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Efficient solution of linear partial differential equations is still important in many areas of science
and engineering, because it is either the main computational problem or appears as a subpart of
a more complex task, for example in case of projection methods for Navier-Stokes equations. The
method of finite differences was the first to be developed and is probably the best understood,
but it suffers from inability to handle complex geometries and steeply rising costs of obtaining
higher orders of accuracy. The last fifty years saw the emergence of two ideas for increasing the
power of finite differences, addressing both of those issues. Generalized Finite Differences extends
finite differences to arbitrary grids and point clouds while Higher Order Compact methods try to
reduce the size of stencils required to obtain higher order convergence. Unfortunately, the two
extensions seemed to be incompatible because the Higher Order Compact methodology requires
prior knowledge of the finite difference stencil.

In our contribution we present a way of reconciling the two methods, leading to the Higher
Order Compact Generalized Finite Difference method. Beginning with the fundamental ideas of
finite differences, we construct a polynomial approximation to an unknown function as a cross-
section of two subsets of the vector space of polynomials of a given order. We discuss the method
of choosing neighbors on an arbitrary grid using linear programming and prove that our method
prevents singularities of the linear systems used to determine finite difference stencils. In order to
cure ill-conditioning of those systems we introduce a simple conditioning procedure which bounds
the conditioning number and can be used to prove the order of accuracy of our method through a
formal truncation error analysis. Finally, we discuss stability in terms of Gershgorin circle theorem
and present ways of improving stability via small modifications of the method.

We conclude with a wide array of numerical tests where we apply our method to several linear
partial differential equations—including the Laplace and Poisson equations, advection-diffusion
equation, and time dependent diffusion equation—to prove numerically the claimed accuracy of
our method and compare it with others.
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