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1. Introduction and Contents 
 

In this report we calculate time-independent fields of solenoidal magnets that are 
suitable for ion beam transport and focusing.  
 

There are many excellent Electricity and Magnetism textbooks that present the 
formalism for magnetic field calculations and apply it to simple geometries [1-1], but 
they do not include enough relevant detail to be used for designing a charged particle 
transport system. This requires accurate estimates of fringe field aberrations, misaligned 
and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized 
books on magnet design, technology, and numerical computations [1-2] provide such 
information, and some of that is presented here. The AIP Conference Proceedings of the 
US Particle Accelerator Schools [1-3] contain extensive discussions of design and 
technology of magnets for ion beams – except for solenoids. This lack may be due to the 
fact that solenoids have been used primarily to transport and focus particles of relatively 
low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, 
although this situation may be changing with the commercial availability of 
superconducting solenoids with up to 20T bore field [1-4]. Internal reports from federal 
laboratories and industry treat solenoid design in detail for specific applications. The 
present report is intended to be a resource for the design of ion beam drivers for Inertial 
Fusion Energy [1-5] and Warm Dense Matter experiments [1-6], although it should also 
be useful for a broader range of applications.  
 

The field produced by specified currents and material magnetization can always 
be evaluated by solving Maxwell’s equations numerically, but it is also desirable to have 
reasonably accurate, simple formulas for conceptual system design and fast-running 
beam dynamics codes, as well as for general understanding. Most of this report is devoted 
to such formulas, but an introduction to the Tosca© code [1-7] and some numerical results 
obtained with it are also presented. Details of design, fabrication, installation, and 
operation of magnet systems are not included; here we are concerned with calculations 
that precede or supplement detailed design. Mathematical derivations are presented with 
only a moderate number of steps. While there is no claim of originality, except for 
various numerical approximations and a conceptual induction module design in section 
20, many of the results and discussions are not readily available elsewhere. 
 

Our primary topic is axisymmetric solenoidal systems with no magnetic materials. 
These simplifying features allow useful analytical calculations, which occupy sections 2-
13. Deviations from axisymmetry are considered in sections 14, 15, 21, 22, and 23 and 
the effects of magnetic materials are treated in sections 16-20. Since magnetic aberrations 
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are mixed with geometric aberrations in computing ion orbits, section 22 on the ion 
equations of motion in an arbitrary field is included.  
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2. Solenoid Basics 
 
   2.1 Model assumptions and equations 
 

We wish to calculate the magnetic field  of a system of solenoids that is 
suitable for the transport and focusing of ion beams. Our initial model assumes the field is 
constant in time and has strict azimuthal symmetry around the system axis, which is the z-
axis of a cylindrical coordinate system . Since the variable  denotes perpendicular 
distance from the  axis, the distance from the coordinate origin to field point 

 and its Cartesian coordinates are 

€ 

x = r cos θ( ), y = r sin θ( ), z[ ] . 
The wire current density in the model has only the single component , which is the 
source for the two magnetic field components [ , ]. Magnetized materials 
provide an additional source , which is equal to the curl of the magnetization 
density , with components [ , ]. In this case  is the total source 
for . Deviations from axisymmetry are considered only in sections 14, 15, 21, 22 and 23. 
The magnetization of induction cores, with idealized current density and field components 

, is not treated here. 
 
Wire leads and windings are assumed to be paired such that field aberrations due 

to deviations from solenoidal symmetry are cancelled down to a negligible level. This 
includes cancellation of the small  component of current that is present in a single 
(helical) coil of wire by returning the current in a second coil on top of it. Also, the small-
scale variations of field inside and close to individual wire or cable sections are ignored, 
i.e. a smoothed model for  is adopted. In effect, the dominant collective field 
from the current density is calculated here, without any distinction between wire and 
cable, and small-scale variations are left for detailed magnet computations. However, one 
must be careful when representing actual currents by a smoothed . For example 
the correct dipole moment of a solenoid (see eqns. 2.11 - 2.13) should be recovered in the 
smoothed model.  
 

SI units (Tesla, Ampere, meter) are used throughout this report. The relevant field 
equations in the absence of magnetic materials are then 
 

,                                                               (2.1a,b)  
 
where . Equation (2.1a) requires . The field conventionally 
denoted by  is essentially equivalent to  in the absence of material magnetization 

. It is not used until section 16, where its role is discussed in detail. 
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To convert any equation to Gaussian (cgs) form, substitute . Unit 
conversions are 1.0 Tesla= Gauss, 1.0 Ampere = 2.99792…x  statampere, and 
1.0m= cm. 
 

Assuming solenoidal symmetry, eqns. (2.1a,b) become 
 

.                                               (2.2a,b) 

 
From these coupled first-order equations one can readily derive the decoupled second-
order equations: 
 

,                                                      (2.3a) 

 

              .      (2.3b) 

 
 The operator acting on  in eqns. (2.3a,b) is the scalar Laplacian in cylindrical 
coordinates with , while the operator acting on  is not quite of this standard 
form. Both of these field equations can be solved using the Green function for the 
Laplacian operator - see section 6. This may seem unnecessarily complicated since 
integrations are over all three spatial variables  to obtain functions of only the two 
variables . However, for the cases of greatest interest, the thin and thick uniform 
current layers, the integrations can be reduced to the single variable , and the analysis is 
not much more complicated than the textbook case of a single current loop. It may seem 
simpler to use the Biot-Savart formula (also a Green function solution), which yields  
from a single integration along the wire path - see section 21, but this is somewhat 
misleading because the path may be very long and must be specified by a more 
complicated formula than is used for the smoothed . On the other hand, the Biot-
Savart formula gives fine-scale detail of the field around the wire that is missed by the 
Green function approach using a smoothed source, and is therefore useful for detailed 
design. We also employ Fourier and Bessel series and transformations, several types of 
magnetic potential, and for really complicated cases a finite element code. 
 
 If Cartesian components and coordinates are used then eqns. (2.3a,b) are replaced 
by the compact vector form 
 
   ,        (2.3c) 
 
which can be immediately integrated using the Green function for the Laplacian operator. 
It is then necessary to project  from ; this is only a minor complication, and is 
equivalent to the solution of eqn. (2.3b) given in section 6. 
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2.2 Simple field estimate 

 
    Generally we assume  at large . However, to make a rough estimate of 
field strength we examine an infinite, uniform, thin current layer of  Amperes/m: 
 
               all z,         (2.4) 
 
where  is the Dirac delta function. Eqns. (2.2a,b) then give  
 
            .                                              (2.5a,b) 
 
Here  denotes a downwards unit step at , with : 
 

   

 
For a bore field of 1.0T we need  
 

   .                                                  (2.6)                

 
In round numbers S=.80 MA/m for 1.0T (or 800 A/cm for 1.0 G) for a long magnet, but 
S must be somewhat higher for short magnets. 
 
 Solenoidal fields for heavy ion beam transport must be very strong, due to the 
large ion momenta at kinetic energies of interest and near parallelism of field lines and 
trajectories. However, superconducting wire or cable can carry very high current 
densities at high fields, so a high field magnet can be made with a relatively thin current 
layer. Examples of “engineering-averaged critical current density” follow-see section 20. 

 
Critical fields and current density at 4.2K 

Superconductor   wire field  peak J 
 

                              6.0T              
 

                   10.0T          
 

                             15.0T          

 
 



 8 

These current densities take into account space for Cu stabilizer and insulation, as well as 
actual superconductor, but there is no additional safety factor or allowance for gaps. They 
are lower than the critical current densities for the pure superconductor by factors of 3 -
10. For example, a bore field of 10.0T may require , which can be made 
(in principle) using  at 4.2K with current layer thickness 

. A safety factor of 30% might be added. 
 

When the radial distance from the magnet axis out to the wire is greater than a 
few times the total layer thickness, we can model the current layer as an annulus of 
infinitesimal thickness for the purpose of computing the field near the magnet axis. 
However, high field solenoids, especially those using normal conductor, often have total 
current layer thickness comparable to the vacuum bore radius or greater. This more 
complicated geometry is analyzed in section 9. 
 
 

2.3 Current distributions, global picture, and moments 
 

The field of a solenoid is closely related to a radial integral of the current density, 
which we call the “cumulative current distribution”: 
 

,           (2.7)  
 
which has net current distribution .  If S(r,z) varies slowly with z then 
eqns. (2.2a,b) appear to have the approximate solution 
 
  ,                                           (2.8a) 
 

  .                   (2.8b) 

 
However, most solenoids have abrupt current layer ends, so eqns. (2.8a,b) give only a 
very rough approximation inside the magnet bore and wire. They are incorrect at large . 
Sections 3-12 are devoted to obtaining accurate formulas for all ranges of (r,z). 
  

To avoid confusion we mention here that the symbol , which is always a radial 
integration of , appears in four closely related roles: the simple scale value , the 
cumulative current distribution , the net current distribution  

, and the cumulative current distribution  that is present when  is uniform 
in  between specified magnet ends. If  is uniform in  between radii  and  and 
vanishes otherwise, then  for , and decreases linearly to zero 
between  and . Solenoids with uniform current density produce fields suitable for 
beam transport. However, there are applications that require a more complicated 
distribution within a single magnet, for example to make a very uniform bore field. Such 
fields can be designed by superposing the fields of several simple layers. 
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The symbol  denotes current in a wire, current in a ring, or total azimuthal wire 

current in a magnet, depending on context. In the latter two cases . The 

value of the line integral  along a closed path in vacuum equals the net 
enclosed wire current . This result is still correct when magnetized materials are 
enclosed by the integration path, as will be shown at the end of section 16. 
 

Since  and  vanishes at large  (at least as fast as ), there must be a 
“return flux”. The total flux through any plane with fixed coordinate z is 
 

   
 
,                                                                  (2.9) 

 
and (ideally) all flux lines form closed loops at fixed values of . However, for a very 
long system the far field (i.e. the field at large  much greater than the system length) 
gets mixed up with the Earth’s field or the fields from other sources, so the concept of 
return flux is actually slightly ambiguous. The external field produced outside of the 
current layer but close to the magnet system, usually with the sign of reversed from 
the adjacent bore field, is of great interest – see the figure below. For example, it may 
interfere with the functioning of induction cores in a linac or with nearby instrumentation. 
The external field is calculated in several sections – especially section 11.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

One (rather expensive) way to reduce or eliminate the far field is to place an 
additional current layer with reverse polarity at larger radius than the primary layer. For 

Bore Field 
External Field 

Far Field 

Divergent B r 
Axis 

Fringe Field 
Thin Wire 

  Layer 

Bore Field 
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example a very long, thin current layer  at radius  can be surrounded by a second 
layer  at , resulting in zero net flux in the region . This causes a  
reduction of the bore field from 

€ 

1.0µ0S  to . A permeable annular yoke can also be 
used to confine the return flux and reduce the external field, without any reduction of the 
bore field – see section 18. 
 
 For visualizing and calculating the field outside the magnet bore it is useful to 
define “direct” and “residual” fields:  
 
            ,                               (2.10a) 
 
  .                 (2.10b) 
 
A “direct flux” is defined as  
 

,       (2.11) 
 
where we integrated by parts to obtain the last expression. 
  

A single loop of wire of radius  and carrying azimuthal current I has magnetic 
dipole moment . Magnetic dipole moments add for a system with solenoidal 
symmetry, so in general we have for a system’s total magnetic dipole moment : 
 

                (2.12) 

 
Assuming  is non-zero, the field at very large , i.e. the far field-see section 11, is  
 

,   

€ 

Bz
far =

µ0m1
4π

2z2 − r2

r2 + z2
5 .           (2.13a,b) 

 
Higher order moments, which generate field components that fall off more rapidly with 

, are also present. However, the coordinate origin can usually be positioned such that 
the second moment 

€ 

m2 = dz∫ dr2π r2zJθ∫( )  vanishes. 
 

Solenoidal multipoles and their moments should not be confused with transverse 
multipole magnets that are commonly used for beam transport and focusing, and which 
are referred to as dipoles, quadrupoles, sextupoles, etc. 
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So far we have define two radial moments weighted by : 
 

,              (2.14a) 
 

             .             (2.14b) 
 
Additional radial moments weighted by  such as 

€ 

Sr4 , Sr6, … will be used in section 

11 to evaluate the external field. Note that , etc. can actually be negative if  
varies in sign as a function of r, so they are not true mean values. 
 

As mentioned, care is needed when representing a magnet by a smooth current 
density. Consider a simple wire coil of  turns at radius  with turn-to-turn longitudinal 
spacing . If the wire current is  then the net azimuthal current is  and the net 
magnetic dipole moment is . However, the effective coil length is , not 

, since each loop would be centered in a strip of length  for an accurate finite 
difference calculation. The correct current distribution is , which is 
consistent with the value  obtained from eqn. (2.12). The physical length of 
the coil alone, taking into account that it is actually a helix, is also  (plus one wire 
thickness). The longitudinal current of the coil is , which would be the source of an 
azimuthal field. However, this is assumed to be cancelled by a second coil at slightly 
larger radius. 
 
 

2.4 Vector potential and flux lines 
 

It is sometimes helpful to work with one of four different magnetic potentials 
 – see sections 5 and 19. Here we only mention the vector potential , with , 
which for a solenoidal system can be reduced to the single component : 
 

                        .                                                          (2.15a,b) 

 
            A flux surface is characterized by 
 
                          constant.      (2.16)  
 
This is easily shown by considering any flux line that lies on a particular flux surface.  
The line has constant , so it is only necessary to show that  is constant along it. 
Since by definition the flux line element  is parallel to , the differential of  along 
the line is 
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 .  (2.17) 

 
If adjacent flux surfaces have constants  and , then the magnetic flux 

contained between the two surfaces is . The magnitude of the field strength 
midway between the two flux surfaces is approximately 
 

                       

€ 

B =
C2 −C1
∇ ⋅ r

,              (2.18) 

 
where  is the local normal distance between the surfaces and  is the radial distance 
from the axis to the midpoint between the surfaces. Due to the factor of  in eqn. (2.18), 
the magnitude of  is not simply proportional to the inverse spacing between flux 
surfaces  as is sometimes assumed, although this can be a useful visual aid in a 
region where  is nearly constant. The local density of flux lines through any plane 
normal to  can be specified to be proportional to , but this is not usually done when 
making flux line plots. A flux surface has the topology of a torus, and a system made 
from more than one magnet may have several flux surfaces corresponding to a given 
value of . 
 

Another way to generate a flux line is to solve the equation 
 

                        ,    (2.19) 

 
starting from some point on the line of interest. Here  is simply the parameterization 
of the line, with s denoting distance along the line. For example the starting point could 
be on the surface of an acceleration gap where unwanted electrons are emitted.  
 
 

2.5 Stress and energy 
 

Material stress is not the topic of this report, but it is a major concern in the design 
of high field magnets, so a simple estimate is presented here. The force density from the 
field pushing on the current layer is 
 

.                                                                  (2.20) 
 
Since the wire is in mechanical equilibrium, this force density must equal the divergence 
of the material stress tensor. A detailed stress analysis is too complicated to summarize 
here-see e.g. ref [1-2], but it is seen from eqn. (2.20) that the longitudinal magnetic force 
tends to compress a wire layer while the radial magnetic force pushes it outwards against 
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a restraining collar of the magnet assembly. There is no material stress in the vacuum 
bore, so at the collar there is approximately a material force per  pushing outwards: 
 

                      ,    (2.21)   

 
where  is the longitudinal field at the inner edge of the wire layer – roughly the peak 

bore field. Suppose , then 

€ 

F ≈ 1.0( )2 2x4πx10−7( ) ≈ 4x105 N m2 = 4.0  Bar, 

which is quite modest. However a 15.0T bore field produces about 900 Bar, which 
requires substantial support to prevent wire movement. 
 

The external field of a solenoid without a permeable return yoke extends to a 
large distance compared to the field of a transverse quadrupole magnet. The estimation of 
stress and wire field in a system of solenoids must therefore include the field 
contributions of nearby magnets as well as that of the magnet of interest. This is 
particularly the case for a transport lattice made of closely spaced solenoids. 

 
            Since solenoidal transport systems for energetic ions are expected to have high 
fields in large-bore magnets, they also have large stored field energy. In the absence of 
magnetic materials this is  
 

                       .   (2.22) 
 
For example if a 1.0  volume is filled with a 15T field, then the stored energy is 

  90MJ. The related topic of magnet cooling is not discussed here. 
 
 
3. Near-Axis Field 

 
For simulating beam dynamics it is often sufficient to accurately approximate the 

magnetic field near the system axis, e.g. out to 50% of the radius of the nearest wire 
layer. A general treatment is presented here and some useful examples of the on-axis 
field are given in section 4.  
 
 

3.1 On-axis field and near-axis expansion 
 

Recall eqn. (2.3a) for : 
 

           .       (3.1) 
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This may be formally integrated using the Green function for the 3-d scalar Laplacian 
operator – see section 6: 
 

           ,                                                                       (3.2) 

 
or explicitly in cylindrical coordinates, 
 

 .          (3.3) 

 
Here and in similar integrations we may set inside the integrand since by symmetry 

 is a function only of r and z. After an integration by parts in  we get 
 

.           (3.4) 

 
This formula is completely general for a static solenoidal field, and it gives the right 
answer even when the current layer extends to infinity in . 
 

To get the near-axis field, we first evaluate the on-axis field: 
 

                        .                        (3.5) 

  
If  is accurately determined from this expression or in some other way, such as 
measurements on a real magnet system, then  may be used to generate a power 
series solution of eqn. (3.1) that is valid for small  (where ). From 
 

                        , 

 
we get by iteration:  
 

                         .                                   (3.6a) 

 
The radial field component is easily obtained from  by integrating in r: 
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                        .   (3.6b) 

 
The leading term in each of the above expansions of and is used when 

computing the linearized dynamics of beam ions. Higher order (non-linear in ) terms are 
referred to as “fringe field aberrations” in this context. Two terms from each of the 
expansions usually give an accurate field representation inside the vacuum bore, 
especially near a magnet center, but the expansion for fails in the wire and beyond, 
where the field component generally reverses sign. The expansion for  may give a fair 
approximation in the wire except near magnet ends. When truncating the expansions after 
some power of r, should be represented by one power of 

€ 

r  higher than in order to 

preserve . Crossing a thin current layer of net current distribution ,  
jumps by  but  is continuous. However,  has logarithmic singularities at the 
ends of the layer – see section 8. For large , well beyond any magnet end, the power 
series expansions are valid out to values of r comparable to the longitudinal distance from 
the magnet end. But the expansions do not correctly yield the reversal of  at larger 
values of . Also, because of the high order derivatives, the expansions of  and  may 
be unreliable using measured . 

 
To check the accuracy of the near-axis expansion (3.6a,b) we examine the thin 

semi-infinite current layer, 
 
                         .                                                       (3.7) 
 
We get from eqn. (3.5) – see section 4: 
 

                       .                                                               (3.8) 

 
In this simple case fringe field aberrations are maximum at z=0 for  and at  
for . Approximating the fields by only two terms works well for r<.5R, but for r=.8R 
(the largest value one would consider for beam transport) the convergence is slow, as 
shown in the following tables. Note that the approximate  oscillates as higher order 
terms are added. 
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Number of expansion terms         at r=.8R, z=.5R             at r=.8R, z=0 
        1                                                       .276393                                       .200000 
        2                                                       .207701                                       .248000 
        3                                                       .190116                                       .267200 
        4                                                       .189066                                       .276160 
        5                                                       .190881                                       .280676 
     exact                                                   .191960                                       .286062 
 

 
Number of expansion terms         at r=.5R, z=.5R             at r=.5R, z=0  
       1                                                       .276393                                       .125000 
       2                                                       .249560                                       .136719 
       3                                                       .246877                                       .138550 
       4                                                       .246814                                       .138884 
       5                                                       .246857                                       .138949 
    exact                                                    .246867                                       .138967 
 
 

3.2 Useful integrals 
 

The following (non-trivial but easily verified) indefinite integrals are of use in 
subsequent sections: 
 

  ,      (3.10a) 

 

   ,    (3.10b) 

 

   ,      (3.10c) 

 

   ,      (3.10d) 

 

   ,      (3.10e) 

 

  

€ 

dx

a2 + x 2
5 =

x
3a4

2
a2 + x 2

+
a2

a2 + x 2
3

 

 
  

 

 
  ,∫    (3.10f) 
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€ 

dx
ax 2 + b( ) fx 2 + g

∫ =
1

b ag − bf( )
tan−1 x ag − bf

b fx 2 + g( )

 

 

 
 

 

 

 
 
  (3.10g) 

 
   [for  and ]. 
 
The surprising integral (3.10g) is used in section 9 to evaluate  for a uniform, 
thick current layer. 
 
 
4. Design Formulas for the On-Axis Field 

 
To calculate the on-axis field, denoted , we may replace a moderately thick, 

uniform current layer with a thin layer at its average radius (R) with surprisingly little 
error – see section 9. Making this approximation leads to many useful formulas. The 
replacement current density has the simple form:  
 

 ,                      (4.1) 
 
and eqn. (3.5) becomes 
 

  .              (4.2) 

 
 
 4.1 Simple cases 
 
      Case 1         Constant  for all z: 
 
Using the integral (3.10a) we recover eqn. (2.5a), 
 

 .             (4.3) 

 
      Case 2         Semi-infinite Layer: 
 

              (4.4) 

 
A very useful formula is derived by changing the upper limit of integration over  to  
in eqn. (4.3): 
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 .         (4.5) 

 
Note the symmetry around , with . We can build up many other cases 
of interest by superposition using this result. 
  
        Case 3           Lens with current layer length , centered at : 
 
We apply eqn. (4.5) with positive and negative current layers ending respectively at  
and : 
 

                           .                          (4.6)  

 
This formula is equivalent to the well-known textbook result [4-1]: 
 
 
 

 
 
 

 
 
 

 ,              (4.7) 

 
where N is the number of wire loops per meter, each carrying current I, and the angles are 
to points at the wire layer ends drawn from the point of interest on the z axis (see figure). 
The field at the lens midpoint  is 
 

  ,              (4.8) 

 
so a lens of length  has peak field on axis reduced to . For  
large, the leading order expansion term of eqn. (4.6) is  
 

                            ,              (4.9)  
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consistent with eqn. (2.13b), with magnetic dipole moment . The on-axis field 
of a short lens  is displayed below. 

 

 
         Case 4              Periodic system of lenses (same polarity) of current layer length , 
gap length g, and period P= +g: 
 

 .     (4.10)  

 
Case 5             Gap of length g, centered at z=0, between long solenoids: 

 
We subtract a lens of length g from an infinitely long solenoid: 
 

 
 .          (4.11) 

 
At the center of the gap 
 

                         .          (4.12) 
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For g=2R, the field at the gap center is reduced to . To prevent 
large variations of  with z in a periodic system, the gaps must be very short compared 
with 2R. However, this is not generally necessary for the design of a good periodic 
transport system if the ion betatron wavelength is longer than 2P. If the polarities are 
opposed then an antisymmetric “cusp” field is produced around . 
 
          Case 6            Current ring of radius : 
 

             .     (4.13) 
 
From eqn. (3.5) or eqn. (4.2) we get 
 

                          .     (4.14) 

 
 

             4.2 Thick current layer 
 
         The on-axis field of a uniform, thick current layer can be computed from any of the 
thin layer cases with a simple average over the wire layer radius : 
 

              ,     (4.15) 

 
where  and  are the inner and outer radii of the thick layer. For example eqn. (4.6) 
for a thin layer lens of length  gives, using eqn. (3.10b): 
 

                        

 

                        

  

€ 

=
µ0S

2 R2 − R1( )

 

 
 

 
 

z +  2( )Log
R2 + z +  2( )2 + R2

2

R1 + z −  2( )2 + R1
2

 

 

 
 

 

 

 
 
 

                        .     (4.16) 

 
 
           4.3 Uniform fields 
 
Case 1            Helmholtz coil: 
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Two rings, each of radius , current , and separated by distance , have on-axis field 
from eqn. (4.14): 
 

                         .  (4.17) 

 
If , then  and 

€ 

B0 0( ) = .8( ).7155µ0I R . This is a simple way to make a 
uniform field close to the coil center, but it is not useful for producing high fields since 
the field strength in the wire is much larger than at the coil center. 
 
          Case 2             Nearly uniform field in a long solenoid:  
 
A large volume of strong uniform field can be made by superposing simple solenoids of 
various lengths, radii and current layer distributions. A mathematically simple version 
consists of a pair of thin-layer lenses [see eqn. (4.6)] placed symmetrically around  
at the same radius , but with unequal lengths  and distributions . The 

derivatives  and  both vanish if we set 
 

  ,     (4.18) 

 

  .     (4.19) 

 
Layer #2 is shorter than #1 if , and has a reversed current. Both layers 
must have . The combined layers produce a somewhat lower field strength 
than that of layer #1 alone: 
 

 .     (4.20) 

 
For example, taking  and , we get 

, producing . The #1 solenoid 
alone would produce . The on-axis field for the double layer at 
representative points is  
 
 

       
  6.35096  6.35096  6.35083  6.34929  6.34063  6.30777 
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There is essentially no variation over 25% of the 4.0m bore length in this example and 
only .7% variation over 50% of the bore length. Transverse variation is similarly small in 
these zones. 
 
          Case 3   Uniform field inside an ellipsoidal shell: 
 
Although this is not particularly useful for beam transport, it is worth mentioning that an 
ellipsoidal shell of constant current per meter produces an exactly constant field inside 
the enclosed volume. Denoting the cumulative current layer density  
 

  ,    (4.21) 

 
where a and b are ellipsoid radii, then 
 

  .    (4.22)  

 
This current pattern can be created with closely spaced wire loops, each carrying current 

, where  is the constant longitudinal separation between loops. 
 
Eqn. (3.5) yields 
 

 

€ 

B0 z( ) =
µ0Sa2

2
d ′ z 

−b

b

∫
1− ′ z 2b2( )

′ z − z( )2 + a2 1− ′ z 2b2( )
3  ,    (4.23) 

 
from which it may be numerically verified that  is actually constant for .  is 
therefore also independent of  inside the ellipsoid, and we may write  
 
  ,     (4.24) 
 

  .     (4.25) 

 
 

        
  1.00000 .924593  .826436  .666667  .472800 .296359 .000000 
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A proof that  is constant is mathematically related to the solution for the gravitational 
potential of an ellipsoid of constant density, obtained in the Eighteenth Century [4-2]. It 
is found by elementary integration that for , 
 

  ,   (4.26a) 

 
and for , 
 

  .   (4.26b) 
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5. Vector and Scalar Potentials 
 

The vector potential  and three scalar potentials, denoted here by , , and , 
are used in calculating and visualizing solenoidal fields. Each potential has features that 
make it useful for some applications and a poor choice for others. The scalar potentials 

 are described below, while  is a special potential used in Tosca© and 
described in section 19. 
 
 

5.1 Vector potential 
 

As discussed in section 2, the vector potential (only  is needed) is useful for 
defining and plotting flux surfaces. Another property of is that the derived field 
components 
 

  ,            (5.1 a,b) 

 
automatically satisfy . Also, azimuthal symmetry results in the conservation of 
canonical angular momentum for ion beam dynamics:  
 
                         

€ 

Pθ = r γMvθ + q∂Aθ( )     =         constant,                    (5.2) 
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for an ion of  momentum  and charge state . The constancy of  can be used 
to eliminate  when  is known. 
 

Unlike the scalar potential  described below, the vector potential provides a 
complete or “global” characterization of the magnetic field that is valid everywhere. Its 
source is , and if a magnetization current density  is present, it simply adds to the 
current density of the wire layer. The second order equation for  is 
 

             .                                              (5.3) 

 
As with eqn. (2.3b) for , the operator acting on  is not quite the scalar Laplacian, 
but this does not cause a serious problem in obtaining a Green function solution – see 
section 6. 
 

One drawback in using (and the scalar potentials) to calculate  is that it must 
be differentiated, which is an extra operation that can produce unnecessarily complicated 
approximate expressions. Also, derivatives generate errors in discretized computations. 
Another drawback is that is the azimuthal component of a vector field and must 
therefore be handled carefully when transforming to a tilted magnet. 
 
 

5.2 Magnetic scalar potential  
 
           The field in the bore of a (transverse) magnetic dipole, quadrupole, or higher order 
beamline element is often characterized by a magnetic scalar potential . A magnetic 
scalar potential can also be used to characterize the bore field in a solenoidal system. In a 
connected region of vacuum, where , we set 
 

             ,                                              (5.4 a,b)   
 
with the factor of -  inserted to be consistent with standard convention. This is an 
attractive, compact representation of structural aberrations, which appear as angular 
multipoles, e.g. , as well as fringe field terms.  
 

By itself  cannot be a global solution. It is necessary to connect  to its current 
source through boundary conditions or a known component of  – see sections 17 and 
23. For example  is constant on the surface of a highly permeable material if the 
magnetic field is well below saturation, e.g.  for magnetically soft iron. In fact 
this formalism is most useful when magnetic materials are present, with  and 

 everywhere outside the wire  – see sections 16 and 17. Another difficulty 
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with  is that it may be multi-valued. This follows from  around any loop that 
encloses non-zero net wire current. The idea is to position the discontinuities in the  
plane such that a single branch of  can be applied in the region of interest. Alternatively 
a hybrid formalism can be used – see section 19. 
 

In vacuum, surfaces with  = constant have perpendicular intersection with flux 
surfaces (  = constant), and adjacent surfaces of constant  may be specified such that 
their separation is inversely proportional to . 
 
 

5.3 Global scalar potential 
 

The limitations of the magnetic scalar potential  may be circumvented for a 
solenoid by defining a global scalar potential, denoted here by . Let 
 
                            ,       (5.5) 
 
where  is the cumulative current distribution defined in section 2 and  can be 

added to  as usual. This formula for  satisfies . To make  we set 
 

                              .       (5.6) 

 
The term  in eqn. (5.5) is just the previously defined direct field of the system  
– see section 2, and  is the residual field (i.e. fringe field, external field, etc.). It is 
clear from eqn. (5.5) that  is single valued since  has vanishing curl 
everywhere. Also,  is a global solution since eqn. (5.6) is valid over all space. In 
principle a global scalar potential can be defined for any configuration of currents, but it 
is not useful unless  has a simple solution, as is the case for a solenoidal 
system. 
 

Note that  is discontinuous at the ends of a magnet bore and it generally 
subtracts from the direct field inside the bore. This is a very awkward way to treat the 
field close to the axis, where it is used for beam dynamics calculations and smoothness is 
important. However,  gives an intuitively appealing picture of the external field by an 
analogy with electrostatics, with the source on the rhs of eqn. (5.6) acting like a charge 
density proportional to . For a thin current layer at radius R, this source is a 
pair of disks of opposite magnetic charge  at the solenoid ends. In section 11 
the global scalar potential will be used to evaluate the external field, which will in turn be 
used in section 15 to calculate the interference of fields among off-axis solenoids. 
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6. Green Function Solutions 
 
 6.1 Green function formalism 
 

Any equation of the form (in 3-d) 
 

€ 

∇2 f = g r( ) ,               (6.1) 
 
with 

€ 

g r( ) = 0  at large , may be formally integrated using the Green function 

 

€ 

G r, ′ r ( ) =
−1

4π ′ r − r
;  

€ 

f r( ) = d3∫ ′ r G r, ′ r ( )g ′ r ( ) .            (6.2a,b) 

 
This works because 
 
                        

€ 

∇2G = ′ ∇ 2G = δ ′ r − r( )  ,          (6.3) 
 
where 

€ 

δ x( ) is the 3-d Dirac delta function. In general, from eqn. (2.3c),  
 

  

€ 

B =
µ0
4π

d3 ′ r ∫ ∇′xJ′

r′ − r
 .           (6.4) 

 
 It is seen from eqn. (6.2) that 

€ 

G r, ′ r ( )diverges as 

€ 

′ r − r → 0 , but this is not a 

fundamental difficulty. The Green function solution 

€ 

f r( ) is finite unless 

€ 

g r( ) is itself 

singular. However, a numerical evaluation of 

€ 

f r( ) in a region where 

€ 

g r( ) ≠ 0  may suffer 

from an unphysical divergence; this is easily fixed by letting  in 

the Green function. For a more accurate fix see the comment following eqn. (6.29). 
 

We have already used 

€ 

G r, ′ r ( )  to solve for  in section (3): 
 

.        (6.5) 
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Equation (5.6) for the global scalar potential  is also of the proper form for application 
of the Green function: 
 

  .          (6.6) 

 
 

Equations (2.3b) for  and (5.3) for  do not have the Laplacian operator, but 
they may be converted to the desired form by multiplying both sides by , i.e. 
 

  .      (6.7) 

 
This yields 
 

 ,         (6.8) 

 
where we have used the identity 
 
   
 
inside the Green function integral (the  contribution vanishes by symmetry). In 
similar fashion we get  
 

 .         (6.9) 

 
The four Green function solutions given above all have denominators that are odd 

powers of the function 
 

€ 

′ r − r = ′ z − z( )2 + ′ r 2 + r2 − 2 ′ r r cos ′ θ −θ( )[ ]
1
2

.     (6.10) 

 
Several transformations can be made. First, by symmetry we may let 

everywhere in an integrand. Second, if a derivative with respect to or 
appears in the integrand, we may use the identity  

 

 ,        (6.11) 
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integrate by parts, and sometimes get a simplification. For example, a unit step-function 
of  can be turned into a delta function of .  
 
 
 6.2 Explicit field expressions 
 

Writing everything explicitly, we have  
 

           

€ 

Bz =
µ0

4π
d ′ z d ′ r ′ r Jθ0

∞

∫
−∞

∞

∫ ′ r , ′ z ( ) d ′ θ 
0

2π
∫

′ r − rcos ′ θ ( )( )
′ z - z( )2

+ ′ r 2 + r2 − 2 ′ r rcos ′ θ ( )
3  .      (6.12) 

 
Denoting the denominator in eqn. (6.12) by , we get for the other fields 
 

  ,                (6.13) 

 

  ,     (6.14) 

 

   .                (6.15) 

 
It is clear that if we derive  from eqn. (6.14) we will simply recover 

the result obtained by direct integration, eqn. (6.13). We may also derive  

using eqn. (6.14). This procedure is correct, but it is not obvious from inspection that the 
result is actually equivalent to the direct integration, eqn. (6.12). We therefore have the 
alternative form: 
 

€ 

Bz =
1
r
∂
∂r

rAθ =
µ0
4π

d ′ z 
−∞

+∞

∫ d ′ r ′ r Jθ ′ r , ′ z ( )
0

∞

∫ • 

 

€ 

• d ′ θ 
0

2π
∫ cos ′ θ ( ) 1

r .....
−

r − ′ r cos ′ θ ( )
.....

3

 

 
 

 

 
 .      (6.16) 

 
It may be verified from numerical examples that the two formulas for  are the same. 
Mathematically, their equivalence can be reduced to the identity (with 

€ 

0 ≤ a ≤1) 
 

   ,    (6.17) 

 



 29 

which is also not obvious. One proof of eqn. (6.17) is that the two expressions have the 
same expansion coefficients multiplying all powers of . This identity will be used in 
section 7 and below in eqn. (6.25d). 
 

Not surprisingly, there is also a second integral expression for , which can be 
derived from eqns. (6.5) and (6.9): 
 

           (6.18) 

 

        (6.19) 

 

 .     (6.20) 

 
Similar to eqn. (6.17), the equivalence of this expression and eqn. (6.14) implies an 
identity: 
 

   ,     (6.21) 

 

which can be proved using integration by parts in . The two identities can be shown to 
be essentially equivalent. 

 

 6.3 Reduction to complete elliptic integrals 

Numerical integration of the Green function solutions is greatly simplified when 
the integrals over  are worked in advance, leaving only integrations over  and . 
This can be done exactly using the complete elliptic integrals E and K, or in an accurate 
approximation using analytical fits – see section 7. First we isolate the essential  
integrations. Denote 

 ,       (6.22) 

which has range , and define the five functions: 

   ,      (6.23a) 



 30 

 ,     (6.23b)  

 ,     (6.23c) 

   ,     (6.23d) 

   .     (6.23e) 

We express  and  in terms of E and K; the standard definitions [6-1] are  
 
   ,     (6.24a)  
 

   .     (6.24b) 

 
Warning: these definitions of  and  are used in Mathematica® [6-2], but in 
some texts  appears in the integrands instead of . Making a change of variable in 
these definitions, we get 
 

   ,      (6.25a) 

 

   ,      (6.25b) 

 
and the remaining  are found from  and  using the relations 
 

 ,      (6.25c) 

 

   ,       (6.25d) 

 

 .      (6.25e) 

 
The four Green function solutions, eqns. (6.12-6.15), reduce to 
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   ,    (6.26) 

 

   ,     (6.27) 

 

   ,      (6.28) 

   
 

   .      (6.29) 

 
 The divergence of the Green function carries over to the  as . This 
can be fixed up by a substitution such as . 
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7. Approximation of the Green Function Integrals  

 
The complete elliptic integrals and , defined in section 6, may be used to 

evaluate the functions  that appear in the general Green function solutions for 
 and . The resulting formulas are not very revealing; one might just as well 

evaluate the  numerically from their defining integrals (see plots of  below). 
Our objective in this section is to approximate these integrals with elementary functions 
and thereby aid analysis and speed up computations.  

 
 
7.1 Expansion of  in powers of  
 
Except for , which is defined to help evaluate the other integrals, all of the  

diverge as , so their power-series expansions are of limited value. However, since 
the argument of the  
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   ,          (7.1) 

 
is small when  is either large or small, these expansions are of use in evaluating both the 
near-axis field and far field. Expanding  in the integrands and working the 
resulting elementary integrals over  yields:  
 

 ,    (7.2a) 

 

 ,    (7.2b) 

 

           , (7.2c) 

 

 ,          (7.2d) 

 

          .   (7.2e) 

The expansion coefficients and plots suggest that 1f  and 2f diverge as Log 

€ 

1− a2( ), while 

3f  and 4f  diverge as 

€ 

1 1− a2( ). This behavior is quantified below and accurate 
approximate formulas are found that are valid throughout the entire range 

€ 

0 ≤ a ≤1. 
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7.2 Approximation of  as  

 
To proceed, we make use of five linear relations:  

 
 ,          (7.3a) 

 
   ,          (7.3b) 
 

 ,          (7.3c) 
 

  ,          (7.3d) 

 

  .       (7.3e) 

 
Equations (7.3a,b,c) follow immediately from the definitions of the , while (7.3 d,e) 
also make use of eqn. (6.17). These five relations determine the  exactly, given the 
initial values . Consequently, no approximate formulas can satisfy all 
five relations and end points at once. When we find good approximations for  and , 
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then  can be approximated using eqns. (7.3c-e). By eliminating  
among the five relations we obtain coupled first order equations for  and : 
 

   ,         (7.4a) 

 

   .         (7.4b) 

 
The value of  at  is obtained from its definition by a simple integration. 

This number appears repeatedly in expansions of the  near , so it is denoted here 
by : 
 

   .      (7.5) 

 
It is seen from the above plot that  varies only moderately with , so we have a rough 
first approximation that recovers the end points: 
 
   ,           (7.6) 
 
which has maximum relative error 

€ 

f0
approx f0 −1= −.0159 occurring at . This 

simple fit may be inserted in equation (7.4a) and integrated to get  
 

  

€ 

f1 ≈
1
4a

a2 −C Log 1− a2( ) + a2[ ]{ } ,         (7.7) 

 
which has the correct leading term as  and correct divergence as . Its 
maximum relative error is

€ 

f1
aprox f1 −1( ) = −.0128  at .  To improve on these rough 

approximations we could evaluate  by integrating eqn. (7.4b), inserting expression 
(7.7) for . This leads to a very accurate formula, but it involves the relatively unfamiliar 
function PolyLog , which violates the goal of transparency. 
 
 We return to the integral that defines  for guidance. After some analytical effort 
it is found that as , 
 

  

€ 

4af1 = 4a dθ
2π0

2π

∫
cos θ( )
1− acos θ( )

→C D−Log 1− a2( )[ ] ,       (7.8) 

 
where D is the constant 
 
             (7.9) 
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(a beer for any reader who analytically verifies eqns. (7.8, 7.9)). A simple modification of 
eqn. (7.7) that contains the correct limits for both  and , is 
 

             ,       (7.10) 

 
which has maximum relative error  at .744. In similar fashion 
we improve on the rough approximation for , eqn. (7.6): 
 

   ,          (7.11) 

 
which has maximum relative error  at  = .902. 
 
 While eqns. (7.10 and 7.11) are adequate for some applications, much more 
accurate approximations for  and  can be derived by including additional terms from 
their  expansions. To treat this limit we first define the variable , so eqns. 
(7.4a,b) can be written in the convenient form 
 

  ,         (7.12) 

 

   .         (7.13) 

 
Guided by eqn. (7.8), the expanded form of  is assumed to be  
 
 

€ 

4af1 = C D− A1x − A2x
2 − A3x

3 − ...[ ] − 1− B1x − B2x 2 − B3x 2 − ..[ ]Log x( ){ } , (7.14) 
 
where  and  are constants to be determined. From eqn. (7.12) we then get 
 
  

€ 

f0 = C 1+ A1 − B1( )x + 2A2 − B2( )x 2 + 3A3 − B3( )x 3 + ...[ ] −{  
    

€ 

B1x + 2B2x
2 + 3B3x

3 + ..[ ]Log x( )} .                  (7.15) 
 
The expansions (7.14) and (7.15) may then be inserted into eqn. (7.13) and the 
coefficients of terms of the form  or  equated. This somewhat laborious 
procedure yields for the first four values of  and : 
 

  ,  … ,          (7.16a,b) 
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  ... ,  … ,   (7.16c,d) 

 

… ,  … ,    (7.16e,f) 

 

      … , … . (7.16g,h) 

 
 

7.3 Accurate approximation for  
 

We now have two expansions each for  and , which apply as either  or 
. The goal is to combine terms from these expansions such that simple, accurate 

formulas are obtained for the entire interval .  There are many ways to do this 
and just one is described here. That is to retain only the terms  and  from the 
expansions that are valid as , and insert additional terms that recover the correct 
limits as . These inserted terms vanish as  when  and include 
parameters that can be adjusted to produce a minimum error over the whole interval.  

 
Denoting the approximate formulas as  and , we first set  

 

 
                  (7.17)

 
 

€ 

− 1− B1 1− a
2( ) − r 1− a2( )

2
1+ sa4( )[ ]Log 1− a2( )} . 

 
To recover the terms  as  we set 
 

 ,      (7.18a) 
 

 ,    (7.18b) 

 

 ,   (7.18c) 

 
and for an overall optimum approximation 
 
     .        (7.18d) 
 
This gives the maximum relative error 

€ 

f1 a( ) ≈ g1 a( ) =
C
4a

D − A1 1− a
2( ) − p 1− a2( )2 1+ qa4( )[ ] 
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         (7.19) 

 
at  and .89. 
 
 For  we have 
 

€ 

f0 a( ) ≈ g0 a( ) = C 1+ A1 − B1( ) 1− a2( ) + t 1− a2( )
2
1+ ua4( )[ ]{

− B1 1− a
2( ) + v 1− a2( )

2
1+ wa4( )[ ]Log 1− a2( )} . (7.20)

 

 
To recover the terms  as  we set 
 

 ,    (7.21a) 

 

   ,    (7.21b) 

 

   ,   (7.21c) 

 
and for an overall optimum approximation 
 
   .        (7.21d) 
 
This gives maximum relative error 
 

         (7.22) 

 
at , .94. 
 

In numerical form these approximate functions are  
 

€ 

g1 a( ) =
1
4a

1
1.1107207
 

 
 

 

 
 .1588831( ) − .1349302( )[{ 1− a2( ) −

− .0239529( ) 1− a2( )
2
1+ .0446553( )a4( )] − 1−[

− .0625( ) 1− a2( ) − .0096153( ) 1− a2( )
2
1+ .141( )a4( )]Log 1− a2( )}, (7.23)
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€ 

g0 a( ) =
1

1.1107207
 

 
 

 

 
 1+ .0724302( )[{ 1− a2( ) + .0382905( ) •

• 1− a2( )
2
1+ .0607456( )a4( )] − .0625( ) 1− a2( ) +[

+ .0170912( ) 1− a2( )
2
1+ .205( )a4( )]Log 1− a2( )}. (7.24)

 

 
 
 7.4 Systematic approximation of  
 
 The optimized fits for  and  given above by eqns. (7.23, 7.24), are 
sufficient for essentially any numerical evaluation of ideal solenoidal fields in the absence 
of magnetic materials. However, it is also useful to have formulas for the  that have 
the correct expansions in powers of  through any specified order, even though there may 
be minor inaccuracies near . This situation arises, for example, in evaluating the 
dynamical effects of fringe field aberrations. The approximate formulas given below are 
each composed from terms that adequately reproduce  as , followed by a 
polynomial with three coefficients that successively reproduce the first three expansion 
terms as  (for  and  the first term vanishes). For example, we set 
 
 

    

    
(7.25) 
 

The coefficients  are fixed to successively recover the three leading terms  

. If one doesn’t care about the  term, the coefficient  can be 

dropped without changing  or . Similarly an additional term ~  could be added to the 
polynomial if a correct sixth order term in  is desired. The systematic formulas are as 
follows: 
 

€ 

f0 a( ) ≈ h0 a( ) = C 1+
1+ D
16

1− a2( ) − 116 1− a
2( )Log 1- a2( ) 

  
 

  
 
 
 

+
1
C
−
17
16

−
D
16

 

 
 

 

 
 +

31
16C

−
34
16

−
D
16

 

 
 

 

 
 a2 +

2929
1024C

−
101
32

−
D
16

 

 
 

 

 
 a4

 

 
 

 

 
 1− a

2( )2} ,
                (7.26) 

 
with maximum relative error  at  , 
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with maximum relative error  at  
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(7.28) 
 

with maximum relative error  at , 

      (7.29) 

 

with maximum relative error  at , and finally 

 

          (7.30) 

 

with maximum relative error  at . 

 
 
8. Thin Current Layer – Complete Solution 
 
  This section presents many expressions, both exact and approximate, for 
the fields of a uniform, thin current layer. In most cases the current layer extends from 

 to ; the fields produced by layers of finite length may then be found by 
translation and superposition. 
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8.1 Semi-infinite layer: near-axis field 

 
In section 4 we derived the on-axis field for a thin, semi-infinite current layer, 

which was then used to build up more complex layouts: 
 
   ,          (8.1) 
 

 ,          (8.2) 

 
where is the downward unit step defined in section 2. From section 3 the near-axis 
field components, including the two lowest-order fringe field aberrations, are 
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. (8.3b)

   

 
 
 8.2 Semi-infinite layer: exact fields and potentials 
 

The near-axis fields of the semi-infinite layer may be extended to any value of  
using the Green function solutions. The resulting expressions involve only integrations 
over  because the integrations over  and  are workable. We have from eqns. (6.12) 
and (6.13): 
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=
µ0S
2

dθ
2π0

2π
∫

R2 − Rr cos θ( )
R2 + r2 − 2Rr cos θ( )

 

 
 

 

 
 1−

z
z2 + R2 + r2 − 2Rrcos θ( )

 

 

 
 

 

 

 
 
,
 
(8.4a) 
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         (8.4b) 

 
The first integral in eqn. (8.4a) for  is simply (but not obviously) 

 

        (8.5) 

 
so we find the expected limits 
 
 
 

            (8.6) 

 
while at  there is the neat result: 
 

   .          (8.7) 

 
 For , eqns. (8.4a,b) may be expanded in inverse powers of  to yield in 
leading order 
 

  .                    (8.8) 

 
This is just a uniform direct field that terminates at  plus a residual “magnetic 
monopole field” with net outward flux  centered at . A generalization of this 
result is presented in section 11. An approximation of 

€ 

B for the thin layer, that uses only 
elementary functions and which is good for all , is presented at the end of this 
section. 
 

Eqn. (8.2) for  is recovered from eqn. (8.4a) by setting . For general 
,  does not appear to be expressible in terms of well-known functions, but if we 

insert , then we obtain  
 

   .        (8.9) 
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For  this is the longitudinal field along the center of the thin current layer. The 
longitudinal field immediately inside or outside the layer (denoted ) is therefore 
 

    ,                (8.10)  

 
with  defined in section (7): 
 

                        .     

 
For the vector potential we get from eqn. (6.20): 

 

 
 

Finally, for the global potential we get from eqn. (6.15): 
 

 

 
 

8.3 Current layer end divergence 
 

From equations (8.9) and (8.10) it follows that very close to the current layer end 

€ 

r = R±, z = 0 ±( ) ,  is discontinuous as: 
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This peculiar behavior is easily seen by numerically evaluating expression (8.4a) near the 
current layer end. It can also be deduced from the divergent behavior of  (see below), 
using the Maxwell equation . 
 

Expression (8.4b) for  can be written in the compact form 
 

   ,       (8.13) 

 

€ 

b ≡ 2Rr z2 + r2 + R2( ) ,

f1 b( ) =
dθ
2π0

2π
∫

cos θ( )
1− bcos θ( )

,
     (8.14) 

 
as defined in section 6. Recall from section 7 that as , 
 

  

€ 

f1 b( )→ C
4b

D−Log 1− b2( )[ ] ,       (8.15) 

 
where  and . It is apparent that  is weakly divergent at 

. Explicitly, around this point 
 

   .       (8.16) 

 
Although  becomes infinite for an infinitesimally thin current layer, it is finite for a 
layer of finite thickness. In fact in a thin layer  exceeds the scale field strength  

only when . For current layer thickness greater than  the 
divergent behavior of the thin layer is not representative. Interestingly, the logarithmic 
divergence does have an effect in permanent magnets, which have essentially zero 
surface current layer thickness; this causes a partial demagnetization at magnet corners 
due to the non-ideal magnetization properties of the material. 
 

 
          

 
           

 
      

                              

                           

                        

                  
        1/4 
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8.4 Finite length lens 

 
 For a solenoid of finite length  and wire radius , centered at , equations 
(8.4a,b) give by translation and superposition: 
 

 
          (8.17a) 
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Br =
µ0S
2

dθ
2π0

2π
∫ •

•
R cos θ( )

z -  2( )2 + r2 + R2 − 2Rr cos θ( )
−

R cos θ( )
z + 2( )2 + r2 + R2 − 2Rr cos θ( )

−
 

 

 
 

 

 

 
 
.

 
                               (8.17b) 

 
Plots of  and  for several values of  are displayed below for a lense of length  

 and radius . Note that the plots of  “square up” for , while the 
plots of  display the logarithmic divergence.  
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The vector potential of the finite length, thin layer, solenoid can also be written as 
a single integration over  using the Green function (6.9): 
 

 

   (8.18)  
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Equation (8.11) gives the alternative, equivalent form 
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Aθ =
µ0SR

2r
2

dθ
2π0

2π
∫

sin2 θ( )
R2 + r2 − 2Rrcos θ( )

•
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−

z −  2( )
z −  2( )2 + R2 + r2 − 2Rrcos θ( )

 

 

 
 

 

 

 
 
.
  

              (8.19) 
 
 

8.5 Stored energy 
 
           The magnetic field energy of a thin-layer lens is readily evaluated. In the absence 
of permeable materials we have in general, 
 

 
 

  .   (8.20) 

 
For , this becomes 
 

 .     (8.21) 
 
Inserting expression (8.19) for  and working the integration over  gives for a lens of 
length : 
 

 

,    (8.22) 

 
where  and 
 

€ 

w x( ) =
1
x

dθ
2π0

2π
∫ 1+ cos θ( )( ) x +1− cos θ( ) − 1− cos θ( )[ ]  .           (8.23) 

 
This function can be expressed using the previously defined  and -see section 7: 
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 ,   (8.24) 

 
which slowly approaches unity as  increases: 
 

 
 

 .       (8.25) 

 
For very large ,  and expression (8.22) is just the energy one gets 

using only the direct field of the magnet bore. For , i.e. , which covers 
most cases of practical interest,   
 

 ,    

     (8.26) 
 
with error less that 1%, so we have in general for the thin layer lens 
 

 

  .     (8.27) 

 
It is surprising that the value of for the finite-length lens is smaller than the 
approximate value found using only the direct field. 
 

Suppose the current layer is made of  turns of wire, each carrying current . 
Then  – see section 2.3 for a discussion of effective length , and the magnet’s 
inductance is 
 

   .                (8.28) 

 
 
           8.6 Current ring 
 

Some solenoid systems are made out of a set of current rings. We derived the on-
axis field of a ring in section 4-1, and here we derive its field for all . The ring itself 
is taken to have infinitesimal thickness, so the magnetic field strongly diverges at the 
wire. Simple exact and approximate results are found in this somewhat unphysical limit. 
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Formulas for a ring of finite thickness with rectangular cross-section can be written down 
using results from section 9. 
 

As in section 4-1 we assume current density 
 

   ,     (8.29) 
 
and the on-axis field is  

 

.     (8.30) 

 
The two leading terms of the near-axis expansions are  
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r2

4
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µ0IR
2

2
1

z2 + R2
3 −

12z2 − 3R2( )
z2 + R2

7
r2

4

 

 
 
 

 

 
 
 
,
  

 

(8.31a) 

 

. (8.31b) 

 
 For general  eqns. (6.26. 6.27, and 6.28) yield 
 

   ,       (8.32) 

 

  ,       (8.33) 

 

   ,        (8.34) 

 
with . However eqn. (8-33) is much more easily derived from eqn. 
(6-14) using . 
 
 Accurate approximate formulas for  are found by substituting the 
approximate formulas for  from section 7-4 into eqns (8.32, 8.33, and 8.34); here we 
display only the expression for : 
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1− b2( ) −

 
 
 

Log 1- b2( )+ 116 1- b
2( )Log 1- b2( )    

     (8.35) 

 
which has a maximum relative error of .029% at  = .73. 
 
 The singular limit of the ring current field close to the wire is found by expanding 
eqn. (8.35) with  
 
           (8.36) 
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    ,       (8.37) 
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 .   (8.38) 

 
The relative error in eqns. (8.36, 8.37, and 8.38) is less than 1.2% for . 
Very near the wire  diverges as 
 

   ,         (8.39) 

 
as expected, plus an additional divergent logarithmic term for . 
 
 

8.7 Approximation of fields and potentials using elementary functions 
 
 In section 8.2 we derived expressions for the fields and potentials  of 
the semi-infinite thin current layer, . Those exact global results 
involve only integrations over , but it would aid computations if the integrals could be 
evaluated using only elementary functions. That appears to be impossible, but it is found 
that the four fields/potentials can be approximated with fair accuracy using functions that 
are no more complicated than the arctangent. While such approximations are not unique, 
they are strongly constrained if we accept these conditions: 
 accurate for all , e.g. less than 1% error;  

simple-only one or two lines of symbols;  
only use elementary functions;  
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correct limits as  and ;  
continuous (except for ) at the current layer;  
correct lowest order aberration. 

This is all possible except for an obvious tradeoff between accuracy and simplicity, and 
the interested reader can easily improve on the accuracy of the expressions given below. 
 
  Approximation of  
 
 This is the most straightforward case. We start with eqn. (8.13): 
  

  ,       (8.40) 

 
with . It is only necessary to insert a sufficiently accurate, but 
elementary, expression for . Eqn. (7.10) is suitable: 
 

  ,   (8.41) 

 
with  and . The maximum relative error of .726% occurs for 

, which is near the current layer end. 
 
  Approximation of  
 
 The trick here is to write  as the sum of direct and residual parts: 
 
  ,       (8.42) 
 
and then approximate . For  and  vanishes, and as  it 
approaches  for . A simple expression, which can almost be written down 
from an inspection of the various limits, is 
 

   .   (8.43) 

 
This formula meets the conditions given above except that it is inaccurate close to the 
current layer end (maximum error of 

€ 

.14µ0 S 2 ) and does not have the correct lowest 
order aberration, but it does include all of the important qualitative features of the exact 

. It is derived below along with several improved versions. 
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 We start by observing that since 
 

   ,         (8.44) 

 
and  as , we have from eqn. (8.4b): 
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.
 (8.45) 

 
Here we used eqn. (3.10a) after changing the variable of integration from  to 

. In order to approximate the expression (8.45) it is convenient to write it in 
the compact form: 
 

   ,          (8.46) 

 

   ,      (8.47) 

 

   .     (8.48) 

 
 We now expand  in (odd) powers of : 
 

   ,     (8.49) 

 
with the coefficients  from the Taylor series expansion of : 
 

   .      (8.50) 

 
The functions  are defined for odd  as 
 

 ;     (8.51a) 
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  ,       (8.51b) 
 

  ,     (8.51c) 

 

   ,    (8.51d) 
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jn+2 x( ) = 1+ x 2( ) jn x( ) −
n +1( )!

2n+1 n +1
2
!

 

 
 

 

 
 
2 x   .    (8.51e) 

 
 The series (8.49) converges slowly, but this situation is greatly improved by 
making use of the expansion 
 

   .      (8.52) 

 
Thus we can write 
 

    (8.53) 

 
The leading term  gives a fair approximation of ; additional terms such as 

 are small, but their sum converges slowly for  and . Keeping 
only the leading term we have 
 

    ,     (8.54) 
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 •      (8.55) 

 
Applying 

€ 

Bz
residual = ∂ψ ∂r  we get the advertised result, eqn (8.43). 

 
 There are several tricks that improve accuracy (with increased complexity); here 
we only use the simplest of these, which exploits the decreasing difference between the 

 as  increases. That is to write eqn. (8.49) as 
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  ,         (8.56) 

 
and drop terms . We get 
 

  , 

  (8.57) 
 

 

 
Accuracy is now excellent everywhere except very close to the current layer end, but 
maximum error is still about 

€ 

.14µ0S 2  in that zone. The lowest order aberration is 
recovered as . 
 

Approximation of  
 
 A very accurate global approximation of  can be written down, but it is too 
complicated to be worth presenting here. However, a general approach that gives simple 
but not very accurate formulas, as well as more complicated but reasonably accurate 
ones, is as follows. We write 
 

   ,     (8.59) 

 
where . Making the change of variable 
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y =
′ z 

′ z 2 + r2 + R2
, ′ b =

2rR 1− y 2( )
r2 + R2 ,            (8.60a,b) 

 
we get 
 

   .       (8.61) 
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The idea is to approximate  using functions of  that result in 
simple integrals in eqn. (8.61). The expansion (7.2b), 
 

         (8.62) 

 
does this, but convergence is poor for . This means that a truncation of the 
expansion will give inaccurate results near the current layer. To do a good job requires 
that a term  be included in the approximation of , but that 
leads to a more complicated final result. Instead of the power series, eqn. (8.62), we use 
 

 ,   (8.63) 

 
which has a maximum relative error of about 3% near 

€ 

′ b = .994 . The integration over  
is elementary, but produces many terms involving both  and . It may be written 
compactly by defining the functions 
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Then we finally get 
 

   

       

€ 

− .27( )p4 128
315

− q +
4q3

3
−
6q5

5
+
4q7

7
−
q9

9
 

 
 

 

 
 

−C −qLog 1- p2 1− q2( )2( ) − 4 1− q( ) 
  (cont.)

 

        

      

€ 

+
1+ p
p
Log

1+ p
1+p

1− p
1+ p

⋅

1- q p
1+p

1+ q p
1+ p

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 

 

 
 

  .   (8.65) 

 
This approximate potential has maximum error of about 1.5%. It has the correct limits as 

 and  and the correct lowest order aberration. It should be of some value for 
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plotting flux surfaces , but deriving  leads to a very 

complicated formula. 
 
  Approximate Global Potential 

€ 

ϕ  
 
 There seems to be little point in approximating  everywhere, and the formulas 
are always complicated for even moderate accuracy, so none are written down here. A 
good way to generate such formulas is to plug known approximations for , , and 

 – see section 7, into 
 

   .     (8.66) 

 
The derivation of eqn. (8.66) is too lengthy to include here, but it is similar to the 
derivation of eqn. (8.45). 
 
 
9. Thick Current Layer  
 
 9.1 Uniform thick layer 
 

While the thin current layer formulas given in sections 4 and 8 are sufficient for 
most beam dynamics applications, thick layer results are needed for precise near-axis 
fields, external fields, field in the wire, and material stress. We first treat the case of 
radially uniform current density: 
 

  .        (9.1) 

 
As in section 4, it is usually sufficient to derive the field for a uniform, semi-infinite, 
thick current layer, , and any system of lenses may be built up by 
translations and super-position. 
 

Recall from section 8 the semi-infinite thin layer field : 
 

  ,   (9.2a) 

 

 .        (9.2b) 
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For the thick, uniform, semi-infinite layer we simply compute a radial superposition of 
these thin layer fields: 
 

   .         (9.3) 

 
The on-axis field of the semi-infinite thick layer is  

 

         (9.4) 

 
For a thick-layer lens of length  and centered at , the on-axis field is therefore 
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.

       (9.5) 

 
Near-axis values of and  can then be obtained using these results and the radial expansions of 
section 3. For the field at the magnet center , eqn. (9.5) reduces to 
 

   .            (9.6) 

 
The semi-infinite, thick-layer formulas for and at general  can also be 

written in terms of integrations over . The integrals over  in eqn. (9.3) can actually be 
evaluated in terms of elementary functions, although the results are somewhat messy. But 
the speed of computation is greatly increased over the direct application of eqn. (9.3), 
especially inside the current layer. First we define 
 

  .             (9.7a,b) 
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Then, using the integrals given at the end of section 3 and omitting some intermediate 
steps, we get from eqns. (9.2, 9.3): 
 

     

   ,         (9.8) 

 

 
 
 
 
 

                  (9.9) 
 
Here we have used the cumulative current distribution, 
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S r( ) =

S
S
0

 

 
 

 
 

R2 − r
R2 − R1
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0 < r < R1,
R1 < r < R2,
R2 < r.

        (9.10) 

 
 
 

9.2 Approximation by a thin layer 
 
 It was asserted in section 4 that, with only minor error, the on-axis field of a thin 
current layer could replace the on-axis field of a uniform thick layer. There are many 
ways to select the three parameters (S, R, ) of the equivalent thin layer. Here we use the 
same S and  as the thick layer and set R to give the correct net magnetic dipole moment: 
 

   .        (9.11) 

 
Defining a thickness parameter 
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   ,         (9.12) 
 
we have from eqn. (9.11), 
 

 ,            .           (9.13a,b) 

 
We require that  to prevent . A somewhat different formula for  is 
obtained if we equate the focal lengths of the magnets . The following 
table gives the maximum ratio of on-axis fields for the thin layer, eqn. (4.6), relative to 
the equivalent thick layer, eqn. (9.5), for various values of  and . Except for very 
small  this maximum occurs outside the magnet at . Around 

€ 

z = 0 the 
near axis expansion is unreliable as 

€ 

r→ R1. 
 
 
 

  
 

 
 

 
 

 
1 1.00094 1.0038 1.024 1.101 
2 1.00088 1.0035 1.023 1.094 
4 1.00082 1.0033 1.021 1.087 
8 1.00079 1.0032 1.020 1.084 
16 1.00078 1.0031 1.020 1.083 

 
 

9.3 General thick layer – Bessel transform solution 
 
           We treat a current layer with fixed ends and general current density 

 between the ends. The Green function solutions of section 6 can be 
used for this, as can weighted averages of eqns. (9.2a,b). However, different and possibly 
useful expressions can be derived using the Bessel transform.  
 

First, the semi-infinite layer, , has , and by  
symmetry 
 

  .         (9.14) 

  
For   
 
  ,         (9.15) 
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with , is a valid solution of , except for the boundary condition (9.14). The 
correct solution for  is given by the Bessel transform: 
 

 ,      (9.16) 

 
              .        (9.17) 
 
A calculation similar to the above gives 
 

  .     (9.18) 

 
Combining these results we have for the entire semi-infinite layer: 
 

  .     (9.19) 

 
      The magnetic field can also be derived from the global scalar potential 
– see section 5: 
 
                         .       (9.20) 
 
Equation (9.19) then gives for  and : 
 

  ,       (9.21) 

 

  .      (9.22) 

 
               Using superposition, a lens of length , centered at , has fields 
 

            (9.23) 

 

  .     (9.24) 

 
            It remains to evaluate 

€ 

T k( ); we can get analytical results for several cases. First 
we integrate by parts in eqn. (9.17) using 

€ 

Jθ = −dS r( ) dr :  
 



 60 

  .     (9.25) 

 
Case 1  (thin layer): 

 
  ,         (9.26) 
 

  .        (9.27) 

 
Case 2  (  decreasing as ): 

 

  ,      (9.28) 

 

  .      (9.29) 

 
Case 3  (uniform thick layer): 

 

  ,       (9.30) 

 

        (9.31) 

 
The integration over , although not elementary, can be expressed as a hypergeometric 
function: 
 

   .                 (9.32) 

 
In Mathematica® notation: 
 
      (9.33) 
 

  .       (9.34) 

 
Equation (9.31) becomes 
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          .    (9.35) 

 
 

9.4 Pancake current layer 
 

               Some applications may require a current layer that is radially thick but 
longitudinally thin, like a pancake with a hole in the middle or a compact disc. The radially 
uniform current density is approximated by  
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Jθ
PC =

I δ z( )
R2 − R1

R1< r <R2 .                  (9.36) 

  
The fields from such a layer are easily calculated using the Green function formalism of 
section (6) and we only give the results here: 
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−
R2

z2 + R2
2 + r2 − 2R2rcos θ( )

+
R1

z2 + R1
2 + r2 − 2R1rcos θ( )

 
 
 

  
,  (9.38) 
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Br
PC r,z( ) =

µ0Iz
2 R2 − R1( )

dθ
2π0

2π
∫ cos θ( ) 1

z2 + R1
2 + r2 − 2R1rcos θ( )
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•
R1 + z2 + R1

2 + r2 − 2R1rcos θ( )
R1 − rcos θ( ) + z2 + R1

2 + r2 − 2R1rcos θ( )
−

1
z2 + R2

2 + r2 − 2R2rcos θ( )
•  

   

€ 

•
R2 + z2 + R2

2 + r2 − 2R2rcos θ( )
R2 − rcos θ( ) + z2 + R2

2 + r2 − R2rcos θ( )

 

 

 
 
  ,     (9.39) 

 

 

€ 

Aθ
PC r,z( ) =

µ0I
2 R2 − R1( )

dθ
2π0

2π
∫ cos θ( ) z2 + R2

2 + r2 − 2R2rcos θ( ){ −(cont.) 
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€ 

− z2 + R1
2 + r2 − 2R1rcos θ( ) + rcos θ( )Log

R2 − rcos θ( ) + z2 + R2
2 + r2 − 2R2rcos θ( )

R1 − rcos θ( ) + z2 + R1
2 + r2 − 2R1rcos θ( )

 

 

 
 

 

 

 
 

 
 
 

  
. 

  (9.40) 
 
 
10. Periodic Thin Current Layer 
 
 The field of an infinite, periodic current layer is of interest for beam transport. 
The external field is very different from that of an isolated magnet, particularly at large 

, where it falls off exponentially rather than as . The return flux is diluted to zero 
intensity in this case. 
 
 Let denote an individual solenoid’s effective layer length and  denote gap 
lengths between adjacent wire layers. Assuming the solenoids all have the same polarity, 
the lattice period length is . For one magnet of the lattice we set 
 

  
  

€ 

Jθ = Sδ r − R( ) −


2
< z <



2
,      (10.1)  

 
and extend this layer periodically. Then the Fourier expansion of  with period  is 
 

   ,        (10.2) 

 
with 
 

   .         (10.3) 

 
The longitudinal field can be similarly expanded: 

 

   ,      (10.4) 

 
with 
 

       (10.5a) 

 

   (10.5b) 
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where  and  are modified Bessel functions of the first and second kind. The 
functions  satisfy 
 

    .     (10.6) 

 
We have used the jump conditions for  at , which may be derived from eqn. 
(10.6): 
 
   ,      (10.7a) 
 

  ,      (10.7b) 

 
and the Bessel function identity, 
 

  . 

 
In similar fashion we find 

 

  ,        (10.8) 

 

   (10.9a) 

 

   (10.9b) 

 
This solves  with  given above. The components  are continuous at 

. 
 

At large the asymptotic expansion of 

€ 

K0 2πn r P( )  gives 
 

   ,       (10.10) 

 
showing the asserted exponential decrease of field strength outside the current layer. 
However, the calculated net flux in this example is , so the return flux must 
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be regarded as being diluted to zero magnitude. Plots of and  at various  are 
presented below for the parameters: 
 

   

 
A total of 200 terms are used in the Fourier expansion. Note that while  reaches ~7.0T 
in the gaps, it drops to less than .5T in the volume behind the wire where an induction 
core could be located. This calculation is modified in section 18 with the addition of a 
permeable yoke. 
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€ 

Br vs z at r = .1, .195 
 
 
 
11. Far Field and External Field 
 

Because a solenoid system may have a large longitudinal dipole moment, its far 
field can interfere with nearby experiments and the operation of accelerator components. 
A short magnetic bend resembles a solenoid turned on its side, but a permeable yoke is 
usually used to confine its return flux and eliminate the far field. This technique is not as 
effective for a transport solenoid because the yoke must not block the vacuum bore. Also, 
if annular yokes are used in an induction linac they increase the diameter of adjacent 
induction cores and thereby increase the overall cost. It is possible to greatly reduce the 
far field by alternating the polarity of solenoids, but this may reduce their effectiveness 
for beam transport and actually increase the external field (just outside the wire). We are 
therefore motivated to evaluate the far and external fields without return flux 
confinement. 
 

The far field and external field can be approximated using two different series 
expansions of the global potential . Both expansions may have contributions from 
several or many individual magnets, so it may be misleading to consider only one magnet 
at a time. Recall from section 5, 
 

,         (11.1) 
 
where S(r,z) is the cumulative current distribution: 
 
   .        (11.2) 

 
The Green function solution for  is, from section 6: 
 

    (11.3) 
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 11.1 Far field expansion 
 
 We first consider the far field expansion, which is in inverse powers of 

, with r and z both treated as large on the order , which is larger than 

. We could laboriously expand  in inverse powers of , work the elementary 

integrals over , and gather terms of the same order. Fortunately this task has already 
been done for us in texts that treat electrostatics using spherical harmonics. For , 

 

,     (11.4) 

 
where 
 

   ,             (11.5a,b) 

 
and the are the Legendre polynomials: 
 

  

€ 

P0 x( ) =1,
P1 x( ) = x,

P2 x( ) = 3x 2 −1( ) 2,
P3 x( ) = 5x 3 − 3x( ) 2,
P4 x( ) = 35x 4 − 30x 2 + 3( ) 8,
P5 x( ) = 63x 5 − 70x 3 +15x( ) 8, etc.

       (11.6) 

 
Inserting expression (11.4) into eqn. (11.3) gives 
 

€ 

ϕ =
µ0
2

d ′ z 
−∞

+∞

∫ d ′ r ′ r ∂ ′ S 
∂ ′ z 0

∞

∫ 1
r

+
′ z z

r
3 +

2z2 − r2( ) 2 ′ z 2 − ′ r 2( )
4 r

5 +
2z3 − 3zr2( ) 2 ′ z 3 − 3 ′ z ′ r 2( )

4 r
7 + ...

 

 
 

  

 

 
 

  
. 

                        (11.7) 
 
The leading (monopole) term vanishes unless  does not vanish as . After 
integration by parts in  eqn. (11.7) becomes 
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€ 

ϕ = −
µ0
2

d ′ z 
−∞

+∞

∫ d ′ r ′ r ′ S 
0

∞

∫ z

r
3 +

2z2 − r2( ) ′ z 

r
5 +

2z3 − 3zr2( ) 6 ′ z 2 − 3 ′ r 2( )
4 r

7 + ...
 

 
 

  

 

 
 

  
 (11.8) 

 

€ 

=ϕ1 +ϕ2 +ϕ3 + ... .           (11.9) 
 
Equation (11-8) may be written in the compact form 
 

 ,             (11.10) 

 
where the are the multipole moments: 
 

 ,               (11.11a) 

 
 ,              (11.11b) 

 

   ,             (11.11c) 

 
etc. Here  is the total dipole moment with the conventional definition given in section 
2. The second ( ) and third ( ) moments have been defined in a way that makes eqn. 
(11-10) simple in appearance.  
 
 For the far field expansion to be useful we must specify a coordinate origin, 
which should be at the magnet system center in some weighted sense. For a single lens 
the origin would usually be at the lens center. More generally the quadrupole moment can 
usually be zeroed by the right choice of origin. However, if  vanishes, then is 
independent of the coordinate origin. In this case  can be made to vanish. 
 
 Using , the dipole components of the far field are 
 

    ,             (11.12a) 

 

 
            (11.12b) 
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 A solenoid with current density  between ends at  has only odd 
order magnetic moments. If this current density is also constant between radii 

€ 

R1 and 

€ 

R2 , 
i.e. , then the two lowest magnetic moments are 
 

     ,                (11.13a) 

 

   .              (11.13b) 

 
These expressions can still be used if the solenoid is centered at  by substituting 

 in field expressions such as eqn. (11.12a,b). Note that  if 
. For a thin layer this is   

€ 

R =  3 . 
 
 
11.2 External field expansion 
 

 To obtain an expansion for the external field we take 

€ 

′ r < r, but make no 
assumption about and . Then we write equation (11.3) as 
 

 (11.14) 

 

€ 

=
µ0
2

d ′ z 
−∞

+∞

∫ d ′ r ′ r 
0

∞

∫ ∂ ′ S 
∂ ′ z 

1

′ z − z( )2 + r2
d ′ θ 
2π0

2π
∫ •

• 1+
1
2
...[ ] +

3
8
...[ ]2 +

5
16

...[ ]3 +
35
128

...[ ]4 + ...
 
 
 

 
 
 
,

  (11.15) 

 
where   denotes the bracketed expression in eqn. (11.14). After the integrals over  
are worked and terms of like order in  are grouped we have 
 

€ 

ϕ =
µ0
2

d ′ z 
−∞

+∞

∫ d ′ r ′ r 
0

∞

∫ ∂ ′ S 
∂ ′ z 

•

•
1
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+ ′ r 2 − 1

2
1
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3 +

3
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...
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 + ′ r 4 3

8
1
...
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8
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...
7 +
105
64

r4

...
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 + ...

 
 
 

  

 
 
 

  
.
 (11.16) 

 
The radial moments defined in section 2 may now be used: 
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€ 

S z( )r2 z( ) = 2 d ′ r ′ r S ′ r ,z( )∫ = d ′ r ′ r 2Jθ ′ r ,z( )∫  ,             (11.17a) 
 
  

€ 

S z( )r4 z( ) = 4 d ′ r ′ r 3S ′ r ,z( )∫ = d ′ r ′ r 4Jθ ′ r ,z( )∫  ,            (11.17b) 
 
  

€ 

S z( )r6 z( ) = 6 d ′ r ′ r 5S ′ r ,z( )∫ = d ′ r ′ r 6Jθ ′ r ,z( )∫  ;                 (11.17c) 
 

  (11.18) 

 
This series appears to be complicated, but in fact we have again generated Legendre 
polynomials. Let 
 

   .      (11.19) 

 
Then eqn. (11.18) can be written 
 

 (11.20) 

 
 We treat the semi-infinite distribution 
 
  ,         (11.21) 
 
with . From eqn. (11.18), 
 

              (11.22) 

 
These terms are proportional to the radial moments at the current layer end and include a 
monopole term. For a thin annular layer at radius R, 
 
   .     (11.23) 
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For a uniform thick layer ( ): 
 

   .  (11.24) 

 
The leading (monopole) term of eqn. (11.22) gives 
 

   ,    (11.25) 

 
as expected. In general, far away from , the first two terms from eqn. (11.22) plus 
the direct field give  
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B ≈ µ0S r( )Θ z( ) ˆ e z +
µ0S
2

r2

2
r

r
3 −

r4

4
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3r

2 r
5 −

15r2 r

4 r
7 +

3r ˆ e r
2 r

5

 

 

 
 
 

 

 

 
 
 

 

 
 

 
 

.  (11.26) 

 
 
12. Field in the Wire Layer 
 

We now have several ways to calculate the field within the wire layer. Near the 
layer ends an accurate calculation requires the general formalism of section 6 or the thick 
layer solution (equation (9.3)), plus contributions from nearby magnets. Away from a 
layer end the external field expansion of section 11 plus the direct field, , is 
applicable, e.g. eqn (11.26). 
 

The peak field in the wire layer is of great interest since it limits the engineering 
averaged critical current density – see sections 2 and 20. Usually this peak field occurs at 
the inner edge of the wire layer at the middle of a magnet. The logarithmic singularity of 

 at the ends of a thin layer is usually not representative of realistic cases. The peak field 
can be accurately estimated using the first two terms of the near-axis expansion if the 
magnet is not too short : 
 

   ,      (12.1a) 

 

   .      (12.1b) 
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We use the thick layer formula for a single magnet, eqn. (9.5), to obtain  and  at the 
magnet center (z=0), and by symmetry  vanishes there. At the inner wire radius  this 
gives for a magnet of length : 
 

  
  

 

 

.  (12.2) 

 
This formula may be written in dimensionless form using the definitions 
 

   ;      (12.3) 

 
 
 
 
 
                  (12.4) ( 
 
 
 
. 
 
 
 

 
The accuracy of eqn. (12.4) is indicated in the following table, where the ratio 

 is given for several values of  and . 
 
 

 1.0 .5 .25 
1 .998320 .999746 .999990 
.5 .992932 .998618 .999948 
.25 .987348 .997435 .999904 
.10 .982344 .996471 .999868 
.04 .979903 .996029 .999851 

 
            The exact values of  for several values of  and  are computed and 
tabulated below using 
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Bmax =
µ0S

R2 − R1
dR dθ

2π
R2 − RR1 cos θ( )

R2 + R1
2 − 2RR1 cos θ( )

 

 
 

 

 
 ∫R1

R2∫ •

•
 2


2 4 + R2 + R1

2 − 2RR1 cos θ( )
.

        (12.5) 

 
 
 
Values of 

€ 

Bmax µ0S for given 

€ 

Δ and α  
 1.0 .5 .25 

1.0 .742700 .897437 .968828 
.5 .776529 .907269 .971029 
.25 .798374 .912353 .971858 
.10 .812152 .915356 .972267 
.04 .817666 .916536 .972412 

 
 
13. Current Distribution to Produce a Given Field 
 

When designing a magnet system one usually asks for a current distribution to 
produce a desired field. For solenoids it is clear that any on-axis field profile with 

 can be made with scale length variations down to a few centimeters. But for 
beam transport and focusing this may also require an unacceptably small radius for the 
current layer. Increasing the current layer radius increases the scale length of field 
variations. In the present calculation we assume the current is concentrated in a thin layer 
of fixed radius ; . For given  it is always possible to solve for 

, which provides guidance for a configuration of actual lenses. The field at the wire 
layer may be unacceptably large if the variations of  have scale length smaller than 

, however this problem may be evaded in some applications by using small radius 
solenoids where the beam radius is small. 
 

Recall the thin layer formula for the on-axis field – see section 3, 
 

   .                (13.1) 

 
Defining the Fourier integral transformations 
 

   ,                  (13.2) 

 
we get from eqn. (13.1) 
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                    (13.3) 

 
with . Inserting the identity 
 

                      (13.4) 

 
gives the general relation 
 
   ,                   (13.5) 
 
where  is the modified Bessel function. Equation (13.5) gives   for a thin layer of 
radius 

€ 

R if  is derived from a given on-axis field. 
 

For the specific example, 
 
   ,                    (13.6) 
 
the transform of  and inversion for  are  
 
   ,                   (13.7) 
 

  

€ 

µ0S z( ) =
dk
2π−∞

+∞

∫ eikzµ0
˜ S k( ) =

dk
2π−∞

+∞

∫ eikz B00 πLe−k 2 L2 4

k R( )K1 k R( )
.                     (13.8) 

 
Setting  gives the convenient form for computations: 
 

   .                 (13.9) 

 
For  and  not too large, this formula goes over to the expected form (using 

), 
 
   .      (13.10) 
 
However for finite ,  exceeds  at , e.g. by a factor of 2.5 when 

=1.0. Also, oscillations of  appear; these provide guidance for the layout of 
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solenoids that can produce a desired on-axis field. The following figures plot  
for various values of , with . 
 
 
R/L=.01 

 
 
 
 
 
R/L=.5 

 
 
 
 
 
R/L=1 
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R/L=2 

 
 
 
14. Misaligned and Tilted Solenoid 
 
 So far we have only treated axisymmetric systems, with field components  
and . There are always small deviations from this convenient symmetry because of 
imperfections in design and manufacture, stress, and positioning errors (misalignment 
and tilt). These can have a significant effect on a transported ion beam, so it is necessary 
to specify maximum allowed deviations and make precise field measurements. However, 
the restricted problem of the effect of positioning errors on the field can be treated 
analytically as presented below. 
 
 The field of a single magnet is considered to be ideal and perfectly characterized  
in its own coordinate frame. It greatly simplifies the formalism to use Cartesian 
coordinates. For example if  is the known on-axis field in the absence of a 
positioning error, then  
 

   ,    (14.1a) 

 

   ,   (14.1b) 

 

      (14.1c) 

 
is the magnet’s ideal near-axis field.  
 

A misalignment is simply a translation of the magnet center by the vector 
 
  zzyyxx eeeT ˆˆˆ Δ+Δ+Δ=


,      (14.2) 
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with displacements  typically less than . The misaligned field is obtained from 
eqn. (14-1) simply by substituting the displacement: 
 
   .      (14.3 
 

A second type of positioning error is a tilt, which holds a magnet’s center fixed 
and orients its axis at an angle  with respect to the system axis, typically with  less 
than  radians. The tilted magnet axis points in the direction of the unit vector 
 
  

€ 

ˆ e = sin α( )cos β( )ˆ e x + sin α( )sin β( )ˆ e y + cos α( ) ˆ e z  ,   (14.4) 
 
where  is the angle of the projection of 

€ 

ˆ e  in the  plane. The two angles  are 
the polar coordinates of 

€ 

ˆ e , the usual symbols  having been used for other quantities.  
A net azimuthal rotation of a magnet around its own axis does not need to be considered 
since it does not change the field. 
 
 The coordinates of a fixed point in the system frame are denoted by  and 
in the translated and rotated magnet frame by . These coordinate sets are related 
by the inhomogeneous linear transformation 
 

   ,      (14.5) 

 
where is the orthogonal matrix 
 

          .   (14.6) 

 
Eqn. (14.6) may be derived by multiplying the matrices for successive rotations of the 
magnet’s coordinate frame through angles . 
 
The field components of the rotated and translated magnet are then found by applying the 
transpose of : 
 

 ,  (14.7a) 
 

 ,  (14.7b) 
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 . (14.7c) 

 
 The rotation angles  are general, but since  is usually very small for tilt 
errors, the rotation matrix can be well approximated by letting  and 

. Defining the small tilt angles in the  and  directions: 
 
             (14.8a,b) 
 
the approximate matrix is then 
 

    .      (14.9) 

 
This is not quite orthogonal and leads to small violations of . Keeping only terms 
that are linear in , we have the approximate near-axis field: 
 

  

€ 

Bx ≈ −
1
2

′ B 0 z −Δ z( ) x −Δ x( ) −θx z −Δ z( )[ ] + θxB0 z −Δ z( ) ,           (14.10a) 

 

  

€ 

By ≈ −
1
2

′ B 0 z −Δ z( ) y −Δ x( ) −θy z −Δ z( )[ ] + θyB0 z −Δ z( ) ,           (14.10b) 

 
   .                (14.10c) 
 
 
15. Multiple Channels – Cross Talk 
 
 We have treated a system of solenoids that are centered on a single straight axis 
except for individual misalignments and tilts. More complicated systems are of interest, 
in which solenoids are positioned along several axes that may have differing orientations. 
For example a multiple-beam linac could have parallel, closely packed channels, while a 
system of solenoids designed to bring multiple beams to a single focal spot would have 
several orientations. In such cases the problem of magnetic interference between channels 
(cross talk) is severe, and it is important to make good estimates of the unwanted field 
components. This does not mean that any significant cross talk is unacceptable. Generally 
the effects of unwanted fields can be greatly reduced by a symmetrical layout of channels 
and the addition of weak transverse dipoles and quadrupoles around each channel. 
 
 We need a simple formula for the external field produced by a solenoid with 
arbitrary position and orientation. This is provided by a generalization of eqn. (11.22) for 
the external global potential of a semi-infinite current layer: 



 78 

 
  ,         (15.1) 
 
  ,         (15.2) 

 

  .      (15.3) 

 
Here we truncated after the lowest moments: 
 
  .      (15.4) 
 
For a thin current layer with radius R, we have  and . For a thick 
uniform current layer between  and : 
 

  .             (15.5a,b) 

 
 Suppose a solenoid end, denoted by subscript i, is located at  and has direction; 

€ 

ˆ e i  then its external global potential 

€ 

ϕ i( )  is obtained by substituting into eqn. (15.3) 
 and 
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2
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  .    (15.6) 

 
The quantities  and are unchanged. Since  is a scalar quantity we have  
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.   (15.7) 

 
Each magnet contributes two terms of this type. For example if the downstream end is at 

 and the current layer length is , then the upstream end is at . The overall 
minus sign in eqn. (15.7) is changed to a plus for the upstream magnet end. The total 
residual field is simply 
 

   ,         (15.8) 
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with applicable values of  and . 
 
 We have included only the two lowest-order terms in the expansion of ; this 
should be sufficient for nearly any estimate. In fact the first (monopole) term, 
 

  

€ 

ϕ i ≈ −
µ0Si r

2( )
i

4 r − ri
,         (15.9) 

 
should be a good rough guide. The field of the “monopole” term, 
 

€ 

Bi

residual
=∇ϕ i ≈

µ0Si r
2( )

i
r − ri( )

4 r − ri
3 ,     (15.10) 

 
is just a spherically symmetrical field with the same net flux as the magnet’s direct field. 
 
 
16. Magnetic Materials Basics 
 
 There are several reasons for placing highly permeable material outside solenoidal 
wire layers: confine return flux, shape flux surfaces, increase the bore field, and reduce 
total field energy. Another type of application is in the core of an induction module, 
however this involves time-dependent fields that do not have solenoidal symmetry and is 
therefore not considered here. A solenoid can also be a permanent magnet of low 
permeability without any wire layers. 
 
 16.1 Ferromagnetism 
 

We are primarily interested in highly permeable ferromagnetic materials, i.e. 
those where the parallel alignment of atomic magnetic moments produces strong 
macroscopic fields in response to weak externally-applied fields. Ordinary paramagnetic 
materials are not of interest since their induced fields are very small, and ferromagnetic 
materials saturate at fields of only a few kilogauss or less. While the subject of magnetic 
materials is too vast (and beyond our competence) to even begin a summary here, a few 
remarks are made for background and clarity. For more detail see references [16-1, 2, 3].  
 

At temperatures below their Curie points metallic Fe, Co, and Ni display 
spontaneous magnetization, in which the atomic magnetic moments line up in parallel to 
minimize the local energy density, i.e. they have the maximum value that can be 
projected in a particular direction. These atomic moments are smaller by a factor of 
several in the ferromagnetic material than in the isolated atoms. A ferromagnetic domain, 
in which the atomic moments are all essentially parallel, is usually only microns in 
diameter (but can be much larger in e.g. ferromagnetic tape), and a bulk material sample 
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is usually made up of many small crystals, each containing many such domains. A 
macroscopic sample’s total energy also includes contributions from small-scale fields 
around the domains as well as magnetostriction and domain wall structure. The small 
domain size and random orientation minimize the total energy in the absence of an 
applied field.  These features can be viewed as the result of a competition between atomic 
and macroscopic (but small scale) forces. The domains resist reorientation, so even a very 
soft (easily magnetized) material can be in a persistent magnetized state of non-minimum 
energy in the absence of any external field. The three room-temperature ferromagnetic 
elements are often alloyed with each other and other elements such as Cr, Si, Al, Mn, Cu, 
etc. to produce desired characteristics while retaining ferromagnetic features. A small 
amount of carbon is also usually present in iron as a separate phase mixed with the 
magnetic crystals.  
 

Below 912o C the stable phase of pure iron is a body-centered-cubic crystal with 
Curie point 770o C. The magnetic domains are usually aligned in the directions of the 
three cubic axes (say ). This material is often referred to as “ferrite” – not to be 
confused with the ferromagnetic iron oxide ceramics of the same name that are used in 
rapidly pulsed cores. Nearly pure iron with about .1% carbon has the combined properties 
of high permeability and high saturation field desired for application with high field 
solenoids. An example is 1010 steel (Fe, .08-.13% , .3-.6% Mn), which is adopted for 
the linac module design presented in section 20.  
 

Unlike the “ferritic steel” described above, beamline parts such as flanges and the 
beam pipe are not magnetic. This is achieved with “austenitic steel”, which has face-
centered-cubic structure, stabilized at normal temperatures by the addition of a large 
fraction of nickel. A common alloy of this type is 304 stainless steel (Fe, 18% Cr, 8% Ni, 
2% Mn, .75% Si, C  .08%), used for kitchenware as well as accelerator components. 
 

When an externally produced field is applied to a permeable material, the 
magnetic domains tend to line up with it, again minimizing energy density. At low fields 
this happens by domain wall movement of favorably oriented domains at the expense of 
unfavorably oriented neighbors. For moderate-to-high external fields domains rotate into 
alignment. The process of domain growth by wall movement is resisted by internal 
fiction and occurs in tiny jumps with dissipation of energy as heat. For an excellent 
qualitative discussion of this process see reference [16-3]. 
 

Permanent magnets are manufactured from materials that lock in an externally 
induced magnetization along a preferred crystal axis (the easy axis) as they cool from a 
melt; examples are SmCo5, Sm2Co17, and NdBFe.  Amorphous ferromagnetic alloys such 
as metglass are produced as uncrystalized tape by very rapid cooling of a melt, and as 
such they have essentially zero anisotropy energy (along the tape). Although expensive, 
the insulated tape has ideal characteristics for transformers and induction cores pulsed on 
a  time scale. 
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16.2 Magnetization formalism 
 

If in a macroscopic region of a material the mean (vector) magnetic dipole 
moment per atom is

€ 

m r( ), and 

€ 

n r( )  is the atomic number density, then 
 
  

€ 

M r( ) = n r( ) m r( )          (16.1) 
 
is called the magnetization density. For a highly permeable material this is an average 
over many domains. We expect  to be less than the maximum projected atomic 

moment, which is on the order of a Bohr magneton (Fe: 2.218 , Co: 1.714 , Ni:  
.604 ), but this limit is approached at high applied fields. It was mentioned in section 
(2) that for solenoidal symmetry  has the form 
 
  

€ 

M = Mr r,z( )ˆ e r + Mz r,z( ) ˆ e z ,        (16.2) 
 
and that it provides a current density 
 

  







∂
∂

−
∂
∂

=∇=
r
M

z
MeMxJ zr

mag

θ̂ .       (16.3) 

 
The derivation of this relation is presented in many E&M textbooks and is not repeated 
here. However, its plausibility is made clear by considering a cylinder of length and 
radius , with uniform magnetization density zeM ˆ . Then eqn. (16.3) gives 
 
  ,       (16.4a) 
 
and the total circulating current is  
 
  .        (16.4b) 
 
We verify that this gives the correct net magnetic moment: 
 

moment = area x current = 
  

€ 

πR2( ) M( )= volume x  . (16.4c) 

 
 Eqn. (2.1a) is now generalized to 
 
   ,                  (16.5) 
 
where  denotes the contribution from wire. It is convenient and conventional to define 
another field: 
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   ,         (16.6) 

 
so we write eqn. (16.5) as 
 
  .          (16.7) 
 
Eqn. (2.1b), , is still true, so from eqn. (16.6) we have  
 
  .         (16.8) 
 
Therefore  may be regarded as being generated by the combination of wire current 
density  and the scalar quantity  (sometimes called the magnetic pole density). 
Applying a theorem of vector calculus [16-4], may be derived from its curl and 
divergence according to 
 

  ,      (16.9) 

assuming  the sources vanish at large . It is useful to think of  as the part of  that 

is produced by distributed sources , while 

€ 

µ0   itself is the local 

contribution to . 
 
 We have followed SI convention in defining , so in vacuum it differs from  
by the factor . Unfortunately this causes and  to have different units; these are 

Tesla or Webers/m2 for  and Ampere/m for  and . If   is 1.0T in vacuum then 

is 795775 Ampere/m. Sometimes  is defined as  instead of by eqn. 

(16.6) to avoid this inconvenience. 
 

If Gaussian units are used then the factor  in eqn. (16.6) is dropped and , , 

and  all have units of gauss (1.0 gauss = 10-4T), but for  this unit is called the 
oersted. Also, for Gaussian units factors of 4 and c are inserted as follows: 
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  There is considerable variety in the names given for  and , although they 
tend to reflect their respective properties or uses. Some of these names are 
 

  : magnetic field, magnetic induction, magnetic flux density. 
       : magnetic field, magnetic intensity, magnetization field. 

 
 
 16.3 B-H relations and jump conditions 
 
 So far we have not related  to  except by its definition, eqn. (16.6). In fact for 
a permeable ferromagnetic material there is no completely fixed relation except 
 
   ,      (16.10) 

 
with  the magnetization density within a single domain. For example, pure iron 
(natural isotopic mix) at 0 Kelvin has  
 
   atomic mass  
 
Inserting the natural constants 
 
  

€ 

mB = 9.274x10−24 Am2, µ0 = 4πx10−7T m A, 
 
we get 
 

           

 
Unalloyed iron with negligible carbon can approach this level of magnetization. An alloy 
of iron and cobalt (70% Fe, 30% Co) can increase  by 10%. 
 

The value of in a macroscopic sample actually depends on its history of 
exposure to externally generated fields as well as the instantaneous value of . By 
contrast a linear relation characterizes good permanent magnet blocks: 
 
  ,     (16.11) 
 
where and refer to directions along and normal to the easy axis of magnetization. 
Here , called the remanent field, is simply the “permanent” value of in a long 
sample, and the relative permeabilities  and  are constants out to large values of  
and typically exceed unity by less than 10%. For very large reverse  (depending on 



 84 

material but ideally of order  or greater) a block’s properties become nonlinear and 
change irreversibly. Inside a permanent magnet block  and  are usually opposed. 
 
 It is apparent that the commonly assumed, linear, isotropic relation 
 
          (16.12) 
 
is of limited validity except for paramagnetic and diamagnetic substances at low fields 
(or 

€ 

µ0  vacuum). Nevertheless its use is sometimes a justifiable approximation. For 
example cast iron excited from an initial state of no remanent field exhibits such a linear 
permeability out to , with . Some types of steel have greater than 

. Confusing the situation, eqn. (16.12) is often regarded as the definition of 
when  and  lie on the magnetization curve - see below. In fact we adopt this 

convention in sections 19 and 20, which deal with the Tosca© model. If we assume the 
validity of eqn. (16.12) then the following definitions are made: 
 
         (16.13) 
 
is the relative permeability, and  
 
          (16.14) 
 
is the magnetic susceptibility. From the definition of  we then have  
 

  .     (16.15) 

 
An improvement on eqn. (16.12), used in some computations, is 
 
  

€ 

B = B0 + µ H −H 0( ),       (16.16) 
 
where  and are some particular values and  is a local coefficient. 
 

For many computations it is simply assumed that , i.e.  vanishes in 
the highly permeable material. However, to compute  inside the material requires 
specification of details about the permeability, even though it approaches infinity – see 
section 18. 
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 If and  are to be determined by solving their coupled partial differential 
equations, then jump conditions at vacuum-material interfaces are required. From eqns. 
(16.7) and (2.1b) these are 
 
   is continuous,                (16.17a) 
 
   is continuous,                (16.17b) 
 
where  and  refer to components tangential and normal to the interface.  
 

These jump conditions suggest the utility of a highly permeable material for flux 
control or field shaping. Since can essentially vanish in the material, its tangential 
component on the vacuum side of the boundary also vanishes, as does the vacuum 
tangential component of . But the vacuum field can be derived from a scalar potential 
– see section 5, , which is single valued around the material if no wire is 
enclosed. Therefore  is constant on the material surface. By analogy with electrostatics, 
the material acts like an electrical conductor, and strong normal fields may be restricted 
to particular locations where the surface is highly curved. Roughly speaking the field is 
channeled in and out of the material where desired, and routed away from locations (such 
as an induction core) where it could cause a problem. It is also apparent that stored 
energy might be reduced in this way since energy density in the material is roughly 

, although the concentration of flux in particular locations outside the material 
tends to increase the local stored energy density. The design of the poles and return flux 
yoke of a cyclotron is an application of these ideas. 
 
 Field calculations for highly permeable materials are complicated by both the 
non-linearity of  curves and the phenomenon of hysteresis. The latter is closely 
related to internal dissipation of energy during excitation and de-excitation. Following the 
textbooks, we imagine that in a macroscopic region of material  and  are parallel 
(more about this assumption below) and  is increasing or decreasing slowly with time. 
In general, depending on the sign of , two different curves are generated. If   is 
cyclical, a closed loop in the  plane is produced. If sufficiently large values of  
are in the cycle, so that the material is pushed well into saturation, then a maximal 
hysteresis loop is generated, and all other loops lie somewhere inside of it. The maximal 
hysteresis loop is the boundary of accessible points in the plane under the 
assumptions of parallelism and slow variation. This is considerably more restrictive than 
the condition (16.10). The intercepts of the maximal hysteresis curve with the  and  
axes are called respectively the remanence  and coercive force . Some 
loops have zero bias current, i.e. no mean , and form a nested set around the origin 

. Other (biased) loops are offset from the origin and may or may not encircle 
it. In this picture we assume that the magnet is excited slowly enough that eddy currents 
are not appreciable and that magnetic domains have time to adjust their walls or 
orientations. All closed loops must cycle in a counter-clockwise direction to avoid a 
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violation of the second law of thermodynamics. To see this, note that the differential 
work done by an external circuit is  per unit volume. A clockwise loop would 
extract energy into the circuit while cooling the material (eliminating any need for 
controlled fusion energy).  Through every point  interior to the maximal loop we 
may draw a pair of paths, which are followed depending on whether  is increasing or 
decreasing. A grid of crossing paths covers the accessible  space, and any point 
may be reached by traversing several paths in their allowed directions. Complete 
demagnetization can be done by cycling with gradually decreasing amplitude. 
 
 

16.4 Magnetization curve 
 
 Since ferromagnetic materials have a nonlinear magnetization response when 
driven over a large range, a generalization of eqn. (16.12) is required for computations. 
Usually it is assumed that a material is excited from an initially unmagnetized state 

€ 

B = H = 0( ) and that  only increases in this process, so there is no ambiguity from 
hysteresis. Then follows a known “magnetization curve”, i.e.  - see the 
accompanying figure for examples (from [16-5]). Computations may be made by setting  
 
  

€ 

B = HF r,H( ) H ,       (16.18) 

 
which assumes and  remain parallel everywhere. The assumption of parallelism 
works if the response is linear, i.e. 

€ 

F = µ r( )H . To demonstrate this we write eqn. (16.9) 
in the form 
 

   ,     (16.19) 

 

with subscripts  denoting Cartesian components with a sum over , and is the 

part of  produced by currents in wire. For the linear isotropic response we have 
 
  

€ 

M ′ r ( ) = χm ′ r ( )H ′ r ( ),       (16.20) 
 
with  , and eqn. (16.19) can be reduced to a set of coupled linear equations 

by dividing the entire space into small volumes (finite element method). is then 

obtained from by a single matrix inversion, and the assumption of parallelism has 
lead to a unique solution. For a non-linear magnetization curve, we can use 
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€ 

M =
B
µ0

−H =
F r,H( )

µ0 H
−1

 

 

 
 

 

 

 
 H ,     (16.21) 

 
and it is necessary to iterate to solve eqn. (16.19). Unfortunately it is not clear that this 
procedure leads to the physically correct solution, although this is generally assumed. 
Consider a system that is excited from the un-magnetized state by slowly increasing the 
wire current. If the material response is linear then and  simply scale up proportional 
to current without changing direction. But the situation is changed when the material 
saturates and ; fields then approximate a vacuum pattern determined from the 
wire current alone, and in general they have a different direction than when the 
permeable material is effective. During the current increase  and  have changed 
direction; but this is different from the simple experimental conditions in which 
magnetization curves are determined. It is conceivable that for a gradually changing 
direction of , that  (and therefore ) stays parallel, but this is an additional material 
property to be determined by experiment. 
 
 A mathematical model of hysteresis has been described in an interesting series of 
reports - see [16-6]. Recall that every point inside the limiting cycle is crossed by 
two curves with slopes , depending on whether  is increasing or decreasing. 
These slopes are found to be well approximated by the assumed formula 
 

   ,      (16.22) 

 
where is a constant and  are material-dependent functions with examples given 
in the cited report. The choice  depends respectively on  increasing or 
decreasing. If , and are known, then the magnetization curve  can be found 
in numerical form by integrating eqn. (16.22) from the origin with increasing 

: 
 

 ,      (16.23) 

 

€ 

F H( ) = B = d ′ H 
0

H
∫ αf ′ H ( ) + g ′ H ( )[ ]eα ′ H −H( ) .    (16.24) 

 
For small field changes  the local energy density changes by . 

According to eqn. (16.22) this energy is produced irreversibly as heat 
 and as a reversible increment . In this model 

we are therefore able to identify a stored “field energy” that depends only on :  
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€ 

U field = d ′ Η 
0

Η

∫ ′ Η g ′ Η ( )  .      (16.25) 
 
For the simple linear relation  this becomes 

€ 

U field = µΗ2 2 . 
 
 

16.5 Permanent magnet solenoid 
 

Finally we consider a simple permanent magnet solenoid consisting of an annulus 
of constant magnetization zeM ˆ between radii and , with length , and centered at 

. The magnetization currents are simply a pair of thin layers: 
 

 .    (16.26) 

 
Applying the thin layer result, eqn. (4.6), we have the on-axis field, 
 

 .  (16.27) 

 
This function is plotted below for . Note 
that  is negative in the solenoid bore and positive outside, and its maximum absolute 
value is only . When such a solenoid is used as a particle beam lens, its focal 
strength is proportional to the integral of , so this is not a very effective use of 
material, although such lenses have been used to confine electron beams in Klystrons.  
 

It can be easily verified that 
 
  .       (16.28) 
 
In fact this relation is true for any solenoid made only of magnetic materials since 

 requires that the line integral of  around any closed loop must equal the 
enclosed wire current: 
 
   .       (16.29) 
 
In the present case we may take the integration loop along the entire axis and return at 
large radius, where there is a vanishing contribution. The line integral of  along any 
closed path in vacuum equals only the enclosed wire current since  vanishes on the 
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path. This is a special feature of 

€ 

J
mag

=∇xM  with 

€ 

M  non-zero only in a bounded region 
of space. 
 

 
 
mu0M = 1.0; 
R2 = .5; 
R1 = .25; 
l = 1.0; 
 
B0[z_] = mu0M/ 
        2*((z + l/2)/((z + l/2)^2 + R2^2)^.5 - (z -  
                l/2)/((z - l/2)^2 + R2^2)^.5 - (z +  
                l/2)/((z + l/2)^2 + R1^2)^.5 + (z -  
                l/2)/((z - l/2)^2 + R1^2)^.5); 
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Plot[B0[z], {z, -2, 2}]; 
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17. Wire Layer Embedded in a Highly Permeable Yoke 
 
 A simple geometry that displays flux control is a wire layer (of any shape) that 
has net azimuthal current  and is embedded in a long permeable annulus (yoke) with 

. The inner radius of the annulus/yoke is at , which is also the magnet’s bore 
radius, and a narrow slot connects the wire layer to the bore at  (see figure). 
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Inside the bore, where 

  ,               (17.1a,b) 

 
we have 
 
   .                         (17.2a,b) 
 
Along the inner surface of the annulus is constant and  vanishes, except at , 
where jumps and  is infinite: 
 

          (17.3) 

 
   .         (17.4) 
 
Here the yoke is assumed to extend to  for computations. Outside the yoke  is 
constant except for the intrinsic discontinuity described in section 5; it runs from any 
point on the exterior of the yoke to . 
 
 To solve for  in the magnet bore we apply a Fourier integral transform to eqn. 
(17.2b): 
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   ,       (17.5)  
 

  .         (17.6) 

 
Equation (17.6) is satisfied by 
 
   ,         (17.7) 
 
where  is the modified Bessel function and  is to be determined from the boundary 
condition (17.4). Since we may write the delta function as 
 

   ,         (17.8) 

 
we have immediately from equations (17.4) and (17.7) 
 

   .      (17.9) 

 
A convenient form for computations, which displays scaling with  and  is  

 

   ,     (17.10) 

 
where . The radial field is obtained from eqn. (17.9) by integrating : 
 

       (17.11) 

 

  .     (17.12) 

 
The bore field is displayed for several values of  at the end of this section. A strong 

(exponential) falloff with  is apparent and contrasts sharply with the  fall off from 
a lens without a yoke. This calculation is formally equivalent to that of an electrostatic 
field in a conducting pipe that is split at  and with a potential difference applied 
between the two sides. 
 
 The potential can be derived from eqn. (17.9) by integrating in , however at 
this point it is more instructive to use an expansion in ordinary Bessel functions: 
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€ 

−φ =
I
2

+ Ai
i=1

∞

∑ J0 xi r b( )e−xi z b ,     (17.13) 

 
valid for . For  is determined by its antisymmetry: 
 

  ,       (17.14) 

 
so the there is exponential decay in both directions. The  are the zeros of , and the 
coefficients  are determined from the condition 
 

  ;     (17.15) 

 

   .       (17.16) 

 
We have for , 
 

  

€ 

−φ =
I
2
− I

i=1

∞

∑
J0 xi rb( )e−xi z b

xiJ1 xi( )
,     (17.17) 

 

  

€ 

Bz = −µ0
∂φ
∂z

= µ0
I
b i=1

∞

∑
J0 xi rb( )e−xi z b

J1 xi( )
.    (17.18) 

 
The first five values of  and  are tabulated to aid in computations: 
 
 

  
 

  
 
 
 

The on-axis field can be calculated from either the Fourier integral or Bessel 
series, although the latter is poorly convergent for . The leading term of the series 
is a good approximation for : 

 .51914 74973 
-.34026 48066 
 .27145 22999 
-.23245 98314 
 .20654 64331 
 
 

2.40482 55577 
5.52007 81103 
8.65372 79129 
11.79153 44390 
14.93091 77085 

1 
2 
3 
4 
5 
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   ,       (17.19) 

 
but is large by a factor of 2.9 at . An excellent approximation for all  is  
 

  

€ 

B0 z( ) ≈ µ0I
b

1
J1 x1( )

1
2cosh x1 z sb( )[ ]s

 ,    (17.20) 

 
with 1.538781. This has maximum relative error of 2x10-4 at .      
 

 
 
 

€ 

Bz r,z( ) for r = 0, b 4,b 2( ) . In this case µ0I =1.0Tm and b =1.0m. 
 
 
18. Periodic Thin Current Layer with a Highly Permeable Yoke 
 
 The purpose of this section is only to present some considerations of return flux 
controls; for a practical example see section 20. 
 

Return flux can be channeled by a permeable annulus if the field there is kept 
below saturation 

€ 

Bsat ≈1.0 - 2.0T for magnet iron( ) . For a periodic system of solenoids 
having the same polarity, the field in the annulus or “yoke” is roughly 
 

   ,        (18.1) 

 
where  is the wire radius, and  are the yoke radii,  is the ratio of wire layer 
length to period length, and  is the peak bore field. This assumes no flux returns at 

€ 

r =α . The volume of the yoke should be at least  times the volume of magnet 
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bore to prevent stray flux from leaking into the outside world. In practice there will be 
gaps in the yoke, so some flux lines will bulge out anyway.  
 

The field in the presence of a highly permeable yoke can be examined with the 
simple periodic model: 
 

        (18.2) 

 

         (18.3) 

 
with  and  repeating with period P. Note that there are no gaps in the yoke 
model. The Fourier expansion of the current density is  
 

   ,     (18.4) 

 
with 
 

   ,   .             (18.5a,b) 

 
In the yoke  by assumption, and since the tangential components of  at 

 and are continuous, we conclude that  at and . Since 

 must vanish as , it must also vanish for all . For we must simply 
solve  
 

   ,         (18.6) 

 
with the boundary condition . 
 
 The value of inside the yoke is indeterminate unless more information is given 
about the permeability, which must be assumed to be not quite infinite. For example, 
suppose we have a non-linear magnetization curve 
 

  

€ 

B =
H
H
F H( )  ,       (18.7a) 
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€ 

H =
B
B
F−1 B( ).       (18.7b) 

 
Then in the yoke we must solve  along with  
 

  

€ 

∇x B
B
F−1 B( )

 

 

 
 

 

 

 
 

=∇xH = 0 .        (18.8) 

 
The boundary conditions for the yoke interior are that be continuously joined to its 
vacuum values at and  and that the net flux of the system vanish. For the simple 
assumption that  is very large but constant, the Cartesian components of the yoke field 
satisfy 
 
   .     (18.9) 
 
 Returning to the analytical model and assuming is infinite but constant in 
the yoke; we have inside all four radial zones 
 
  .        (18.10) 
 
At zone boundaries  both  and are continuous, while  jumps 
across the wire: 
 
   .     (18.11) 
 
At the yoke boundaries  jumps from zero in vacuum to a finite value in the material, 
which is found by solving the model equations. We proceed by solving for the field 
produced by individual terms of the expansion [eqn. (18.4)] for . First, the term 

produces 
 

  

  

€ 

Bz →

µ0S
P

0 < r < R,

0 R < r < R1,

−
R2

R2
2 − R1

2
µ0S
P

R1 < r < R2,

0 R2 < r <∞.

 

 

 
 
 

 

 
 
 

    (18.12) 

 
This function has net zero flux, vanishes at , and has no on-axis contribution from 
the permeable material. Next consider the field from any periodic term of eqn. (18.4); this 
has the form 
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   ,                (18.13a) 
 
  ,                          (18.13b) 
 
  .               (18.13c) 
 
Inside each zone  satisfies  
 

  ,       (18.14) 

 
and from , inside each zone 
 

  .        (18.15) 

 
Equation (18.14) is a modified Bessel equation, so is a linear combination of 

 and  in every zone, and  is the combination of  and  
determined from eqn. (18.15). Applying the various boundary and jump conditions and 
finiteness at  we find, suppressing the subscript : 
 

 
 
  ,                (18.16a) 
 
   ,                           (18.16b) 
 

  
 

  ,              (18.16c) 

 

  ,              (18.16d)  

 
  

 

  ,              (18.16e) 
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  ,                          (18.16f) 

 

 
 
  ,                (18.16g) 
 
with coefficients 
 

  ,             (18.17a) 

 
  ,                          (18.17b) 
 

   .                                               (18.17c) 

 
We have used the Bessel function identity, 
 

  ,       (18.18) 

 
to simplify these expressions. 
 

Plots.  vs.  for various  are given below for the case 
. The suppression of the 

external field in the zone  is evident – compare section (10). A (very 
expensive) total of 200 terms were summed. 
 
 

        (Bore) 
   r       Bz(r,0) 

.000       11.79 

.100       11.85 

.195       11.99 
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19. Tosca© Model 
 

Many computer programs have been written for the purpose of solving Laplace's 
or Poisson's equation under given boundary conditions. A number of numerical methods 
of solution are available for solving a system of partial differential equations; one of the 
most commonly used is finite element discretization. Finite element analysis (FEA) 
requires special enhancements, which are described briefly in this chapter, to make it 
applicable to electromagnetic field calculations. 

The computer programs for magnetic fields most widely used in the accelerator 
engineering community are the public domain code POISSON [1-7] and the commercial 
code Tosca© [1-7]. POISSON can simulate only 2D planar or axisymmetric geometries, 
whereas Tosca© allows calculations in 2D and 3D. Since today's personal computers have 
become sufficiently powerful, the fidelity of these codes is so good that often simulations 

       (External) 
   r        Bz(r,0) 

.25       -.4135 

.40       -.1806 

.55       -.0353 

        (Yoke) 
   r         Bz(r,0) 

.65        -1.526 

.70        -1.508 

.75        -1.498 
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are used to check measurements, and large magnetic devices are designed without the 
need for building prototypes. For instance, a field accuracy of the order of parts in 106 is 
required for simulating shielded superconducting NMR systems. Another application is 
to cyclotron magnets with their stringent field accuracies (parts in 105), which can 
nowadays be entirely designed using Tosca© alone. 

 FEA codes are especially well suited for modeling magnetic fields with non-
linear materials present, e.g. magnet steel or permanent magnets. Forces on conductors 
and pole pieces can be easily calculated. In addition, harmonic or transient field problems 
with eddy currents present can be solved. Eddy current heating as well as magnetic forces 
can be coupled to thermal and structural FEA simulations for the engineering design. 

 
19.1 General solution strategy in 3D 
In this section the notation for fields differs somewhat from that used in the rest of 

the report in order to correspond to Tosca© conventions. A detailed description of how to 
numerically solve Maxwell's equations is beyond the scope of this report. Nevertheless, 
since the computation of magnetic fields requires a few special numerical techniques, the 
peculiarities are briefly mapped out here. We want to discretize Maxwell's equations: 

 

  , (19.1a) 

  , (19.1b) 

  , (19.1c) 

  , (19.1d) 

 

with  (or specified). In these equations and  are the 
electric and magnetic fields and and are the electric and magnetic flux densities. The 
current density is denoted by , and  denotes the charge density. The three material 
functions (permittivity, permeability, and conductivity) are in general 
functions of the spatial coordinates and also nonlinear functions of the electromagnetic 
field strength, e.g. the magnetization curve in metal. All three material properties may be 
tensors, as in laminated transformer cores and permanent magnets. 

The usual procedure for solving Maxwell's equations is to simplify them as far as 
possible, first setting some of the quantities  equal to constants if possible, 
and then deducing a second order differential equation. This second-order differential 
equation for some intermediate function (typically a vector potential, scalar potential, or 
both) can then be discretized and numerically solved for realistically shaped structures by 
means of finite difference, finite element, or integral methods. The finite element method 
is based on division of the domain of these equations (volume of space in which the  
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equations are satisfied) into small volumes (the finite elements) as shown in Figure 1. 
Within each finite element a simple polynomial is used to approximate the solution.

 
Consider first a Poisson equation describing an electric potential function : 

 

  .      (19.2) 

Such an equation, 

  , (19.3) 

can be easily discretized for computations. In order to define , boundary conditions are 
required; these may be either assigned values of  or its normal derivative on a surface. 
In all electrostatic field examples it is essential that the potential is defined at least at one 
point in the domain, otherwise an infinite number of solutions could be generated by 
adding an arbitrary constant to a particular solution. 
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The situation is different for magnetic problems. In the magnetostatic limit, 
Maxwell's equations reduce to 

  ,   . (19.4a,b)  

 

Since  is not "curl free", it follows that it cannot be represented everywhere by the 
gradient of a scalar potential as in the electrostatic case. It is convenient to split the total 
field into two parts, a conductor source field and a gradient of a scalar potential, in order 
to obtain a description of the field in terms of a simple scalar potential: 

   with  (reduced scalar potential),  (19.5) 

The conductor source field can be evaluated separately using the general form of the 
Biot-Savart law – see section 21: 

 

   . (19.6) 

 

This is the decomposition of  into components produced by the wire and the 
magnetization density presented in section 16 – see eqns. (16.9) and 16.19). The field  

is identical with . However, here we wish to compute  with  considered to be 
known. Introducing the scalar permeability  and combining  with the above 
two equations, we have the partial differential equation for : 

 , (19.7) 

with  calculated from eqn. (19.6). 

The splitting of the magnetic field into a "curly" source part and a reduced scalar 
potential part has finally reduced the problem to a purely scalar one. Equation (19.7), like 
the Poisson equation for electrostatic fields, can be solved using the finite element 
method. Unfortunately, this method leads to large computational errors, especially in 
volumes where and strongly cancel each other. This difficulty can be avoided 
when currents are not flowing in the magnetic materials. Exterior to the volumes where 
current flows the total field can be represented using the "total scalar potential"  : 

 (total scalar potential),      (19.8) 

which is just the scalar potential  introduced in section 5, and which satisfies: 

  . (19.9) 
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By combining the two representations (the total and the reduced scalar potentials) 
cancellation difficulties can be completely avoided. Therefore, the minimal combination 
for magnetic field simulations consists in using the reduced potential plus  only inside 
volumes where currents flow and using the total scalar potential everywhere else. On the 
interface between the total and reduced potential spaces the two potentials are linked 
together (internally in the computer code) by applying the conditions of normal B and 
tangential H continuity. This procedure has important consequences for setting up the 
simulation model. The reduced potential volume should completely enclose any coils in 
such a way that it is not possible to find a closed path in total potential which encloses a 
non-zero current. In other words any closed contour integral of H through any total scalar 
region must vanish, since otherwise the solution would be multi-valued. 
 

19.2 Solution strategy in 2D 
In 2D simulations, using either cylindrical or rectangular coordinates, the solution 

strategy for Maxwell's equations can be dramatically simplified compared to the general 
3D strategy outline above. Since the primary topic of this report is the calculation of 
axisymmetric solenoid systems, we will describe the 2D method in more detail, and will 
give a few computation examples here and in the next chapter. Still, for a solenoid-based 
particle accelerator design, 3D simulations would be necessary in regions where several 
solenoid beamlines are transversely merged into a single beamline, or where solenoid 
lead effects become critical. 

By using a vector potential, , we can rewrite the relevant Maxwell's 
equation in the magnetostatic limit: 

 . (19.10) 

Imposing gauge condition , and taking into account the now two-dimensional 
symmetry of the physical geometry, equation (19.10) can be rewritten: 

 ,  (19.11) 

Where only the  components (A, j) are present. In two dimensions Maxwell's equations 
thus reduce to single equation, which can be easily solved by standard computational 
methods. Contrary to three-dimensions, where the model geometry has to be divided into 
regions of "total" and "reduced" scalar potentials to gain a numerical scalar potential 
description, the equation to be solved in 2D is automatically of an effectively scalar 
nature. No division into different regions has to be performed in 2D. The magnetic field 
components are simply 

  , . (19.12a,b) 
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This has an important consequence: Contrary to three dimensions, in a planar two-
dimensional simulation the equipotential lines of the vector potential are equal to the 
magnetic field lines (for axisymmetric simulations a modified potential  has to be 
used). That fact makes two-dimensional simulations much more intuitive and accessible 
from a practical point of view compared to any three-dimensional simulation. 
 

 
19.3 Example 
Figure (2) shows a typical axisymmetric model setup of a solenoid with an iron 

enclosure. Figure (3) shows the finite element mesh as generated by Tosca© -2D. The 
material properties must be defined in the code. For air (or vacuum) and the copper 
conductor the relative permeability is set to 1, for the return yoke a typical B-H 
magnetization curve for 1010 carbon steel, as shown in figure 4, is used. 

As shown in figure 5, correct boundary conditions have to be set to solve the 
problem numerically. For axisymmetric simulations the center axis requires a "tangential 
field only" (Dirichlet) boundary condition. The air volume enclosing the region of 
interest has to be chosen as large as possible to minimize the effect of the far-end 
boundary conditions. It is always a good practice to check that the far-field boundaries 
have been placed far enough by changing the normal field to tangential field boundaries. 
The change in the magnetic field in the region of interest should be minimal, otherwise 
the outer boundaries have not been moved far enough out. In the example the current 
density in the coil field region has been set to  A/m2. That information is stored 
in a binary database file which is processed by the analysis module of the Tosca© code. 
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Figure 3: Tetrahedral finite element mesh as generated by the Tosca-2D mesh 
generator. The mesh has been chosen to be finer on axis and inside the solenoid 
area of interest. It gradually becomes coarser towards the outside model 
boundaries in order to minimize computation time. 
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Computation of the vector potential proceeds iteratively for each mesh point. The 

computation proceeds in the iron region with the determination of vector potential, 
magnetic induction, and permeability at each mesh point. The vector potentials A are first 
computed at all points by assuming a constant value of permeability, then the components 
of the induction B are determined as partial derivatives of A, and the permeability values 
as a function of the absolute values of B are read from a B-H curve table. Then the whole 
process is repeated with adjusted permeability values: cycling is continued until the 
changes in permeability are all below a specified value.  
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Once the field computation has been performed the database is read into a post-

processor for further evaluation. Figure 6 shows the model geometry with the magnetic 
flux lines displayed. Figure 7 shows contour zones of the total magnitude of the magnetic 
flux density, and figure 8 shows a read out of the magnetic field on axis. 
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20. Application of Tosca© to Induction Linac Design 
 

20.1 Introduction 
 

Recently there has been renewed interest in relatively low energy modular 
induction accelerators to drive close-coupled HIF targets (~75 MV acceleration voltage 
of Ar8+, corresponding to 600 MeV kinetic energy). Similar, smaller-scale designs are 
suggested for a possible facility to perform high energy density physics experiments. 
These designs utilize solenoid beam transport because of its favorable scaling at the 
desired ion mass and kinetic energy. 

An example "modular solenoid driver" 20-1 would consist of 40 beamlines (20 on 
each side of the final focus chamber). Each beamline would have a high current Ar8+ 
injector and a pre-bunch section to compress the beam for injection into a solenoid-based 
modular induction linac. The total linac length would be only 75 meters. The accelerated 
beams, which have an approximately 15% energy tilt imposed, compress in a neutralized 
drift section (~260 meters long) before final radial compression inside a liquid-vortex 
flibe chamber with a solenoid focusing magnet set.  

Figure 1 shows the mechanical layout of the high-energy end of such a modular 
solenoid linac. The main dimensions of a linac cell are given in figure 2. The transport 
solenoids are superconducting Nb3Sn magnets producing 12 Tesla peak axial magnetic 
field. Finite-element based electromagnetic simulation tools are utilized in several design 
aspects of the linear accelerator: 

1. The solenoids are embedded inside induction cores of high permeability. To 
shield the solenoid return flux from the induction cores, the superconducting 
winding structure is enclosed by a thick, soft-magnetic steel shell. Finite 
element codes are reliable tools for calculating the effects of the permeable 
materials and allow optimization of the acceleration cell geometry. 

2. The ion beams exiting the 20 modular solenoid linacs must be matched into the 
focusing system leading to the fusion target. Three-dimensional finite element 
codes can reliably calculate the dipole and higher-order field contributions of 
the solenoid magnetic fields at the end of the linac structure, especially if 
permeable materials are present to channel the linac fields’ return flux. 

3. Finite element codes are used to design the superconducting winding pack. 
They allow the exact coil dimensioning using critical current load lines. 

4. If one solenoid along a linac string quenches, the forces on the neighboring 
solenoids will be imbalanced. Finite element codes allow one to calculate these 
forces and to dimension a sufficient support system. The electromagnetic 
simulation models are directly linked with structural models to design the 
solenoid clamping structure. 
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20.2 Example 
 

As an example of how electromagnetic modeling can be utilized to optimize the 
modular solenoid driver architecture, we look at the effect of adding iron outside the 
superconducting solenoid winding. We will also discuss how to specify the 
superconducting winding structure. 

Figure 3 shows a simulation setup for an infinitely long solenoid string consisting 
of a (thin) superconducting wire pack surrounded by an iron cylinder. The rest of the 
model consists of air with a relative permeability equal to 1. The location of the induction 
cells is indicated, but we will not include their material properties in this example. The 
beam travels along the vertical axis, and the radial coordinate is the horizontal axis. 

Such a simulation should strongly take advantage of the model symmetry. First of 
all the simulation is 2D axisymmetric with the beam axis as symmetry axis. Second, 
because of the infinite nature of the problem the top and bottom model boundaries are 
symmetry planes through the centers of the solenoids. The correct numerical boundary 
conditions are shown in figure 4. The background air (vacuum) volume extends radially 
far outside to minimize the influence of the far field boundary condition, which was set to 
tangential . 
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Figure 5 shows in more detail the region around one single solenoid and the finite 
element grid generated by the Tosca© 2D simulation code. To enhance the accuracy of 
the simulation model, regions close to the beam axis - including the solenoid winding and 
the iron regions - are modeled using mapped hexagonal finite elements. The background 
air model uses tetragonal elements, which allow gradually increasing element sizes. In 
that way the model can have a very fine grid around the areas of interest and a coarser 
grid at the far field boundaries. 
 

After meshing the problem geometry the material and conductor properties have 
to be defined. Figure 6 shows the permeability curve for 1010 steel, a soft magnetic steel 
used for building electromagnets.  

 
Figure 7 shows a graph of critical current densities for different superconducting 

cable materials [2]. The blue curve with blue squares shows the critical current line for 
Nb3Sn at a temperature of 4.2 Kelvin, the temperature of the liquid helium coolant. The 
critical current density is the maximum current density a superconducting wire can 
transport without loosing its superconductivity, which is dependent on the applied 
magnetic field. The higher the magnetic field the lower the critical current density. Nb3Sn 
has similar critical current densities as NbTi but can be operated at much higher applied 
magnetic fields. 
 

It is important to realize that the critical current densities are shown for single 
stranded superconducting wire. The actual current densities used as input in the 
simulations to define the conductor regions are significantly lower. Figure 8 shows a 
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cross sections of a few actual superconducting wires. It shows the superconducting wire 
strands embedded inside a copper matrix whose purpose is two-fold. 

 
 

 
First it helps to locally stabilize the superconducting wire. On a microscopic scale, the 
superconducting state is fluctuating, and a sufficiently sized copper matrix helps to 
stabilize the superconducting condition. Second, the wire has to be able to transport all 
the current in cases where the wire quenches and superconductivity is lost entirely. 
Enough copper must be available to transport the current without melting the wire. 
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Figure 6: BH curve for 1010 steel, a soft magnetic steel used for building electromagnets. 
 

In designing a magnet, what really matters is the overall "engineering current 
density". It is given by the superconducting strand critical current density times the 
superconducting material to copper ratio times the packing factor of the actually wound 
superconducting wire. Figure 8 demonstrates the packing of commercial round wires in a 
magnet winding. 

            

with 
 ...  "engineering current density" 

 ...  takes account of space occupied by insulation, eventual 
cooling channels, mechanical reinforcement, epoxy, etc. 

 ... ratio of copper to superconducting material 
Table 1 determines the maximum Cu/SC ratio by limiting the 
maximum current density to be carried by the copper matrix to 
1500 A/mm@ in case of a complete quench 

 ... critical current density for single superconducting strand 
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Figure 8: Cross section of various actual superconducting wires. The superconducting 
filaments, which are actually twisted, are embedded inside a copper matrix. Additional 
space around the wires is needed for insulation, structural epoxy, or cooling channels. 
 

Table 1 summarizes the actual “engineering” current densities used to specify 
conductors in the simulation dependent on the applied magnetic field. An additional 30% 
safety margin is applied to the engineering current densities to account for winding strain 
and temperature fluctuations. Depending on the actual mechanical solenoid design an 
even larger temperature safety margin may be necessary at higher applied magnetic 
fields. 

 
Figure 9 displays the field lines of the resulting solenoid beam transport channel. 

Figure 10 shows the axial magnetic field strength along the beam center axis. The field 
ripple due to the fairly large magnet spacing, which is necessitated by the wide induction 
acceleration gap (1 MV/m gradient), is clearly visible.  
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B 
[ T ] 

 
Jc 

[ A / mm2 ] 
Cu/SC Ratio 

(*) 
Jwire 

[ A / mm2 ] 
Joverall 

[ A / mm2 ] 
with 30% 
margin (**) 
[ A / mm2 ] 

5 9454 6.30 1295 906 634 

6 7766 5.18 1257 880 616 

7 6431 4.29 1216 851 596 

8 5347 3.56 1171 820 574 

9 4446 2.96 1122 785 550 

10 3689 2.46 1066 746 523 

11 3048 2.03 1005 704 493 

12 2500 1.67 938 656 459 

13 2031 1.35 863 604 423 

14 1631 1.09 781 547 383 

15 1289 0.86 693 485 340 

 
(*) for a maximum current density of 1500 A/mm2 in the copper matrix 
(**) margin for winding strain and temperature flucuations 
 
Table 1: Engineering current densities (Joverall) for Nb3Sn at different magnetic fields. 
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Figure 10: Magnetic field along the beam center axis. 
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Figure 11: Comparison of |B| along the beam center axis and along the solenoid inner 
radius Indicated is the zone of highest magnetic field inside the solenoid winding. 
 
 
Figure 11 shows  along the beam center axis and along the inner coil radius. The field 
nonuniformity must be included in ion optics simulations. Indicated in figure 11 is the 
location of the maximum magnetic field for a long solenoid. The solenoid current density 
must be below the "engineering" critical current density for the magnetic field 
encountered in that region. 

Finite element analysis plays an important role in reliably predicting magnetic 
fields inside permeable materials. In the above design the iron region around the magnet 
winding is fully saturated (magnetic field > 2 Tesla), as can be seen in figure 12. Plotted 
in figure 13 is the magnetic field versus radius (at z=0.0, the middle of the solenoid, see 
figure 12) for different iron thicknesses. The magnetic field is constant within the 
solenoid bore, drops within the winding pack, and reverses its direction in the iron and 
the surrounding air. Since the iron is fully saturated it cannot completely shield the 
magnetic field return flux from the induction cells and the adjacent structures. With a 
4cm return iron yoke the air magnetic field at the location of the induction cells would be 
around 0.2 Tesla (see figure 14). 

Increasing the iron thickness is the only option to further reduce the return field. 
That effect can be seen in figure 14. A significant thickness is required to shield a 12 
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Tesla solenoid field from the induction cells. Currently it is not clear if total shielding is 
required to maintain the full flux swing inside the induction cells since the induction cell 
magnetization is perpendicular to the solenoid magnetization direction. In addition, the 
induction cell magnetization is a transient effect compared to the DC magnetization 
caused by the solenoid. 

 
 

Figure 13: Magnetic field (in solenoid center) versus radius for different iron thicknesses.  
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Figure 14: Solenoid return field in the vicinity of the induction cells for different iron 

return yoke thicknesses. 
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21. Biot-Savart Formula 

 
 The Biot-Savart formula is usually an integration along a wire path, and it is 
therefore an attractive tool when the path is mathematically specified and there are no 
permeable materials. It may be used with a CAD program that lays out the wire path, 
which in general is a vector position , where  is path length measured along the 
wire. This is a good way to compute the fields of magnet leads and other deviations from 
ideal solenoidal symmetry. The Biot-Savart formula is often presented in texts as an 
experimental result for a straight wire and then generalized for an arbitrary wire path. 
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Here we briefly derive it from the basic magnetostatic eqns. (2.1a,b). It is then used to 
obtain the fields of a straight wire segment of finite length and of a helix. 
      

21.1 General formula 
 

 In the absence of magnetic materials the Cartesian components of a static 
magnetic field satisfy 
 

   ,      (21.1) 
 
so the Green function solution is  
 

   .         (21.2) 

 
An integration by parts gives the most general form of the Biot-Savart law: 
 

          

 

€ 

=
µ0
4π

d3∫ ′ r J′x
r − ′ r ( )
r − ′ r 

3  .        (21.3) 

 
If 

€ 

J
mag

 is known it can be added to 

€ 

J  in eqn (21.3).  
 

For a wire (of infinitesimal thickness) with path  and carrying current I, eqn. 
(21.3) may be written as 
 

           

  ,       (21.4) 

 
where 

€ 

ˆ e s( ) is the unit vector along the wire in the direction of the current: 
 

( ) ( )
ds
sRdse =ˆ  .         (21.5) 
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If the field point 

€ 

r  is not close to the wire, eqn. (21.4) may be approximated by a 
finite sum. Divide a closed circuit into 

€ 

N  segments of length 

€ 

Li  with 

€ 

Ri  and 

€ 

ei  the 
position and tangent unit vector at the ith segment center. Then we have  

 

€ 

B r( ) ≈ µ0I
4π

Li
i=1

N

∑ ˆ e ix
r − Ri

r − Ri

3  .        (21.6) 

 
This formula gives the correct on-axis field for a simple current loop of radius 

€ 

R (see 
eqn. (4.14) if 

€ 

Li = 2π R N  and 

€ 

N >1. However, it is no good for 

€ 

r  close to 

€ 

Ri . Often a 
current path is well represented by a series of straight wire segments of finite length, and 
the much more accurate formula given below can be used. 
 
 
       21.2 Straight wire segment field 
 

First we recover the elementary Biot-Savart law for an infinitely long wire along 
the z- axis. In this case we have simply 
 
  .               (21.7a,b) 
 
Eqn. (21.4) becomes 
 

  
( )

3
22

0 1ˆ
4 szr

dsrxeIB z

−+
= ∫

+∞

∞−π

µ  ,       (21.8) 

 
where as usual . The integration is elementary in this case: 
 

 .     (21.9) 

 
For a semi-infinite wire running from  to 0 we have  

 

   .      (21.10) 

 
However there must be an additional current path (unspecified here) leading away from 
the wire end at  to avoid a non-zero divergence of . Interestingly, eqn. (21.10) is 
the exact field for the wire current terminating at  plus a spherically symmetric 
current  or equivalent displacement current flowing outwards from the termination 
point. In either case Maxwell’s equations are satisfied. 
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 A generalization of the above example can be derived for a straight wire segment 
between arbitrary points  and ; we define 
 

= segment center,              (21.11a) 

 
  = segment length,               (21.11b) 

 

  = segment direction.              (21.11c) 

 
Then the wire path is  
 

( ) esCsR ˆ+=  ,                (21.11d) 
 
with , and eqn (21.4) becomes  
 

€ 

B =
µ0I
4π

ds
−L 2

L 2

∫ ˆ e x
r − C + s ˆ e ( )[ ]
r − C + s ˆ e ( )

3   .     (21.12) 

 
The integration is again elementary, but it helps to employ the definitions 
 

€ 

α = ˆ e ⋅ r −C( ) , β = ˆ e x r −C( ) ,     (21.13)            
 

with . Making the change of variable , we get from  

eqn. (21.12) 
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.

   (21.14) 

 
This formula may be used for the field from a straight magnet lead provided the coil field 
is computed with similar detail to avoid . Also, the field of a complete circuit 
with curved wired sections can be computed as a sum of fields from short straight 
sections, each with specified endpoints and defined quantities 

€ 

C,L, ˆ e ,α,β( ). 
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 21.3 Helix field 
 
 The path representation of a helix is more complicated;  is its radius (wire 
distance from -axis), is the helix pitch angle (restricted to 

€ 

0 < p < π 2 ), and  is a 
variable proportional to  such that gives one loop. Then we may write  
 

.    (21.15) 
 
We have 

€ 

ds( )2 = dR
2

= ρ2 1+ tan2 p( )[ ] dτ( )2, so 
 

    ,     (21.16) 

 
and , as expected from the definition of helix pitch.  
 

The helix period length is , where  is the number of turns per 
meter, so the mean -component of surface current density is 
 

,        (21.17) 
 
while the total z-current equals I (no return helix is assumed). 
 
 For an infinitely long helix, the on-axis  component of the field is by symmetry, 
 

.       (21.18) 
 
For  we also have  
 

.        (21.19) 

 

Close to the wire, which has infinitesimal thickness, the field diverges strongly. The on-

axis transverse field does not vanish, but has a constant absolute value with direction 

rotating 90 out of phase from the wire path. It is an interesting exercise to visualize the 

field lines. 

 
 To proceed with the helix field calculation, first note that  
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€ 

ˆ e s( ) =
dR
ds

=
dτ
ds

dR
dτ

= cos p( ) −ˆ e x sin τ( ) + ˆ e y cos τ( ) + ˆ e z tan p( )[ ]  ,  

 

 

€ 

ˆ e s( ) x r − R s( )( ) = cos p( ) ˆ e x z − Rz( )cos τ( ) − y − Ry( ) tan p( )[ ]{
+ ˆ e y x − Rx( ) tan p( ) + z − Rz( )sin τ( )[ ] − ˆ e z y − Ry( )sin τ( ) + x − Rx( )cos τ( )[ ]}.  (21.20)                

Each Cartesian field component may be projected from eqn. (21.4); for example 
 

€ 

Bz = B ⋅ ˆ e z = −
µ0I
4π

ds∫
cos p( ) y − Ry( )sin τ( ) + x − Rx( )cos τ( )[ ]

x − Rx( )2
+ y − Ry( )

2
+ z − Rz( )2

3   . (21.21) 

 
This may be evaluated by a numerical integration package inserting the given definitions 
of . It helps to use  as the integration variable. A helix might have, 
for example, m periods with  and longitudinal dimension running from z=0 
to z= . The components and are found in similar fashion. 
  

For an infinite helix the on-axis longitudinal field is  
 

  

€ 

Bzo =
µ0I
4π
cos p( ) ds

−∞

+∞

∫
Ry sin τ( ) + Rx cos τ( )[ ]
Rx
2 + Ry

2 + z − Rz( )2
3    (21.22)  

 

 ,     (21.23) 

 
where . The integration is again elementary: 
 

  ,              (21.24)        

 
as advertised in eqn. (21.18).     
 
 The transverse fields of a finite or infinite helix are      
 

€ 

Bx = B ⋅ˆ e x =
µ0I
4π

ds∫
cos p( ) z − Rz( )cos τ( ) − y − Ry( ) tan p( )[ ]

x − Rx( )2
+ y − Ry( )

2
+ z − Rz( )2

3 , (21.25) 
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  . (21.26) 

 
These components may also be evaluated numerically using  as the variable of 
integration.  
 

 
 
 

The on-axis transverse fields for an infinite helix are   
 

€ 

Bxo =
µ0Icos p( )
4π

ds
−∞

+∞

∫
ρ sin τ( ) tan p( ) + z − τρ tan p( )( )cos τ( )[ ]
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3 ,   (21.27) 

 

€ 

Byo =
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4π

ds
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+∞

∫
z − τρ tan p( )( )sin τ( ) − ρcos τ( ) tan p( )[ ]
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Making the change of variable  we get  
 

            ,         (21.29) 

 

 .                 (21.30)  

 
It is seen that  vanishes at , , , … , consistent with 
the helical symmetry. At the coordinate origin we have, setting , 
 

  (21.31) 
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 ,   (21.32) 

 
where  and are the modified Bessel functions. Setting  we have 
 

€ 

By0
0( ) = −µ0IN 2πρN( )Κ0 2πρN( ) +Κ1 2πρN( )[ ]   .   (21.33) 

 
Periodicity yields 
 

€ 

B⊥ 0 = By0
0( ) ˆ e y cos τ( ) − ˆ e x sin τ( )[ ]  .    (21.34) 

 
 Generally the parameter 2  is much larger that unity, and the Bessel functions 
may be expanded; the leading terms give 
 

   ,  (21.35) 

 
which is usually very small. For a concrete example set ; then 

, and 
 

  .  (21.36) 

 
 
22. Single Particle Equations of Motion in an Arbitrary Electromagnetic Field 
 
 Although the topic of this report is the calculation of fields, we also include this 
brief section on the particle equations of motion. There is no assumption of solenoidal 
symmetry or constancy of fields in time. The goal is to have a convenient reference 
where these equations are written using longitudinal distance  as the independent 
variable instead of time . This form displays the geometric aberrations, which are mixed 
with field aberrations and are hidden in the compact time-dependent formulation. 
 

22.1 Time as the independent variable 
 
 With time as the independent variable, an ion’s velocity  satisfies the Lorentz 
equation of motion 
 

  ,      (22.1) 

 
with relativistic factor 
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    .     (22.2) 
 
Here  is the ion’s charge state,  is its mass, , and we use the natural constants 
 
   . 
 
The electric and magnetic fields,  and , are assumed to be known or are 
computable. 
 
  

22.2 Longitudinal distance as the independent variable 
 
 For time-dependent, multi-particle simulations it is convenient to use eqn. (22.1) 
as it stands, or with  for non-relativistic cases. However there are situations where it 
is preferable to use the longitudinal position  as the independent variable. One example 
is the simulation of an ion source operating in steady state. In principle we may always 
use  instead of  if there is no turning back of ion orbits. In addition to the particle 
variables  we also calculate , the time when an 
ion is at . The fields the ion experiences are then 
 
  

€ 

B = B r z( ),t z( )( ), E = E r z( ),t z( )( ).            (22.3a,b) 
 
The time derivative in eqn. (22.1) is converted to a -derivative by the relation 
 

   .        (22.4) 

 
Derivatives with respect to  are denoted here by a “prime”, i.e. , etc. Then 
we get  
 

                (22.5a,b) 

 
The absolute velocity is 
 
           (22.6) 
 
so substituting from eqn. (22.5) (assuming ), 
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   .       (22.7) 

 
The time derivative may therefore be written 
 

   .      (22.8) 

 
The factor  in eqns. (22.7, 22.8), which we will denote by , is the cause 
of the geometric aberrations during transport close to the  axis. 
 
 Eliminating time, eqn. (22.1) yields 
 

             (22.9a,b)      

 
We also need an equation for  (or equivalently  or ). From eqns. (22.1) and (22.2) 
we derive 
 

       (22.10) 

 
which becomes 
 

                (22.11a) 

 
or equivalently 
 

             (22.11b,c)  

 
The equation for time is simply 
 

   .       (22.12) 
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 Eqns. (22.9a,b) are of an awkward form since, due to the differentiation of , 
the second derivatives  and  appear together. A simplification results when these 
equations are linearly combined to place these second derivatives in separate equations. It 
also helps to eliminate  using eqn. (22.11c). These steps finally yield after some 
algebra: 
 

  

€ 

′ ′ x =
qe
M

1
γv 2

...
2

Ex − ′ x Ez( ) + v ... ′ x ′ y Bx − 1+ ′ x 2( )By + ′ y Bz[ ]{ },   (22.13a) 

 

  

€ 

′ ′ y =
qe
M

1
γv 2

...
2

Ey − ′ y Ez( ) + v ... − ′ x ′ y By + 1+ ′ y 2( )Bx − ′ x Bz[ ]{ } . (22.13b) 

 
Eqns. (22.11),  (22.12), and (22.13) are valid as long as ; they contain all 
aberrations and may be used with tilted system axes and non-solenoidal fields. 
 
 

22.3 Paraxial approximation 
 

A simplified set of equations is usually used for calculations of beam transport 
along a straight axis 

€ 

z( ) , in which small terms such as 

€ 

′ x 2  are dropped. This implies the 
fields are sufficiently weak, given the ion 

€ 

′ s  momenta, that trajectories are nearly parallel 
to the axis, ie 

€ 

′ x , ′ y ( ) ~ ε <<1. If 

€ 

2π k  is the scale betatron wavelength, a formal ordering 
in 

€ 

ε is  
 

€ 

x,y( ) ~ ε k , ′ ′ x , ′ ′ y ( ) ~ εk ,            (22.14a,b,) 
 
 

 
Often a simplified set of equations is used, in which terms such as  are known 

to be small and are dropped. This is the “paraxial approximation”, with formal ordering 
 and : 

 

  

€ 

qe
M

1
γv 2

Ez,vBz( ) ~ k  ,                            (22.15) 

 
 

€ 

qe
M

1
γv 2

Ex,Ey,vBx,vBy( ) ~ εk  .              (22.15b) 

 
Dropping terms that are small of order 

€ 

ε2 in eqn, (22.11-22.13) yields  
 

  

€ 

c 2 dγ
dz

= γ 3v dv
dz

= v dγv
dz

=
qe
M
Εz, 

€ 

dt
dz

=
1
v

,          (22.16a,b) 
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€ 

′ ′ x =
qe
M

1
γv 2

Εx − ′ x Εz( ) + v ′ y Bz − By( )[ ]             (22.17.a) 

 

€ 

′ ′ y =
qe
M

1
γv 2

Εy − ′ y Εz( ) − v ′ x Bz − Bx( )[ ]              (22.17b) 

 In this approximation the geometric aberrations are gone but nonlinear terms 
representing field aberrations may still be present. If 

€ 

x,y( ) are small compared with the 
radii of wire layers or electrodes then the field expressions may be linearized and eqn. 
(22.16, 22.17) are free of aberrations except for the chromatic effects from spread 
momenta. 

€ 

∇2Bz = −µ0
1
r
∂
∂r
rJθ = −

µ0
r
∂
∂r
r2 ∂K
∂r
cos θ( ) 

 
23. Steering Dipole Field 
 

Weak transverse dipole magnets that produce nearly uniform fields are used to 
steer and correct the beam orbit. Such a dipole winding is generally on a thin cylindrical 
shell (e.g. a printed circuit) around the beam pipe and may be combined with a solenoid. 
The longitudinal current density  has approximate  or  azimuthal 
dependence, with minor higher order transverse multipoles ( , etc.) from 
the discrete wire layout. Non-linear fringe field components are produced by the magnet 
ends, where an azimuthal current density  completes the circuit. 
 
 We calculate the field from a current layer whose dominant Fourier components 
are 
 

  

€ 

Jz = K r,z( )sin θ( ), Jθ =
∂K r,z( )
∂z

r cos θ( ),           (23.1a,b) 

 
with  determined from . This configuration produces an on-axis field , 
which deflects the beam in the  direction. The approach used here is to first calculate 

 from  using the Green function for the Laplacian operator. Then the scalar potential 
, which is valid in the magnet bore, is derived from , and the complete field in the 

bore is given by . Flux lines of  correspond to  constant at 
fixed . A widely used alternate approach is to calculate the vector potential component 

 from  (with gauge condition 

€ 

∇⊥ ⋅ A⊥ = 0) and use it to calculate the transverse 
magnetic field. This ignores the contribution from the transverse components of , a 
poor approximation if the current layer is not long compared with its radius.  
  

A transverse dipole current density is not axisymmetric so we start with the 
general differential equation for , i.e. eqn. (2.3c). Its  projection, with  is 
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€ 

∇2Bz = −µ0
1
r
∂
∂r
rJθ = −

µ0
r
∂
∂r
r2 ∂K
∂z
cos θ( ) .     (23.2) 

 
The Green function solution - see section 6 is  
 

  

€ 

Bz =
µ0
4π

d3 ′ r 

1
′ r 
∂
∂ ′ r 

′ r 2
∂K ′ r , ′ z ( )cos ′ θ ( )

∂ ′ z 
 

 
 

 

 
 

′ r − r
∫  .      (23.3) 

 
Integrating by parts in  and using 

€ 

∂ ′ r − r ∂ ′ z = −∂ ′ r − r ∂r , we get  
 

  

€ 

Bz =
∂
∂z

µ0
4π

d3 ′ r 1
′ r 
∂
∂ ′ r 

′ r 2K ′ r ,, ′ z ( )cos ′ θ ( )
 

  
 

  

′ r − r
∫  .     (23.4) 

 
 Since we also have  in the vacuum bore, we may integrate (23.4) in 

 to get 
 

  

€ 

φ = −
1
4π

d3 ′ r 1
′ r 
∂
∂ ′ r 

′ r 2K ′ r ,, ′ z ( )cos ′ θ ( )
 

  
 

  

′ r − r
∫ .      (23.5) 

 
This is valid if the integration in  does not pass through any part of a current layer. 
Inserting the identity , and displaying all 
variables, eqn. (23.5) becomes 
 

  

€ 

φ = −
1
2

d ′ z 
−∞

+∞

∫ d ′ r ′ r 
0

∞

∫ 1
′ r 
∂
∂ ′ r 

′ r 2K ′ r , ′ z ( )
 

  
 

  
⋅

⋅
d ′ θ 
2π0

2π
∫

cos θ( )cos ′ θ −θ( ) − sin θ( )sin ′ θ −θ( )[ ]
′ z − z( )2 + ′ r 2 + r2 − 2 ′ r rcos ′ θ −θ( )

,
    (23.6) 

 
or in a more compact form: 
 

  

€ 

φ = −
cos θ( )
2

d ′ z 
−∞

+∞

∫ d ′ r 
0

∞

∫
∂
∂ ′ r 

′ r 2K ′ r , ′ z ( )
 

  
 

  
f1 a( )

′ z − z( )2 + ′ r 2 + r2
,     (23.7) 

 
with  as defined in section 7: 
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       (23.8) 

 
 On the system axis  but we may expand the integral solution, eqn. (23.7), for 
small  to get the near-axis formula: 
 
         (23.9) 
 

 

€ 

g z( ) = −
1
4

d ′ z 
−∞

+∞

∫ d ′ r ′ r 
0

∞

∫
∂
∂ ′ r 

′ r 2K ′ r , ′ z ( )

′ z − z( )2 + ′ r 2
3

=
1
4

d ′ z 
−∞

+∞

∫ d ′ r ′ r 2K ′ r , ′ z ( )
0

∞

∫ 1

′ z − z( )2 + ′ r 2
3 −

3 ′ r 2

′ z − z( )2 + ′ r 2
5

 

 

 
  

 

 

 
  
.

 (23.10)  

 
The on-axis field is  
 

   .     (23.11) 

 
A quasi-realistic model of a dipole current layer (radius , length ) is  
 

.  (23.12) 

 
Here  is approximated by infinitesimally wide flows at . Equation (23.10) 
yields  
 

  

€ 

g z( ) = −
k
4

2 z +  2( )
z +  2( )2 + R2

−
2 z −  2( )
z −  2( )2 + R2

 

 

 
 

−
z +  2( )3

z +  2( )2 + R2
3 +

z −  2( )3

z −  2( )2 + R2
3

 

 

 
 
 

.

            (23.13) 

 

€ 

Bxo z( )  is plotted below for 
  

€ 

µ0k =1.0T,  = .2m, R = .1m( ) . 
 
 Off-axis fields are conveniently derived from the expansion of  in powers of . 
From  we get: 
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  .      (23.14) 

 
The leading term is known to be 

€ 

g z( )rcos θ( ) = gx . Iterating in eqn. (23.15) gives 
   

  

€ 

φ = cos θ( ) gr − ′ ′ g r3

8
+

givr5

192
− ...

 

 
 

 

 
 

= x g −
′ ′ g x 2 + y 2( )
8

+
giv x 2 + y 2( )2

192
− ...

 

 

 
 

 

 

 
 
.
     (23.15) 

 
 It is easily shown from eqns (23.10 and 23.14) that  
 

  

€ 

d ′ z 
−∞

+∞

∫ Bx r,z( ) =
µ0
2

d ′ z 
−∞

+∞

∫ d ′ r 
0

∞

∫ K ′ r , ′ z ( )  .    (23.16) 

 
For the example distribution [eqn. (23.12)] this integral is simply . 
 
 We can actually define a global scalar potential 

€ 

ϕ( )  for the steering dipole 
potential as follows; let 
 
  

€ 

B = µ0K r,z( )rcos θ( ) ˆ e r +∇ϕ   .      (23.17) 
 
This satisfies 

€ 

∇xB = µ0J , and to make 

€ 

∇ •B = 0 we require 
 

  

€ 

∇2ϕ = −
1
r
∂
∂r
rµ0Krcos θ( ) .      (23.18) 

 
The Green function solution is   
 

  

€ 

ϕ =
µ0

4π
d3 ′ r 

1
′ r 
∂
∂ ′ r 

′ r 2 ′ K cos ′ θ ( )

′ r - r
∫   ,     (23.19) 

 
and 

€ 

Bz = ∂ϕ ∂z  is identical with eqn (23.4). It is apparent that in the magnet bore 

€ 

ϕ = −µ0φ , but eqn (23.17) is also valid in the current layer. 
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