A BALANCING DOMAIN DECOMPOSITION METHOD BY
CONSTRAINTS FOR ADVECTION-DIFFUSION PROBLEMS

XUEMIN TU AND JING LI

ABSTRACT. The balancing domain decomposition methods by constraints are
extended to solving nonsymmetric, positive definite linear systems resulting
from the finite element discretization of advection-diffusion equations. A pre-
conditioned GMRES iteration is used to solve a Schur complement system of
equations for the subdomain interface variables. In the preconditioning step
of each iteration, a partially sub-assembled finite element problem is solved. A
convergence rate estimate for the GMRES iteration is established, under the
condition that the diameters of subdomains are small enough. It is indepen-
dent of the number of subdomains and grows only slowly with the subdomain
problem size. Numerical experiments for several two-dimensional advection-
diffusion problems illustrate the fast convergence of the proposed algorithm.

1. INTRODUCTION

Domain decomposition methods have been widely used and studied for solving
large sparse linear systems arising from finite element discretization of partial dif-
ferential equations. The balancing domain decomposition methods by constraints
(BDDC) were introduced by Dohrmann [13] and they represent an interesting re-
design of the balancing Neumann-Neumann algorithms; see also Fragakis and Pa-
padrakakis [18] and Cros [12] for related algorithms. Scalable convergence rates
for the BDDC methods have been proved by Mandel and Dohrmann [29] for sym-
metric positive definite problems. Connections and spectral equivalence between
the BDDC algorithms and the earlier dual-primal finite element tearing and inter-
connecting methods (FETI-DP) [16] have been established by Mandel, Dohrmann,
and Tezaur [30]; see also Li and Widlund [27], and Brenner and Sung [5]. The
BDDC methods have also been extended to solving saddle point problems, e.g., for
Stokes equations by Li and Widlund [26], for nearly incompressible elasticity by
Dohrmann [14], and for the flow in porous media by Tu [37, 39, 38].

The systems of linear equations arising from the finite element discretization of
advection-diffusion equations are nonsymmetric, but usually positive definite. A
number of domain decomposition methods have been proposed and analyzed for
solving nonsymmetric and indefinite problems. Cai and Widlund [6, 7, 8] studied
overlapping Schwarz methods for such problems, using a perturbation approach in
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their analysis, and established that the convergence rates of the two-level overlap-
ping Schwarz methods are independent of the mesh size if the coarse mesh is fine
enough. Motivated by the FETI-DPH method proposed by Farhat and Li [17] for
solving symmetric indefinite problems, the authors [25] studied a BDDC algorithm
for solving Helmholtz equations and estimated its convergence rate using a similar
perturbation approach. For some other results using the perturbation approach and
for domain decomposition methods, see Xu [42], Vassilevski [40], Gopalakrishnan
and Pasciak [20].

For advection-diffusion problems, standard iterative substructuring methods usu-
ally do not perform well when advection is strong. Dirichlet and Neumann bound-
ary conditions used for the local subdomain problems in these algorithms are not
appropriate because of the loss of positive definiteness of the local bilinear forms.
More general boundary conditions need be considered. Therefore, a class of meth-
ods have been developed in [9, 10, 36, 19, 31], where additional adaptively chosen
subdomain boundary conditions are used to stablize the local subdomain problems;
see also [32, Chapter 6] and the references therein for other similar approaches.

The Robin-Robin algorithm, a modification of the Neumann-Neumann approach
for solving advection-diffusion problems, has been developed by Achdou et al. [3,
1, 2], where new local bilinear forms corresponding to Robin boundary conditions
for the subdomains are used and a coarse level basis function, determined by the
solution to an adjoint problem on each subdomain, is added to accelerate the con-
vergence. Equipped with the same type local subdomain bilinear forms with Robin
boundary conditions and a similar coarse level basis function, one-level and two-
level FETTI algorithms were proposed by Toselli [34] for solving advection-diffusion
problems. Some additive and multiplicative BDDC algorithms with vertex con-
straints and edge average constraints have also been studied by Conceigao [11].
All these algorithms, based on subdomain Robin boundary conditions, have been
shown to be successful for solving advection-diffusion problems, including some
advection-dominated cases, but a theoretical analysis is still missing.

In this paper, we develop BDDC algorithms for advection-diffusion problems.
As in [2], local subdomain bilinear forms corresponding to Robin boundary con-
ditions are used. The original system of linear equations is reduced to a Schur
complement problem for the subdomain interface variables and a preconditioned
GMRES iteration is then used. In the preconditioning step of each iteration, a
partially sub-assembled finite element problem is solved, for which only the coarse
level, primal interface degrees of freedom are shared by neighboring subdomains.
The convergence analysis of our BDDC algorithms requires that the coarse level
primal variable space contains certain flux average constraints, which depend on the
coefficient of the first order term of the problem, across the subdomain interface,
in addition to the standard subdomain vertex and edge/face average continuity
constraints. A convergence rate estimate for the GMRES iteration is established,
under the condition that the diameters of subdomains are small enough. This es-
timate is independent of the number of subdomains and grows only slowly with
the subdomain problem size. A perturbation approach is used in our analysis to
handle the non-symmetry of the problem. A key point is to obtain an error bound
for the partially sub-assembled finite element problem; we view this problem as
a non-conforming finite element approximation. This approach has recently also
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been used by the authors [25] in the convergence analysis of a BDDC algorithm for
solving interior Helmholtz equations, which are symmetric but indefinite.

The rest of this paper is organized as follows. The advection-diffusion equation
and its adjoint form are described in Section 2. In Section 3, the finite element
space and a stabilized finite element problem are introduced. The local subdomain
bilinear forms and a partially sub-assembled finite element space are introduced
in Section 4. In Section 5, an error estimate for the partially sub-assembled finite
element problem is proved. The preconditioned interface problem for our BDDC
algorithm is presented in Section 6 and its convergence analysis is given in Section 7.
To conclude, numerical experiments in Section 8 demonstrate the effectiveness of
our algorithm.

2. PROBLEM SETTING

We consider the following second order scalar advection-diffusion problem in a
bounded polyhedral domain Q € R?, d = 2, 3,

2.1) {Lu:——VAu+a~Vu—|—cu = f, inQ,

u = 0, on 9.

Here the viscosity v is a positive constant. The velocity field a(z) € (L>(€2))* and
V - a(z) € L>®(Q). The reaction coefficient c(z) € L>®(Q) and f(x) € L*(Q). We
define

- 1 - -
(22) &) =clz) = 5V -al@), & =|&(@)]eo, as =[a(z)]co, and s = [e(2)]oo-
We also assume that there exists a positive constant ¢y such that
(2.3) éx)>c >0, Vre.

The bilinear form associated with the operator L is defined, for functions in the
space HJ(Q), by

(2.4) ao(u,v) = / (vVu-Vv+a-Vuv + cuv) dr,
Q

which is positive definite under assumption (2.3). The weak solution u € H}(Q) of
(2.1) satisfies

(2.5) ao(u,v) = [ fvdzx, YwveH)Q).
Q

Under certain assumption on the shape of 2, e.g., Q convex, we know that the
weak solution u of the original problem (2.1), as well as the weak solution of the
adjoint problem L*u = —v Au — V - (au) + cu = f, satisfies the regularity result,

(2.6) lull 2y < Cll fllL2@)

where C is a positive constant which depends on the coefficients of the partial
differential equation (2.1) and the shape of the domain §2; cf. [21, Section 9.1].
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3. FINITE ELEMENT DISCRETIZATION AND STABILIZATION

Let W C H}(Q) be the standard continuous, piecewise linear finite element
function space on a shape-regular triangulation of 2. We denote an element of the
triangulation by e, and its diameter by h.. We set h = max, he.

It is well known that the original bilinear form a,(-,-) has to be stabilized to
remove spurious oscillations in the finite element solution for advection-dominated
problems. There are a large number of strategies for this purpose; see [22] and the
references therein. Here, we follow [22, 34] and consider the Galerkin/least-squares
method (GALS) of [22]. On each element e, we define the local Peclet number by

_ hellalle;

P, = where [[alc,00 = sup |a(z)],

3
2v x€e

and we define a positive function C'(z) by

—QHQﬁe if P, >1,
(3.1) Clx)=9 277 Vzce,
2 if P, <1,

where 7 is a constant. We set 7 = 0.7 in our numerical experiments. Define
Cs = ||C(2) |00, and we know from the definition of C(x) that

T 2
. s — o < .
(3.2) C [|C ()]l 4yh

The stabilized finite element problem for solving (2.5) is: find u € W, such that

(3.3) a(u,v) :=ao(u,v)+ | C(z)Lulvdx = / fode+ | C(x)fLv dz, Yv € w.
Q Q Q
Here and from now on, the integration over €2 in the stabilization terms always
represents a sum of integrals over all elements of (2. We note that for all piecewise
linear finite element functions v, Lu = —v Au+a-Vu+ cu = a-Vu+ cu, in each
element.
The symmetric and skew-symmetric parts of a(u,v), respectively, are denoted

by

(3.4) blu,v) = / (vVu- Vo + C(z)LuLv + éw) dz,
Q
(3.5) z(u,v) = % /Q (a-Vuv —a-Vou) dr.

The system of linear equations corresponding to the stabilized finite element
problem (3.3) is denoted by

(3.6) Au = f,

where the coefficient matrix A is nonsymmetric but positive definite. We denote
the symmetric part of A by B and its skew-symmetric part by Z; they correspond
to the bilinear forms b(-, -) and z(-,-) in (3.4) and (3.5), respectively. In this paper,
we will use the same notation, e.g., u, to denote both a finite element function and
the vector of its coefficients with respect to the finite element basis; we will also use
the same notation to denote the space of finite element functions and the space of
their corresponding vectors, e.g., w.
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4. DOMAIN DECOMPOSITION AND A PARTIALLY SUB-ASSEMBLED FINITE
ELEMENT SPACE

The original finite element triangulation of €2 is decomposed into N nonover-
lapping polyhedral subdomains €2;; each subdomain is a union of shape regular
elements. The typical diameter of the subdomains is denoted by H. The nodes on
the boundaries of neighboring subdomains match across the subdomain interface
I = (U0;)\0Q. The interface I' is composed of subdomain faces F! and/or edges
&k, which are regarded as open subsets of I', and of the subdomain vertices, which
are end points of edges. In three dimensions, the subdomain faces are shared by
two subdomains, and the edges typically by more than two; in two dimensions, each
edge is shared by two subdomains. The interface of subdomain €; is defined by
I'; = 0Q; NT". We denote the space of finite element functions on €2;, which vanish
at the nodes of 99, by W), The local bilinear and stabilized bilinear forms are
defined on W by

(4.1) a (u® @) = / (VVu(i) Vo) +a- Vu®y® 4 cu(i)v(i)) dz,
Q
and
E(i)(u(i), v(i)) = / (VVu(i) Vo +a- VuDy® 4 ey Dy® 4 C(J:)Lu(i)Lv(i))d:c
Q

= / (VVu(i) Vol 4+ C(J:)Lu(i)Lv(i) + éu(i)v(i))d:c
Qs

—|—l / (a VuDop®) —a. Vv(i)u(i))d:c + 1 / a-nu®v® ds,
2 Ja, 2 Jr,

We note that, in general, we cannot ensure that the stabilized bilinear form
@ (-,-) is positive definite on W since the boundary integral on T'; does not
vanish and the sign of a - n depends on the orientation of the flow a in relation to
the external normal direction n on I';. We therefore modify @”)(-,-) as in [2] and
introduce

(4.2) a@D(u® @) = g® (@ @) — 5/ a-nu®v® ds,

r;
which corresponds to the Robin boundary condition on I';. The assumption (2.3)
now ensures that the modified local bilinear forms a(¥) (-, -) are positive definite on
W® i =1,2....,N. The symmetric and skew-symmetric parts of a(® (u(?),v(*)
are represented, respectively, by

(43)  bD(@®,0) = /(VVu(i)-Vv(i)—|—C(3:)Lu(i)Lv(i)—|—5u(i)v(i))d:c,
Q

(44) 0@,y = / (a- Vuu® — a. Tolu®)de.
Q;

We now introduce a partially sub-assembled finite element space, which was
introduced by Klawonn, Widlund, and Dryja [24] in their analysis of FETI-DP
algorithms for symmetric positive definite problems. The partially sub- assembled
finite element space W is the direct sum of a coarse level primal subspace WH, which
is a space of continuous coarse level finite element functions, and a dual subspace
W, which is the product of local dual spaces ( ). The space WH corresponds to
a few selected subdomain interface degrees of freedom for each subdomain and is
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typically spanned by subdomain vertex nodal basis functions, and/or interface edge
and/or face basis functions with weights at the nodes of the edge or face. These basis
functions will correspond to the primal interface continuity constraints enforced in
the BDDC algorithm. To simplify our analysis, we will always assume that the
basis has been changed so that we have explicit primal unknowns corresponding
to the primal continuity constraints of edges or faces; these coarse level primal
degrees of freedom are shared by neighboring subdomains. For more details on the
change of basis, see [23, 27]. Each subdomain dual space W( 2 corresponds to the
subdomain interior and dual interface degrees of freedom and it is spanned by all
the basis functions of E(i) which vanish at the primal degrees of freedom. Thus,
functions in the space W have a continuous coarse level, primal part and typically
a discontinuous dual part across the subdomain interfaces. We have W c W and
we denote the injection operator from W to W by R.

We define the bilinear form on the partially sub-assembled finite element space
w by

Z (1 1) Yu,ve W,

where u() and v(¥ represent restrictions of u and v to subdomain ;. Corresponding
to the stabilized forms, we define, for all u,v € W,

Z(l 1, Zb(l 1,2 Z(l (2)

Denote the partially sub- assembled ‘matrices corresponding to the bilinear forms
a(-,-), b(-,-), and 3(-,-) by A, B, and Z, respectively. We have

A=RTAR, B=RTBR, and Z=RTZR.

We note that the use of the modified bilinear form a(¥(-,-), defined in (4.2) cor-
responding to the Robin boundary condition, does not affect the matrix A of the

original problem when it is assembled from /Nl, since the additional interface terms
n (4.2) cancel.

We define broken norms on the space W, by ||w||%2(ﬂ) = Zi\il Hw(i)Hiz(Qi)
and |w|3 ) = PO |w(l)|fql(ﬂi). In this paper, ||w||r2(q) and |w]| g1 (o), for func-

tions w € W, always represent these broken norms. Since the subdomain bilinear
forms b (-,-), i = 1,2,..., N, are symmetric positive definite on W, we define

a9 =00l ), for amy ) € W19 We define [y = S, [0
for any u € W, and ||w|| Z =t )HB( 5, for any w € W. Both B- and B-

norms are also well deﬁned for functions in the space H%(Q).
Lemmas 4.1 and 4.2 are immediate consequences of the definitions of B®*)- and
B- norms.

Lemma 4.1. For allw® e W, i=1,2, ., N, u|w?|gi(q, < |w?| pw, and
min{ /v, Ve |[w| ) < 0| g0 -

Lemma 4.2. There exists a positive constant C, which is independent of H and
h, such that for all u € H*(Q), ||lullp < C|lullm2(0)-

From Lemma 4.1, follows
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Lemma 4.3. There exist positive constants Cy and Ca, which are independent
of H and h, such that for all u® v® € W@ i =12 .. N, [z20u® 0@ <

C1luD| g v gy, and [a@ (u®,0D)] < Co[[u®]| geo 0D || g -

Lemma 4.4. There exists a positive constant C, which is independent of H and
h, such that for all u,v € W, |z(u,v)| < Cllul|B||v||L2(0)-

Proof: We find, by integration by parts and using Lemma 4.1, that

1
|2 (u,v)| < 5/ |2a - Vuv 4+ V - auv| dz
Q

O

< C(aslulmr@)llvllze@) + 11V - allso lull 2@ [0l 22)) < Cllullsllvllzzg)-

We also have the following approximation property in B-norm for the finite
element space W.

Lemma 4.5. There exists a positive constant C, which is independent of H and
h, such that for all u € H?*(Q), inf 7 lu —wlB < Chlu|g2(q).

Proof: We have, for any u € H2(2) and w € W, that
lu—wlf = blu —w,u—w) < viu—wlz g + Csl|L(u — w)l|720) + &llu— wl7a
=vlu— w@]l(sz) + CsllvAu+a-V(u—w) +c(u — w)”%?(sz) + Csllu — w||%2(9)

< V205|u|%12(n) + (v+ Csa?)u— w@]l(n) +(Cscs +E)||u - w||%2(9).

We complete the proof by using (3.2) and the following standard finite element
approximation results, cf. [35, Lemma B.6],

inf_ {||u - w||i2(sz) + h?u— wﬁ{l(ﬂ)} < Ch4|u|?12(sz)- U
weW

For each subdomain interface edge £F, let Ygr be the standard finite element
edge cut-off function which vanishes at all interface nodes except those of the edge
EF where it takes the value 1. For three-dimensional problems, we denote the finite
element face cut-off functions by 9, which vanishes at all interface nodes except
those of F! where it takes the value 1. Let Ij, be the interpolation operator into
the finite element space. In the convergence analysis of our BDDC algorithm for
advection-diffusion problems, we require that the coarse level primal subspace WH
satisfies the following assumption.

Assumption 4.6. For two-dimensional problems, the coarse level primal subspace
WH contains all subdomain corner degrees of freedom, and for each edge EF, one
edge average degree of freedom and two edge flur average degrees of freedom such
that for any w € W,

/w(“ ds, /a~nw(“ ds, and /a~nw(i)5 ds,
£k £k Ek

respectively, are the same (with a difference of factor —1 corresponding to opposite
normal directions) for the two subdomains ; that share EF.

For three dimensional problems, WH contains all subdomain corner degrees of
freedom, and for each face F', one face average degree of freedom and two face
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fluz average degrees of freedom, and for each edge &k, one edge average degree of
freedom, such that for any w e W,

/ I (ﬁfzw(i)) ds, / a-nlj (ﬁfzw(i)) ds, and / a-nlj (ﬁfzw(i))sds,
Fl Fl Fl

respectively, are the same (with a difference of factor —1 corresponding to opposite
normal directions) for the two subdomains Q; that share the face F', and

/gk I (ﬁgkw(i)) ds

are the same for all subdomains ; that share the edge EF.
The following result can be proved under Assumption 4.6.

Lemma 4.7. Let Assumption 4.6 hold. There exist positive constants C; and Co,
which are independent of H and h, such that for all w® € W which vanish at
the coarse level primal degrees of freedom, ||w®| g < C1lw® |51 (q,), and for all

we W, ||wlz < Colwlm o).
Proof: We recall that, for any w® € W®, Lw® = a - Vw® + cw®. We have,

[wO)%e = / (V|Vw(i)|2 +C(z)(a- V' + cw(i))2 + E(w(i))2) dx
Q,

i

< / (V|Vw<i>|2+20(:c)((a~Vw@)2 + (cw®)?) +5(w<i>)2) dz
Q;
< (W +2Cad)|w?[Fn g, + (2056 + &) [0 F2gq,y < CLlw® 3 ),

where in the last step we use a Poincaré-Friedrichs inequality for w(? which has
vanishing averages on the subdomain interface.
To prove the second inequality in the lemma, we find that for any w € W,

N
lwlif = lw@s0 < (v+205ad)|wlt @)+ (2Cse; + &) [wllizi) < Colwltnq),
i=1
where in the last step we use a Poincaré-Friedrichs inequality proved by Brenner
in [4, (1.3)] which holds under Assumption 4.6. O
We will need an error bound for the approximation of partially sub-assembled
finite element problems in the analysis of our BDDC algorithm. For this purpose,
we make an assumption for our decomposition of the global domain €.

Assumption 4.8. FEach subdomain Q; is triangular or quadrilateral in two dimen-
sions, and tetrahedral or hexahedral in three dimensions. The subdomains form a
shape regqular coarse mesh of €.

Under Assumption 4.8, we can denote by /I/I7H the continuous linear, bilinear,
or trilinear finite element space on the coarse subdomain mesh, and denote by I
the finite element interpolation operator into /I/I7H We have the following Bramble-
Hilbert lemma; cf. [41, Theorem 2.3].

Lemma 4.9. There exists a constant C', which is independent of H and h, such
that for all w € H*(Q), ||u— Igullpe ;) < CH* ulpz(q,), for allt =0,1,2, and
i=1,2,...,N.
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5. ERROR ESTIMATE FOR A PARTIALLY SUB-ASSEMBLED FINITE ELEMENT
PROBLEM

In this section, we prove an error bound for the solution of a partially sub-
assembled finite element problem.

Given g € L2(Q), we define ¢, € HL(Q) and @, € W as the solutions to the
following problems, respectively,

(5.1) ao(u, pg) = (u,9), VUGH(}(Q),

(5.2) ao(w,pg) + | Clx)L*wLl* @y dz = (w,g)+ [ C(z)L*wg dz, Yw € w.
Q Q

We know from (5.1) that ¢, is the weak solution to the adjoint problem L*p, = g,
and ¢, € H?*(Q) under the regularity assumption (2.6). We have the following
result.

Lemma 5.1. Let Assumption 4.6 hold. For any g € L*(Q), let ¢4 be the solution
to (5.1) and let Ly(q,pq) = Go(q,0q) — (¢,9), for ¢ € W. There then ezists a
constant C, which is independent of H and h, such that for allq € W, |Li(q, ¢g)| <

CHu(H, h)||¢gllm2lqll 5, where p(H,h) = 1, for two-dimensional problems, and
w(H, h) =1+1log(H/h), for three-dimensional problems.

Proof: We give the proof only for the three-dimensional case; the two-dimensional
case can be proved in a similar manner. For any ¢ € W, we have

Li(g,09) = do(q,09) = (q:9)
N
= Z/ VDV, +a- Vg o, 4 cgVp, — ¢@ ) dx
=1 Ql
N

= {/ V(?n(pgq(i) +a- nwgq(i)) ds
o0,

- / (VAwgq(“ + V- (apy)q") — g™ +gq(“) d:c}
Q;
N . .
= Z/ (V‘?"‘qu(l“ra'n‘%’gq(l)) ds
; oQ;

= Z Z / V&ng()—ka ny, q()) ds,

i=1T;Co0;

<.
—

where we use the fact that L*p, = ¢ holds in the weak sense. Here I';; represents
the boundary faces of ;.

Denote the common average of ¢ on the face F' of I';j by @z and its common
averages on the edges €% by Geu. Since the finite element cut-off functions 9
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and Ygix provide a partition of unity, cf. [35, Section 4.6], we have

Lh(Qa ‘Pg) =

N
Z Z {‘/}_l (V3n<ﬂgfh(19fl(q(i) —qz)) +a'n<PgIh(19]:z(q(i) _g}_l))) ds

i=1T;;COQ;
+ Z / (V@n%lh(ﬁgm (q(l) - qgm)) +a- Il(pgfh(ﬁguc(q(i) - ggzk))) ds},
EWCTy; 7

where we have also subtracted the constant average values gz and ggur from g\,
which does not change the sum. Then, from Assumption 4.6, we know that

N
Lnla.wg) = D> > /f (vntey = I ) In(Wr1 (@ = T5)) ) ds

i=1T;Co0;

N
+3 [ (aentes— e (0@ = 50) ds

i=1T;Co0;

N
+Z Z Z /]__l (Van‘?’g(jh(ﬁslk(q(i)—qg“c)))) ds

i=1T;;COQ; ERCTy;
N
DD DS /fz (a~n<ﬂg(fh(19slk(q(i)_af”‘m) ds

i=1T;;CO; EIFCTy,
(53) =1+ o + I3+ Iy,

where Ipp, represents the interpolation of ¢, into the space /I/I7H on the coarse
subdomain mesh. We will show in the following that each of the four terms in (5.3)
can be bounded by CH (1 +log(H/h))||¢gl a2 ||q|l 5, where C' is a positive constant
independent of H and h.

For the first term I;, from the Cauchy-Schwarz inequality, we have

(5.4)
N _ _ 1/2
nl=ry ¥ ([ 961000 ds [ 10n 6 g )

i=1 Ty Cco

Using a trace theorem and Lemma 4.9, we have for the first factor

[ ey =100 ds < CHIV (s~ 1)) e
(5.5) < CHllpy — Il(r})<ﬂg||§12(ﬂi) < CH|‘P9|%I2(QI-)'
For the second factor, we have

/F L9 71 (¢ —)))? ds < CH| (97 (q") = )70 o)

Ho o _ H,
(5.6) < CH(1+log EVHQ(” —qrl o) < CH(1 4 log E>2|q( ure

where we have used a trace theorem for the first step, a Poincaré-Friedrichs inequal-
ity and [35, Lemma 4.24] in the second, and a Poincaré-Friedrichs inequality in the
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last step. Combining (5.4), (5.5), and (5.6), we have the following bound for I,

N
H H
| < CvH(1+log ) > gl mz@nlalar@n < CVVH(1 +log gl lal 5,

=1

where we use the Cauchy-Schwarz inequality and Lemma 4.1 in the last step.
To derive a bound for I, we find from the Cauchy-Schwarz inequality that
(5.7)

1/2

N
1< S al [ e -1e ds [ 100560 -0 )

i=1 Ty CcCo

Using a trace theorem and Lemma 4.9, we have, for the first factor on the right
hand side of (5.7),

(5.8) /f oo = 170l ds < CHllpg = I @l ) < CH ol

Combining (5.7), (5.8), and (5.6), and using Lemma 4.1, we have

N
H H H
|Io| < CasH?(1+log —) D legluznlala @, < C@s\/—H(H-lOg el llall 5
1=1

v
The estimate for I3 is similar to the estimate for I;. Instead of using (5.5) and
(5.6), we have, by using a trace theorem,

(59) [ 19e? ds < CHIV ey oy < CHI s,
and

(5.10) /f 0 (¢%) = Geu)|? ds < ChlIndein (¢ — Feu) 1321y

H - H -
< Ch(1+log E)Hfhﬁg“c(q(l) - qg*)”%{l(ni) < Ch(1 + log E)2|q(l)|§{1(gi)-

In the first step of (5.10), we use the fact that I,9¢ix (¢?) — Geu) is different from
zero only in the strip of elements next to the edge £'*; in the second and the
last steps, we use [35, Lemma 4.16], [35, Corollary 4.20], and a Poincaré-Friedrichs
inequality. Combining (5.9) and (5.10), we have

N
H hv H
|I3] < Cvv Hh(14+1og E) Z llogll a2 nlalmr ) < C\/ FH(H—log E)H‘PgHH%Q)HQHE'
i=1

Similarly, for I, we have

h H
14| < Cagy| = H(1+log )llealcolal 5. 0

Remark 5.2. In the case of two-dimensional problems, only the first two terms
in (5.8), corresponding to the edges, appear. The finite element cut-off functions
are no longer used in the proof and as a result the factor 1+log(H/h) in the bound
disappears.

Remark 5.3. The constant factor in the bound of Is in the proof is proportional
to H/\/v, where H compensates for the effect of small v in the advection-dominant
case. Without using the two face flux average continuity constraints as in As-
sumption 4.6, this constant factor would become proportional to 1/\/v instead. For
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two-dimensional problems, the same benefits can be obtained by enforcing the two
edge fluxr average continuity constraints as in Assumption 4.6. Our numerical ex-
periments in Section 8 show the effectiveness of using the two edge flux constraints
for two-dimensional examples. The constant factor in the bound of Iy (only appear-
ing for three-dimensional problems) is proportional to \/h/(vH) where h/H can be
used to compensate for the effect of small v; in fact this factor can be improved to
VhH/v by introducing a few extra edge normal flux average constraints, cf. [26,
(35)].

Lemma 5.4. There ezists a positive constant C', which is independent of H and
h, such that for allq € W and w € W U H*(), [, C(z)LqLu dz < Chlq| 5llu|l 5.
and J,, C(a)L*qL*u da < Chllq] gllul 5.

Proof: We only give proof for the first inequality; the second one can be proved

in the same way. We have, for any ¢ € W and u € W U H%(Q),

C(z)Lglu dx = | C(z)(a-Vq+ cq)Lu dx
Q Q

< IIC(ac)Iloo(/Q (a.Vq+cq)2d:c)l/2( ) C(x)(Lu)2d:c)l/2 < Chllqll zllull 5,

where we use (3.2) in the last step. O

Lemma 5.5. Let Assumption 4.6 hold. ¢4 and &4 are solutions of (5.1) and (5.2),
respectively, for g € L2(Q). If h is sufficiently small, then

leg — @gllg < CHu(H, h)|lgl 12,

where C' is a positive constant, independent of H and h, and u(H,h) given in
Lemma 5.1.

Proof: For any J € W, we have
1By — D% = @By — &, 39 — ¥)
= E(&g - {/)va Pg — J) + (E(&g - {/)va &g) - E(&g - {/)va ‘Pg))
= E(&g -1, Pg — 1/)) + (EO(&g -, &g) - Eo((ﬁg -, ‘Pg))
+ | C@L(@, - D) L(G,y — ) dx
= WGy — U, 09 — )+ (Bg —:9) = @o(By — ¥, 00))

+ [ C@L@, - D)L, — pg) dr - / C@)L* By — D)L (Bg — y) d,
Q Q

where in the last step we use (5.2) and that L*p, = g holds in the weak sense.

Dividing by ||¢g — ‘ZHE on both sides and denoting ¢, — ¥ by ¢, we have, from
Lemmas 4.3, 5.4, and 5.1, that

’(Qa g) - Eo(q, <Pg)’
lall 5

Cllpg = ¥l g + CHu(H, h) @yl 2 + Chll, — ¢4l 5-

g —¥llzg < Cllog—¢lz+ + Chllgg —¢qll5

IN
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Then, using a triangle inequality, we have
leo = allz < inf {lley — Pz + 18, - 95}
peW
C;/;inv% leg = ¥ll5 + CHu(H, h)lleglluz + Chllgg — ¢ql 5
€

IN

IN

CHu(H, h)|lpgll 2 + Chllog — ¢4l 5,

where we use Lemma 4.5 in the last step. If h is small enough, the second term
on the right hand side can be combined with the left hand side and our result is
proved. (I

6. THE BDDC PRECONDITIONER

The BDDC algorithms and closely related primal versions of the FETT algorithms
were proposed by Dohrmann [13], Fragakis and Papadrakakis [18], and Cros [12], for
solving symmetric, positive definite problems. The formulation of BDDC precondi-
tioners applies equally well to nonsymmetric problems. In our BDDC algorithm for
solving the advection-diffusion problems, the global system of linear equations (3.6)
is reduced to a Schur complement problem for the subdomain interface variables
and then a preconditioned GMRES 1terat10n is used to solve the interface problem.

We decompose the space W into Wi & Wp, where W; is the product of local
subdomain spaces WI( ), i = 1,2,...,N, corresponding to the subdomain interior
variables. Wp is the subspace corresponding to the variables on the interface. The

original discrete problem (3.6) can be written as: find uy € Wy and ur € Wp, such
that

Arir A ur I1
6.1 = ,
(6.1) [ Arr  Arr ur fr
where Aj; is block diagonal with one block for each subdomain, and Arr cor-
responds to the subdomain interface variables and is assembled from subdomain
matrices across the subdomain interfaces.

Eliminating the subdomain interior variables u; from (6.1), we have the Schur
complement problem

Srur = gr,
where Sr = Arr — AFIA;IIAIF, and gr = fr — AFIA;IIf[

Correspondmgly, we define a partially sub assembled Schur complement opera-
tor Sp as follows. We decompose the space W into Wr & Wp Here Wp contains
the coarse level, continuous primal interface degrees of freedom, in the subspace
Wm, which are shared by neighboring subdomains, and the remaining dual sub-
domain interface degrees of freedom which are in general discontinuous across the

subdomain interfaces. Then the partially sub-assembled problem matrix A can be
written in a two by two block form

Anr A:IF

6.2
(6.2) Arr  Arr

where Apr is assembled only with respect to the coarse level primal degrees of free-
dom across the interface. The partially sub-assembled Schur complement operator
Sp is defined by Sp = App — AFIAH A[F From the definition of St and Sp, we see
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that Sp can be obtained from Sr by assembling with respect to the dual interface
variables, i.e.,

Sr = RESrRr,

where Ep is the injection operator from the space Wp into Wp. We also define
EDyp = Dﬁp, where D is a diagonal scaling matrix. The diagonal elements of
D equal 1, for the rows of the primal interface variables, and equal 5;‘ (z) for the
others. Here, for a subdomain interface node z, the inverse counting function 5;‘ (x)
is defined by &' () = 1/card(N,), where N, is the set of indices of the subdomains
which have z on their boundaries and card(N;) is the number of the subdomains
in the set N.
The preconditioned interface problem in our BDDC algorithm is

(6.3) §%7p§;1§D7FSFuF = §%7p§;1§D7ng.

A GMRES iteration is used to solve (6.3). In each iteration, to multiply Sr by
a vector, subdomain Dirichlet boundary problems need be solved; to multiply g{ !
by a vector, a partially sub-assembled finite element problem with the coefficient
matrix A needs be solved, which requires solving subdomain Robin boundary prob-
lems and a coarse level problem; cf. [27]. After obtaining the interface solution ur,
we find u; by solving subdomain Dirichlet problems.

7. CONVERGENCE RATE OF THE GMRES ITERATION

In this section, we give a convergence analysis of the GMRES iteration for solving
the preconditioned interface problem (6.3) for advection-diffusion problems.

For any ur € WF, we denote its standard discrete harmonic extension to the
interior of subdomains by uy r € W; see [35, Section 4.4] for a definition of the
discrete harmonic extension. We have the following result on the equivalence of the

norms of local discrete harmonic extensions and traces on subdomain boundaries,
cf. [35, Lemma 4.10].

Lemma 7.1. There exist positive constants ¢ and C, which are independent of H
and h, such that for all ur € Wr, and i =1,2,....N,

C|U£:Q),F|Hl(szi) < |u§‘i)|H1/2(aﬂi) < C|u§—i{),1‘|H1(Qi)-

We define another discrete extension of ur € Wp to the interior of subdomains
by

1%
(7.1) U = [ —Apy Arur ] ew.

ur
The discrete harmonic extension us r can be obtained from ur by solving sub-
domain Dirichlet problems corresponding to discrete Laplacian and it minimizes
the energy norms of all finite element functions which have the trace ur on the
interface. ua,r does not have this energy minimization property and it is obtained
from ur by solving subdomain advection-diffusion problems with Dirichlet bound-

ary conditions as shown in (7.1). We note that both uy,r and uar are also well
defined for ur € Wr, and as a result uyr € W and uar € W.
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We define two bilinear forms for vectors in Wp and Wr respectively by
(7.2)  (ur, ’UF>BF = ’UiypBu_Ayp, and (ur, vp>ZF = ’UinZ’LL_Ayp, Y ur,vr € Wp,
(7.3)  (ur, vp>§F = U£7FEU_A7F, and (ur, ’UF>ZF = ’UiypZU_Ayp, Y ur,vr € Wp.
In general, we use the notation (p,q),, to represent the product ¢” Mp, for any

given matrix M and vectors p and gq.
From the definitions (7.1), (7.2), and (7.3), follows

Lemma 7.2. For any v € W, denote its restriction to I' by vr € Wr. Then for
any ur € Wr and v € W, (ur,vr)g. = (uar,v)z and (ur,vr)g. = (ur,or)g. +
(ur,vr)z.. For any ur € Wr, (ur,ur)g. = (uar,uar)zy = (uar,uar)g =
(ur,ur)g. > 0, and (ur,ur)z_ = 0. The same results also hold for functions and

the corresponding bilinear forms in the space Wp.

From Lemma 7.2, we define Br- and Ep— norms for elements in the spaces Wp
and Wr respectively by: |Bp|\2BF = (ur,ur)p,, for any ur € Wr, and ||prJ2§F =
(wr,wr) 5., for any wr € Wr.

The following two lemmas can be obtained from definitions (7.2) and (7.3), and
Lemmas 7.2, 4.3, and 4.4.

Lemma 7.3. There exist positive constants C1 and Ca, which are independent of
H and h, such that for all ur,vr € Wr, [(ur,vr)z | < Cillur| g [vrlg,. and
| {ur,vr)g. | < Collur(g. llvrllz.. The same results hold for functions and the

corresponding bilinear forms in the space Wp as well.

Lemma 7.4. There exists a positive constant C, which is independent of H and
h, such that for all up,vr € Wr, | <UF,’UF>ZF | < Cllur||Brllvarlza)-

We denote the preconditioned operator §%7F§EIED7FSF in (6.3) by T. The
convergence rate of the GMRES iteration can be estimated by using the following
result due to Eisenstat, Elman, and Schultz [15].

Theorem 7.5. Let c and C? be two positive parameters such that

(7.4) c<u,u>BF < <u,Tu>BF ,
(7.5) (Tu,Tu)p. < c? (u,u)p. -
Then
[ (1_ ﬁ)mﬂ
IrollBr — c? ’

where 1, is the residual of the GMRES iteration at iteration m.

Remark 7.6. In our convergence analysis of the GMRES iteration, we use the
Br-norm; the analysis in the L?-norm is not available yet. In our numerical exper-
iments, we have found that the convergence rates in both the Br- and L?- norms
are quite similar. For a study of the convergence rates of the GMRES iteration
combined with an additive Schwarz method in the Fuclidean and energy norms, see

Sarkis and Szyld [33].
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We define an interface average operator Ep r for functions in the space Wp by
Eprwr = RFR D.rWr; for any wr € Wp This operator computes an average of wr
across I'. The followmg result on the stability of Ep r can be found in [24, 23, 28].

Lemma 7.7. Let Assumption 4.6 hold. With ®(H,h) = C(1 —|—10g(H/h)) where C
is a positive constant which is independent of H and h, | (EDypwp)( |12 00, <
O(H, 1) w1200, for all wp € Wr, and i =1,2,...,N.

Lemma 7.8. Let Assumption 4.6 hold. There then exists a positive constant C,
which is independent of H and h, such that for all wr € Wr, |\ED7ppr§F <
C®(H,h)|lwr|l g, where ®(H, h) is given in Lemma 7.7.

Proof: 1t is sufficient to show that || Ep rwr—wr||g. < C®(H, h)|lwr|| g, . Denote
Ep rwr —wr by vr. Let v and vy r be the extensions defined by (7.1) and the
standard discrete harmonic extension of vr, respectively. From the definition of
var, we know that a(l)( @) q(l)) =0, for any ¢ € W®, which vanishes at the

nodes of 9€;. Take ¢(¥) = 054?1‘ - UQF and we find
a(i)(vg?n US) (i) ) =0.

r —Uxr
Therefore, we have

= 1R = vl vl — vl = 0@ (i, ol = vl

()

||UAF _UH FHB()

IN

Ol

where we use Lemma 4.3 in the last step. Canceling the common factor, we have

- UH,FHBUM

lolr = virllzo < Cllvsrllzo-
Therefore, ||Ufz)r||B(') < C||v${)F||B( ». From this and using (7.3) and Lemmas 4.7,

7.1, 7.7, and 4.1, noting that v( ) vanishes at the coarse level primal degrees of
freedom we have

N
1Ep,rwr — wrl|%_ = llvarly = va e <3 108

N N
Cz |’U’§2F|§fl(ﬂi) < Cz |’U§l)|§{1/2(agi) < C(I)2(Ha h) Z |w§‘l)|§{1/2(89i)

i=1 =1 =1

IN

N N
CO2(H,h) > [wi) 2 ) < CO*(HB) D w2 q)

=1 =1

IN

N
< COUH )Y [wilbe = COXH, D) wrl% . O
1=1

Lemma 7.9. Letwr = §;1§D7p5’pur, forur € Wp. Then ||wp||2§ = (ur, TuF>SF .
r
Proof: Since Egpwp = §%7F§;1§D7FSFU = T'ur, we have, using Lemma 7.2,
~ ~ =~
lwrll3. = (wr,wr)g, = wr” Srwr = wr” SpSpt Rp rSrur

= 'LUFTED,FSF'UJF = <UF, Eg,FU’F>5F = <UF,TUF>SF . O
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Lemma 7.10. Let Assumption 4.6 hold. Let wr = §;1§D7p5’pur, forur € /Wp.
There then exists a positive constant C, which is independent of H and h, such that
for all ur € Wr, prH% < C®*(H, h)|ur|%,, where ®(H, h) given in Lemma 7.7.
I

Proof: We have, from Lemma 7.2,

<Tur, TU’F>BF = <T’u,p, TUF>SF = <§%7F§;1§D,FSF'UJF, E%ypggléDypSqu>SF
= (RrR}, pur, Rngpwr>§F = (Epwr, Epur)g. = HEDU’FHQEF-

Then, from Lemmas 7.8, 7.9, and 7.3, we have

(Tup, Tur)p. = HEDer%F < Co*(H, h)prH%F = C®*(H, h) (ur, Tur)g,
< C®*(H, h)||Tur| pellur | 5r-

Therefore, we have

(76) <T’U,p, TU’F>BF S C(I)4(H, h) <’U,p, uF>BF .
Then, using Lemmas 7.9 and 7.3, and (7.6), we have,
lwrllF,. = (ur, Tur)g. < Cllurllp | Turlls, < CO*(H, h)lur|f.. O

Lemma 7.11. Let wr = §;1§D7FSF’UJF, for ur € Wp. Then for all v € E(W),
(war,v) 7= <Ru,47p, ’U>A~, i.e., <’LU_A7F —Ruar, ’U>A~ =0.

Proof: For any v € E(W), denote its continuous interface part by vr € R (Wp)
Given ur € Wrp, from Lemma 7.2 and the fact that RFRBFUF = vpr, we have
<’LU_,47F, ’U>A“ = <’LUF, UF>§1" = v%gpwp = ’U%jgpg;lél)ypsl‘ul‘ = U%EDypé%jgpéqu

= <EF’UJF, Epﬁgypvp>~ = <EF’UJF, UF>§F = vggpéqu = <§u_,47p, ’U> O

Sr A

Lemma 7.12. Let Assumption 4.6 hold. Let wr = §;1§D7p5’pur, forur € /Wp.
There then exists a positive constant C, which is independent of H and h, such that
for all ur € Wr,

lwar —uarle e < CHp(H, h)®(H, h)|ur|| By,
where p(H, h) and ®(H, h) are given in Lemmas 5.1 and 7.7 respectively.
Proof: We have, from (5.1) and (5.2), that

(w.A,F —UuAT, g)

= EO(U’A,F, &g) - GO(UA,F, <Pg) - C(x)L*wA,FL* (‘Pg - &g) dx
Q

= a(war,@g) — aluar, py) +/ C(z)(LuarLey — LwarLe,
Q
—L*warL*(pg — @g)) dzx
= a(war —uar, 9g) — aluar, Py — Pg) +/ C(z)(L(uar — war)Leg
Q

+LwarL(pg — pg) — L*warLl* (¢, — @g)) dx
< a(war —uar, @g) —a(uar, pg — Pg) + Chllwar —uarlzllesl s
+Chllwarlzlleg — ol 5

where we use Lemma 5.4 in the last step.
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Let v be any finite element function in the space W. Then from Lemma 7.11,
we know that a(war —uar, ) =0. Therefore,

a(war —uar; Pg) —a(uar, g —Pg) = a(war—uar, pg—P)—a(uar, Pg—Pg)-
Then, using Lemmas 4.3, 4.2, 4.5, and 5.5, and that ||¢g4| g2() < CllglL2), we
have
|(war —uar,g)|
< Cllwar —uarlz+lluarlz ey — ¢z + lleg — 6l 5)
+Ch (lwar —uarlzlegls + lwarlzles — ol 5)
< C(llwar —uarlz+lluarlz) ey — ¢z + 2lles — &4l 5)
+Ch (|lwar —uarlzllegllaz@ + lwarlzlles — Goll5)
< CHp(H, h)([|lwar —uarlz+lluarlz + [warl g)lgllez@)-
Therefore, using Lemmas 7.2 and 7.10, we have
lwar —uar|rzo = sup M
geL2(Q) ||9||L2(Q)
CHu(H,h)([lwar —uarlg+ luarlz+ lwarlz)
= CHuH, h)(|wr —urllz. + llurllg. + wrllg.) < CHu(H, h)®(H, h)||ur| 5.
[l

IN

Lemma 7.13. Let Assumption 4.6 hold and let vp = Egpwp, for wr € WF.
There then exists a positive constant C', independent of H and h, such that for all
wr € WF,

lvarllia < CH/R)?®*(H, h)|lwarli: )
where ®(H, h) is given in Lemma 7.7.
Proof: We only need to show that

lvar = warllisq) < C(H/h)*®*(H, h)|lwarllisq)-

From Assumption 4.6, we know for any wr € Wp, vAr — wAr has zero averages
over the subdomain interfaces. Using a Poincaré-Friedrichs inequality, Lemmas 4.1,
7.2, 7.8, and 4.7, and an inverse inequality, we have

loar —warliz) < CH*lvar —war|f gy < CHlvar —warl%
= CH?|lor —wr|} < CH?®*(H, h)llwr|% = CH*®*(H, h)|war|F
CH*®*(H, h)|war|fi o) < C(H/M)?O*(H,h)|warlizg)y O

IN

Lemma 7.14. Let Assumption 4.6 hold and let vp = Tur — up, for up € Wp.
There then exists a positive constant C independent of H and h, such that for all
ur € Wr,

H
loarlz2o) < CHZp(H, h)*(H, h)|lur | 5.

where u(H, h) and ®(H,h) are given in Lemmas 5.1 and 7.7, respectively.
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Proof: Since Tur = Egpwp and ﬁgpﬁp = I, we have vp = Tur — ur =
Egpwp — Egpﬁpulﬂ = Egp(wp — EFUF). Using Lemmas 7.13 and 7.12, we have

H H
lvarlzz) < CE‘I’(H, h)|lwar —uarllLzo) < CHE#(H, h)®(H, h)?|lur|| p,-
O

Theorem 7.15. Let Assumption 4.6 hold. There then exists a positive constant
C, which is independent of H and h, such that for all ur € Wr,

(7.7) (Tur, Tur) g, < C®*(H, h) (ur, ur)p, ,
and

(7.8) co (ur,ur) g < (ur,Tur)pg._ -
where

(7.9) co=1-— CH%;L(H, h)®?(H, h),

w(H, h) and ®(H,h) are given in Lemmas 5.1 and 7.7 respectively.

Proof: The upper bound (7.7) is the same as (7.6).

To prove the lower bound (7.8), we have, from E%EDI = I and Lemmas 7.2
and 7.3, that

THRTS. G175 5
(ur,ur)p. = (ur,ur)g, =ur” RpSvSp RprSrur = <wF,RFuF>§
I

IN

1/2
Cllwr| g llurlls: = C(UF,TUF>5/F lur|l -

Here we use Lemmas 7.9 in the last step. Canceling the common factor, we have
(7.10) [ur||}, <C (ur, Tur)g,. -
Let vp = Tur — upr. We have, from (7.10), Lemmas 7.2, 7.4 and 7.14,

(ur, uF>BF < C/{ur, TuF)SF <C (<ur, TuF}BF + (ur, Tur — uF>ZF)
< Cfur,Tur)p.+ Cllur|s:llvarlzz )

H
< C<UF,TUF>BF +C (HE/L(H, h)(I)Q(H, h)) <ur,uF>BF ,

A

The second term on the right hand side can be combined with the left hand side
and (7.8) is proved. O

Remark 7.16. From the forms of u(H,h) and ®(H,h), we know that for fized
H/h, if H is sufficiently small then ¢y will become positive and be bounded from zero
independently of H. Hence from Theorem 7.5, the convergence rate of the GMRES
iteration for (6.3) becomes bounded independently of the number of subdomains.
However, the constant C' in the formula of co in (7.9) depends on the coefficients
of the partial differential equation (2.1); for very small viscosity value v, it may
become impractical for the subdomain diameter H to satisfy co > 0.
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8. NUMERICAL EXPERIMENTS

We test our BDDC algorithm by solving three advection-diffusion examples in
the square domain = [—1,1]2. These examples were used by Toselli [34] for
testing his FETT algorithms.

The domain €2 is decomposed into square subdomains and each subdomain into
uniform triangles. Piecewise linear finite elements are used in our experiments.
The stabilization function C(x) in (3.3) is defined in (3.1). We also take f = 0 and
c=10"%in (2.1) in our examples.

A GMRES iteration with the L2?-norm is used without restart to solve the pre-
conditioned interface problem (6.3). The iteration is stopped when the L?-norm of
the residual has been reduced by a factor of 107%; we have found consistently that
the convergence rate using the Br-norm is quite similar to that using the L2-norm.

We test two different sets of coarse level primal continuity constraints in our
BDDC algorithms. In BDDC-1, only subdomain vertex and edge average continuity
constraints are included in the coarse level primal subspace; in BDDC-2, as in
Assumption 4.6, two additional edge flux average constraints for each edge are also
included in the coarse level variable space. We also compare the performance of our
BDDC algorithms with that of the one-level and two-level Robin-Robin algorithms
which were developed in [3, 1, 2]. They are denoted by RR-1 and RR-2 in our tables.
We do not present numerical results for the one-level and two-level FETT algorithms
here; their performances are in fact similar to the Robin-Robin algorithms, cf. [34].

8.1. Thermal boundary layer (Test Problem I). We first consider a thermal
boundary layer problem. The velocity field a in (2.1) is defined by a = (%, 0).
The boundary condition is given by:

B r=-1 —-1<y<l1,
u=1, {y—l, —1<z<1,
’LL:O, y:_la _1§$§17

u:%, r=1 —-1<y<1.

In our first set of experiments, reported in Table 1, we fix the subdomain problem
size and change the number of subdomains. We see that, for viscosity values v larger
than 10~% , the iteration counts of BDDC-2 do not change with an increase of the
number of subdomains and that it converges faster than BDDC-1. We believe that
for that range of viscosity values, the subdomain diameters in our experiments
satisfy that cg is positive in Theorem 7.15; cf. Remark 7.16. For smaller viscosity,
the improvement in the convergence rate of BDDC-2 over BDDC-1 is no longer clear
in this example. In fact ¢p may no longer be positive. We also see from Table 1
that RR-1 and RR-2 converge slower than the BDDC algorithms, and that their
iteration counts are more sensitive to an increase of the number of subdomains.

In our second set of experiments, in Table 2, we fix the number of subdomains
and change the local subdomain problem size. We see that for all four algorithms,
the iteration counts are not sensitive to an increase of the subdomain problem size
especially with small viscosity, and that BDDC-2 converges the fastest.

We can also see from Tables 1 and 2 that the iteration counts of all the algorithms
are bounded when v goes to zero.

8.2. Variable flow field (Test Problem II). We next consider a more com-
plicated flow. The velocity field is a = 1 ((1 —22)(1 +y), —(4 — (1 +y)?)). The
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boundary condition is given by: v =1, for y = —1 and —1 < x < 0, with v = 0,
elsewhere on the boundary of Q.

Table 3 gives the iteration counts of the four algorithms, for different number
of subdomains with a fixed subdomain problem size. We have similar findings as
for the first example in Table 1. We see that BDDC-2 scales well with respect to
an increase of the number of subdomains for viscosity values larger than 10~4, and
that it converges the fastest among the four algorithms. The improvement in the
convergence rate of BDDC-2 over BDDC-1 is obvious, especially when v > 1075.

In Table 4, we can see that the iteration counts of each algorithm are insensitive
to an increase of the subdomain problem size, and they are bounded when v goes
to zero.

8.3. Rotating flow field (Test Problem III). This example is the most difficult
one of the three examples, cf. [34]. Here the velocity field is a = (y, —z). The
boundary condition is given by:

y=-1 0<zx<1,
, for y=1 0<x<1, with  w =0, elsewhere on 9f.
r=1 —-1<y<1,

Table 5 gives the iteration counts of the four algorithms for different number of
subdomains with a fixed subdomain problem size. We see that BDDC-2 converges
much faster than BDDC-1 and the two Robin-Robin algorithms. For the cases
where v > 107°, the iteration counts are almost independent of the number of
subdomains. Even when the viscosity v goes to zero, the convergence of BDDC-2
is still very fast, while the convergence rates of BDDC-1 and the two Robin-Robin
algorithms are not satisfactory at all.

From Table 6, we see that the iteration counts of all the algorithms increase with
an increase of the subdomain problem size; the increase for BDDC-2 is the smallest.
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