect. Although we emphasize
liberating stuck oil ganglia, seismic stimulation also can be useful in
preventing ganglia from becoming trapped in the first place or, as
seen in the experiments of Li et al. (2005) and our numerical results,
as a means of enhancing oil production rate during primary produc-
tion.

As illustrated in Figure 1, we assume a seismic source in a stimu-
lation well located a distance  from a given flow cell under study. By
perturbing the fluid pressure in this borehole over a certain depth
range, we aim to perturb the flow in the distant cell, with the goal of
enhancing oil flux across that cell. As shown in the following subsec-
tion, fluid exchanges between the stimulation well and the surround-
ing reservoir play no important role in enhancing the oil flow. The
seismic waves are overwhelmingly responsible for any stimulation
effect. Any oil ganglia that are trapped marginally (on the verge of
moving by F, alone) are susceptible to seismic stimulation.

Perturbing flow at a distant cell

For the purposes of this subsection, it is sufficient to neglect the
two-phase flow and consider only a single fluid saturating the pore
space. In this case, the Darcy flux q across a cell is governed by the
Darcy law

q=—F, (1)
¢
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where k is the permeability of the cell, 7, is the fluid’s viscosity, and
F is the total effective-force driving flow (with units of a pressure
gradient). This total force can be decomposed as

F=F, + AF, + F,, 2)

where F, is the background (i.e., production) pressure gradient and
AF, and F, are created by changes in the stimulation well. If the pres-
sure perturbation applied in the stimulation well has a component
that is steady in time and if this well is perforated, there will be a stat-
ic force perturbation AF, that simply adds to F,, to create a total static
forcing coming from all wells in the region. By conservation of fluid
mass, this AF, has an amplitude that falls off with distance r as 1/r%;
specifically, for a homogeneous reservoir, one has

7/AQ,
AF, = m (3)

where AQ, is the perturbed volumetric flow rate across the perforat-
ed portion of the stimulation well.

Force F, is the amplitude of any time-harmonic forcing created by
the fluid-pressure perturbations applied in the stimulation borehole.
If this borehole is perforated, the time-harmonic forcing has contri-
butions both from an oscillating fluid-pressure diffusion that some-
times is called the Biot slow wave (Biot, 1956) and from a propagat-
ing seismic wave (see Figure 1). The diffusional contribution has a
spatial falloff dominated by a factor e "%, where the diffusive skin
depth d is given by d = VD/w with D the fluid-pressure diffusivity
given by D = kM/n,. The fluid-storage incompressibility M, to an
excellent approximation (Pride, 2005), is given by M = K//¢,
where K is the fluid’s bulk modulus and ¢ is porosity. Using values
for a highly permeable sandstone saturated with water (k
=10""2m? ¢ = 0.2,K, = 2X10° Pa, 7, = 1073 Pas), one then
obtains D = 10 m?/s as almost an upper bound for the diffusivity in
rocks. So for all frequencies f = w/27 > 10 Hz, which correspond
to the seismic frequencies of interest here, the skin depth is far less
than a meter. Thus, the diffusive contribution to F,, is always com-
pletely negligible for flow cells more than a meter from the stimula-
tion borehole.

Thus, the principal contribution to F, is coming from the seismic
wave, which (apart from a small loss because of intrinsic attenua-
tion) is conserving energy as it propagates outward spherically. En-
ergy conservation requires the energy density in the wave to fall off
with distance as 1/r%, and because the energy density is proportional
to the strain squared, the strain must fall as 1/r. The wave-induced
pressure gradient F', goes as the strain multiplied by an elastic modu-
lus and divided by the wavelength and thus also falls off as 1/r. We
conclude that because a static (DC) perturbation has a fluid force
AF, falling as 1/r? (although the seismic perturbations have fluid
forces F, falling as 1/r), it might be more cost-efficient to use a stim-
ulation well as a source of seismic waves than as a means to perturb
the steady background driving force. Therefore, AF, will be set to
zero, and F, will represent exclusively the acoustic (seismic) force
perturbations.

Finally, because it has been shown that seismic-wave forcing
dominates over the slow wave for all distances »>1 m from the
stimulation well, the well need not be perforated, i.e., fluid exchang-
es between the stimulation well and the reservoir can be neglected
entirely. However, because a perforated well lining is less stiff than a
nonperforated lining, the seismic coupling between borehole and

3
Symbol Meaning
A Lattice-Boltzmann interface parameter
B Skempton’s coefficient when both fluids are in
the pores
By Skempton’s coefficient when fluid f is in the
pores
cp Seismic P-wave velocity
Cy Seismic S-wave velocity
Ca Capillary number
d Skin depth of pressure diffusion
D Fluid-pressure diffusivity
f Frequency in Hertz
F, Background (steady) pressure gradient
F, Seismic-force perturbation
AF, Steady-force perturbation
G Shear modulus of rock
h Downstream length of a stuck oil bubble
Joil Flux of oil
k Permeability
K, Drained bulk modulus
K, Bulk modulus of fluid f
K Bulk modulus of grain material
K, Undrained bulk modulus
4 Hydraulic throat radius
M Fluid-storage incompressibility
N Number of lattice points to each side
Dr Wave-induced fluid-pressure increment
q Darcy flow velocity
r Distance from seismic source
R Reynolds number
Riown Downstream meniscus radius
Ry, Upstream meniscus radius
S Stimulation number
S Surface area of the menisci
t Time
T Dimensionless frequency number
u Displacement of solid grains
U, Characteristic flow speed
vy Volume fraction of fluid f
Vi Specific volume of oil produced
B Interface angle in the lattice-Boltzmann model
Ny Shear viscosity of fluid f
A Lattice-Boltzmann collision parameter
Py Mass density of fluid f
p Mass density of bulk rock
T Surface tension
0 Wave strain
(C] Contact angle
) Circular frequency
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Seismic forces driving relative flow

A typical seismic wavelength is always much larger than the size
of the flow cells under consideration. The seismic band of frequen-
cies over which it is relatively easy to propagate seismic energy is
approximately 10 to 100 Hz. This corresponds to wavelengths
ranging from approximately 100 to 10 m. The flow cells modeled
here are smaller than a centimeter and are thus far smaller than a seis-
mic wavelength.

As a wave traverses such a small cell, it creates an effective force
F, uniformly acting on the fluid that is moving in relative motion to
the grains. This force consists of both a wavelength-scale pressure
gradient and an apparent force arising from the fact that the reference
frame for the flow (the framework of grains) is accelerating. These
two contributions can be written as

9*u
F,= - fo—pfﬁ’ (4)

where Vp, is the macroscopic pressure gradient acting across the
flow cell, p,is the fluid density, and u is the average displacement of
the solid grains in the cell. The pressure gradient is present only in
the case of a compressional wave. In the apparent force of the second
term, the acceleration of the frame of reference is equivalent to a
gravitational acceleration and occurs for both compressional waves
and shear waves. This apparent force corresponds to what one feels
when standing on a bus that accelerates.

To model the two force contributions in equation 4, we note that a
seismic wavefront is effectively planar relative to the size of a flow
cell when the distance r from the source to the cell is much larger
than the size of the cell. For a time-harmonic plane wave moving in
the x direction, the seismic strain € acting on the bulk material goes
as O(x,t) = 6,e¥<~1, where c is the wave speed and 6, is the strain
amplitude (taken here to be independent of frequency over the range
of frequencies considered).

For a compressional wave at 10 to 100 Hz, Pride (2005) has
shown that the poroelastic response is effectively undrained, i.e., as
much fluid enters the flow cell as leaves, so there is no net change in
the fluid mass. In this case, the fluid-pressure increment p; is related
to the wave strain 6 as p, = — BK,0, where K, is the undrained
bulk modulus and B is called Skempton’s (1954) coefficient and is
the ratio of pore-pressure change to confining-pressure change for
undrained conditions. For liquid-saturated materials found in a sedi-
mentary basin, one typically has 0.3 <B < (.7, with large values cor-
responding to softer materials. Expressions that detail how the und-
rained moduli K, and B depend on the underlying fluid and solid
moduli are given in Appendix A. Further, the seismic velocities at
such frequencies are given as

K, + 4G/3 G
c, =\~ and ¢;=\/— (5)
p p

for compressional waves and shear waves, respectively, where G is
the shear modulus (which is independent of the fluid properties at
seismic frequencies) and p is the average density of all the material
inaflow cell.

For a compressional wave, the amplitude of the force driving rela-
tive flow is

E — — F/0 [n,.—l— L-IH (&)

where the p, term in brackets corresponds to the apparent force from
the acceleration of the frame of reference and the pB term corre-
sponds to the fluid-pressure gradient force. This expression is the
principal result of this section. As seen in Appendix A, when some
gas is present in the system, B becomes negligibly small, and we are
left with only the forcing from the acceleration. For liquid systems,
the two terms are of comparable importance. For a shear wave, there
are no compressional changes, and the effective force is simply F,
= — iwps, 0, arising from acceleration of the framework of grains
alone.

At the pore scale, these seismic forces can be taken as uniform
body forces in the Navier-Stokes equation for the local relative flow
in the pores. If the oil and water have significantly different densities
py» one should formally require the apparent inertial force caused by
acceleration of the grains — iwp,c, 0 to be different in the oil and
water phases. However, for most crude oils and pore waters, the den-
sity difference is on the order of 20% (with oil being lighter), which
might reasonably be neglected in a first modeling of seismic stimula-
tion. The macroscopic fluid-pressure gradient given by the pB term
in equation 6 is the same for oil and water phases.

Last, in addition to creating a pressure gradient across a flow cell,
a compressional wave also tries to change the average pressure of
each fluid in the flow cell. Because water is slightly less compress-
ible than oil, the associated fluid-pressure equilibration will cause a
displacement of the menisci from water patches toward oil patches.
This effect is modeled in Appendix B, where it is determined to be
negligible relative to the menisci displacements driven by the seis-
mic forcing F, of equation 6.

DIMENSIONLESS NUMBERS AND CONDITIONS
NECESSARY FOR STIMULATION TO WORK

To perform numerical simulations pertinent to field experiments,
the dimensionless groups that characterize seismic stimulation must
be identified. As always, two flows will be similar if the dimension-
less numbers are the same, even though some of the material proper-
ties, force amplitudes, or length scales are different in the two situa-
tions.

Oil and water have different viscosities, so their ratio 77,y/ 7waer
must be one of the dimensionless groups. For crude oils, one com-
monly has 741/ Pwaer = 10.

The ratio F,/F, of seismic forcing to the background fluid-pres-
sure gradient is another important dimensionless group. The pres-
sure gradients used in oil-reservoir production are commonly on the
order of a few kPa/m (e.g., tens of bars over 500 m). Combining this
order-of-magnitude appropriate value for F, with |F,| =~ wpc,0 and
the properties p, = 10° kg/m?® and ¢, = 3000 m/s gives the rough
field estimate of

Fo
F, 10"*Hz

o

g, (7

where f = w/2 is frequency in Hertz. Therefore, a 10-Hz source
delivering a strain of § = 107° (a large but common seismic-strain
level) to some flow cell corresponds to F,/F,~ 10~!, although a 100
-Hz source delivering the same strain would yield F,/F,~ 1.
However, it should be kept in mind that F, falls with distance as
1/r. If the wave strainis 10~ at 10 m from the source position (stim-
ulation well), it willbe 10~ %at 100 m and 107 at 1 km. How F, var-
ies spatially is a function of how the production wells are distributed.
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some regions between the injection and extraction wells where F, is
a spatial constant and other regions (marked with an X in Figure 2)
where it falls even more rapidly than 1/r. One can conclude that for
downhole sources commonly available today, there will always be
some parts of the reservoir for which F,/F,> 1. In their laboratory
experiments, Roberts et al. (2001) measured an enhanced produc-
tion of DNAPL as long as F,/F,> 10.

Any problem with viscous flow involves the Reynolds number R,
which is the ratio of the nonlinear convective inertial force to the vis-
cous shearing force. It is given by R = p,U €/, where ¢ is a char-
acteristic pore size and U, a characteristic flow velocity. We can use
Darcy’s law to identify a characteristic flow velocity ¢ = @U.
= (k/m;)F,. Further, the characteristic pore size £ can be estimated
from the permeability relation k = (¢¢)?, which is meant to crudely
characterize Thompson et al.’s (1987) 3D percolation estimate of k
= {?/(226F), where F is the electrical formation factor and Archie’s
(1942) law states that F = ¢~ ", with m = 2 arealistic cementation
exponent. This combines to give the estimate

k3/2
R="PLF, (8)
un ¢

Again, using the order-of-magnitude estimates of k = 1072 m?, ¢
= 107!, and F, = 10* Pa/m gives the field estimate of R~ 103
This means that there is laminar and/or creeping flow throughout the
reservoir. Our simulations need only to have R<<1 for them to be
similar to the field situation in this regard.

Because menisci are present, the capillary number Ca needs to be
specified. The capillary number is the ratio of a characteristic vis-
cous shear stress 7,U, /¢ to a characteristic capillary pressure o /¢
and thus is given by Ca = #,U./o, where o is the oil-water surface
tension. Using the above estimate for U, gives

kF,
Ca = @ 9)

Again, using k = 1072 m?, ¢ = 10"!, F, = 10* Pa/m, and o
= 10~?Pa m gives a characteristic field value of Ca = 103, which
means that in the field, we are in a regime where capillary effects
control the menisci displacements.

As discussed previously, for an oil droplet to be trapped (immo-
bile) in the presence of the background pressure gradient F, acting
onit, one must have

1 1
F,h = 0'( - —), (10)
Rdown Rup

where £ is the length of a characteristic oil bubble and Ry, and Ry,
are the radii of curvature of the farthest downstream and farthest up-
stream menisci that bound the bubble. The condition for an oil bub-
ble to just break through a pore-throat constriction of radius € block-
ing downstream migration is that

¢

cos O’

Rdown - ( 1 1)
where 0 is the oil-water-solid contact angle. On inserting equation
11 into equation 10 and adding the acoustic forcing F, to the back-
ground force F,, the condition for seismic stimulation to mobilize a

o cos O Rdown>
F,+F)h>—|1—-|—] |, 12
(F, + F,) ; [ ( R, J (12)

where (Rdown/Rup)C is defined at the moment of breakthrough and is
necessarily a fraction less than one. Instead of attempting an in-
volved analysis of (Rown/Ryp)e, We simply approximate it as 1/2,
which is consistent with observations from the lattice-Boltzmann
simulations to follow.

In dimensionless form, a sufficient condition for stimulation to
work is then

2F ,ht F,
—(1+ 7> 1. (13)

o cos O .

Using € = Vk/ ¢ as an estimate of the constricting pore radius and
introducing a new dimensionless number S that we call the “stimula-
tion number” allows the stimulation criterion finally to be written as

L (14)
F, S '
where
2hmk 2Ca h
- = (15)
opcos @  cos Ok

‘We necessarily have that §>> Ca. The closer S is to one, the closer
the oil bubble is to getting through its bounding constriction and the
smaller F,/F, must be for stimulation to work. If § > 1, the oil will
flow under the background gradient alone. Nonetheless, even when
§> 1, stimulation might act to push a slowly advancing bubble more
rapidly through a constriction that is retarding its downstream
progress. Thus, stimulation can enhance oil production even when S
> 1, as will be seen in the numerical simulations.

The stimulation condition of equation 14 is based on a static-force
argument. There is also a dynamic consideration — whether there is
enough time in a half-cycle of time-harmonic stimulation for the
bubble to advance through the constricting pore throat and become
liberated. The distance &, that a meniscus advances in a half-cycle of
time 1/(2f) where f is frequency in Hertz is given by &,
= ({(qon)/})/(2f). The 0il’s instantaneous filtration velocity is given
by Darcy’s law qo = (k/ o) F, sin(2afr), which gives {(qo)
= (k/mo1)F,/2 when averaged over the first half of a cycle. Then
identifying the distance the downstream meniscus must advance to
get through the constriction as € = Vk/ ¢, yields the dynamic criteri-
on

X X

O O O O O

Figure 2. Map-view schematic of the possible positions of produc-
tion wells in a reservoir along with the directions of pressure gradi-
ents F, between them (solid lines). Solid dots indicate injection
wells, and open circles represent extraction wells. In the fringe re-
o1ons marked with an X. F. will fall off ranidlv with distance. al-
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€ 4y,
. LY (16)
5(1 \r’kFa

Both the static-force condition of equation 14 and the dynamic con-
dition of equation 16 must be satisfied simultaneously if stimulation
is to advance a stuck oil bubble through its bounding barrier.

When the stimulation-force amplitude F, is set independently, the
dimensionless number T = 4f5./( VkF,) can be thought of as the
dimensionless frequency. However, if the stimulation force F, is
given by the value appropriate for a seismic wave F,~2mfc,p,0,
then 7'becomes independent of the wave frequency to the extent that
seismic strain @ is independent of frequency.

Hilpert (2007) demonstrates that capillary-resonance effects are
possible at sufficiently high frequencies. However, over the seismic
band of frequencies of interest in the present study, these relaxations
are not important in rocks or sediments.

Therefore, the suite of dimensionless numbers that must be speci-
fied for two seismically stimulated flows to be considered similar are
Noit! Nwaers Fal Fos R, Ca, S, T, and v, where v, is the volume frac-
tion of oil in the system. Further, the conditions F,/F,>1/S — 1 and
T <1 both must be satisfied for stimulation to mobilize trapped oil.

NUMERICAL SIMULATIONS

Two-dimensional lattice-Boltzmann modeling is performed as a
means of numerically simulating the effects of a passing wave on the
two-phase flow. As described in Appendix C, the lattice-Boltzmann
model is formally equivalent to the Navier-Stokes equations control-
ling fluid flow and properly allows for the effects of surface tension
and contact-line forces at the menisci that separate regions of immis-
cible fluids. The menisci are free to stretch and contact lines are free
to migrate in the modeling. On either side of a moving contact line,
no slip-flow conditions are maintained on the grain surfaces. The
background production gradient F, is modeled as a uniform force on
both fluids, although the acoustically induced perturbations F, are
modeled as a uniform force that has a sinusoidal time dependence.
Spatially varying fluid pressures develop in response to these ap-
plied forces. The simulations in no way make use of the two stimula-
tion criteria of the previous section. Indeed, the numerical simula-
tions are used as an independent test of the criteria.

Parameterization and protocol

All numerical simulations were performed using the following
lattice-Boltzmann parameters (all parameters are given in units
where the lattice constant and time step equal unity): number of lat-
tice points to each side of a square modeling region N = 128, oil vis-
cosity 70 = 0.1, water viscosity 7. = 0.02, mass density per
site p = 3, surface tension o =0.3, and seismic frequency f
= 0.001. Because the acoustic force F, is set independently and the
Reynolds number is negligible, the mass density in the lattice-Boltz-
mann model is arbitrary. On selecting a mass density prior to simula-
tion, viscosity is determined by the collision parameter A of Appen-
dix C, and surface tension is set by the interface parameter A of Ap-
pendix C. The permeabilities (in lattice units) of the various porous
media considered are in the range of k = [0.1,0.5], and the porosi-
ties in these 2D simulations are in the range of ¢ = [0.5,0.75]. Such

will be connected across a sample only when ¢ = 0.4. Permeability
is measured numerically by applying a steady force to a single fluid

phase.
The dimensionless numbers in the simulations are in the range of
R =1[0.10,0.14]
Ca=[15%X10"320x10"7]
T =1[0.14,.19]
Noit! Nwater = - (17)

All simulations are run with F,/F, = 1 except for the graph (exam-
ple) in which F,/F, is taken as the independent variable and the ex-
ample in which F, = 0. Further, the stimulation number S can vary
between simulations and is not fixed a priori.

Comparing the simulation values of the dimensionless numbers to
typical field values, we observe that R<<1 in both cases (laminar
flow regime), which is the only requirement. The simulations have a
capillary number that is approximately an order of magnitude larger
than the estimated field value. The problem of using the field value of
Cain the simulations is linked to a well-known instability in the lat-
tice-Boltzmann model (e.g., Rothman and Zaleski, 1997) that arises
when the surface tension (or A parameter) in the simulations is cho-
sen too high. At Ca = 1073, the simulations just are entering the
flow regime where capillary forces dominate the viscous forces and,
in this sense, are beginning to be similar to field conditions.

In all the present simulations, the background force is applied
from left to right (the flow direction), although the top and bottom
and left and right flow boundaries are periodic.

Some characteristic snapshots corresponding to various stages of
the simulation protocol used in this study are given in Figure 3, and
the associated average Darcy velocity of the oil during each stage is
shown in Figure 4. The porous material in this demonstration exam-
ple has ¢ = 0.5 and k = 0.5 (again in lattice units). Further, the
fraction of the pore space occupied by oil is 50% (with water occu-
pying the other 50%).

The simulation protocol is the same for each production run pre-
sented in this article and is broken into the four time intervals denot-
ed in both Figures 3 and 4. It is defined as follows: (1) Oil and water
are allowed to separate spontaneously from an initial homogeneous
distribution with all applied forcing set to zero. (2) The background
force F, then is applied uniformly to oil and water, initially causing
some flow but often resulting (depending on both the value of F, and
the oil-volume fraction) in the oil becoming trapped on capillary bar-
riers with an associated large decrease in the average Darcy velocity
in the system. (3) Seismic stimulation then is applied (both F,# 0
and F,, #0). (4) Seismic stimulation is turned off with a new steady-
flow state emerging under the influence of F, alone. Only three seis-
mic-wave periods of stimulation (which corresponds to approxi-
mately 10" s of stimulation in the field) ever are applied in our sim-
ulations. If, as in field applications, the stimulation is applied for
many millions of wave periods, the effect on the total volume of pro-
duced oil necessarily will increase beyond what we have determined
here.

The main pore-scale effect of applying the seismic stimulation is
to mobilize the stuck oil droplets, which allows them to coalesce and
form longer bubbles. As the criterion of equation 12 makes clear,
longer bubbles have a greater applied pressure drop along them,
which allows them to more easily overcome the capillary barriers
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moving) prior to application of stimulation. In the final steady state
that emerges once stimulation is turned off, a system-spanning
steady stream of oil created by the wave-induced coalescence of the
oil droplets can be observed.

Stimulation easily can create such system-
spanning streams when oil occupies about 40% to

of Gunstensen and Rothman (1993), who used a 3D lattice-Boltz-
mann model to study the flow of unconnected ganglia under steady
forcing conditions. To determine the stimulation number S at each

a)

60% of the pore space. As the oil-volume fraction
is increased, there becomes enough oil that the
background force alone can create a system-span-
ning stream and oil never becomes trapped. As
the oil-volume fraction is lowered, the likelihood
of creating such a single-spanning stream, even
with stimulation-induced mobilization and coa-
lescence, is reduced progressively. To keep oil
droplets moving at such lower oil-volume frac-
tions, it is necessary to apply stimulation repeat-
edly. In real, 3D, nonperiodic systems, even if a
system-spanning oil stream develops, it poten-
tially will break up because of Rayleigh instabili-
ty (Chandrasekhar, 1961). This is the 3D effect re-
sponsible for the pinching off of droplets at a
slowly dripping faucet. Smaller bubbles thus cre-
ated will become trapped again on capillary barri-
ers, in which case repeated stimulation will be re-
quired.

Results for six materials

Next we focus on oil production in the six po-
rous materials presented in Figure 5. The perme-
abilities and porosities of these materials are
shown in the legend of Figure 6 and subsequent
figures. In all examples presented here, oil occu-
pies one-third of the pore space and water two-
thirds. We conservatively chose this oil-volume
fraction so that system-spanning oil streams were
not created. When system-spanning streams are
created, such as in Figures 3 and 4, stimulation can increase oil pro-
duction greatly compared with the results presented here.

For each of the six porous materials studied, Figure 6 depicts the
corresponding total oil production during an entire production run
(the entire 18,000-time-step simulation) when no seismic stimula-
tion is applied. The plotted quantity is the specific oil volume that we
define as

Voir = fdt]_.oil’ (18)

where j,; is the local volume flux of oil (from left to right), j; is the
spatial average of this flux over the entire simulation (flow) cell, and
the time integral runs over the entire simulation time of 18,000 time
steps. In steady state, the specific oil volume V; multiplied by the
height of the simulation cell will converge to the volume of oil that
crosses a surface perpendicular to the flow (the produced oil vol-
ume).

Figure 6 shows that for all six media studied, S= 1 does indeed
correspond to the threshold background force level above which oil
flows by background force alone without becoming trapped. The
roughly linear dependence V; o S in Figure 6 once S>> 1 is simply a

° © w0 »

Figure 3. Snapshots during the four stages of the seismic-stimulation simulation. The flu-
id flow is from left to right. Solid grains are shown as gray, oil as light gray, and water as
black. (a) The initial phase separation. (b) Force F has caused the droplets to get stuck,
and there is no flow of oil. (¢) The stimulation is turned on F, >0, and the droplets coa-
lesce. (d) A new steady state emerges as F,, = 0. There is now a flow through the system-
spanning droplet.
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Figure 4. The spatially averaged Darcy velocity in the system as a
function of simulation time (in units of the time step) corresponding
to the geometry and flow shown in Figure 3. Each of the distinct time
intervals defined in Figure 3 and denoted with a through d are sepa-
rated by vertical dashed lines. The thin curve is the instantaneous ve-
locitv. and the thick curve is a runnine averace over a time window
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Figure 5. The six porous media studied at N = 128 resolution. Light
gray = solid grains; black = wetting water; dark gray
= nonwetting oil; white = boundary points surrounding the oil
patches. All snapshots here are taken just after oil and water separa-
tion has occurred and prior to macroscopic forcing. All simulations
are performed with one-third of the pore space occupied by oil and
two-thirds occupied by water. Porosities and permeabilities (lattice
units) for the six materials shown are ¢, = 0.61, k; = 0.18; ¢,
= 0.63, k, = 0.23; ¢p; = 0.64, k; = 0.24; ¢, = 0.61, k, = 0.20;
¢s = 0.64,ks = 0.25;and ¢ps = 0.71,ks = 0.42.
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Figure 6. Specific oil volume V,; as a function of the stimulation
number S (related to applied force level) for the six porous media
shown in Figure 5. The background forcing levels F,. (in lattice
Boltzmann units) are the critical values for each material at which
tranped oil first becomes mobilized and correspond apnroximatelv

level of applied force F,, it is necessary to numerically measure the
average length / of the oil ganglia found in each system.

The same experiments are performed next with the inclusion of
three cycles of seismic stimulation between time steps 9000 and
12,000, with F,/F, = 1. Figure 7 illustrates the result for two of the
six materials, but similar results hold for all six. Stimulation is seen
to enhance total oil produced during the run, even though the seismi-
cally coalesced bubbles cannot form system-spanning streams. If
stimulation were applied for more than only three time-harmonic cy-
cles, enhancement would have been greater.

Abetter way to see the effect of stimulation on oil production is to
monitor (as in Figure 4) the average Darcy flow throughout the sys-
tem ]_'(,i] as a function of time. Note that ]_'(,“ corresponds to the average
flux of oil volume across each vertical slice of a system and thus is
equivalent to the average rate of oil production throughout the sys-
tem.

Figure 8 shows j,; for the six systems at each time step of a pro-
duction run with an additional 1000-time-step running average ap-
plied to see the net effect of each stimulation cycle. Solid symbols
denote average production-rate histories without stimulation ap-
plied, and open symbols indicate those with the three cycles of stim-
ulation. Although oil production drops back to almost zero after
stimulation is turned off, net oil production is enhanced greatly dur-
ing stimulation. Again, when the oil does not form system-spanning
streams (as in this example), stimulation must be applied continu-
ously to maintain enhanced production.

Mobilization and coalescence of trapped bubbles can occur only if
the oil bubbles are moved a significant distance in a wave period
compared with pore length. To quantify this condition, we carry out
simulations with different 7" values. Recall that T is the ratio of the
pore-length scale € to the fluid displacement resulting from acoustic
oscillations. This suggests that when 7> 1, stimulation ceases to
have an effect. In Figure 9, total produced oil is plotted as a function
of T, and indeed, a critical 7'is observed around the value of one. Fi-
nite oil production for 7> 1 results from both the initial displace-
ment that occurs before stimulation is applied (stages a and b of Fig-
ure 4) and the fact that not all oil becomes trapped completely in the
steady state prior to stimulation.

140

= 0.24, &3 = 0.64, F, = 0.0016

L k’g
& ks =025 ¢5 = 0.64, F = 0.0012

120
100} i

80t . 1

Figure 7. Specific oil volume V ; that results with three time periods
of stimulation applied (open symbols) and without any stimulation
applied (solid symbols) for two of the six materials. Similar results
hold for all six materials studied (plottine all six materials results in
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In Figure 10, the specific volume V; is plotted as a function of
F,/F,.Inthese simulations, F, was kept constant at the value indicat-
ed in the figure, whereas F, was increased. For all six materials, the
value of 1/S — 1 was between one-half and one. Thus, the stimula-
tion criterion of F,/F,>1/S — 1 is seen to be satisfied at least ap-
proximately. This is seen perhaps more clearly in Figure 11, in which
the spatially averaged oil flux in the simulation cell j; is time-aver-
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Figure 8. Average oil flux j,; in each of the six systems with an addi-
tional 1000-time-step running average applied over the entire
18,000 time steps of the production runs. Solid symbols indicate that
no stimulation was applied. Open symbols represent when three cy-
cles of stimulation are applied between time steps 9000 and 12,000
with F,, = F,yand F, given in the legend, which are the same values
as the F, in Figure 6. Significant enhancement in the rate of oil pro-
duction is observed for all six materials during stimulation.
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Figure 9. Specific oil volume V,; as a function of the dimensionless
frequency T defined by equation 16 when S~ 1/2. At the lower fre-
quencies corresponding to 7<< 1, one can see an enhanced level of
oil nroduction because stimulation has enouch time in each cvcle to

aged over the three cycles of applied stimulation and plotted as a
function of F,/F,. If the bubbles remain trapped, they do not contrib-
ute to this averaged velocity, so the steady increase in average oil ve-
locity with increasing F,/F, demonstrates that stimulation has a
strong mobilization effect while itis turned on. Again, there is a finite
oil velocity even when F, = 0 because not all of the oil is trapped
completely at the level of background force F, used.
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Figure 10. Total volume displacement of oil as a function of F,/F
when 0<1/S — 1<1 foreach of the six materials.
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Figure 11. Oil velocity averaged over three cycles of applied stimu-
lation when 7' = 1/4 and with F, fixed to the values in the insert. In
all six cases, 0<1/S — 1<1, and thus these results are consistent
with the stimulation criterion that oil becomes mobilized when
F/F >1/S — 1.If tranped oil were not liberated in each cvcle. the
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CONCLUSIONS

The main message of this study is supported strongly by numeri-
cal simulations: Seismic stimulation will mobilize trapped oil, thus
increasing oil production when two dimensionless criteria are met.
The first condition is the static-force requirement that when a seis-
mic wave pushes on a trapped oil bubble, the radius of curvature of
the downstream meniscus of the bubble is reduced sufficiently to get
through the pore-throat constriction that is blocking its downstream
progress. The second condition is the dynamic requirement that in a
cycle of the time-harmonic stimulation, the meniscus has enough
time to advance through the constriction before the seismic force
changes direction and begins to push the meniscus upstream.

These two conditions can be achieved by using sufficiently large
stimulation amplitudes and sufficiently small stimulation frequen-
cies. Interestingly, when the stimulation force is modeled as that
from a seismic wave and if seismic strain is independent of frequen-
cy, we predict that F', increases linearly with frequency, although T
becomes independent of frequency. Of course, the imposed seismic
strain from different seismic sources working at different frequen-
cies need not be the same. Further, in the field, the strain of a wave al-
ways is reduced at higher frequencies by seismic attenuation. Thus,
there are many practical trade-offs to consider when choosing which
source to work with and at what frequency.

Our main numerical results pertained to lower oil-volume frac-
tions for which the stimulation-induced coalescence of bubbles did
not result in a continuous stream of oil spanning the flow cell under
study. At slightly larger oil-volume fractions, stimulation can form
connected streams of oil that span the flow cell, thus creating an even
larger oil-production effect.

Further numerical studies should be performed that (1) take simu-
lations from two to three dimensions, (2) work with more grains in
each flow cell, (3) apply stimulation for many hundreds or more of
seismic wave periods, and (4) use alternative methods to simulate
the way oil becomes trapped in the system in the first place. As an ex-
ample of this last point, one might wish to start with a large volume
fraction of oil in the system and perform an imbibition experiment
until the advancing water front forms a percolating backbone. The
oil that remains might be stuck only marginally and thus would be
more susceptible to seismic stimulation.

To finish, we conjecture on the changes to be expected when simu-
lations are taken to three dimensions, in which a greater number of
junctions and oil branchings can occur that likely will resultin a larg-
er number of marginally stuck fingers of oil. On the other hand, the
Rayleigh instability (an effect confined to three dimensions) will
tend to break up larger ganglia into smaller ones, particularly when
the solid is wetted by water, as in our simulations. In this case, the
stimulation will need to be applied repeatedly to continuously remo-
bilize and coalesce the oil droplets. Note that there is no intrinsic dif-
ficulty in performing the lattice-Boltzmann simulations in three di-
mensions. Itis mainly a matter of applying a larger computational ef-
fort. Finally, in three dimensions, porosities can be reduced to those
in real rocks because pore space remains connected across a sample
even as porosity approaches zero.
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APPENDIX A
THE GASSMANN RELATIONS

An isotropic porous material has a compressional response gov-
erned by three elastic constants defined as

oP
K= — ( < ) , (A-1)
SVIV,) 5 —o

SP,
Ku = - 5 (A'Z)
SVIV, ) gq0

and B

)
- (—f” ) : (A-3)
5P y.q=o

where 6 P, is the change in the confining pressure applied to the po-
rous sample and where conditions ép; = 0 and V-q = 0 corre-
spond to drained and undrained, respectively. At seismic frequen-
cies, Pride (2005) shows that the strain response is effectively und-
rained;i.e., V-q = 0eventhoughq+# 0.

With the drained (or dry) bulk modulus K, taken as a known con-
stant and assuming that the grains are uniform and isotropic, Gas-
smann (1951) shows how the undrained bulk modulus K, and
Skempton’s coefficient B depend on K, porosity ¢, solid grain mod-
ulus K and fluid modulus K/,

1/K; — 1/K,
B= . (A-4)
1K, — VK, + ¢p(1/K; — 1/K,)

K
K, = d . (A-5)
1 - B(1 — K,/K,)

As the bulk modulus of the fluid becomes small compared with ei-
ther K, or K, one obtains

K K,
B~ —f—<1 — E”’) as K;— 0, (A-6)

which is meant to provide insight to the nature of B when some gas is
present in the system.

Pride et al. (2004) showed that in the low-frequency (seismic-
band) limit of interest here and when immiscible patches of oil and
water are in the pores at volume fractions v, and v .., the effective
Skempton’s coefficient becomes

1 Vi v

— _ Zoil + water ) (A-7)
B B oil B water

When using the monomineral result of Gassmann (1951), this is ex-
actly equivalent to working with an effective fluid bulk modulus of

1 .
— Uil + Uwater (A-8)
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APPENDIX B

NEGLECTING COMPRESSIONAL
CHANGES CAUSED BY THE WAVE

As a compressional wave squeezes a cell, the fact that water is
typically less compressible than oil means that some water will tend
to displace into pore space that initially was occupied by oil so that
fluid pressures remain in quasi-static equilibrium at the low frequen-
cies excited by the seismic source. For example, crude oil might
have a bulk modulus of 2.0 GPa at 1-km depth, whereas pore water
might have a modulus of 2.5 GPa (e.g., Batzle and Wang, 1992).
Such compressional-induced displacement of the menisci is not be-
ing modeled in the present paper. Order-of-magnitude estimates
now are provided for menisci displacements resulting from this
compressional effect compared with displacements from the Darcy
flux induced by F,. These estimates will be made assuming that sur-
face tension is negligible because allowing for finite surface tension
will reduce each type of displacement an equivalent amount.

First, the low-frequency (seismic-band) results of Pride et al.
(2004) can be used to estimate the quantity {;,, which is the volume
of fluid that passes from pores initially occupied by oil to pores ini-
tially occupied by water, as normalized by the volume of the flow
cell under consideration. The average “compression-induced” me-
niscus displacement &, is obtained by combining equations 8,
47-52, and 69 of Pride et al. (2004) to give

/¢ 1 1 \(K, 14
5{ = ﬂ = vwatervoil<_ - )<_ - 1>_0
Sm Boil Bwater Kd Sm
(B-1)

In a flow cell of volume V, a fraction v, of the porous material is
saturated with oil, a fraction v, is saturated with water (with v e,
+ vy = 1), and there is a total surface area S,, of the menisci that
separate oil-saturated from water-saturated patches. In addition, K,
is the drained bulk modulus, and one always has that K, > K.

Next, the Darcy filtration velocity ¢, created by seismic force F,
is given by ¢,, = (k/7,)F, so that on using equation 6, the relative
fluid-solid displacement &, induced by F, is

1 k B
5q = . Qw = pfcp (1 + £—> )
—iwg yR psl + 4G/3K,

(B-2)

where ¢ is porosity.

For a 20% porosity sandstone 10% occupied by crude oil and
having a drained bulk modulus of K, = 12 GPa, the Gassmann rela-
tions given in Appendix A predict that B,; = 0.37, Byuer = 0.40,
and K, = 16 GPa. If we estimate &, using water properties and take
V/S,, = 1072 m along with k = 10~!2 m?, we find the order-of-
magnitude estimate that

)
=< =103, (B-3)

These estimates suggest that neglecting the compressional effect
is areasonable approximation in a first modeling of seismic stimula-
tion. This is especially true for more permeable formations where
seismic stimulation has a chance of working.

and upstream menisci trapped on pore-throat barriers. The compres-
sion effect will cause the downstream and upstream menisci to dis-
place in opposite directions, thus moving one meniscus closer to get-
ting through its barrier while moving the other farther away, with a
net effect that perhaps is canceling. Displacements induced by F,
will push upstream and downstream menisci in the same direction,
simultaneously bringing them both closer to moving through their
respective barriers.

A final compressional effect perturbing flow at a distant cell is the
change in permeability created by a compressional wave. Pride
(2005) has derived an expression that details how much permeabili-
ty k changes when pressure is applied to a flow cell. In the present
context, that expression can be written as 5k/k = af. Here, 6 is the
compressional wave strain. The dimensionless material property a
has a complicated dependence on the elastic moduli and pore-space
tortuosity that will not be written out here but that is approximately
of order 1 in amplitude. Because typically # <10-¢ a few meters
from the seismic source, flow perturbation resulting from changes in
permeability is less than one part in a million, which is entirely negli-
gible compared with perturbations caused by F,.

APPENDIX C

THE LATTICE-BOLTZMANN MODEL

We simulate the two-phase flow using a slightly simplified ver-
sion of the lattice-Boltzmann model introduced by Gunstensen at al.
(1991) and Gunstensen and Rothman (1993). The simplification
consists of replacing the multiple relaxation times in the lattice-Bolt-
zmann operator by a single relaxation time 1/A. We use a lattice-
BGK algorithm (Qian et al., 1992). For completeness, we briefly re-
view the model here.

The oil and water are represented by red and blue fluid masses, R;
and B;, respectively. These masses exist on the sites of a triangular
lattice. On each site, there are six directions or channels labeled by
index i in which masses can propagate. This is illustrated in Figure
C-1.

Every time step t—¢ + 1 contains two steps. First, the masses
are propagated to their neighboring sites R,(x) —R;(x + ¢;) and
Bi(x)— Bi(x + ¢;), and then the masses are subjected to a local up-
date, which usually is referred to as a collision step. Taking the lattice

\/ c3 cz

¢

Figure C-1. Illustration of the lattice-Boltzmann model. The triangu-
lar lattice supports a population of red and blue particle masses dis-
tributed over the six spatial directions. Arrows represents amount
and color of the mass in each direction, and dots represent the total
mass on the corresponding sites. Magenta arrows (directions + ¢;
and + ¢. in the ficure) represent a mix of color. i.e.. a finite value of
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sites to have coordinates (x,?) at the discrete time 7, we can write the
corresponding evolution equation of the masses as

Ri(X + ci,t + ]) = RL(X,I) + ARl
and
Bi(X + C[,t + 1) = Bl(X,l‘) + ABI‘, (C—l)

where AB; and AR, represent the change in the masses that occur on
the lattice sites at every time step. These changes conserve the indi-
vidual site color masses and the site momentum. These local conser-
vation laws are the underlying reason for macroscopic hydrodynam-
ic behavior.

The first part of the collision step guarantees hydrodynamic be-
havior of the system as viewed by a color-blind observer because it
deals only with the summed masses N; = R; + B;. This part can be
written as

N, — N, + AN, (C-2)

where
1
AN; = A(N; — N{*(p,u)) + gci'F’ (C-3)

where A is a relaxation parameter, F will be shown to be the external
body force, and the equilibrium distributions N;? are the values of N;
after all gradients of the hydrodynamic mass and momentum densi-
ties

6
p(X’t) = E Ni(X’t)

i=1
6
and pu(X,t) = 2 Ni(X7t)ci (C-4)

i=1

have vanished. These equilibrium densities can be chosen, and we
choose them to be

N (p.u)) = g(l +2¢;-u + 4((e;- w? — [u?2)).

(C-5)

It can be shown that =°_ N* = p and 2°_,N*c; = pu. Hence,
this choice guarantees that in the long-wavelength, low-Mach-num-
ber limit, the mass and momentum densities satisfy the following
Navier-Stokes equation (Rothman and Zaleski, 1997):

V.u=0
du
P = V P(p) + nV?u + F,
(C-6)
where pressure P = p/2 and viscosity
pl1 1)
= —=\=-+ -] C-7
7 4(2 A ()

For 0 < 7 <oe, we musthave — 2 <<A<<0.The time derivative in
equation 6 is the total derivative givenby d/dt = /9t + u-V.

and surface tension consists of two steps. First, there is a redistribu-
tion of the N;s that increases the mass in the direction perpendicular
to the fluid interfaces

C,-'f 2 1
N;— N/ =N, + A|f|<( |f|2) — 5), (C-8)

where A is a parameter and the color gradient f is defined as

6 6
f=> ch (Ri(x + ¢) — B(x +¢). (C-9)
j=1 i=1

It can be shown that this step does not alter the site mass or mo-
mentum. Finally, the colored mass is redistributed so that the red
(blue) mass is sent in the direction toward red (blue) neighbors under
the constraints of color conservation and R; + B; = N;. This recol-
oring step, a sort of inverse diffusion, maintains the sharpness of the
interfaces. The result of this recoloring step is illustrated in Figure
C-1. It is shown (Gunstensen et al., 1991) that surface tension o
takes the form

9Ap

o= Tf(ﬁ), (C-10)

where S is the angle between the fluid interface and a lattice direc-
tion. The (slight) anisotropy of the surface tension is measured by
f(B). It is shown by Gunstensen et al. (1991) that 0.9<f(8) <1.1,
and in the present context, we shall ignore this anisotropy, which will
create somewhat noncircular bubbles. The validity of the above sur-
face tension formula can be checked by measuring the pressure dif-
ference between the inside and outside of a drop, and the agreement
is excellent (Gunstensen etal., 1991).

To simulate the viscosity contrast that exists between the two
phases, we take the viscosity to be

n = (nrpr(xst) + ﬂbe(X,f))/P(X,t)s (C_ll)

where 7, (7,) is the viscosity of the red (blue) phase,p, = Z;R/(x,1),
and p, = Z;B(x,1).

The solid surfaces should cause a no-slip boundary condition for
the fluid flow along them. In the simulations, this is achieved to a
good approximation by reversing the particle populations there, i.e.,
on the solid sites X, R/(X,1) — R, . 5(x,) and likewise for the B;s at ev-
ery time step.

The wetting properties of the solid are incorporated by giving the
solid sites a color. If this color is blue (water), then water will wet the
solid completely, and the contact angle will be zero degrees. Ifitis a
mix of red and blue, there will be a finite contact angle. The color of
the solid sites enters into the computation of only f.
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