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Executive Summary 

This is the final report of the NUMO-LBNL collaborative project: Feature Detection, 
Characterization and Confirmation Methodology under NUMO-DOE/LBNL 
collaboration agreement, the task description of which can be found in the Appendix.  

We examine site characterization projects from several sites in the world. The list 
includes Yucca Mountain in the USA, Tono and Horonobe in Japan, AECL in Canada, 
sites in Sweden, and Olkiluoto in Finland. We identify important geologic features and 
parameters common to most (or all) sites to provide useful information for future 
repository siting activity. At first glance, one could question whether there was any 
commonality among the sites, which are in different rock types at different locations. For 
example, the planned Yucca Mountain site is a dry repository in unsaturated tuff, whereas 
the Swedish sites are situated in saturated granite. However, the study concludes that 
indeed there are a number of important common features and parameters among all the 
sites—namely, (1) fault properties, (2) fracture-matrix interaction (3) groundwater flux, 
(4) boundary conditions, and (5) the permeability and porosity of the materials. 

We list the lessons learned from the Yucca Mountain Project and other site 
characterization programs. Most programs have by and large been quite successful. 
Nonetheless, there are definitely “should-haves” and “could-haves,” or lessons to be 
learned, in all these programs. Although each site characterization program has some 
unique aspects, we believe that these crosscutting lessons can be very useful for future 
site investigations to be conducted in Japan. One of the most common lessons learned is 
that a repository program should allow for flexibility, in both schedule and approach. 

We examine field investigation technologies used to collect site characterization data in 
the field. An extensive list of existing field technologies is presented, with some 
discussion on usage and limitations. Many of the technologies on the list were in fact 
used during the characterization of Yucca Mountain and elsewhere by LBNL personnel. 
The study also includes emerging technologies and identifies the need to develop better 
estimation of important parameters for repository siting. Notable emerging technologies 
include 3-D seismic and satellite-based remote sensing and wireless micro electro 
mechanical systems (MEMS) sensors. They enable cost-effective and ubiquitous 
monitoring to be applied for site characterization. 

We list and classify the types of uncertainties involved in site characterization. 
Uncertainties can exist in all aspects of site characterization: data, interpretation, 
conceptualization, and modeling. We use the Swedish program to exemplify such 
uncertainties. We also devote a chapter on geochemical issues regarding the interaction 
between groundwater and natural and engineered barrier materials. A recommendation 
has been made to take advantage of the recent advancement in geochemical modeling 
capabilities in natural systems. Although it is not of immediate relevance at the 
preliminary investigation stage, it serves as a good reminder that geochemical 
investigation efforts should not be overlooked at any stage in the repository program. 
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We construct a synthetic preliminary-investigation site based on an extensive data set 
available from a geoscientific project in Japan, which we use as a “real” site to evaluate 
uncertainties resulting from hydrogeological modeling and examine strategies for 
characterizing a new site. We plan various preliminary-investigation configurations and 
conduct preliminary numerical investigations at the synthetic site. We construct a model 
of the “real” site for each PI configuration, make predictions of particle travel times, and 
compare against the “real” data obtained from the “real” model. We conclude that drilling 
as many as nine boreholes does not necessarily improve the understanding of the site 
compared to drilling as few as three boreholes, unless there is an underlying structure that 
is larger than the spacing of the boreholes. The parameters that affect the outcome of the 
predictions most are: (1) effective porosity, (2) boundary conditions, and (3) fault 
properties, all of which are very difficult to estimate in the field and are full of 
uncertainties. Of the three, we recommend NUMO expend efforts to assess the latter two 
at preliminary investigation sites. To obtain large-scale averaged permeabilities, we 
recommend conducting long-time and long-interval pumping tests in boreholes. We also 
find that the temperature data can reduce some uncertainties regarding the boundary 
conditions. 

Finally, we summarize recommendations that NUMO might consider during preliminary 
site investigations. The recommendations are written in Japanese to ensure quick and 
easy consumption by the NUMO personnel. Instead of presenting a listing of 
characterization activities, we make recommendations on some important and costly 
(expensive and time-consuming) activities. We lay out the relevant approaches and the 
mindset that NUMO can consider employing to prioritize and optimize the 
characterization activities at preliminary investigation sites. For example, we recommend 
conducting 3D seismic profiling, even if it may necessitate drilling fewer boreholes. For 
the same amount of drilling expenditure, we favor drilling more partially cored boreholes 
and fewer fully cored boreholes. We recommend against conducting tracer tests and GPR 
(ground penetrating radar) surveys. Although these recommendations may contradict 
those of others, we believe these measures yield a higher return on investment. 
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1 Introduction 

The Nuclear Waste Management Organization of Japan (NUMO) and the 

Department of Energy of the United States of America (DOE) established a cooperative 

agreement in the field of radioactive waste management on July 10, 2002. In May 2005, 

NUMO and the Regents of the University of California as the DOE Management and 

Operating Contractor for the Ernest Orlando Lawrence Berkeley National Laboratory 

(LBNL) entered into an agreement to collaborate and for LBNL to conduct work on the 

“Feature Detection, Characterization and Confirmation Methodology” project. This 

project is designed to further develop radioactive waste management technologies related 

to an investigation strategy and technology for detection, characterization, and 

confirmation of key geologic features at possible nuclear waste repository sites. It is 

envisaged that the technology developed as part of this project will help enhance existing 

confidence in overall repository science. 

The “Feature Detection, Characterization and Confirmation Methodology” project 

is designed to combine the best technology available in the United States for detection, 

characterization, and confirmation of key geologic features with parameter sets available 

in the Japanese High Level Nuclear Waste (HLW) program—and extend these 

techniques and levels of understanding for improved repository science. While DOE’s 

Yucca Mountain Program is at the license application and performance confirmation 

stage, while NUMO’s program is at the site selection stage, both programs can benefit 

from refined strategies and improved technologies for characterization/confirmation. 

Results from the Project shall be used in both the United States and Japan, and will help 

build confidence and reduce uncertainties in the respective programs, allowing the 

techniques to be refined and extended for various locations. It is expected that the results 

of this Project will provide a technical basis for performance confirmation at Yucca 

Mountain and provide techniques for characterization, siting, engineering design, and 

long-term safety for NUMO. 

There are three major tasks in the overall project, whose overview and the 

implementation plan for Tasks A, B, and C can be found in the Appendix 1. This is the 
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final report, the compilation of the activities conducted at LBNL, lasting from December 

2005 through March 2007. 

In addition to this introduction, the report is comprised of seven main chapters: In 

Chapter 2, we examine the repository programs from the USA, Canada, Japan, Sweden, 

and Finland to study and identify key parameters at these sites. Tabulated lists of key 

parameters at each respective site are given at the end of the chapter, as well as the 

common parameters among the programs. Chapter 3 summarizes the lessons learned 

from these repository programs. It is intentionally written in Japanese to help NUMO 

personnel understand the contents readily and clearly. Chapter 4 lists and discusses 

existing and emerging field investigation technologies. It is not meant to be a complete 

list of available technologies. However, it covers the most commonly used ones, as well 

as those that are promising for future use. Chapter 5 discusses the uncertainties involved 

in site characterization, drawing lessons mainly from the Swedish program. Chapter 6 

deals with geochemical issues that are more directly relevant at later stages in the 

repository program—but we feel that it is a good idea to include a “heads-up” article, 

because groundwater chemistry is an important factor in repository safety and should be 

integrated into the design. In Chapter 7, we use an extensive data set from a domestic 

study site and construct a “real” rock mass, in which we conduct numerical site 

characterizations using various drilling scenarios. Based on the data obtained from the 

boreholes, we construct site models and make predictions for particle travel times and 

compare them to the ‘real’ data—and also develop some insights regarding the numbers 

and locations of boreholes to be drilled at preliminary investigation sites. Chapter 8 

summarizes the report by laying out the recommendations for how to approach and 

optimize preliminary investigation efforts.  
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2 Identification of Key Parameters for Site Characterization 

In this section, we evaluate and list the geologic features and parameters being 

evaluated by various international investigations at a number of different sites (including 

the U.S. and Japan). The ultimate goal of this study is to identify the key parameters that 

need to be evaluated at various stages of repository siting that are common to the 

majority of the sites. The emphasis of the present study is on those parameters that are 

especially important at the site selection stage. 

Site characterization is one of the key activities for establishing the geological 

conditions and parameters of a candidate site for safe nuclear waste disposal. During site 

characterization, intensive surface-based investigations are performed to improve 

scientific understanding of the geological, hydrological, geochemical, geophysical, and 

mechanical processes of a deep geological site. 

2.1 U.S.A. (Yucca Mountain)  

Yucca Mountain, Nevada, within the Nevada Test Site (NTS), is a potential site 

for a nuclear waste repository in the United States. The Yucca Mountain site was selected 

not only because of its geological characteristics, but also because investigators have 

found a number of attributes there that would be conducive to geologic disposal, 

including multiple natural barriers, remoteness, and an arid climate (McKelvey, 1976). 

Instead of isolating waste in salt or deep sites below the water table, as in many other  

nuclear waste programs (e.g., Finland, Sweden, Switzerland and Japan), at Yucca 

Mountain the waste could be disposed of at relatively shallow depths, well above the 

water table. 

One of the main characteristics of Yucca Mountain that differs from other nuclear 

waste sites is the lithology—volcanic tuffaceous rock—and the location of the potential 

repository—in the unsaturated zone (UZ). The repository would be located ~300 m 

below the surface and ~300 m above the water table, primarily in a layer of welded tuff. 

The deep water table and thick UZ of Yucca Mountain is the result of the low surface-

water infiltration rate, resulting from a low annual rainfall and high rate of evaporation 

and transpiration. Therefore, the conceptual model for Yucca Mountain is considered to 



 

4 

have favorable hydrogeological characteristics such as (1) a desert setting with arid 

climate and; (2) a deep water table with a thick UZ (CRWMS M&O, 2002). 

Although the potential disposal site for nuclear waste at Yucca Mountain is 

planned to be located in the UZ, the saturated zone (SZ) is equally important for site 

characterization, because hydrological processes below the repository may provide 

transport of radioactive materials to the accessible environment. Thus, in our review, we 

include key parameters and features for both the UZ and SZ at Yucca Mountain. 

The Yucca Mountain Project is a unique program because of the size of the 

project, the involvement of numerous organizations, and the interaction of scientists from 

different fields and backgrounds. The Yucca Mountain site characterization program has 

progressed in response to advancements in scientific understanding and proposed changes 

in regulatory requirements. Data from site characterization have been used to develop 

conceptual and numerical models of the hydrologic, geochemical, thermal and 

mechanical processes that will determine how a repository at Yucca Mountain may 

behave over the next 10,000 years after repository closure (CRWMS M&O, 2002 Section 

1.4.), which may be extended even longer. 

At Yucca Mountain, the site characterization includes extensive surface and 

subsurface (i.e., potential emplacement tunnel) characterizations, laboratory studies, and 

modeling activities designed to provide technical information by which to determine 

long-term repository performance. In this study, evaluation is focused on surface and 

borehole data. Consequently, in this task, we have not focused on identifying parameters 

from borehole studies conducted at underground alcoves, drifts, or niches such as heater 

tests, seepage tests and studies conducted for engineered barrier purposes.  

 
 
 
 
 

 

 

 

Yucca Mountain site characterization activities might be grouped into four 
distinct periods (Wang and Bodvarsson, 2003): (1) the early 1980s, (2) from 
1986 to 1991, (3) the early 1990s and (4) the current period (middle 1990 to 
present). The main accomplishments from these periods are: 

1. Surface and subsurface characterization, extensive drilling 
2. Surface monitoring and extensive laboratory measurement and initial 

modeling 
3. Excavation of the ESF and Cross Drift 
4. Integration of UZ models and performance  
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According to the Yucca Mountain Science and Engineering Report (CRWMS 

M&O, 2002), the location of the underground facility was determined using several 

factors, including the thickness of overlying rock and soil, the characteristics of the rock, 

the location of faults, and the depth to groundwater. More than 200 boreholes were used 

to characterize the tuffaceous layers and structures at mountain-and site-specific scales. 

At Yucca Mountain, specific studies for site characterization include: 

• Climate and infiltration 

• Geology and structure  

• Geophysical investigation 

• Hydrologic and hydrogeologic properties 

• Geochemistry and isotope data 

• Mechanical, physical and thermal properties  

The main processes and related parameters and features identified in the Yucca 

Mountain Program are described below and summarized in Sections 2.1.1.7 and 2.1.2.5. 

A rather comprehensive list of parameters is shown in Appendix 2.A.  

2.1.1 UNSATURATED ZONE PARAMETERS 
Site data characterizing the ambient unsaturated system at Yucca Mountain have 

been collected since the early 1980s (BSC, 2004b, Section 2.1). There are several types 

of data (e.g., lithological, structural, rock hydrological properties, mineralogical, 

temperature, geochemical, and climate/infiltration) collected from surface-based 

activities (e.g., geologic mapping, installation of vertical boreholes). 

During near-surface monitoring, intensive laboratory measurements of flow and 

transport parameters were conducted. Deep-borehole test sampling was conducted in the 

boreholes designated specifically for geological (G), hydrological (H), water table (WT) 

and the unsaturated zone (UZ) investigations. These boreholes were used to define the 

stratigraphy, locate the water table, collect cores, and test in situ borehole monitoring 

techniques (Wang and Bodvarsson, 2003). 

Because of the complex interaction between geological, structural, hydrological, 

geochemical, and mechanical processes, some parameters are important for more than 
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one process. Therefore, repetition of parameters may occur through this report, depending 

on how the processes are related.  

2.1.1.1 CLIMATE AND INFILTRATION 

Climate and infiltration are two processes that affect the UZ. Climate controls 

precipitation and temperature conditions at land surface, and climate patterns are 

responsible for surface conditions such as runoff, runon, and evapotranspiration. They 

also influence the redistribution of moisture in the shallow subsurface, infiltration ratio, 

percolation, and groundwater recharge (BSC, 2004a).  

Various studies have been conducted to understand variations in past climatic 

patterns, such as of geological records (topography, stratigraphy, rock fracture 

characteristics, and fossils/microfossils), surface hydrology, type of soils, sea level 

change, isotopic data, variations of the earth’s orbital clock and eccentricity—as well to 

predict future patterns. However, the chief concerns regarding climate change are 

processes impacted by humans, such as greenhouse-house effects, acid rain, global 

warming, and ozone layer depletion. Such processes produce great uncertainty with 

respect to predicting future climate (CRWMS M&O, 2002, Section 6.1) 

Infiltration studies were conducted at Yucca Mountain between 1984 and 1995, 

using nearly 100 shallow boreholes across washes and on the crest to measure changes in 

water content profiles in response to precipitation and snowmelt events (Flint and Flint, 

1995). The following corroborative geochemical studies were used to assess the 

infiltration flux: chloride mass balance, calcite data, 36Cl and tritium isotopes, pore water 

chemistry, fluid inclusions, and oxygen isotopes. Meteorological parameters responsible 

for small-scale physical processes included the effect of topographic features (mountains 

and valleys). Key meteorological parameters measured at Yucca Mountain are 

temperature, average annual precipitation, average annual snow fall, average annual 

evapotranspiration, average annual infiltrated surface water runon, average annual mean 

outflow, and average annual net infiltration, humidity, wind velocity, and wind direction. 

These parameters are summarized in Table 2.1-1. Detailed descriptions of climate and 

infiltration can be found in BSC (2004a) and Simmons et al. (2004, Section 6). 
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Table 2.1-1. Climate and infiltration parameters 

Regional Scale Parameters 
Climate Temperature 

Precipitation 
Geology (topography, stratigraphy, 
fractures, fossils/microfossils) 
Surface hydrology 
Type of soils 
Sea level change 
Isotopic data 
Variation on earth orbital clock 
Eccentricity 
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Site-Specific Scale  
Meteorological  
  

Topography 
Temperature 
Pressure 
Humidity 
Precipitation rate 
Snow fall rate 
Evapotranspiration rate 
Surface run –on  
Run-off 
Humidity 
Wind direction, velocity 
Net infiltration 

 

Data from climate and infiltration processes have been collected since 1988. At 

Yucca Mountain, the climate is arid, with average precipitation (from rain and snow) 

about 190 mm per year and nearly 95% of all precipitation lost to evaporation (CRWMS 

M&O, 2002, Section 4.2.1.2.1). Evapotranspiration is high (less than 0.1 to more than 1.5 

mm/day). Estimated values of infiltration range from 0.02 to 5.9 mm/yr with an average 

of 4.6 mm/y (CRWMS M&O 2002 Table 4.11). 

Three potential climates states (interglacial, monsoon, and glacial transition) have 

been forecasted for the next 10,000 years, based on the results of field, laboratory, and 

modeling studies. Detailed information on climate and infiltration is described in BSC 

(2004a) and CRWMS M&O (2002, Sections 6 and 7). 

2.1.1.2  GEOLOGY AND STRUCTURE 

The geology of Yucca Mountain is composed of Miocene-age silicic volcanic 

rock represented by heterogeneous layers of anisotropic, fractured volcanic tuffs, with 

alternating welded and nonwelded ash-flow deposits. About 15 lithostratigraphic units 

(Simmons et al., 2004, Fig. 7.26), and five hydrogeologic units (Flint, 1998) have been 

identified. The Topopah Spring Tuff of the Paintbrush Group is the host rock for the 

repository and therefore one of the most intensely studied Yucca Mountain formations. 

Detailed geological mapping of Yucca Mountain was performed at scales of 1:24,000, 

1:6,000 and 1:2,400 along fault zones (Simmons et al., 2004 Section 3.3) 
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As part of regional studies, extensive literature surveys and field mapping were 

conducted, and geological boreholes were drilled, to understand the stratigraphy and 

structure of the site. Findings showed that Yucca Mountain is dominated by a series of 

north-striking normal faults, with bedrock displaced several hundred meters (maximum 

~600 m) along many of the faults, which occur within or along the flanks of Yucca 

Mountain (Fenster, 1999). Most seismicity is related to fault movement, which in turn is 

related to tectonic events. Studies of the tectonic evolution of the area (Day et al., 1998, 

pp. 17–19; Simmons et al., 2004, Section 4.6.3.3) demonstrate that most of the faulting 

occurred shortly before, during, and soon after the eruption of the tuffs that comprise 

Yucca Mountain. Evidence of seismicity exists for recurrent middle to late Quaternary 

fault displacement; however, there are no records of large-magnitude earthquakes near 

the Yucca Mountain site area for the past 2 million years (CRWMS M&O, 2002, Section 

1.3). 

Besides seismicity, volcanic activity is also a possible issue with respect to the 

safety of the proposed nuclear repository at Yucca Mountain. Recent aeromagnetic 

survey revealed 20 volcanic anomalies buried in a 20–30 km area around the proposed 

repository location. According to Smith and Keenan (2005), the probability of volcanic 

disruption in the Yucca Mountain volcanic field could be 1–2 orders of magnitude higher 

than the Environmental Protection Agency (EPA) standard.  

The distribution and characteristics of fractures at Yucca Mountain are important, 

because in many of the hydrogeological units at the site, particularly the welded tuffs, 

fractures are the dominant pathways for water, air/gas, and heat flow. Fractures at Yucca 

Mountain are generally of three types: early cooling joints formed during the original 

cooling of the volcanic rock; later tectonic joints caused by faulting and rock stress; and 

joints caused by erosional unloading (CRWMS M&O, 2002 Sec. 1.3).  

Although geologic heterogeneity (fracture and cavity abundance) is part of the 

complex natural geological system of Yucca Mountain, a statistical representation of 

fracture geometry, orientation, length, crosscut relationships, and infillings helps us to 

understand the tectonic history, stress field, and water-rock interaction, providing greater 

confidence in modeling and some constraints on uncertainty. 
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Site-specific, detailed mineralogical and textural studies provide information on 

physical and mechanical properties. Specifically at Yucca Mountain, parameters such as 

fracture frequency, hardness, weathering, rock-quality designation (RQD), and 

lithophysal data were collected from surface-based boreholes (Simmons et al., 2004, 

Section 3.7.2). Other geological-property parameters include mineralogy, variations in 

grain size and sorting, relative abundance of volcanic glasses, degree of welding, types 

and degree of crystallization, relative abundance of lithophysae, and amount and types of 

glass alteration (Simmons et al., 2004, Section 3.3). 

A summary of the main geological, mineralogical, structural and physical 

parameters is listed in Table 2.1-2. 

Table 2.1-2. Geological, structural and physical parameters 

 Parameter 
Geological 
 
 
 
 
 
 
 
Textural 

Lithostratigraphic units 
Alteration/weathering 
Mineralogy 
Percentage of volcanic glass 
Degree of welding 
Degree of crystallization 
Percentage of lithophysae 
Grain size  
Sorting 
Abundance of volcanic glass 
Degree of welding 
Types & degree of crystallization 
Abundance of lithophysae 
Abundance and type of glass alteration 

Structural Lineaments trace 
Fault orientation 
Fracture geometry 
Fracture orientation, length 
Fracture frequency 
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2.1.1.3  GEOPHYSICAL INVESTIGATIONS 

Geophysical investigations used for surface reconnaissance provide information 

on existence of faults, distribution of stratigraphic units, and the shape of buried 

volcanoes (Ponce, 1996; Sikora et al., 1995). Because the primary question to be 

addressed in the site area is the amount, style, depth, and continuity of faulting in the 

repository block itself, various geophysical methods have been compared to evaluate 

their effectiveness in imaging faults. The surveys suggested that a combination of 

geophysical techniques were needed to provide accurate information on subsurface 

structures (Simmons et al., 2004, Section 3.5.7). 

Regional geophysical data, such as gravity (model geometry) and magnetic 

anomaly data were used to constrain the shape of volcanic rocks, locate the contact 

between different lithologies, and define fault offsets (Langenheim, 2000c). Seismic 

refraction (S and P-wave velocities) was used to model the velocity structure of the upper 

crust in and around Yucca Mountain (Smith et al., 2000d). Recent aeromagnetic surveys 

have been used to define the size and shape of many buried volcanoes, providing detailed 

information on volcanic hazards in the region (Smith and Keenan, 2005). 

Geophysical surveys have been useful in detecting faults producing at least tens of 

meters of offset. A combination of geophysical surveys was applied to confirm the 

presence of faults. Attempts were made to detect and characterize buried faults and 

geologic heterogeneities using the magnetotelluric method, but this method was found to 

Understanding the structural framework of Yucca Mountain is essential for assessing 
natural hazards. The main tectonic hazards at Yucca Mountain are basaltic volcanism 
and seismic activity. Active volcanoes no older than 70–80 ka are located about 50 km 
west of the proposed repository (Wells et al., 1992). A recent aeromagnetic survey 
covering an area of 865 km2 around Yucca Mountain suggests that the volcanic threat 
could be higher than the 40% previously estimated, with an increase in recurrence rate 
and probability of disruption 1–2 orders of magnitude greater than the EPA standard 
(Smith and Keenan, 2005).  
Since 1910, three seismic activity events have been reported within a 100 km radius of 
the site (Figure 4-19, Simmons et al., 2004, Figure 4-19), and about 105 faults with 
known or suspected Quaternary activity have been identified within the same area 
(Simmons et al., 2004, Section 4). 
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be limited unless supplemented by other geophysical techniques. The general conclusion 

was that standard geophysical techniques were best suited for detection of faults with at 

least tens of meters of offset (Simmons et al., 2004 Section 4.6.5.3). 

At a site-specific characterization, tomographic seismic imaging was used to 

identify fracture density and ground-penetrating radar tomography provided information 

on moisture and tracer movement through the fractures (Mejer et al., 1998; Simmons et 

al., 2004, Section 7.8.1.6). Use of magnetotelluric methods and seismic reflection data 

was limited. Other parameters obtained from the borehole geophysical log including 

caliper, gamma ray, density, induction, resistivity, and neutron porosity (Simmons et al., 

2004, Section 3.3.3.4), provided a valuable set of data that allowed investigators to 

correlate lithostratigraphic features across Yucca Mountain. A summary of geophysical 

surveys and parameters are listed in Table 2.1-3.  

 

Table 2.1-3. Geophysical parameters 

Method (Regional) Parameters 
Aeromagnetic and gravity 
 
Seismic Refraction 

Fault offset, stratigraphy, lithological contact,
Size and shape of buried volcanoes 
Lithological contacts and fractures 

Site Specific  
Tomographic seismic imaging 
 Magentotelluric and 
Seismic reflection 

Fracture density 
 
Lithological contacts and fractures 

Borehole log   
Electrical resistance tomography
Ground penetrating radar 
Neutron logging 
Cross hole radar tomography 

Density 
Moisture content 
Porosity 
Saturation 

 

2.1.1.4  HYDROLOGICAL AND HYDROGEOLOGICAL 
INVESTIGATIONS 

Yucca Mountain is part of the Amargosa River drainage system. Surface 

hydrological processes within this system include precipitation, evaporation and 

transpiration, run-on and runoff, infiltration, moisture redistribution, and groundwater 

recharge. As described previously, climatic factors have a great influence on the surface 
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and groundwater hydrology, generating variations in temperature, humidity, precipitation, 

and solar flux. 

The major hydrogeologic units are divided into Tiva Canyon welded (TCw), 

Paintbrush nonwelded (PTn), (consisting primarily of the Yucca Mountain and Pah 

Canyon members and the interbedded tuffs), Topopah Spring welded (TSw), Calico Hills 

nonwelded (CHn), and Crater Flat undifferentiated (CFu) units (BSC, 2004b; Flint, 1998). 

Hydrogeologic properties of the units were measured directly using two distinctly 

different methods: matrix-properties analysis of rock cores and field-scale air-injection 

testing.  

Most Yucca Mountain hydrogeological parameters, such as porosity, permeability, 

and hydraulic conductivity, are controlled by the interaction between rock types, the 

characteristics of faults and fractures, textural variations such as degree of welding, 

presence of cavities, mineral alteration, and groundwater flow chemistry.  

Nearly 4,900 core samples were analyzed in the laboratory to measure important 

hydraulic properties. These properties include matrix porosity, bulk density, particle 

density, water content, water potential, saturated and unsaturated hydraulic conductivity, 

and moisture retention characteristics (Flint, 1998). Air-injection tests were performed to 

determine field-scale bulk permeability, porosity, and anisotropy of the major rock units 

above, below, and within the repository horizon (Simmons et al., 2004, Section 7.2; BSC, 

2004b, Section 2.2.2; LeCain et al., 2000; BSC, 2003b, Section 6.1; BSC, 2003a, 

Sections 6.1 and 6.11). Matrix hydrologic properties such as matrix porosity and 

permeability were determined from laboratory measurements made on core samples 

(CRWMS M&O, 2000bt, Section 6.2). Permeability values for each lithostratigraphic 

unit and their relationship to fracture density and lithophysal cavities is described in 

Simmons et al. (2004, Section 7.2.2). 

Hydraulic properties of fractures are dependent on fracture aperture and whether 

the fractures are open or filled with calcium carbonate or siliceous materials. At Yucca 

Mountain, fracture apertures have not been well characterized, but estimates have been 

made from borehole core logs (Flint et al., 1996). Data regarding fracture geometry 

(density, trace, length, dips and strike) were obtained from drift studies (LeCain et al., 
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2000; BSC, 2004b, Section 2.2.2). Fracture porosity and permeability were estimated 

from air injection and gas tracer tests, based on the geometry of fracture networks and 

calculated from borehole data (CRWMS M&O, 2000bt, Section 6.1.3). 

Hydrologic data for fault zones are also limited. Air injection test and trace testing 

were conducted along the faults (e.g., Ghost Dance Fault, Bow Ridge Fault) to determine 

air permeability, porosity, and tracer transport (BSC, 2004b, Section 2.2.3). Faults can be 

major conduits for flow or may be locally impermeable to lateral flow, resulting in 

perched water (Flint et al., 2001). A summary of hydrological and hydrogeological 

parameters is listed in Table 2.1-4.  

Perched water was characterized through borehole data. These perched water 

bodies were found primarily in the northern part of the repository area, where lower 

permeability and sparsely fractured zeolitic rock units predominate, and are located 

below the potential repository horizon. The occurrence of perched water suggests that 

certain layers of the lower vitric and upper zeolitic layers serve as barriers to vertical flow. 

Characterizing perched water is important because it has important implications for 

transport time and flow through the UZ (Rousseau et al., 1999, p. 170; 1997 pp. 21 and 

22; CRWMS M&O 1997c).  

Table 2.1-4. Hydrological and hydrogeological parameters 

  Parameters 
Surface Hydrological 
Properties 

Precipitation 
Evaporation 
Transpiration 
Run-on 
Run-off 
Infiltration 
Moisture redistribution 
Groundwater recharge 

Hydrogeological Properties 
of Matrix 

Matrix porosity 
Bulk density 
Particle density 
Water content 
Matrix permeability 
Moisture retention relations 
Water potential 
Hydraulic conductivity  

Hydrogeological  properties Fracture density 
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of Fractures Fracture aperture 
Fracture porosity 
Fracture permeability 
Hydraulic conductivity 

Hydrogeological  properties 
of Faults 

Fault permeability 
Fault porosity 
Tracer transport 

 

2.1.1.5  GEOCHEMICAL PROPERTIES 

Geochemical analysis includes samples from surface water, boreholes, and core 

samples. The objective of the geochemical (and isotope) analysis is to determine the 

major chemical and isotopic parameters of surface water, pore waters, perched water, 

gases, and fracture minerals collected from the Yucca Mountain UZ. Chemical and 

isotopic data are used to establish bounds on key hydraulic parameters and to provide 

corroborative evidence for model assumptions and predictions (BSC, 2004b, Section 2.3). 

Aqueous-phase hydrochemical data have been interpreted to determine possible flow 

mechanisms and residence times for pore water in the UZ. 

The initial composition of Yucca Mountain groundwater is largely established by 

local precipitation and dry fallout (i.e., from aerosols and particles). The main 

geochemical and isotopic parameters for site characterization of the Yucca Mountain UZ 

are listed below (CRWMS M&O 2000bv Section 2.3; Simmons et al., 2004, Section 

5.2.2.4.2 and 7.5; BSC 2004b, Section 2.31.1), and summarized in Table 2.1-5.  

• Major cations and anions of pore water provide evidence of rock-water interaction. 

• Stable isotopes (hydrogen and oxygen) were used to determine the origin of water. 

Hydrogen, oxygen, and carbon stable isotopes were used to infer paleoclimatic 

conditions (Winograd, et al., 1992, Coplen et al., 1994) 

• Cosmogenic and atmospheric radionuclides (tritium, carbon-14, chlorine-36) are 

good indicators of water residence time. Carbon-14 and 36Cl are used to constrain 

water age estimates, and 36Cl from bomb-pulse are used to infer infiltration rates 

(Fabryka-Martin et al., 1993 and 1993) 
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• Radiogenic isotopes (isotopes of strontium, uranium, and uranium decay 

products) are used to evaluate the prevalence and frequency of fracture flow 

through the UZ and the issue of local recharge to the water table. 

• Precipitated minerals in fractures are used to constrain the infiltration flux and 

provide spatial and temporal information on past water migration through the UZ 

(Dobson et al., 2003) 

• Variations in temperature can influence the composition of water by increasing or 

decreasing the rates of important reactions and by changing the composition of 

the equilibrium assemblage in the system. 

• Pressure variations will have a minor effect on water chemistry but could affect 

the gas flow patterns, including water vapor transport.  

Other parameters—such as data on oxidation/reduction potentials, pH, major 

constituents, major species, gas concentrations, redox-sensitive elements, dissolved 

organic carbon and microbial populations—are pertinent to repository performance. They 

are used to predict corrosion behavior of the waste packages, solubility of the waste 

forms, and sorption behavior of the radionuclides released from the waste forms. 

(CRWMS M&O 2000bv, Section 6.2).  

Table 2.1-5. Groundwater geochemical parameters 

Category Species/Element 
Atmospheric 
radionuclides and 
Cosmogenic 
radionuclides 

Tritium, 14C and 36Cl 

Major ions Al, Ca, Mg, K, Na, SiO2, HCO3, CO3, Cl, NO3, SO4, total 
dissolved solids (TDS) and trace elements 

Stable Isotopes δD, δ18O, δ13C 
Radiogenic Isotopes 87Sr/86Sr, 234U/238U 
 Temperature and pressure 

Trace elements 
 

Some environmental tracers, including radioactive species from nuclear weapons 

testing, are found in the groundwater. 3H, 14C, and 36Cl, produced in the atmosphere 

about 50 years ago by nuclear testing, have been measured in pore water. This indicates 
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that some percentage of the water infiltrated to depth in less than 50 years (LeCain, 1997 

Table 8). 

Geochemistry of rocks and minerals are mainly affected by rock-water 

interactions along different lithostratigraphic units and secondary minerals precipitated 

along fracture and fault zones. This interaction includes rock/mineral-dissolution 

reactions, ion exchange reactions, hydrolysis reactions, precipitation reactions, oxidation 

reactions, and possibly other alteration reactions. Fault mineralogy can be critical in 

evaluating flow and transport. Faults can be highly transmissive if the fault contains no 

mineralization or if mineralization along the fault is limited. Detailed rock geochemistry 

of Yucca Mountain is described in Simmons et al. (2004, Section 3.3.5). Table 2.1-6 

illustrates the important parameters related to rock geochemistry.  

Table 2.1-6. Geochemical parameters 

Category Parameters 
Rock geochemistry Mineralogy (Calcite (CaCO3)

Opal (SiO2)) 
Alteration minerals 
Major element compositions 
Secondary minerals 
Sorption properties 
Age 40Ar/39Ar 

Gas geochemistry CO2, 
13,14 C, 18O, CH4, Ar, N2 

 

2.1.1.6  MECHANICAL, PHYSICAL AND THERMAL PROPERTIES 

Bulk properties such as mineralogy, grain density, bulk density and porosity, 

temperature, pressure, and stress determine the mechanical behavior of rocks (CRWMS 

M&O, 1997c; Simmons et al., 2004, Section 5.4.3.3). Mechanical properties were 

measured in large and small rock specimens to determine rock elasticity, tensile strengths 

and deformation properties and in situ stress conditions of intact and fracture samples 

from Yucca Mountain (BSC, 2003, Section 8.2.2).  

Young’s modulus and Poisson’s ratio are the primary mechanical deformation 

indices of rock; they also indicate the elastic response of rock to stress. Intact-rock elastic 

properties were collected in core samples from surface and subsurface drilling efforts. In 
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general, Young’s modulus of the tuff depends on the degree of welding. Nonwelded tuff 

is weak and exhibits low Young’s moduli; welded tuffs are stronger and exhibit 

significantly greater Young’s moduli (Fenster, 1999, Section 8.4) 

The compressive strength of a rock is its ability to withstand compressive stress 

without failure. Results of unconfined compression tests at Yucca Mountain indicate that 

the unconfined compressive rock strengths vary, depending on welding, porosity, and the 

fabric of the rock. Welded tuffs exhibited higher strengths than nonwelded tuffs. In 

addition, measurements in small-diameter core samples were also conducted, although 

they did not provide accurate strength or elastic properties for the lithophysal rock 

(Simmons et al., 2004, Section 5.4.3.3). In situ stress analyses were obtained primarily 

from hydraulic fracturing tests performed in the drifts. The results were in accordance 

with the orientation of the normal faults (Simmons et al., 2004, Section 3.7.5, p. 251). 

Rock physical properties such as bulk porosity, saturation, permeability, and 

particle density were measured from 5,320 core samples (Flint, 1998). Flint’s findings 

showed that permeability measured from air injection is variable and strongly dependent 

on mineralogy. Permeability also increases in the welded tuffs where fractures are 

abundant, providing flow pathways.  

As part of the regional heat flow study, temperature measurements were obtained 

from boreholes. Thermal properties (including rock grain density, dry and wet rock 

thermal conductivities, and rock grain specific heat capacity) were also measured for rock 

samples collected from surface-based boreholes (BSC, 2003b, Section 6.3; Simmons et 

al., 2004, Sections 2.2.1 and 7.4.3). Thermal-mechanical tests were conducted on drill 

core samples and as part of drift-scale experiments to understand the effect of coupled 

processes in the fractured rock mass and to support the long-term performance 

assessment (Simmons et al., 2004, Section 5.4).   

Additional information on mechanical properties is available in BSC (2003d 

CRWMS M&O (1997c), pp. 5–111; and Simmons et al. (2004) Sections 5.4.3.2 and 

5.4.3.3); on physical properties in BSC (2003d Section 8.2); and on thermal properties in 

BSC (2003d Section 8.3). The main parameters for rock mechanics, physical and thermal 

properties are listed in Table 2.1-7. 
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Table 2.1-7. Mechanical, physical and thermal parameters 

 Parameters 

Mechanical Properties Young’s modulus 

Poisson’s ratio  
Compressive strength  
Rock quality designation (RQD) 
Tensile strength  
In situ stress conditions  
Normal stiffness 
Shear stiffness 
Cohesion 
Friction 

Physical Properties 
From core samples 

Hardness 
Saturation  
Particle density 
Bulk porosity 
Permeability 

Thermal properties Thermal conductivity 
Heat capacity 
Thermal expansion coefficients 
Thermal diffusivity 
Heat dissipation  
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2.1.1.7 SUMMARY LIST OF IMPORTANT YUCCA MOUNTAIN UZ 
PARAMETERS 

In this section, key parameters and/or processes are listed loosely in the order of 

importance. In particular, the first five in the list—(1) infiltration and percolation, (2) 

fault and fracture properties, (3) fracture-matrix interaction, (4) water-rock interaction, 

(5) seepage, and are probably the most important parameters and processes.  Error! 

Reference source not found.is an illustration from the OSTI 2005 annual report that 

illustrates these parameters. 

 
Figure 2-0-1. Important Yucca Mountain UZ parameters (Source: OSTI 2005 annual 
report) 

2.1.1.7.1 Infiltration and Percolation  
The conceptual model for the Yucca Mountain UZ is strongly affected by 

processes that include water flow. In a desert environment, water is limited, and the 

amount of water that enters the natural system is redistributed through the matrix and 

fractures/faults. When percolating water encounters an opening, much of the water is 

diverted by capillary forces, although the water could eventually result in seepage. 

Infiltration and percolation are governed by the climate, rock structure, and rock 
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hydrological properties, which are essential for understanding the regional-scale process. 

The factors controlling net infiltration are: 

• Topographic features 

• Precipitation (rain and snow) 

• Pressure 

• Humidity 

• Temperature 

• Soil thickness 

• Distribution of rock types (thickness, variations in texture and appearance, size 

and abundance of pumice and rock fragments, lithosphysal content) and lithologic 

contact 

• Drainage characteristics (runon, runoff, evaporation rate, transpiration rate) 

• Faults and fractures 

• Matrix permeability 

• Pore-water chemistry 

• Moisture redistribution by flow in the shallow subsurface 

To obtain accurate infiltration data, studies performed at the global scale provide 

input for understanding the climatic system. These studies are: 

• Studies of glaciers 

• Studies of storm activity  

o Storm amplitude 

o Storm frequency 

o Pressure systems 

• Paleoclimate studies: 

o Geochemical analyses of sediments deposited in lakes 
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o Minerals deposited in springs 

o Fossils of microorganisms that live in both lakes and springs 

o Plant and animal remains preserved in caves 

o Mapping minor spring and marsh deposits 

To correctly estimate the percolation flux, the following processes and parameters 

need to be estimated: 

• Drift seepage 

• Lateral flow 

• Fracture-matrix flow partitioning 

• Flow into faults 

• Water potential profiles 

• Presence of perched water 

2.1.1.7.2 Fault and Fracture Properties  
Structurally, faults and fractures represent locations of weakness in the rock mass 

as a result of regional and/or local tectonics. Hydraulically, faults and fractures are 

considered the main pathways for fluid, gas, and heat. Although major faults can act as 

fast flow conduits or as barriers for fluid flow, they are the main concern for the transport 

of radionuclides through the geosphere. The factors controlling fault and fracture 

properties are: 

• Tectonic history (seismicity and volcanic activities) 

• Type of faults and width of damage zone 

• Type and distribution of rock deformation 

• Type and distribution of volcanoes and volcanic rocks 

• Petrology and mineralogy 

• Chemical composition of rocks and mineral alteration 
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• Age and distribution of mineral filling (calcite, opal) 

• Rock physical and mechanical properties (density, porosity, permeability, strength, 

in situ stress, storage capacity, transmissivity) 

Tools used for fault and fracture characterization include: 

• Satellite imagery 

• Geophysical surveys at different scales  

• Regional and surface geological mapping 

• Lineament mapping 

• Sampling  

• Geochemical and isotopic signatures in pore and perched water (chloride, tritium 

concentration) and infilling minerals. 

• Tracer injection tests 

2.1.1.7.3 Fracture-Matrix Interaction 
Fracture-matrix interaction determines whether there is fracture flow when the 

matrix is not saturated. Thus it is critically important to correctly estimate the fracture-

matrix interaction. Data/observations used to characterize fracture-matrix interaction 

include:  

• Field observations 

• Matrix saturation data 

• Chloride concentration data 

• Gravity-driven fingering flow 

2.1.1.7.4 Rock-Water Interaction 
Secondary minerals precipitated along faults and fractures provide information on 

the time of deposition and isotopic signatures of waters from which they precipitated. 

They are also important on promoting rock/mineral-dissolution reactions, ion-exchange 

reactions, hydrolysis reaction and possible other alteration reactions. In addition, this 
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process has potential significance with respect to radionuclide retardation reactions (for 

example, sorption).  

The main factors controlling water-rock interaction are:  

• Moisture distribution 

• Matrix flow 

• Concentration of dissolved ions 

• Viscosity of water at elevated temperature 

• Surface tension of water at elevated temperature 

The results of water-rock interaction include: 

• Mineralogy of fracture coating (calcite, opal) 

• Mineral alteration (zeolites) 

• Calcite deposition analysis 

• Near-surface carbonate deposits 

• Ages and distribution of deposits 

• Isotopic data 

• Relative abundance of chlorine-36 in pore water (or extracted salts) 

• Tritium signatures in perched waters 

• Fingering flow 

• Chloride concentration data 

2.1.1.7.5 Seepage Rate 
Seepage rate into the drift is probably the single most important parameter that 

needs to be estimated for the safety of the repository. Tests conducted to characterize and 

estimate seepage rate include: 

• Surface and drift based seepage tests 

o Pulse releases to represent episodic percolation events 
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o Use of dye tracers to characterize seepage flow paths 

• Air-injection tests 
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2.1.2 SATURATED ZONE PARAMETERS 
 

The saturated zone (SZ) system is expected to act as barrier to the migration of 

dissolved and colloidal radionuclides that may be released from the repository (BSC, 

2003). With this in mind, the groundwater flow system beneath the Yucca Mountain has 

been characterized in order to predict radionuclide migration through the SZ. As part of 

the Yucca Mountain site characterization program, more than 150 hydraulic tests were 

conducted at 37 boreholes in and around Yucca Mountain, nearly all of them single-well 

tests over specific depth intervals. Tests included constant-discharge, fluid-injection, 

borehole flow meter, and radioactive tracer tests (BSC 2003) 

Compared to the UZ, the SZ has not been nearly as fully characterized, and some 

of the studies related to it are still ongoing. Nevertheless, various data sets, including 

geologic, hydrogeologic and geochemical data, have been used to constrain the 

conceptual model of groundwater flow and transport properties for the SZ. The models 

were constructed using parameters from in situ field observations, field tests, laboratory 

tests, and literature surveys.  

2.1.2.1 GEOLOGY AND STRUCTURE 

The SZ below Yucca Mountain is within the Death Valley regional groundwater 

system. Groundwater flow in the SZ is controlled largely by the distribution of rock types 

and their respective permeabilities and porosities (Eddebbarh et al., 2003). The 

hydrogeologic units of the SZ vary from fractured, porous volcanic tuffs relatively close 

to the water table, to fractured carbonate rocks of Paleozoic age (limestones and 

dolomites) at much greater depths (BSC, 2003). 

There are two main hydrogeologic units below the repository. Both of these units 

have vitric and zeolitic components that differ in their degree of hydrothermal alteration 

and thus hydrologic properties. Detailed characterization on hydrogeological units is 

described in Simmons et al., 2004 Section 8.2.2.1. 

Regional tectonics, including folds and faults, can control the groundwater flow 

system by forming topographic features, by displacing and juxtaposing layers with 
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different hydrologic characteristics, and by creating fractures network along fault zones. 

Fractures and faults within the hydrogeologic units constitute the dominant pathways for 

regional groundwater flow. The presence, orientation, and types of faults provide major 

controls on groundwater flow, producing topographic features that define the 

groundwater recharge and discharge areas; inducing highly permeable fractures, and in 

some cases, creating barriers to groundwater flow. 

In the rock matrix, fluid stored in the matrix pore space can be important for 

radionuclide transport. Matrix diffusion can be caused by an exchange between fracture 

and matrix or sorption in the matrix, resulting in retardation of radionuclides. Details on 

transport properties are described in Section 1.1.1.2.4. Table 2.1-8 summarizes the main 

parameters related to geology and structure. 

Table 2.1-8. Summary of geological and structural parameters 
 

 

 

 

 

 

 

 

 Parameters 
Geological Stratigraphy 

Lithology 
Lithological contacts 
Mineral alteration 

Structural Fault orientation, types
Fracture density 
Fracture network 
Folds 
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2.1.2.2 REGIONAL AND SITE-SPECIFIC GROUNDWATER 
SYSTEM 

To characterize the SZ, we must have a general understanding of the regional 

groundwater flow system, including lateral boundaries, recharge and discharge, and 

hydraulic gradient. Variables affecting recharge and discharge include timing of 

precipitation, elevation, slope, soil and rock type, and vegetation. Potentiometric maps 

and information on recharge and discharge have been used in previous studies to 

illustrate the direction of groundwater flow, to calculate the gradient or slope, and to 

estimate the groundwater flow velocity (Simmons et al., 2004, Section 8.2.6) 

As mentioned previously, the groundwater system in the SZ is part of the Death 

Valley flow system. Groundwater flow at both the regional and site scale is generally 

southward, from regions of high hydraulic head to regions of low hydraulic head 

(Eddebbarh et al., 2003).  

Estimates on hydrologic characteristics of major lithologic units are derived by 

evaluating the water transmitting capabilities. Hydraulic conductivity and effective 

fracture porosity are the most important physical properties of aquifers; these parameters 

are needed for calculating the transport of groundwater and contaminants. Hydraulic tests 

include constant-discharge pumping tests, slug injection (falling head) tests, pressure 

injection tests, and fluid logging techniques (e.g., temperature measurement, fluid 

conductivity measurement, and tracer injection surveys).  

The hydrogeologic characterization is based on direct outcrop observations, 

geologic observation from boreholes, and geophysical logs (especially resistivity and 

seismic surveys). Belcher and Elliot (2001) compiled estimates of transmissivity, 

hydraulic conductivity, storage coefficients, and anisotropy ratios for major 

hydrogeologic units within the Death Valley region. Rock permeability has been 

determined by single and crosshole hydraulic testing (BSC, 2003; Eddebbarh et al., 2003). 

Table 2.1-9 summarizes the main hydrological parameters.  
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 Table 2.1-9. Summary of hydrological parameters 

2.1.2.3 REGIONAL AND SITE SCALE GEOCHEMISTRY 

Chemical and isotopic analyses were conducted to determine the source area, flow 

directions, mixing relations, ages, and travel time. The application of hydrogeochemical 

and isotopic methods make it possible to reduce some uncertainties concerning regional 

groundwater flow patterns and flow rates. They also provide some bounds on the 

magnitude and timing of recharge of SZ groundwater (BSC, 2003, Section 2.2.4)  

The main processes that control groundwater chemistry are: 

• Precipitation (atmospheric) quantities and compositions 

• Soil-zone processes in recharge areas 

 Parameters 
Regional 
Groundwater System 
(Recharge – 
Discharge) 

Lateral boundaries 
Precipitation (rainfall, snowmelt) 
Evapotranspiration 
Altitude 
Soil type 
Rock type 
Slope 
Vegetation 
Hydraulic gradient 
Water level 
Direction of groundwater flow 
Flow velocity  
Transmissivity 
Hydraulic conductivity 
Porosity 

Site Scale  Infiltration 
Fault orientation 
Fault type 
Fracture density 
Fracture porosity 
Matrix pore storage 
Transmissivity  
Flow velocity 
Dispersion 
Concentration of radionuclide 

Borehole Matrix porosity 
Fracture density 
Hydraulic head 
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• Rock-water interactions in the UZ between the zone of infiltration and the water 

table 

• Rock-water interactions in the SZ along the flow path, from the recharge location 

to the point where the water is sampled 

• Mixing of groundwater from different flow systems. 
 

The chemical signature of groundwater depends on factors such as host rock 

composition, mineral precipitation and dissolution processes, pH, oxidation potential, 

partial pressure of carbon dioxide, flow path length, and groundwater flux. Major-ion 

chemistry, isotopic composition, and trace-element abundances can be used to 

characterize chemical reactions between the water and host rocks, identify source areas 

for recharge, delineate flow paths, evaluate lateral and vertical mixing of groundwaters, 

and locate areas of evapotranspiration and groundwater discharge (Simmons et al., 2004, 

Section 8.2.7). In addition, the decay rates for radioactive isotopes such as 3H, 36Cl, and 
14C are known, and they can be used to indicate modern nuclear-age recharge as well as 

to date the time of pre-nuclear-age recharge. Major-ionic and isotopic chemistry of 

groundwater represent complementary approaches as indicators of regional flow and 

paleohydrologic conditions. 

In Yucca Mountain area groundwater, sodium is the primary cation, and 

carbonate (as carbonic acid, bicarbonate, and carbonate) is the primary anion (Benson et 

al., 1983, p. 11; Ogard and Kerrisk, 1984, p. 16; Benson and McKinley, 1985). Other 

major cations are calcium, potassium, and magnesium; other major anions are sulfate and 

chloride, with lesser quantities of fluoride and nitrate (Simmons et al., 2004 Section 

8.3.6.1.3). Isotopic data includes 234U/238U ratios, strontium, oxygen, deuterium, and 

carbon isotope ratios. Tracer and rare earth elements were used to evaluate regional 

groundwater hydrochemistry and flow paths (Simmons et al., 2004, Section 8.2.7.4). A 

summary of hydrochemical parameters is shown in Table 2.1-10. 
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Table 2.1-10. Summary of hydrochemical parameters 

 

 

 

 

 

 

 

 

 

 

 

Isotopic analyses indicate that the water in the SZ and perched water have a 

similar origin, predominantly from vertical recharge through the UZ (BSC, 2003c, 

Section 6.7.6.6). 

2.1.2.4 TRANSPORT PROPERTIES  

The rate of radionuclide transport is a function of key radionuclide transport 

processes and parameters such as effective porosity, advection, matrix diffusion, 

hydrodynamic dispersion, and radionuclide sorption (i.e., retardation). To investigate the 

processes of radionuclide transport—such as matrix diffusion, dispersion, sorption and 

colloidal transport—hydraulic and tracer tests were conducted in the SZ (BSC, 2003, 

Section 1.2; Reimus et al., 2003). At Yucca Mountain, the effects of advection, matrix 

diffusion, dispersion, and sorption processes were investigated in fractured and porous 

media (i.e., alluvium). The parameters of transport properties are summarized in Table 

Table 2.1-11. 

In fractured tuffs, advective transport occurs within fractures; the rate of 

advection is determined by the groundwater velocity, and thus, the effective fracture 

spacing and porosity are important for describing the advective velocity of dissolved 

constituents. Radionuclides that are transported through the fractures may diffuse into the 

Regional 
Geochemistry 

Parameters 

 pH 
Eh 

Isotopes 234U/238U 
14C 
36 Cl  
δ-deuterium 
δ18O 
strontium 

Major ions Na, Ca, K, Mg 
Sulfate, chloride 
Nitrate, fluoride  

Others Tracer elements 
Rare earth elements



 

32 

surrounding matrix or sorb onto the fracture surfaces. If the radionuclides diffuse into the 

matrix, they may also be sorbed within the matrix of the rock.  

A series of crosshole radial converging tracer tests were conducted to confirm the 

conceptualization of flow and transport in fractured tuffs (BSC, 2003, Section 3.2.1). The 

effect of fracture spacing and fracture effective porosity on advection is described in BSC 

(2003, Sections 3.2.1.1 and 3.2.1.2) and Saturated Zone In-Situ Testing (BSC 2003e). 

Matrix diffusion and dispersion tests were conducted in rock samples and in the field, 

using tracers (i.e., TcO4, HCO3, 3H, bromide, lithium, and pentafluorobenzoic acid – 

PFBA) as diffusing species. Sorption data were estimated in the field tracer tests by using 

lithium. In these tests, lithium sorption was always approximately equal to or greater than 

the sorption measured in the laboratory (CRWMS M&O, 2000a, Table 3-4). Details of 

the methods used to obtain the field lithium sorption parameters, and discussions of 

possible alternative interpretations for the lithium responses, are provided by Reimus et al. 

(1999) and in Saturated Zone In-Situ Testing (BSC, 2003e). 

In the alluvium, advective transport occurs through the porous matrix. Effective 

porosity and dispersivity were estimated from single-well tracer tests, and literature 

survey data (BSC, 2003, Section 3.2.2). Sorption tests using 129I, 99Tc, 237NP and 233U as 

tracers were conducted using alluvial materials. Sorption was strongly dependent on the 

presence of clay mineralogy as well as iron and magnesium oxides that have larger 

surface areas.  In addition, 14C and 13C isotopic compositions were measured to infer 

recharge, water-rock interaction, groundwater velocity, and residence time. Detailed 

description of the transport processes is in BSC (2003, Section 3.2). 
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Table 2.1-11. Transport properties parameters 

 Parameters 

Porous media 

(alluvium) 

Advection 
Sorption 
Dispersion 
Porosity 
Sorption 
14C, δ 13C isotopes 

Fracture Advection 
Diffusion 
Dispersion  
Fracture spacing 
Porosity  
Aperture 
Fillings 
Sorption 

2.1.2.5 PARAMETERS AND FEATURES FOR FLOW AND 
TRANSPORT IN THE SATURATED ZONE 

Compared to UZ investigations, very little effort has been spent on 

characterization of the SZ. Recently, there has been a renewed interest in the SZ to 

reduce uncertainties. The parameters that most affect the predicted performance of the SZ 

barrier are: 

• Hydraulic gradient 

• Hydraulic conductivity 

• Recharge and discharge 

• Specific discharge 

• Flowing interval spacing 

• Flow path length in fractured tuff and alluvium 

• Effective porosity of fractured tuff and porous alluvium 

• Dispersivity 

• Effective mass transfer 

• Sorption coefficient 

• Matrix diffusion 
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• Advection 

2.1.3 SUMMARY 
Site characterization activities in the YM have been conducted for over 20 years. 

The conceptual model has evolved and improved essentially as a result of intensive field-

testing activities, sampling, analyses, and modeling (Flint et al., 2001). 

At Yucca Mountain, groundwater is considered one of the most critical parameter 

for nuclear waste disposal, with the amount of water contacting the waste package 

ultimately affecting all aspects of repository performance. 

The main investigation conducted in the UZ encompasses: (1) climate (past, 

present and future), including meteorological, surface drainage, and topographic studies; 

(2) geology and tectonic evolution, including investigation of seismic- and volcanic-

activity probabilities; (3) unsaturated hydrology, with the main focus on understanding 

infiltration, percolation, fracture-matrix interaction, and seepage; (4) geochemistry and 

isotope analyses to evaluate the chemistry and age of water and secondary minerals along 

faults and fractures; and (5) physical and mechanical properties, including porosity, 

permeability, in situ stress, and rock strength.  

During the course of site characterization activities, several conceptual models 

were developed, numerical modeling was improved, and many uncertainties were 

addressed, including (1) estimation of infiltration and percolation, (2) effect of faults and 

fractures in the flow path, (3) fracture-matrix interaction, and (4) seepage. 

In the SZ, the main investigation can be summarized as involving: (1) geology, 

including characterization of the hydrogeological properties of rock types and the 

influence of fault and fractures on the flow; (2) groundwater flow system, to evaluate 

recharge and discharge, and estimate the hydraulic characteristics of major hydrogeologic 

units; (3) geochemistry, to evaluate the flow path, water mixing, residence time and 

water-rock interactions; and (4) transport properties with emphasis on advection, 

diffusion, dispersion, and sorption. The main parameters affecting the performance of the 

SZ—by delaying the arrival of radionuclides to the geosphere and by attenuating the 

concentration of radionuclides—are: hydraulic gradient, recharge and discharge, 
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hydraulic conductivity, porosity, flow interval and path, dispersivity, sorption coefficient, 

matrix diffusion, and advection. 
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2.2 Canadian Approach 

The governments of Canada and Ontario formally established the Canadian 

Nuclear Fuel Waste Management program in 1978. It was directed and carried out by 

Atomic Energy of Canada Limited (AECL). The concept investigated involves the burial 

of nuclear waste at an undecided depth from 500 m to 1,000 m within a plutonic rock 

mass of the Canadian Shield. Other options suggested for disposal included salt and shale 

deposits in sedimentary basins, but these options were not considered in depth because of 

the economic value of the salt and the presence of oil, coal, and gas deposits in shale 

formations (Davison et al., 1994). 

In the official review of the Canadian Nuclear Program, the Seaborn Panel in 

1998 indicated that although technically feasible, there was no broad public support for 

the AECL deep-geological-storage concept and the social safety was not demonstrated in 

the program. However, the panel also recommended that an implementing organization 

be established. As a result, in 2002, the Nuclear Waste Management Organization 

(NWMO) was established to consult and make recommendations to the federal 

government about an appropriate long-term management approach for used nuclear fuel 

(NWMO, 2005). 

Several technical options, such as (1) deep geological disposal in the Canadian 

Shield; (2) storage at nuclear reactor sites and; (3) centralized storage above or below 

ground, were proposed for the future of nuclear waste disposal until the means of 

disposal are agreed upon. During these processes, which are predicted to take ~120 years, 

public involvement would be essential in deciding safety issues regarding the waste 

repository. For details on the technical options, see NWMO (2005). 

As a result of the Seaborn Panel review, all activities related to development of 

site characterization technology by AECL gradually ended. In this report, we summarize 

the parameters for site characterization developed and recommended by AECL for future 

use in site screening and evaluation. 

Plutonic rocks in the Canadian Shield have a number of characteristics that make 

it a suitable choice as a disposal medium for Canada (Davison et al., 1994): 
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1. Wide distribution–large exposure in regions of low topographic relief, indicating 

a low driving force for groundwater flow. 

2. A geologically stable region. The Canadian Shield has been free of any major 

orogenic activity for at least the past 600 million years. 

3. Low seismic activity in large areas of the Shield—although periodic earthquakes 

occur, they are clustered along structural weaknesses of ancient rift systems. 

 

In addition to these characteristics, there are yet other advantages to using the 

plutonic rock of the Canadian Shield as host rock for a nuclear waste repository. Much of 

the plutonic rock: (a) is unlikely to be exploited as a resource, because of the limited 

mineral deposits associated with it; (b) has potentially beneficial thermal, 

hydrogeological, geochemical and geomechanical properties; (c) in general has good 

thermal conductivity, and radionuclide transport at depth is most likely to be via diffusion 

or advection, because fractures become sparse and fracture connectivity and permeability 

decrease with depth; (d) has minerals coating pores and fractures that react with many 

radionuclides, retarding their movement through the rock, and (e) have stable 

geomechanical properties for underground openings.  

 

The major objective for the AECL’s research and development program (R&D) 

was to develop and demonstrate methodology and technology for siting, construction, 

operation, decommissioning and closure of a disposal facility as well to evaluate the 

long-term safety and performance assessment of a disposal system. As for the geosphere, 

the main objective was to understand the behavior of plutonic rock and its associated 

groundwater flow system, to develop site and numerical models, and to access the 

performance of plutonic rock as a host medium (Davison et al., 1994 Section 2.4).  

 

The proposed siting process developed and recommended by the AECL included 

site screening and site evaluation. They were aimed at developing and testing the 

equipment and methods for site characterization in plutonic rocks. The characterization 



 

56 

approach during the siting stages would be to investigate progressively smaller areas in 

progressive greater detail (AECL, 1994b Section 5.1.2) 

 

 Site screening is the initial phase in site selection. During site screening large 

geographic areas of the Canadian Shield would be examined to find favorable (1) siting 

territories, (2) siting regions and (3) a potential candidate area. During siting territory 

suitable technical areas would be select based on decisions from the implementing 

organization such as the government and the owner of nuclear waste. Siting regions 

would involve reconnaissance investigations and an examination of existing information 

for prospective regions, during which a relatively large number of potential areas would 

be identified. The exclusion criteria for this stage would include seismic areas, areas with 

ancient rifts, areas that had a history of clustered earthquake activity, presence of mineral 

resources, geological and hydrological settings, degree of rock fracturing and 

environmental sensitivity. Identification of potential candidate areas would consider 

certain characteristics such as low topographic relief, few major lineaments, few open 

fractures between lineaments, absence of post-glacial faults, far from operating and 

abandoned mines, large areal extent of the plutonic rock, plutonic rock with uniform 

properties, extensive outcrop, an absence of valued environmental components (i.e. 

protected lands) and, an optimal location for construction and operation of the disposal 

facility (i.e. minimize transportation costs).  

 

Next, through surface and subsurface characterization, the objective of site 

evaluation process would be to: identify one or more potential vault locations within each 

candidate area, identify a preferred vault location within each candidate area, identify the 

candidate site incorporating each preferred vault location, select a preferred route for 

transportation of nuclear waste to a disposal facility, confirm the suitability of the 

preferred site and, obtain approval for construction. Site evaluation would involve the use 

of field and laboratory investigations to obtain the knowledge and understanding of the 

important geotechnical and environmental conditions of the site. Site evaluation would be 

conducted by assessing relatively (1) large candidate areas of about 400 km2 which 

would be subjected to detailed surface and subsurface investigations that would shrank 
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the area for the (2) potential site to about 25 km2, and finally to a  (3) preferred candidate 

site of about 5 km2 for construction and operation. In addition, during the reconnaissance 

studies of a candidate area, smaller study areas called grid areas of about 1-4 km2 would 

be selected for detailed surface and subsurface (borehole) investigations. The study from 

the grid areas would provide detailed information of the geological, geomechanical and 

hydrogeological conditions of a candidate area.   

From 1978 to about 1988 the Canadian Program carried out detailed surface 

characterization at three grid areas in the Canadian Shield: the granitic rocks at the 

Whiteshell and Atikokan Research Areas and gabbro at the East Bull Lake Research Area 

(AECLa, 1994, Section 5.8.1). These sites were selected because they offered 

opportunities to test and develop site evaluation methods in a variety of different 

lithologic and structural environments in the Canadian Shield (Davison et al., 1994, 

Section 2.4) 

According to AECL (1994a, 1994b), the multidisciplinary investigations 

conducted at the surface-siting stage would include regional and detailed geological and 

geophysical mapping, borehole investigation (including geological core logging), 

geophysical testing, determination of geomechanical and hydrological properties, and 

determination of in situ stress. These investigations defined the tectonic style, 

groundwater flow regime, hydrogeochemistry, and location of major fracture zones in the 

rock mass at the prospective site. These studies also determined the general pattern and 

extent of smaller-scale fracturing, the distribution of permeability within the fracture 

zones and the regions of lower permeability (i.e., moderately and sparsely fractured rock), 

the mineralogy of fracture infilling and alteration, and the rock types and their 

petrography.  

Through successive stages of site selection, characterization activities would be 

directed to confirm, define, or revise the following components of the site: 

1. The general geology of the site and its potential for economic mineralization, as 

well as the search for guides to the dimensions, history, and fracture patterns of 

the rock 
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2. Location and characteristics of the groundwater flow network, including the 

major fault zones and fractures and the intact rock mass: 

- the fracture network 

- the hydrology of the fracture network 

- the groundwater chemistry and microbiology  

- the chemistry of the rock and fracture filling minerals  

Information required in designing a potential facility so as to reduce thermal 

effects and excavation damage. This includes:  

- thermal and mechanical properties of rock  

- in situ stress field, thermal response of the rock mass 

- coupled in situ response of the rock mass to induced effects of excavation 

and thermal loading. 

Information from site evaluation would be combined to develop and calibrate 

regional scale model of the groundwater flow and solute transport of the candidate area. 

Sensitivity analysis with the model would assist in identifying where additional grid areas 

or borehole might be required to improve the understanding of the candidate area. 

 

 

 

 

 

 

 

 

According to Sykes (2003), the granitic rock of the Canadian Shield would 

provide a stable environment for a deep geologic repository, because of its wide spatial 

One of the main concerns for the Canadian Nuclear Waste Program is the glaciation-
deglaciation cycle. According to paleoclimate studies, glaciation and deglaciation 
has occurred nine times in the past 900,000 years. In each 100,000-year period, the 
ice cover builds up slowly for the first 90,000 years, whereas the melting and retreat 
phase last approximately 10,000 years. As melting and retreat occurs, it has a 
profound impact on the regional stress regime, hydrology, and climate (Peltier, 
2003). The ice-sheet growth in the Canadian Shield during these periods effects 
mechanical loading of the ground rock due to mass of overlying ice, changes in the 
thermal regime of the rock matrix (including pore-water freezing, promoting 
fracturing), and increases in pore and rock pressure at depth.  
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distribution, low topographic relief (in which driving forces are likely to be low) and low 

seismic activity. 

2.2.1 SITE INVESTIGATION PARAMETERS 

2.2.1.1  GEOLOGY AND STRUCTURE 

As part of the development of site characterization technology and to find areas 

for detailed research (see three sites mentioned previously), geological reconnaissance in 

granite and gabro plutons were performed to obtain information on access, bedrock 

exposures and distribution of rock types, fracture density, analysis of large faults from 

lineament, and regional geophysics. The geological information obtained during site 

screening would be combined with a preliminary analysis of a large scale faulting 

obtained from airphoto lineament analysis, satellite radar and spectral image analyses, 

reconnaissance geophysical surveys, and maps of hydrological drainage catchments.  

More detailed ground mapping would be performed at the candidate areas. The main 

geological parameters for the recommended site screening stage are listed in Table 2.2-1. 

Table 2.2-1. Geological and structural parameters recommended for site screening 

 
 

 As part of the site evaluation, a detailed knowledge of the pluton such as 

size, shape, major lithologies (rock types), their geometry and the physical and chemical 

properties of the lithologies (mineral alteration, magma evolution, crystallization, 

hydrothermal fluid, thermal conductivity, strength, elasticity and fractures) would be 

evaluated to access the hydrogeologic properties of rocks that control contaminant 

transport. The main surface investigation would include systematic geological mapping 

and sampling of lithology and structural fabric elements in outcrop, careful examination 

Characteristics Parameters 

Lineament Analysis Major fault and fracture orientation 

Lithology Major rocks types, petrology, mineralogy 
Mineral fabric 
Age of plutonic intrusion, rate of cooling, erosion rate 

Size and shape of pluton 

Structure Distribution, orientation, age relation of faults and fracture zones  
Fracture density 
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of topographic maps to access faults and fracture zones and, mapping fractures in 

outcrops. Borehole investigation would be important to examine the subsurface character 

of major lithologic contacts or surface lineaments. Core samples would be selected for 

laboratory examination and determination of petrological, hydrological, chemical, 

structural, mechanical and thermal properties. 

Structural style is important for evaluating the long-term stability of the rocks and 

the tectonic history of the region. Faults and fractures are the major structural features in 

the Canadian Shield, controlling groundwater movement in the granitic rocks. During site 

evaluation, detailed information on locations, dimensions, orientations and relative ages 

of the fractures at the site would be required to reliably predict the fracture patterns 

within the blocks of rocks which are bounded by the larger fault zones and to confirm the 

suitability of any candidate area for waste disposal. 

During the development of the research program, AECL constructed an 

Underground Research Laboratory (URL) in the Lac du Bonnet batholith. This batholith, 

intruded over 2.6 billions year ago, is part of the crystalline rock of the Canadian Shield. 

The URL in granite has been used for large-scale testing and in situ engineering and 

performance-assessment-related experiments investigating key aspects of deep geological 

disposal. At the URL, three low-angle reverse faults and three main fracture domains 

were identified, on the basis of fracture frequency. These are intense, moderate, and 

sparsely fractured domains. Surface-based characterization of the URL site is described 

in detail in Davison et al. (1994, Section 7.2). The main parameters considered to be 

necessary for site evaluation are listed in Table 2.2-2. 

Table 2.2-2. Geological parameters recommended for site evaluation 

Method Parameters 

Field Investigation Rock types 

Shape and size of plutons 

Percentage of dikes 

Geometry and distribution of dikes and veins 

Degree of metassomatic granitization 

Mineral alteration 

Distribution of U, Th and rare earth elements (REE) 
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Structures Fractures (locations, dimensions, relative age, density, aperture, infillings) 

Faults (locations, orientations, extents, interconnections) 

Rock Sampling Mineralogy 

Fabric/deformation history 

Fracture filling minerals 

Drill Core Analyses 

 

Fracture density, spacing 

Fracture orientation 

Fracture aperture 

Fracture connectivity 

Fracture filling minerals 

Mineral alteration 

Rock type 

Borehole surveys Fracture location, orientation   

Lithologic variations 

Fracture infillings 
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2.2.1.2 GEOPHYSICAL SURVEY 

A broad spectrum of geophysical measurements, using satellite, airborne 

magnetic, electromagnetic imagery, and radiometric survey, combined with aerial 

photography, were performed to identify major structural lineaments, topographic 

features (such as dikes and faults) and to identify radiometric anomalies (radiometric 

survey) (Davison et al., 1994, Section 4.4, Table 4-1). During site screening stage, the 

main parameters identified by the proposed geophysical survey (combined with 

LANSAT 5) included major lineaments and their spatial frequency and distribution, 

boundaries of granitic rocks, overburden thickness, fracture zones, and depth of 

batholiths. Table 2.2-3. lists recommended geophysical survey parameters to obtain at the 

site screening stage. 

Table 2.2-3. Geophysical parameters recommended for site screening 

 

During the site evaluation stage, regional reconnaissance airborne and land-based 

surface-based geophysical surveys (surface VLS/EM, radar, seismic reflection, and sonar 

reflection) would be conducted to complement the information from the preceding site 

screening phase and to understand the main lithologic and structural features of the 

candidate area.  

 

The borehole geophysical surveying would be used to identify variations in rock 

properties and lithology as well as to identify fracturing in the rocks surrounding the 

borehole. Detailed descriptions of the recommended characterization methods used for 

the deep boreholes are found in Davison et al. (1994, Section 6.2.2, Table 6.5). The main 

Method Parameters 
Airborne EM and 
VLF-EM 

Lithologic variations 
Faults, fractures zones 
Thickens of overburden deposits 

Aeromagnetic Shape, depth and boundary of pluton 
Subsurface lithologic variations 
Lineaments 

Airborne Radiometric Boundary of pluton 
Gravity Shape, depth, boundary of pluton, and rock units 
Surface electrical Large structural features, lithologic contacts, 

major fracture zones 
Reflection seismic Large fracture zones, lithologic variations in subsurface 
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recommended parameters obtained from borehole geophysical surveys are listed in Table 

2.2-4. 

 

Table 2.2-4. Geophysical parameters recommended for site evaluation 
Surface Parameters 

Airborne magnetic 
Gravity 

Side-scanning radar survey 

Depth, shape and lithological boundaries, faults and fractures 
Shape, depth and boundaries of pluton, distribution of lithologies 
Linear anomaly caused by lithology, fracture, fault 

Ground based gravity 
Reflection seismic profile 

 
Ground penetrating Radar 

Shape, depth, and boundaries of pluton 
Subsurface lithological variations, location of major fracture zones or 
faults 
Location of low dipping fractures up to 100m depth 

Borehole  
Geophysical logs Fracture depth, lithologic boundaries 
Acoustic televiewer Location of fracture 
Single hole radar survey Location, orientation of fracture away from borehole 
Crosshole radar or seismic 
survey 

Continuity and geometry of features between boreholes 
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2.2.1.3  HYDROLOGY AND HYDROGEOLOGY SETTINGS 

Hydrology and hydrogeology include study of weather and climate, the 

topography of the land, and the occurrence, movement, and chemistry of surface water 

and groundwater. Hydrogeological setting includes the rate and directions of groundwater 

flow, recharge/discharge areas, water-rock and fracture-rock interactions. During site 

screening, hydrogeological knowledge will generally be limited by a lack of subsurface 

information (Davison et al., 1994, Section 3.5, 4.4.3). Most of hydrologic information 

would come from aerial inspection surveys, satellite images and topographic maps.  

Surficial geological deposits and rock outcrops would be examined for hydrogeological 

features to obtain information on groundwater movement within the candidate region.  

The surface and groundwater flow system of plutonic rock is greatly affected by 

structures such as faults and fractures, as well as by the permeability, porosity, and 

groundwater pressure within the rock. In the Canadian Shield, a flat topography provides 

less variation in groundwater pressure, a lower hydraulic gradient, and therefore a slower 

groundwater flow (Davison et al., 1994, Section 3.5). During site screening, the 

recommended parameters that would be obtained are listed in Table 2.2-5. 

 

Table 2.2-5. Hydrology and hydrogeological parameters recommended for site 
screening 

Methods Parameters 
Satellite images, Air Photography, 
Topographic maps 

Drainage (recharge/discharge areas) 
Runoff patterns 
Water level fluctuation 

Mapping location of seepage  
and spring locations 

Groundwater recharge and discharge rates 
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During the site evaluation stage the main surface investigation would include 

surveys of physical and chemical characteristics of groundwater springs and seepages or 

other evidences of discharge; surveys to determine surface water catchment areas, lake 

areas and lake depth; surveys to establish sediment accumulation rates in water bodies 

and the thickness of mixed sediments and; developing monitoring network for 

meteorological, hydrological observations. 

Knowledge of the amount and temporal and spatial of precipitation, runoff, 

infiltration and recharge in the region surrounding the disposal site would be needed to 

construct a reliable model of the groundwater flow conditions. Thus, a variety of physical 

properties of the groundwater at the site must be determined to establish the groundwater 

flow rate and flow system. Knowledge of the properties of the groundwater transport 

pathways from vault depth to surface would be also used to develop and calibrate 

mathematical models which simulate long term movement of contaminants from the 

disposal vault to the geosphere. Matrix hydraulic conductivity or permeability, matrix 

porosity, spatial and temporal distribution of groundwater pressure and the 

compressibility of the groundwater and the rock matrix/fracture network needed to be 

determined in order to establish the rate and flow paths of groundwater.  

Hydrogeological investigation conducted in borehole would include a broad range 

of permeability, porosity, natural groundwater pressure measurement performed in single 

as well in multiple boreholes.  

Results from investigations and research indicate that the major structural features 

controlling groundwater movement in plutonic rock are the fracture zones. Fractures 

(including faults) are found at all depths, and the permeability of fracture zone varies, 

depending on aperture, fracture spacing, density, and connectivity. 
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Table 2.2-6 lists the main recommended hydrological parameters to obtain during site 

evaluation: 
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Table 2.2-6. Hydrology and hydrogeological parameters recommended for site 
evaluation 

 Parameters 
Meteorology Temperature 

Wind speed and  direction 
Evaporation rate 
Precipitation 
Run off rates 
Level of surface water 
Spring locations (recharge/discharge) 

Rock/sediments Porosity 
fracture network 

Borehole Hydraulic conductivity or permeability 
Porosity 
Groundwater pressure 
Compressibility 
Hydraulic head 
Hydraulic fracturing (stress) 

 

2.2.1.4 GEOCHEMISTRY AND HYDROGEOCHEMISTRY 

Regional reconnaissance studies of spatial and temporal variations in ionic 

content such as presence of salts, and measurement of Cl- of the surface waters in a 

potential candidate area can provide information about groundwater discharge areas. 

Mapping variations of electrical conductance and using airborne or satellite thermal 

infrared imagery would be useful to detect anomalous patterns in the temperature of 

surface waters. Soil gas measurements have been used to detect locations where deep 

groundwater might be discharging from subsurface bedrock fractures. Table 2.2-7 lists 

the main parameters that would be obtained during the recommended site screening 

process. 

Table 2.2-7. Geochemical and hydrogeochemical  parameters recommended for site 
screening 

 Parameters 

Surface water analysis 

Electrical conductance and/or 

Airborne or satellite thermal infrared 

Imagery 

Soil gas analysis 

Ionic content (Cl-, presence of salt) 

Temperature 

Location of discharge 

 

Radon and Helium 
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Development of geochemical characterization techniques of host rock, fracture-

infilling mineral, groundwater, and pore water have provided data for flow modeling and 

safety assessment, as well as information on groundwater ages, sources of salinity, and 

rock-water interactions. With this in mind, reconnaissance studies were carried out to 

locate groundwater discharge areas, determine the chemical composition of the water 

(through existing water quality information or water analysis), and locate gas discharge 

areas in soils and along fractures.  

During site evaluation stage, more detailed investigations would need to be 

conducted, including laboratory analysis of rock specimens and core samples. The 

knowledge of chemistry of the groundwater would help to define the groundwater flow 

patterns at the site and surrounding area as well to determine the ratio of radionuclide 

migration to the geosphere. The main surface investigation would include surveys of 

levels of helium and radon gases in soils and surface waters to help to delineate 

groundwater recharge and discharge conditions, surveys of chemical characteristics of 

spring and seepages, chemical analysis of major and minor elements of whole rock and 

infilling minerals and, radiometric dating of primary and secondary minerals. The 

parameters that would need to be obtained during site evaluation are listed in Table 2.2-8. 

Table 2.2-8. Geochemical and hydrogeochemical parameters recommended for site 
evaluation 

 Parameter 
Rock analysis Major and minor elements in rock and fracture fillings 

Radiometric dating  
Surface investigation Radon, Helium in soils and surface water 

Chemistry of springs and seepages 
Recharge/discharge conditions 
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More specifically, the main recommended hydrogeochemical parameters to be 

obtained from boreholes include: total dissolved solids (TDS) contents, Eh, pH, elemental 

concentration (anions, cations, trace elements, dissolved organic carbon, colloids), and 

isotopic data (environmental isotopes, carbon isotopes, sulphate isotopes, halogen 

isotopes, strontium isotopes, uranium and radium isotopes, radon, dissolved gases, 

dissolved inert gas isotopes). Detailed descriptions of groundwater sampling can be found 

in Davison et al. (1994, Section 6.2.5, Table 6.4). The parameters are summarized in 

Table 2.2-9. 

Table 2.2-9. Geochemical and hydrogeochemical parameters from boreholes 
Category Species/Element 
Anions HCO3, SO4, Cl, Br, F, NO3, I 
Cations Na, Ca, Mg, K, Sr, Si, B 
Trace Elements Li, Fe, Mn, V, Al +Others 
Dissolved Organic Carbon Organic C 
Colloids Colloidal fractions 
Environmental Isotopes 2H, 3H, 18O 
Carbon Isotopes 13C, 14C 
Sulphate Isotopes S18O4, 34SO4 
Halogen Isotopes 36Cl, 129I 
Strontium Isotopes 87Sr/86Sr 
Uranium and Radium Isotopes U, 234U/238U, 226Ra 
Radon 222Rn 
Dissolved Gases H2, He, O2, N2, CO2, CH4, Ar, H2S 
Dissolved Inert Gas Isotopes He, 3He/4He, 22Ne/21Ne 

 

The pH, Eh, and elemental concentrations data were used in study of rock-water 

interaction. The isotopic data were used to delineate rock-water interaction and to 

determine the relative age of the groundwater. 

The hydrogeochemical data indicate that below 500 m at the URL and elsewhere 

in the Canadian Shield, groundwaters are very saline, reducing, and old (Gascoyne, 2000). 

Isotopic studies have shown that the groundwater changes with depth and with increasing 

residence times in fractures to over 1 million years below 400 m (Gascoyne, 2000). 

2.2.1.5 STRESS FIELD 

Knowledge of the stress field in plutonic rock can be used to understand the 

permeability distribution of faults and fractures (possibly affecting the groundwater 
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system during site characterization) and to assess the long-term stability of an 

underground repository. 

During the recommended site screening process, the large-scale rock stress was of 

interest for evaluating Shield stability. The in situ stress state comprises the effective 

lithostatic load, active tectonic stress, and remnant stress. The orientation of paleostress 

field could be used to constrain the stress heterogeneity and relationship with larger 

structural features (Davison et al., 1995, Section 5.5). The parameters are summarized in 

Table 2.2-10. 

Table 2.2-10. Recommended stress field parameters for site screening 
Stress field Parameters 

 Effective lithostatic load 
Active tectonic stress 
Remnant stress 
Paleostress orientation 

 

The stress field in the plutonic rock can be also determined by hydraulic 

fracturing performed in boreholes. It would provide information on magnitude (and in 

some cases orientation) of state of stress in rock. Detailed descriptions of hydraulic 

fracturing for in situ stress measurement are found in Davison et al. (1994, Section 6.2.6). 
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2.2.1.6 ROCK MASS PROPERTIES 

Rock properties would be determined in the laboratory using core samples from 

drillcore. The main developed and recommended methods included analysis of pore 

structure in fracture and rock matrix, as well as determining the thermal, mechanical, and 

magnetic properties. Table 2.2-11 illustrates the main laboratory rock properties. 

Table 2.2-11. Rock-mass properties recommended  
Laboratory Rock Properties Parameters 

Pore structure of fracture and matrix Tortuosity 
Porosity (surface area, pore aperture) 
Micromorphology of pore 
Diffusion 
Permeability 

Thermal properties Thermal expansion 
Thermal conductivity 
Thermal diffusivity 

Mechanical properties Strength 
Elasticity 
Deformation 

Magnetic properties  Magnetic susceptibility, magnetic anisotropy 
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2.2.2 SUMMARY 
In Canada, the stable tectonics, as well as the wide exposure and distribution of 

plutonic rock in the Canadian Shield, make plutonic rock a suitable choice for storage of 

nuclear waste.  

The Canadian Shield was used to develop site characterization technology and 

recommend approaches for site screening and site evaluation. The method implemented 

by the AECL included a multidisciplinary and staged approach (i.e. from regional scale 

to candidate area to candidate site). The recommended methods for site characterization 

were often the same at each stage (i.e. site screening and site evaluation) but as each site 

was narrowed down from a larger area to a smaller more specific site, characterization 

was carried out with increasing detail. The information obtained from site 

characterization was then used to construct conceptual site and numerical models. The 

results were used to reduce uncertainties in various parameters and models, to refine the 

understanding of the rock mass, geochemical and hydrogeological conditions of plutonic 

rocks, and to integrate these in the performance assessment models. 

For the Canadian program site characterization, fracture characterization was very 

important, because it enabled investigators to identify different hydrogeological, 

geochemical, and geomechanical characteristics of plutonic rock. The plutonic rock of 

the Canadian Shield provides many advantages for safety storage, such as the large size 

and extent of plutonic bodies, extensive outcrops, a stable geological setting, with known 

seismic zones or no volcanic activity, and low topographic relief.  



 

73 

2.2.3 REFERENCES 
AECL, 1994a. An approach to underground characterization of a disposal vault in granite 

(R.A. Everitt, C.D. Martin, P.M. Thompson) AECL-10560, COG-94-38 

AECL, 1994b. Environmental Impact Statement on the Concepts for Disposal of 
Canada’s Nuclear Fuel Waste. AECL -10711, COG-93-1, 496p. 

AECL, 1997. AECL’S Underground Research Laboratory: Technical Achievements and 
Lessons Learned by M.M. Ohta, N.A. Chandler AECL-1 1760 

Davison, C.C., Brown, A., Everitt, R.A., Gascoyne, M., Kozak, E.T., Lodha, G.S., Martin, 
C.D., Soonawala., N.M., Steventons, D.R., Thorne, G.S., and Whitaker, S.H. 
1994. The disposal of Canada’s Nuclear Fuel Waste: Site screening and site 
evaluation technology. AECL-10713, COG-93-3, 255p. 

Gascoyne, M., 2000. Hydrogeochemistry of the Whiteshell Research Area. Report No: 
06819-REP-01200-10033-R00. Toronto, Ontario. May 2000. 

Gascoyne, M., 2004. Hydrogeochemistry, groundwater ages and sources of salts in a 
granite batholith on the Canadian Shield, Southeastern Manitoba. Applied 
Geochemistry, 19, 519–560.   

AECL (Lodha, G.S., Davison, C.C., Gascoyne, M.), 1998 Characterizing fractured 
plutonic rocks of Canadian Shield for deep Geological Disposal of Canada’s 
Radioactive Wastes in Characterization and Evaluation of Sites for Deep 
Geological Disposal of Radioactive Waste in Fractured Rocks. Proceedings from 
the 3rd Aspo International Seminar Oskarshmn, June 10–12.Technical Report 
TR-98-10 SKB. pp. 1–14. 

NWMO, 2005. Choosing a Way Forward. The future management of Canada’s Used 
Nuclear Fuel. Final Study.454p. 

Peltier, W.R., 2003. 18-month Progress Report. Submitted to the Network of Centres of 
Excellence, Clean Water Network. Project 6j. University of Waterloo, Waterloo, 
Ontario. June, 2003. 

Sykes, J.F., 2003. Characterizing the geosphere in high-level radioactive waste 
management. In: NWMO Background Papers. Section 4.2.  



 

74 

2.3 The Japanese Program 

The Japanese Island arc is one of the best-studied active arc-trench systems in the 

western pacific (Taira, 1999). While the geological environment in most of Europe and 

North America is relatively stable, the Japanese Island is geologically and tectonically 

unstable. The island is located along active plate boundaries, resulting in frequent 

volcanic activities and crustal movements such as faulting, folding, uplifts and 

subsidence. Thus, the distribution of geological formation, topography features, major 

structural discontinuities, depth of water table and groundwater chemistry are controlled 

by the active geological system. 

Site characterization for the Japanese nuclear waste program is focused on 

developing scientific expertise and improving the methodology and technology by which 

to understand geological, structural, hydrological, geochemical, and rock mechanics 

properties. Currently, Japan has two underground laboratory projects under construction, 

one in crystalline rock, a fractured medium (Mizunami Underground Laboratory—the 

MIU site) and the other in sedimentary rock, a porous medium (Horonobe Underground 

Research Laboratory). Both these projects follow the same approach, composed of three 

phases as follows: 

• Phase 1. Surface-based investigation  

• Phase 2. Construction of the underground laboratory 

• Phase 3. Operation phase 

Although the schedule for the MIU and Horobone sites is slightly different, both 

are currently in Phase 2 (shaft construction). The underground laboratory at MIU site is 

planned to have two levels, at depths of 500 m and 1,000 m, whereas the Horonobe 

Underground Research will have one level at a depth of 500 m.  

2.3.1  CRYSTALLINE ROCK—OVERVIEW OF THE MIZUNAMI 
UNDERGROUND LABORATORY (MIU) IN TONO AREA 
An extensive geological, geophysical, hydrogeological, hydrogeochemical and 

rock-mechanics investigation has been conducted in the Tono Area. Site characterization 

in the Tono Area includes data from boreholes drilled for the uranium exploration at 
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Tono Mine, boreholes for regional hydrogeological studies (RHS), deep boreholes at the 

Shobasama site, and ongoing characterization of the MIU site (JNC, 2000b, 2001, 2002, 

2003; Kumazaki et al., 2003). 

Surface geological characterization in the Tono Area started in the 1960s as part 

of the uranium exploration program. The Tono Mine is located a few kilometers west of 

the MIU site. A substantial amount of geological information has been accumulated since 

the beginning of the uranium exploration program. The shaft and gallery leading to the 

Tono Mine allow access to sedimentary rocks, including uranium deposits, at depth over 

one hundred meters. Surveys conducted in this region include studies of groundwater 

hydrology and geochemistry, mass transport via groundwater, and the effect of 

excavating galleries on the geological environment (Yusa et al., 1993). Knowledge of 

geological conditions in the mine subsurface has been used to develop models for the 

MIU project.  

During the period of 1996 to 1999, preliminary site investigation and drill core 

was conducted at the Shobasama Site, the location of the underground facility. However, 

in 2002, the project in the Shobasama was relocated to a new site about 2 km 

southwest—the MIU Site. The MIU Site is currently the host for the underground 

laboratory, and the shaft is under construction (JNC, 2002, 2003; Kumazaki et al., 2003). 

A geoscientific research program in the Tono area includes investigation of the 

groundwater flow system (over a 100 km2
 area) and regional geological mapping. Data 

from these programs have provided important knowledge for the development of the 

MIU-project conceptual models (Shigeta et al., 2003). 

Specific studies conducted for site characterization in the Tono Area include: 

• Geological and structural investigations 

• Surface hydrological investigations 

• Geophysical investigations 

• Borehole investigations (geology, hydrogeology, hydrogeochemistry, and rock 

mechanics) 
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2.3.1.1 GEOLOGICAL AND STRUCTURAL INVESTIGATIONS  

Geological and structural investigations were conducted to identify the surface 

distribution of lithofacies, depth of sedimentary rocks, lithological contacts, and 

characterization of fracture and faults (type, orientation, width of damage zone, mineral 

composition) (JNC 2000b, 2001, 2002, 2003a).  

The Toki granite (of Cretaceous age) is the basement of the Tono Area. The 

granite intruded the Paleozoic-Mesozoic sedimentary rock of the Mino Tamba Belt and 

granite is overlayed by sedimentary rocks (mostly tuffaceous sandstone, mudstone, and 

conglomerate intercalated with lignite layers) of the Miocene and Pliocene age. Detailed 

geological description is found in JNC (2000a Section 3) and Kumazaki et al. (2003 

Section 2). 

Remote sensing techniques were employed at an early stage of site 

characterization to obtain information on topography, vegetation distribution, 

sedimentary layers, possible lithological distribution, lineaments/faults distribution, and 

landslide distribution (JNC, 2000b). Regional faults and fracture zones were investigated 

using lineament analysis. Satellite images (Landsat TM Imagery and French SPOT 

satellite) and aerial photography was useful in identifying trends and lengths of major 

discontinuities and in confirming locations of active faults. In addition, such analyses 

provided useful information on the tectonic stress distribution at the regional scale.  

The main faults identified near Shobasama site are the Yamada Fault, the Shizuki 

Fault, and the Tsukiyoshi Fault. At the Shobasama site and at the Tono Mine, the EW-

oriented Tsukiyoshi Fault—a reverse fault—is considered the major fault structure in the 

area. Although it has no surface expression, it is observed at depth at the Tono Mine and 

at drill core retrieved from 1,000 m depths. Estimated fault displacement is about 30 m. 

The fault damage zone is inferred to be >100 m on each side of the fault. Structural, 

mineralogical and geochemical evidence suggest that the fault has been subjected to more 

than one phase of deformation (JNC, 2001; Hama et al., 2003).  

At the new MIU site, located in the hanging wall of the Tsukiyoshi Fault, several 

NNW trending structures are mapped. A NNW normal fault is inferred from lineament 
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analysis, reconnaissance survey, seismic survey, and drill core studies (Kumazaki et al., 

2003).  

Because of the lack of bedrock exposure, (i.e., granite), a large part of the 

geological information at the MIU site has been obtained from borehole data and 

geophysical investigation (Shigeta et al., 2003). For these borehole investigations, 

geological studies included core logging, borehole geophysics, and borehole TV (BTV) 

surveys for both shallow deep and boreholes. Information about Toki granite is mainly 

from deep boreholes (1,000 m) drilled at the Shobasama site. At the new MIU site, 

boreholes drilled up to 200 m have reached the upper weathered zone of the Toki granite. 

The main geological and structural parameters obtained from borehole and core 

data are: 

1. Rock type, contact depth, grain size, texture, weathering, alteration, RQD, 

fracture distribution, density, shape, aperture, type, and mineral filling are 

obtained from drill-core samples. Borehole TV investigation recorded images of 

textural variations in the granite and fractures along the borehole wall such as 

depth, fracture shape, orientation, width, aperture and presence of fracture filling 

and zones of mineral alteration. Based on modal composition analysis, the granite 

is classified mainly as biotite-granite. Toki granite Granite is divided by textural 

variations into coarse- medium- and fine-grained biotite granite. 

2. According to structural information of fractures orientation, distribution, and 

frequency, the granite was divided into three main domains: an upper fractured 

zone, a moderately fractured zone, and a fracture zone along fault zone (JNC, 

2001). 

 

A summary of the main geological and structural parameters is shown in Table 

2.3-1. 
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Table 2.3-1. Geological and structural parameters 
 Parameters 
Geology Depth, lithological contacts, stratigraphy 

Rock types, thickness of sedimentary layers 
Type of dikes, orientation, width 
Petrology, mineralogy of weathered/fresh granite 
Clay types and filling minerals in fault zone 

Structural Lineaments orientation 
Fault geometry, length, orientation 
Fracture geometry, orientation (strike/dip), shape 
Depth of unconformities 
Dikes orientation, width 

Drill core/Borehole  
Investigation/  
BTV 

Rock type (petrology, mineralogy, mafic content) 
Contact depth 
Grain size  
Textural variations 
Degree of weathering/alteration 
RQD 
Fault and fracture distribution 
Fracture density 
Fracture shape 
Fracture aperture 
Type and mineral filling 
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2.3.1.2 GEOPHYSICAL INVESTIGATION  

Using updated technologies such as high-resolution satellite imagery, a combined 

electromagnetic and detailed refraction/reflection survey was able to acquire subsurface 

information, such as depth of unconformity, location of major faults, lithological contacts, 

and thickness of sedimentary layers.  

At the regional scale, geophysical surveys such as regional airborne geophysical 

surveys (including airborne magnetic, airborne electromagnetic, and airborne radiometric 

surveys were conducted with the purpose of identifying and estimating the main 

lithological contacts, formation thickness and depth, and locations of structural 

discontinuities such as faults and fractures. Site-scale ground electromagnetic (MT and 

CSMT methods) and seismic surveys were used to estimate depth and lithological 

contacts. According to JNC (2001), accurate results were not obtained by EM 

(electromagnetic telluric) and electric surveys.  

In addition, apparent resistivity, density, neutron porosity, and P-wave velocities 

were obtained from borehole geophysical surveys for the three 1,000 m deep boreholes at 

Shobasama site. Table 2.3-2.summarizes the main parameters obtained from geophysical 

surveys.  

Table 2.3-2. Geophysical parameters 
Method (Regional)  Parameters 
Airborne magnetic 
 
Airborne electromagnetic 
Airborne radiometric 

Boundaries of granite, thickness of sediments, lineaments 
Density, lithology 
Thickness of sediments, contact sediment/granite  
Concentration of uranium, thorium and potassium 

Ground geophysical   
Ground electromagnetic 
(MT and CSMT methods) 
Seismic Reflection/Refraction 

Depth of unconformity sediment/granite 
 
Fault length, fracture zones, unconformities 

Borehole log  
Electrical resisitivity 
Density logging 
Neutron and gamma-ray logging 
Temperature logging 
Caliper logging 
Acoustic logging 
Crosshole seismic radar survey 

Fracture density 
Density 
Porosity 
Temperature (geothermal gradient) 
Fracture, porosity, lithology 
Velocity of intact granite, faults and fracture zone
fractures, continuity and geometry of features between boreholes 
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2.3.1.3 HYDROLOGICAL AND HYDROGEOLOGICAL 
INVESTIGATIONS 

Information on parameters used for surface hydrological investigation includes 

meteorological and river-flow measurements. Several meteorological monitoring stations 

were used to develop baseline meteorological data (e.g., precipitation, evapotranspiration, 

wind velocity, wind direction) and information on surface hydrology (e.g., water level, 

water budget, soil moisture, and drainage basins), providing input for hydrological 

boundary conditions. Boreholes for long-term monitoring of piezometric conditions have 

been drilled. These data are used to develop water-balance calculations for input to the 

hydrogeological flow simulations. In addition, surface water monitoring and groundwater 

simulation was conducted to estimate groundwater recharge (JNC, 2000b). 

The main parameters obtained from hydrogeological investigations from borehole 

(i.e., geophysical logging, borehole TV, and, packer testing) and core data are: hydraulic 

head, hydraulic conductivity, hydraulic gradient, permeability, specific storage 

coefficient, porosity, pore pressure, flow rate, and transmissivity (JNC, 2000b; 2001; 

2003). These data were used for hydrogeological-model and groundwater-flow 

simulation. Hydraulic properties such as location of major drilling, fluid loss, high 

transmissivity, and hydraulic conductivity are greatly enhanced by major fractures and 

fault zones. JNC (2000b; 2001; 2003) summarizes the hydrogeological investigations in 

the Tono Area. 

The conceptual geological and hydrogeological model was constructed for the 

Tono Mine and MIU site based on surface mapping, geophysical surveys, and 

distribution of hydraulic conductivities and hydraulic heads (JNC, 2000; JNC 2001). The 

main hydrogeological parameters in the Tono Area are listed in Table 2.3-3. 
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Table 2.3-3. Summary of hydrological and hydrogeological parameters 

 

 

 

 

 

 

 

 

 

 

 

Hydrogeological investigation from deep boreholes suggests that flow is 

controlled by topographical gradient (Koide et al., 1996). Results from hydrological 

conductivity studies in sedimentary rock and granite indicate that in the MIU site shows 

higher hydraulic conductivity than both the Shobasama site and Tono Mine. In addition, 

the hydraulic conductivity of the Tsukiyoshi fault and the NNW fault suggests that both 

act as barriers to flow across it (JNC, 2000, Section 3.2; Kumazaki et al., Section 4; 

Hama et al., 2003).  

2.3.1.4 GEOCHEMICAL AND HYDROGEOCHEMICAL 
INVESTIGATION 

Surface water chemistry from river and groundwater samples was used to 

estimate the origin and residence time of the surface water, groundwater chemistry, and 

presence of microbes in the groundwater.  

The main hydrogeochemical investigations are aimed to identify: 

- Chemistry of groundwater parameters such as pH, Eh, total dissolved solids 

(TDS), elemental composition (e.g., Si, Ca+2, Na+, HCO3
-+CO3

-2, Fe2+), Fe 3+/Fe2+ 

for oxidation-reduction  

Hydrology Parameter 
Metereology/  
Surface hydrology 

Precipitation 
Infiltration 
Evapotranspiration 
Water level 
Water budget 
Soil moisture 
Recharge 
Discharge 

Borehole 
Hydrologeology 

Hydraulic head 
Hydraulic conductivity 
Hydraulic gradient 
Permeability 
Specific storage coefficient 
Porosity 
Pore pressure 
Flow rate 
Transmissivity 
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- Rock isotope parameters such as concentration of gas Radon, radioactive minerals 

such as thorium, uranium, potassium 

- Groundwater isotope such as hydrogen-oxygen isotope ratio, 14C for age dating 

- Microbe studies in groundwater to determine bacteria population and type 

- Temperature 

- Electrical conductivity  

Fracture and fracture zones play a dominant role in the chemical evolution of 

groundwater, controlled mainly by water-rock interactions and chemical reactions that in 

turn depend on the rock mineral composition. Results from hydrogeochemical 

investigations indicate that the groundwater in the Toki granite is of meteoric origin and 

that the residence time is ~1,000 years (JNC, 2001, Section 4.3; JNC 2000b, Section 3.4). 

Based on chemical reactions, a conceptual model of the evolution of water-rock 

interaction in the Tono Area is documented in JNC (2000, Section 3.4, Figure 3.4.8). 

In addition, analysis of groundwater, fracture filling minerals, and fault zone 

mineralogy were useful for identifying water-rock interaction processes along the fault 

zone. Recent studies of the NNW fault also suggest that the fault is a potential hydraulic 

barrier to flow (Kumazaki, 2003 Section 5).  

Rock geochemistry such as major and minor elements, isotopes for radiometric 

dating and REE analysis were conducted in drill core samples. Results  are reported in 

Chengdong, 2000.  

The main geochemical parameters are listed in Table 2.3-4. 
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Table 2.3-4. Summary of geochemical parameters 

2.3.1.5 ROCK MECHANICS 

Rock mechanical data were obtained by a variety of methods, including borehole 

geophysics, in situ hydraulic fracturing, to determine in situ stress state, and a variety of 

laboratory tests were performed on core to determine rock-mass properties. Mechanical 

properties derived from borehole investigations consist of in situ stress measurements 

from hydraulic fracturing to obtain stress distribution, magnitude, and orientation; as well 

as from core samples, to obtain uniaxial compressive strength, Young’s modulus, 

Poisson’s ratio, tensile strength (by Brazilian test), cohesion, and internal friction angle 

(JNC, 2001). Determined physical properties of rock include apparent density, water 

content, effective porosity, and seismic wave velocity. The main rock mechanics and 

rock physical parameters are summarized in Table 2.3-5. The change of stress occurs at 

similar depths within high-density fracture zones. In situ stress also varies with depth, as 

described in JNC (2001, Section 4.4.2). 

 Species/Element 
Groundwater  
Geochemistry 
 
 
 
 
 
 
Major elements 
Isotopes  
Radiogenic Isotopes 

pH 
Eh 
Total Dissolved  Solid Content (TDS) 
Temperature 
Electrical conductivity  
Chloride content  
Colloids 
Microbes 
 Si, Ca+2, Na+, HCO3

-+CO3
-2, Fe2+  

2H, 3H, δ 18O, δ13C, 14C, 36Cl/Cl 
Th, U,  K, Rd 

Rock chemistry Major and minor elements in rock and fracture fillings 

Major elements (SiO2, TiO2, Al2O3, Fe2O3, FeO, MnO, MgO, CaO, Na2O, 
K2O, P2O5, H2O) 

Minor elements (F, Cl, Sr, Rb, Li, Zn, Cu, Pb, Sn, Be) 

Radiometric dating (87Sr/86Sr, U-Th-Pb) 

REE (rare earth elements) 
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Table 2.3-5. Rock mechanics and rock physical parameters 
 Parameter 
Mechanical properties Coefficient of elasticity 

Unconfined compressive strength 
Poisson’s ratio 
Tensile strength 
Cohesion 
Internal friction angle 

Physical properties apparent density 
RQD 
effective porosity 
water content 
seismic wave velocity 

In Situ stress determination Hydraulic fracturing 
AE/DRA 

2.3.1.6 TRANSPORT PROPERTIES 

Investigation of transport properties in the Toki granite was carried out in the 

Tono Mine. The Tono Mine is a natural analogue for radionuclide transport because 

uranium deposits there are considered to have formed by leaching of natural uranium 

from granite to the sedimentary rocks (JNC, 2000, Section 3.6). Rock samples from the 

Tono Mine were investigated to characterize the transport of uranium through pore space. 

Sorption experiments using 233U as tracer were conducted in the granite and sedimentary 

rocks (Yoshida, 1994; Ota et al., 1994). A description and results related to transport 

properties are described in JNC (2000, Section 3.6). 

2.3.2 SEDIMENTARY ROCK—OVERVIEW OF THE HORONOBE 
UNDERGROUND RESEARCH LABORATORY PROJECT 
(HORONOBE URL) 
The host rock for the Horonobe URL is sedimentary rock (diatomaceous 

mudstone and hard shale) of the Neogene age. The URL shaft and drifts are likely to be 

placed in this medium. Phase 1 of the geoscientific research for the Horonobe URL 

started in 2000, and will take place over approximately six years (Goto and Hama, 2003a, 

b). 

During Phase 1, data from surface-based investigations (airborne surveys, 

geological mapping, ground geophysical survey, and borehole investigation) were 

conducted to obtain data on the geological environment and plan the construction of the 
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URL. Two vertical boreholes of about 700 m depth, and several boreholes up to 500 m 

depth,  have been drilled in and around the URL area to provide data for geological 

modeling and URL construction (Goto and Hama, 2003b; Yamasaki, 2004). 

2.3.2.1 GEOLOGICAL INVESTIGATIONS 

Geological characteristics and distribution of geological formations were obtained 

from previous work (literature survey), while the lineament analysis was derived from 

satellite images, aerial photography, surface mapping, and petrological, mineralogical, 

and microfossil analysis (Goto and Hama, 2003a). The Horonobe URL is located in a 

tectonically active region characterized by earthquake swarms. Evidence of Holocene 

wetland subsidence and terrace uplift can be found along the coastal area (Yamasaki, 

2004). In addition, the area is located in a potential oil/gas field. The main geological 

parameters are listed in Table 2.3-6. 

Table 2.3-6.  Main geological parameters 
Geological Parameters 
Mapping Lineaments 

Fault/ fracture zones 
Core samples Stratigraphy 

Degree of diagenesis 
Lithology  
Fracture distribution 
Mineralogical composition 
microfossils 

The main geological formations in the URL area are diatomaceous mudstone 

(Koetoi Formation) overlain by hard shale (Wakanai Formation). They are considered 

soft rock because of their mechanical and physical properties. The presence of Opal CT 

and Opal provide information on silica diagenesis (Matsui, 2004). A transition zone 

between those two formations is inferred from rock-mechanics and hydrogeological 

analyses (Matsui, 2004; Hama 2004).  

The main fault in the URL area is the Omagari Fault, a reverse fault with a left-

lateral strike slip component. Maximum folding displacement is estimated to be over 

1,000 m. The fault core is about 10 cm, and the damage zone of the fault is inferred to be 

>300 m (Hatanaka, 2004, Yamasaki, 2004). Several high-density fracture zones are 
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observed in the drill core, related to faulting and folding. Presence of methane is observed 

in the shallow borehole (Matsui, 2004). 

As part of the long-term stability study, seismographs were installed to conduct 

seismic monitoring in northern Hokkaido. In addition, measurements on crustal 

deformation related to fault, folding, uplift/subsidence, and the history of sea-level 

change were also part of the Phase 1 investigation task (Goto and Hama, 2003a,b). 

Seismological and diastrophic studies have been carried out to monitor micro-

earthquakes and movements of the crust produced by tectonic process in the Horonobe 

area (JNC, 2004). 

2.3.2.2 GEOPHYSICAL INVESTIGATION 

Airborne surveys including magnetic, electromagnetic, and natural gamma-ray 

surveys were conducted for general surface characterization and for selecting boreholes 

locations. The main aim was to obtain information on structure (faults and folds) and the 

regional distribution of geological formations. Regarding potential URL locations, 

electromagnetic, seismic and gravity surveys were conducted to obtain information on 

subsurface geological and structural data (fault and fracture zones), as well as the 

geometry of geological formations and structures (Goto and Hama, 2003a, b). 

Geophysical parameters are summarized in Table 2.3-7. 

Table 2.3-7. Summary of geophysical parameters 
Regional Geophysical  Survey Parameters 
Airborne magnetic 
 
Airborne electromagnetic 
 
Airborne gamma-ray 

Geological formations, structures (faults, fractures and folds) at 
about 150 m depth 
Geological formations, structures (faults, fractures and folds) up to 
2,000 m depth 
Natural radioactivity (U, Th, K) 

Site-specific  
High density reflection seismic 
survey  
Gravity survey (05) 
Electrical survey 
Audio frequency magnetotelluric 
survey 

Lithological contacts, structures (fault), geometry of formations 
Geological formation and structure by density contrast 
Structure (fault) 
 
Structure (fault) 

Borehole/drill core sample  
Multi-offset VSP  
(vertical seismic profiling)  
Sonic logging 
 

Lithological contacts, boundaries 
 
Porosity 
Density 
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The main structure in the region, Omagari Fault, was inferred by different 

geophysical tools such as seismic reflection survey, audio-frequency magnetolelluric 

survey, and borehole investigation (Matsui, 2004). 

2.3.2.3 HYDROLOGICAL INVESTIGATIONS 

Data acquisition activity for hydrological investigations include surface 

hydrological parameters such as precipitation, temperature, humidity, wind direction and 

velocity, evapotranspiration rate, river flow rate and water table—to estimate recharge 

and discharge (Goto and Hama, 2003b). Hydrogeological parameters such as head, 

transmissivity, and hydraulic conductivity are gathered from boreholes drilled in the URL 

area (Hama, 2004). Methane gas was observed during borehole investigations. The main 

hydrological parameters are summarized in Table 2.3-8. 

Tracer experiments using core samples provide information on transport 

properties of fractures such as effective diffusion, transmissivity, dispersivity, hydraulic 

aperture and transport aperture (Shimo et al, 2003). 

Table 2.3-8. Hydrological parameters 
Hydrology Parameters 
Metereologica/surface 
Hydrologic 

Precipitation 
Temperature 
Infiltration 
Humidity 
Wind velocity 
Wind direction 
Evapotranspiration 
Rive flux 

Hydrological  Head 
Transmissivity 
Hydraulic conductivity 
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2.3.2.4 HYDROCHEMICAL INVESTIGATIONS 

This investigation is still ongoing. Groundwater samples are being collected from 

packed-off sections of the boreholes and by squeezing of drill cores (Goto and Hama, 

2003a; Hama, 2004). The main characteristics of the groundwater in the Horonobe area 

are its salinity and the presence of dissolved methane. The main geochemical parameters 

are listed in Table 2.3-9. 

Table 2.3-9. Hydrochemical parameters 
Geochemical Investigations Parameters 
 
 
Dissolved gases 
Isotope  
Major elements  
Minor elements 

pH 
Eh 
H2, He, N2, O2, CO, CO2, hydrocarbon 
D/H, 18O/16O, 14C, 13C/12C, 36Cl 
Na, K, Mg, Ca, Si. F, Cl, Br, I, alkalinity 
Al, Fe, Li, Sr, Mn, S. T.P, PO4 T.N, NO2-, NH4, 
Microbe types 
Methane gas 

2.3.2.5 ROCK MECHANICS  

Measurement for rock mechanics were conducted in drill core samples. The main 

studies conducted in the laboratory were rock physical-properties testing, seismic 

velocity measurements, uniaxial compressive tests, a triaxial compressive test, and 

slacking tests in core. In situ stress measurements were carried out in boreholes (Matsui, 

2004; Morioka, 2004, Section 2 and 5.1). Table 2.3-10 lists the main rock mechanical and 

physical parameters: 

Table 2.3-10. Rock mechanics parameters 

 Parameters 
Rock mechanical properties Uniaxial compressive strength 

Elastic modulus 
Stress 
P-wave velocity 
Coehesion 
Friction 
Poisson’s ratio 
Tensile strength 
Unit weight 
In situ stress 

Rock physical properties  Porosity 
Density 
RQD 
Swelling factor 
Durability factor 
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Dissolved gas 

2.3.2.6 TRANSPORT PROPERTIES 

As part of site characterization, diffusion coefficient, dispersivity, hydraulic 

aperture, and transport aperture have been measured in laboratory tracer experiments, and 

sorption experiments using cesium in sedimentary rocks were conducted for different 

types of groundwater (Hatanaka, 2004).  

2.3.3 SUMMARY 
A multidisciplinary approach has been applied to the MIU and Horonobe sites for 

surface-based and drilling investigations. Although the MIU site is located in crystalline 

rock and the Horonobe in sedimentary rock, both are developing and improving 

methodologies to (1) characterize geological and structural features, (2) understand the 

hydrological and hydrogeological properties, (3) characterize the chemical evolution of 

the groundwater, and (4) identify mechanical properties of the rock mass. Laboratory 

experiments using tracers have been conducted to address the transport properties of 

granite and sedimentary rocks. In addition, high quality data is being acquired by 

development and application of new technologies during site characterization. Based on 

the data set that was compiled, conceptual and numerical model of geological, 

hydrogeological and geochemical have been developed. Thus, the results from 

investigations and applied technology have been constantly evaluated, changes in the 

geological environment predicted, and uncertainties in the models reduced. 
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2.4 Example of the Swedish Approach 

In this section we examine the site characterization approach undertaken by 

Sweden. A nuclear waste geological disposal program may include the following stages: 

• General geological studies:  

o Country-wide: 

• Site identification survey:  

o From hundreds of sites to about 2-5 sites 

• Initial site investigation 

o Investigate the 2-5 sites in parallel from the surface. 

• Complete site investigation: 

o Investigate the 2-5 sites in parallel from the surface  

o Selection of one site for construction of underground investigation facility. 

These four stages represent the procedure taken by the Swedish Nuclear Fuel and 

Waste Management Company (SKB) to arrive at one particular site, for which license 

application will be presented to the Swedish regulatory authority for construction of an 

underground laboratory to confirm the suitability of the site as a nuclear waste repository. 

At this time, SKB is at the end of the third stage, i.e., at the end of the Initial Site 

Investigation. 

Below we shall present the key parameters or data required at each stage, based 

on the multiple years of studies and consideration by the SKB. Thus the information 

below is extracted from SKB technical reports, where detailed discussions, methodology, 

and strategies may be found. Following the lists of key parameters, a series of key SKB 

reports from the first three stages are provided, which leads to the initiation of site 

investigation of two particular sites. This is to illustrate the type of efforts needed for 

these stages. 

2.4.1 GENERAL GEOLOGICAL STUDIES AND SITE 
IDENTIFICATION SURVEY 
At this first stage of ‘General Geological Studies”, no key parameters are defined, 

but all available and related geological information of bedrock over the country are 



 

93 

collected and reviewed. The goal of this review is to provide data and information that 

can be used to identify regional areas potentially suitable to site a nuclear waste 

repository. 

The stage of Site Identification Survey is carried out in three steps: identification 

of regional blocks at 100-200 km2; identification of investigation areas at 5-10 km2, and 

selection of sites for detailed characterization.   

At the first step, suitable bedrock blocks of area 100-200 km2 are identified 

through satellite photo interpretation and geological and geophysical maps.  Regional 

blocks identified can number a few hundred. 

At the second step, these regional blocks are studied for selection of about 100 

investigation areas, with an area about 5% the size of the regional block.  The following 

are data or information collected and evaluated during this step: 

• Environmental factors: 

o Population density and transport connection 

o Preservation areas and groundwater basins 

o Land use plans 

• Geological studies; 

o Satellite photo interpretation 

o Field checking 

o Stereo interpretation of aerial photos 

o Interpretation of topographic maps 

o Classification of fracture zones 

Based on the above surveys and studies, the identified sites are evaluated further 

in the third step, concerning  

• their geological variation; 

• environmental factors, and  

• discussions with communities next to the potential sites. 
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Out of such evaluations, two to five sites will be identified for detailed site 

characterization. 

2.4.2 INITIAL AND COMPLETE SITE INVESTIGATION 
The two stages of initial site investigation (ISI) and complete site investigation 

(CSI) are similar in that both are surface-based investigations to obtain parameters and 

information required to build up a site description model (SDM), for each of the two to 

five sites identified.  Out of the work, one site will be selected for underground 

construction and subsurface investigation concerning its suitability as a nuclear waste 

repository. 

The difference between ISI and CSI is in the amount of data collected during the 

two stages.  ISI will include about 2-4 deep boreholes, 700-1000 m in depth, and 

reflection seismic surveys for identification of major structures at depth, together with 

field studies of geology, surface geophysics, and shallow boreholes.  Data from the deep 

boreholes include geological stratigraphy, rock stresses, geochemistry and hydraulic 

conductivities.  During the CSI stage, the number of deep boreholes will be increased to 

about 10 or more, with more intense data gathering, including data on major fracture 

zones and frequency and properties of fracture zones of less importance. 

The focus of both ISI and CSI will be the construction of the Site Description 

Model (SDM).  SDM will be built up in successive model versions corresponding to 

increasing data and information.  Explicit dates for “data freeze” are selected and SDM 

versions constructed for these dates.  Hence successive SDM versions will show how 

SDM develops and confidence in SDM will be enhanced as more data are obtained. 

Data required for the key parameters of SDM are grouped according to the sub 

models within the SDM. These sub models are: 

• Geological Model 

• Rock Mechanics Model 

• Thermal Properties Model 

• Hydrogeological Model 

• Geochemistry Model 
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• Transport Properties Model 

Below we shall list the key parameters for each of these models that build up the 
SDM. 

2.4.2.1 KEY PARAMETERS FOR THE GEOLOGICAL MODEL 

 

• Topography: overview of structures 

• Soil layers: thickness, soil type distribution, bottom sediments 

• Lithology 

o Lithological structure: rock type distribution, dikes, contacts, age, ore 

potential and industrial minerals, etc. 

o Rock type description: mineralogical composition, microfractures; density, 

porosity, mineralogical alteration and weathering, etc. 

• Structural geology 

o Plastic structures: folding, foliation, lineation, shear zones, veining, etc. 

o Brittle structures: faults, fractures or fracture zones 

• Properties of discontinuities (brittle and plastic structures of mechanical 

importance) 

o Regional and local discontinuities: position, orientation, length, width, 

genetic type, internal structures such as fracture roughness and infill, etc. 

o Fractures: statistical properties of fracture sets, etc. 

 

2.4.2.2 KEY PARAMETERS FOR THE ROCK MECHANICS 
MODEL 

 

• Discontinuities: Geometries and geological parameters 

• Mechanical properties, fractures in different rock masses: deformation properties 

in normal direction, deformation properties in shear direction, shear strength, 

fracture roughness in terms of JRC, and compressive strength of fracture walls, 

JCS 
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• Mechanical properties for different rock masses: Young’s modulus, Poisson 

number, rock classification (RMR, Q) systems, dynamic propagation compressive 

and shear wave velocities, strength 

• Mechanical properties of intact rock in the different rock masses: Young’s 

modulus, Poisson’s number, compressive and tensile strengths, indentation index 

and wear index; blastability 

• Density and thermal properties 

• Boundary conditions and related data: in situ stresses (magnitude and directions), 

external loads, observed deformation and seismic activities. 

2.4.2.3 KEY PARAMETERS FOR THE THERMAL PROPERTIES 
MODEL 

 

• Thermal Properties of Rock: thermal conductivity and heat capacity of the rock, 

thermal expansion 

• Temperatures: in rock and ground water; thermal boundary conditions and 

gradients 

2.4.2.4 KEY PARAMETERS FOR THE HYDROGEOLOGY MODEL 

 

• Deterministically modeled discontinuities: geometry from the geology model, 

permeability distribution, porosity 

• Stochastically modeled discontinuities and fractures as well as rock mass: 

stochastic description of fractures, permeability distribution, porosity and storage 

coefficient, rock compressibility 

• Hydraulic properties of ground water: salinity and temperature distributions 

• Soil layers: conductivity, thickness, storage coefficient, etc., meteorological and 

hydrological data, etc. 

• Boundary conditions and related data: boundary conditions, recharge and 

discharge areas, pressure head distributions, historical evolution data 

(paleohydrology) 
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2.4.2.5 KEY PARAMETERS FOR THE GEOCHEMISTRY MODEL 

 

• Groundwater chemistry in the repository area 

• Groundwater chemistry along potential release flow paths 

• Groundwater chemistry on the site scale 

• Mineralogy 

The chemical components of importance along potential radionuclide release flow 

paths are pH, Eh, Fe2+, HS-, HCO3
-, Cl-, Na+, Ca2+, HA/FA, dissolved gases N2, H2, CO2, 

CH4 He, Ar, and also colloids and bacteria. Additionally, information on SO4
2-, HPO4

2-, 

F-, HS-, Fe2+ and Mn2+ may be useful. 

2.4.2.6 KEY PARAMETERS FOR THE TRANSPORT PROPERTIES 
MODEL 

 
• Properties on the near field: groundwater flow and chemistry, fracture aperture 

and geometry 

• Properties of flow paths: dispersion, flow porosity, flow-wetted surfaces 

• Properties of rock along flow paths: sorption data (Kd), matrix diffusivity, matrix 

porosity, maximum diffusion penetration depth, density of rock matrix, 

groundwater chemistry 

• Transport properties of soil layers and receptors: water flux, flow porosity,  

sorption properties, biological activity 

• Other data: tracer breakthrough curves, fracture filling; colloids and gases in 

groundwater 

2.4.3 KEY PARAMETERS FOR SITE CHARACTERIZATION: THE 
ASPO CASE 
SKB is conducting site characterization for two potential areas Forsmark and 

Oskarshamn (Laxemar and Simpevarp), in Sweden for nuclear waste storage.  There are 

many reports on the efforts.  The work is ongoing with evolving strategy and 
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measurement techniques and analysis methodologies.  Some key reports are listed below, 

with additional reports available from the SKB website:  www.skb.se. 

Andersson J., Berglund J. Follin S., Hakami E., Halvarson J., Hermansson J., 
Laaksoharju M., Rhen I., Wahlgren C-H., 2002b. Testing the methodology for site 
descriptive modeling.  Application for Laxemar area, SKB TR-02-19, Svensk 
Karnbranslehantering AB. 

Andersson J. 2003. Site descriptive modeling – strategy for integrated evaluation.  SKB 
R-03-05.  Svensk Karnbranslehantering AB. 

Andersson J., Munier R., Strom A., Soderback B., Almen K-E., Olsson I., 2004.  When is 
there sufficient information from the Site Investigations?  SKB R-04-23, Svensk 
Karnbranslehantering AB. 

SKB 2000.  Geoscientific programme for investigation and evaluation of sites for the 
deep repository.  SKB TR-00-20.  Svensk Karnbranslehantering AB. 

SKB, 2001.  Site investigations – Investigation methods and general execution 
programme.  SKB TR-01-29/  Svensk Karnbranslehantering AB. 

SKB 2002.  Preliminary safety evaluation, based on initial site investigation data.  
Planing document.  SKB TR-20-28, Svensk Karnbranslehantering AB. 

SKB 2005a.  Preliminary site description, Forsmark area – version 1.2 SKB R-05-18. 
Svensk Karnbranslehantering AB. 

SKB 2005b.  Preliminary site description, Simpevarp area – version 1.2 SKB R-05-08. 
Svensk Karnbranslehantering AB. 

SKB 2005c.  Preliminary safety evaluation for the Simpevarp subarea based on data and 
site descriptions after the initial site investigation sage.  SKB TR-05-12. Svensk 
Karnbranslehantering AB. 

SKB’s ongoing work for Forsamrk and Oskarshamn is substantial and is 

generating a large number of important reports, the above list being a small fraction of 

them. However these reports are under much review and discussions with SKI (Swedish 

Nuclear Power Inspectorate) and other oversight groups, and the methodologies and 

information in these reports are under a state of flux. Thus it is not appropriate to draw 

conclusions and lessons learned from the current SKB effort at this time. For the present 

report, it is useful to summarize the data SKB obtained for their Aspo project, which is 

serving as a prototype for their current work on Forsmark and Oskarshamn.  The Aspo 

data and their measurement methods have been evaluated by SKI.  They are best 
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presented in two tables below adapted from the SKI Report (SKI 1996: SITE-94, Volume 

I, SKI-Report 96-36). 

The first table presents the characterization methods used at Aspo, with the 

measurement scales implied for each measurement method. The methods are grouped 

into several categories: 

• Survey/ remote sensing data 

• Airborne geophysical surveys 

• Surface geophysical surveys 

• Drilling program 

• Borehole geophysical logging 

• Geochemical investigations 

• Geomechanical measurements 

• Hydrogeological measurements 

 

Each of the methods is associated with a scale of measurement, which means that 

the data and derived parameter values cover a certain scale, which could be regional (30 

km or larger), semi-regional (about 10  km), local (about 2-5 km), site scale, or scales of 

core-drilled boreholes and percussion-drilled boreholes. Specification of the relevant 

scales associated with measurements is important information, which is often overlooked 

in a site characterization program. Details of the methods under the categories, with their 

scales are listed in Table 2.4-1. 
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Table 2.4-1. Characterization methods used in the Aspo HRL preliminary 
investigations and for other sources of site data. Based on information from Stanfors et al. 
(1991), Alme and Zellman (1991), and Wikberg et al. (1991).  Key to abbreviations:  R= 
regional scale (30 km square or larger), S = semi-regional scale (ca. 10 km square), L = 
local scale (2-5 km square), A = site scale (southern Aspo onlu); K = core-drilled hole(s), 
H  =  p e r c u s s i o n - d r i l l e d  h o l e ( s ) .   ( f r o m  T a b l e  6 . 3 . 1  o f  S K I ,  1 9 9 6 ) 

Method Type of Information sought or obtained Coverage 
Survey/ remote sensing data 
Landsat thematic map ™ Land relief & features R 
Aerial photographs Land relief & features L 
Topogrophical maps Topography (land relief) L 
Digital elevation models 
(DEMs) Topography (land relief) R 

Nautical charts and fair 
sheets Bathymetry R, S 

Airborne geophysical surveys 
Magnetic Bedrock variation; oxidation zones R 
VLF & horizontal-loop EM Water-bearing fracture zones R 
Radiometric (U, Th, K) Bedrock variation R 
Surface geophysical surveys 
Gravity Bedrock variation R 

Magnetic profiles Bedrock variation; oxidation zones; 
displacements S, L 

Electrical resistivity 
profiles Water-bearing or clay-filled fracture zones L 

VLF & horizontal-loop EM 
profiles Water-bearing fracture zons S, L 

Seismic refraction profiles Fracture zones, fracture intensity changes 
with depth S, L 

Seismic refection profiles Subhorizontal fracture zones L 
Ground radar profile Fractures, lithological contacts A 
Geological surveys   

Geological field studies Lithologic distribution & Structural 
character R, L 

Outcrop and trench 
mapping 

Detailed lithology, structural character, 
fracture statistics L 

Drilling program 
Core logging Lithology, fracturing, fracture mineralogy L: 14K 
Drill cutting analyses Lithology L: 19K 
Thin-section analyses Petrology L: 13K 

Chemical rock analyses Petrology constraints on groundwater 
geochemistry L: 5K 

Fracture mineral analyses Infilling mineralogy; indicators of 
groundwater geochem L: 8K 

Borehole deviation logging Borehole positional information L: All K, H 
Borehole caliper logging Borehole diameter, possible fracture zone L: All K, some 
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Method Type of Information sought or obtained Coverage 
location H 

Borehole TV-logging / 
televiewer 

Absolute fracture orientations (for selected 
sections) L: 5K 

Borehole geophysical logging 
Gamma-gamma (density Lithology (bulk density) L: 9K, 6H 

Neutron Lithology (mafic mineral content), or 
porosity (Fracturing) L: 9K. 6H 

Natural gamma Lithology (potassium, uranium, and thorium 
content) L: 13K, 17H 

Magnetic susceptibility Litohology (magnetite content) L: 13K, 17H 
Sonic (acoustic) Fractured zones L: 13K, 6H 
Resistivity (normal & 
lateral) Fractured zones L: 13K, 17H 

Borehole radar, dipole 
(semi-directional) antenna 

Radar reflectors (large single fractures or 
fracture zones) and angle between reflectors 
and the borehole axis 

L: 10K, 2H 

Borehole radar, directional 
antenna 

Radar reflectors and their absolute 
orientations L: 4K 

Fluid resistivity Groundwater salinity and flowing fractures L: 13K, 17H 
Vertical seismic profiling Fractures/ fracture zones A: 1K 
Geochemical investigations   

Sampling during drilling 
(SDD) 

“First strike” indication of groundwater 
geochemistry (major elements, drilling 
water content) 

L: 11K 

Sampling in percussion-
drilled holes 

Groundwater geochemistry (major 
elements, 2H, 3H, 18O) L: 5H 

Sampling during hydraulic 
pumping tests (SPT) 

Groundwater geochemistry (major, minor 
elements, drilling water content, stable 
isotopes, 3H & 14C) 

L: 3K; HAS 13 

Complete chemical 
characterization (CCC) 

Groundwater geochemistry (major, minor 
elements, drilling water content, stable 
isotopes, 3H, & 14C), with downhole Eh, 
pH, and gas measurements 

L: 4K 

Sampling during 
monitoring (SDM) 

Groundwater geochemistry major elements, 
Li, & Sr) of selected sections, 12-18 mos. 
After pumping 

L:3K 

Fracture mineral chemistry 
Chemical characterization(trace elements * 
C, O isotopes of calcite); groundwater 
history, in-situ Kd 

L:3K 

Geomechanical measurements 
Hydraulic fracturing In-situ stresses (Horizontal components) L:2K 
Overcoring stress 
measurements In-situ stresses (Horizontal components) L: 1K 

Laboratory tests 
Uniaxial comp. Strength, elastic parameters, 
brittleess, joint roughness coefficient, 
friction angle 

L: 2K 

Hydrogeological measurements 
Airlift tests (100 m 
intervals) 

Preliminary transmissivity and pressure 
estimates L: 14K, 20H 
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Method Type of Information sought or obtained Coverage 
Packer tests (injection / 
recovery, 3m) Detailed hydraulic conductivity distribution L:8K 

Packer tests (inj. Recovery, 
30M) 

Hydraulic conductivity / transmissivity 
distribution L:3K 

Flowmeter (spinner) 
logging 

Inflow distribution; major hydraulic 
conductors L: 11K 

Pumping tests Total well capacity / transmissivity L: 10K, 20H 

Interference tests Characterization of major transmissive 
features L:10K, 2H 

Dilution tests Natural flow through selected borehole 
sections L:13K 

Groundwater pressure 
monitoring 

Monitor groundwater head in distinct 
borehole sections L: 15K, 29H 

Groundwater level 
monitoring 

Monitor groundwater head in open 
boreholes L: 4K, 6H 

Radially convergent tracer 
tests 

Connectivity and transport characteristics 
(porosity,water residence time) of major 
fracture zones 

A: 1K 

 

From the measurement methods listed above, data are obtained to characterize the 

Aspo site. SKI, in their review identified the key characterization data needed from both 

the SKB work as well as from SKI’s own analyses. These are listed in Table 2.4-2 for 

Aspo. References for each data set are given in the right-hand column, with details given 

in the reference list following the table. This table can be considered as giving the type of 

key data that need to be collected in general for any site undergoing site characterization 

and evaluation. 

Table 2.4-2. Summary of site-specific data for Aspo (modified from Table 6.4.1 of 
SKI, 1996) 

Type of Data Source 

Survey/Remote sensing 

Borehole coordinate data from KAS01-14,16,  KAV01-03, 
KBH01-02, KLX01, HAS01-21, HAV01- X B X X X 08, 
HLX01-09, HBH01-05, HMJ01 

MRM,1993e,h 

Caliper logs (borehole diameter) from KAS03 MRM, 1993c D 

Detailed topographic map of Aspo Tlren & Beckholmen, 
1987 

Digital elevation models (50 x 50 m grid) LMV, 1987a 

Topographic maps (1:250 000) LMV,1987b 

Nautical charts (1:50 000) SFV, 1988a 
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Type of Data Source 

Fair sheets (1 :20 000) SFV, 1988b 

Prior lineament Interpretations Tlren et al., 1987 
Tlren & Beckholmen, 
1988 

Aerial photos (1:30 000) LMV,1984 

LandsatTM (one quarter scene) Wltschard & Larsson 1987 

Clarifications of Aspo coordinate systems Dverstorp, 1993 

Geological/Core logging data 

LIthology In core KAS02-09,11-14, KBH02, KLX01 MRM, 1993e 

VelndatafromKAS02-09,11-14,KBH02,KLX01 MRM, 1993f 

'Natural' Joints/fractures In core from KAS03-09,11-14, 
KLX01, KBH02 

MRM, 1993f 

Fracture frequency In core KAS02-09, 11-14, KLX01, KBH02 MRM, 1993h 

Crushed zones in core from KAS03-09,11-14, KBH02, KLX01 MRM,1993f 

Fracture alpha angles from core MRM, 1993f 

Oriented core from portions of KAS02-06 MRM, 1993h 

Fracture infilling mineralogy from KAS03-09,11-14, KBH02 & 
KLX01 

MRM, 1993f 

Detailed fracture mineralogical analyses Tullborg et al. 1991 

Geological/Surface data 

Geological map of Asp/) Kornfalt & Wlkman, 1988 

Data from outcrop mapping of fractures on Asp/) MRM, 1993h 

Supplementary field studies Tiren et al., 1996 

Geological / Interpretation 

Regional geology see Tlren et al., 1996 

Regional sedimentary geologic maps and cross sections Kornfalt & Larsson 1987; 
Ahlbom et al., 1990 

Local geology Kornfalt & Wlkman 1988; 
Munier 1989; Talbot & 
Rlad 1987; Wikstrom 
1989; Talbot, 1990 

Regional structural map (2D) Tiren et al. 1996 

Semi-regional structural map (2D) Tlren et al. 1996 

SKI 3D structural model of Aspo Tlren et al. 1996 

SKB structural model (dlgltlsed) Geoslgma, 1994 
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Type of Data Source 

SKN structural model (digltlsed) Geoslgma, 1994 

Fracture statistics for DFN model Geier & Thomas 1996 

2D near-field fracture model simulations Geier & Thomas 1996 

Geophysical/Borehole logging 

Natural gamma radiation logs from KAS02-09,11-14, HAS02-
20, HAV01-08, HLX01-07,KAV01-03, KLX01 

MRM 1993c,h 

Gamma-gamma (density) logs from KAS05-09,11-14 MRM 1993c 

Magnetic susceptibility logs from KAS02-09,11-14 MRM 1993c 

Lateral resistivity (1.6 -0.1 m) logs from KAS02-03 MRM 1993c 

Normal resistivity (1.6 m) logs from KAS03 MRM 1993c 

Sonic (acoustic) logs from KAS02-09,11-14 MRM1993c 

Self-potential (SP) logs from KAS02-04 MRM 1993c 

Single-point resistivity from KAS02-09,11-14, HAS02-20, 
HAV01-08, HLX01-07,KAV01-03, KLX01 

MRM 1993c,h 

Neutron near detector logs from KAS06-09 MRM 1993c 

Neutron far detector 10 s from KAS06-09 MRM 1993c 

Fluid conductivity & salinity logs KAS02-09,11-14, HAS02-
20, HAV01-08, HLX01-07,KAV01-03, KLX01 

MRM 1993c,d,h 

Temperature logs KAS02-09,11-14,HAS02-14,18-20, HAV01-
08, HLX01-03,OS-07, KAV01-03, KLX01 

MRM1993h 

Conventional borehole radar (dipole antenna) travel time data, 
KAS02-09,11, KLX01 

Niva & Gabriel 1988; 
Carlsten 1989, 1990 

Directional borehole radar travel time data KAS12-14 Carlsten 1990 

Radar amplitudes from KAS02-14 Geoslgma, 1993 

Geophysical/Above-ground surveys 

Airborne electromagnetic survey results Nlsca 1987a,b 

Airborne magnetic survey results Nisca 1987a,b 

Geophysical profiles: (VLF, magnetic, seismic, radar) Stenberg, 1987; Barmen & 
Stanfors, 1988; Ploug & 
Klillen, 1989; Sundin S 8 
X 1987; Sandberg et al., 
1989  

Detailed magnetic measurements Nlsca & Trlumf, 1989 

 
Detailed geoelectrical measurements 

 
Nisca & Trlumf, 1989 

Hydrologic 
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Type of Data Source 

Groundwater pressures In boreholes SKB, 1992b 

Groundwater levels In boreholes Strom,1992 

Water table map Lledholm, 1991 

Injection test data (3 m) from KAS02-08,KLX01 MRM, 1992; 1993a 

Interpreted K values from 3 m In]. tests MRM, 1993b 

GRF analyses (3 m section lengths) for KAS02-08 Geier et al., 1996a 

GRF analyses (3 m section lengths) for KAS02-08 Geier et al., 1996a 

Injection test data (30 m) from KAS02-08,KLX01 MRM 1992, 1993a 

Interpreted K values from 30 m Inj. Tests MRM 1993b 

GRF analyses (30 m section lengths) for KAS02-08 Geier et al., 1996a 

Flowmeter logs from KAS02-14,KLX01 MRM 1993d 

KLX02 Hydrologic and salinity data SKB, 1993a 

Hydrological/lnterference tests 

Interference test data from short-term pumping tests In HAS13 
& 20, KAS02,03,06,09,12,13 & 14 

Strom, 1992 

Interference test data from LPT1 (pumping In KAS07) Strom, 1992 

Interference test data from LPT2 (pumping In KAS06) Strom, 1992 

Tracer test data from LPT2 Strom,1992 

Rock mechanics/Petrophysical 

Hydraulic fracturing stress measurements Bjarnason et al., 1989 

Overcorlng stress measurements Bjarnason et al., 1989 

Uniaxial compressive strength and elastic parameter 
measurements 

Wlkberg et al., 1991 

Porosity measurements from KAS02 and KLX01 [1] MRM,1993e 

Repository layouts Geoslgma 1994 

Geochemical 

Sampled during drilling (SOD): Major element concentrations 
and drilling water content 

Wlkberg et al., 1991; 
Smelile & Laaksoharju 
1992 

Sampling from percussion holes: Major element concentrations, 
2H, 3H, 

SKB 1992a,c 

 
Sampling during hydraulic pumping tests (SPT): Major & 
minor element concentrations, drilling water content, stable 
Isotopes, 3H, 14C 

 
SKB 1992a,c 
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Type of Data Source 

Sampling for complete chemical characterization (CCC): Major 
& minor element concentrations, drilling water content, stable 
Isotopes, 3H, 14C, Eh pH, dissolved gases. 

SKB 1992a,c,d 

Sampling during monitoring (SPM): Major components, 
Isotopes (2H, 3H, 180) 

KTH 1993a,b 

Baltic seawater analyses: Major elements & Isotopes for Baltic 
sea water 

SKB 1992d; KTH 1993b 

Rainwater Isotope analyses (2H, 3H, 18O)  SKB 1992d; KTH 1993b 

Detection limits for chemistry data SKB 1992d 

Origin of drilling water SKB 1992d. KTH 1993a 

Geochemical 

SKB analysis of groundwater composition [2] Smeille & Laaksoharju 
1992 

SITE-94 classification of groundwater types at Aspo Glynn & Voss, 1996 

The above tables serve as a good summary of key data needed and the associated 

measurement methods for site characterization. Note that data needs for site 

characterization may be different from data needed for safety or performance assessment 

of a potential nuclear waste repository. The latter may be a subset of the former data set, 

dependent on the conceptual models and computer simulators used in the safety 

assessment. A good example of a discussion of safety assessment data needs may be 

found in the SKB report (SKB 1999: SR97 – Data and Data Uncertainties, Compilation 

of data and data uncertainties for radionuclide transport calculations, by J. Andersson, 

TR-99-09). In general, site characterization data are broader, providing an understanding 

of the site features and processes as the foundation for subsequent safety assessment. 

2.4.4 REFERENCES 
The following list of references serves to illustrate the depth of SKB’s work in the 

first stages of site selection that lead to the selection of two sites for detailed site 

characterization. As mentioned above, SKB is currently at the stage of characterizing 

these two sites (at end of ISI and beginning of CSI) and the selection of one site, out of 

these two, is expected in 2008. 

Country-wide and Regional Studies 
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2.5 Features and Parameters at Olkiluoto, Finland 

In this section we will enlist the parateters collected and the field activities used to 

obtain such paremeters at Olkiluoto, Findalnd. The following list is compiled from the 

publicatios listed at the end of the section including the POSIVA report entiteled 

‘Baseline Conditions at Olkiluoto’, that pertain to the data collected up until the end of 

year 2002. This timeline is more relevant to Preliminary Investigations, which is before 

the construction of Onkalo.  

In May 2001, Finland became the first country to approve plans for a geologic 

repository. The Finnish waste-disposal company, Posiva Oy, will research possible sites 

and plants at which to start building the repository in 2010. For more than 20 years, 

Finland has studied nuclear waste disposal in crystalline rock. Out of this study, 

conducted by Posiva Oy, came the recommendation for construction of a single, deep 

geologic repository for spent nuclear fuel disposal.  

The goal of the preliminary site investigation was to characterize the candidate 

sites to the extent needed to judge their suitability for hosting a repository. The approach 

used for preliminary site investigation was based on characterization of the crushed-

tectonic-block structure or shear zones of the Finnish bedrock. Those shear zones, which 

have lengths of dozens of kilometers, were further divided into smaller sections 

according to smaller fracture zones. A total of 327 large regional blocks were initially 

identified and reduced to five areas for preliminary site investigation, based primarily on 

geologic, geographic, and environmental factors (Posiva 2003a). The investigations at 

each of the five sites included drillings and samplings, various geophysical, geohydraulic, 

rock mechanical, chemical, and mineralogical studies, and modeling of the bedrock 

structure and groundwater flow in the area. At least five deep (500 to 1000 m) cored 

boreholes were drilled, in addition to a number of shallow boreholes (Posiva 2003a).  

Detailed site investigation related to the disposal of spent fuel at Olkiluoto Island 

started in 1987. This work concentrated on an area of about 6 km2 (Paulamäki 1989, 

Posiva 2003a). A total of 23 deep (300–1000 m) boreholes and 35 shallow (20–30 m) 

boreholes were used for site characterization. Special attention was been paid to the 

fractured and hydraulically conductive zones, their location, orientation, and properties. 
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Results of the site investigations have been compiled in the bedrock model describing the 

rock type distribution and fractured zones. In the next sections, we describe field 

activities used to obtain the parameters for site characterization at Olkiluoto. The 

information is compiled from publications listed at the end of this section and includes 

the POSIVA report “Baseline Conditions at Olkiluoto,” which preceded the construction 

of Onkalo, the underground rock characterization facility.  

2.5.1 GEOLOGIC DATA 
 

The crystalline rock of Finland is part of the Precambrain Fennoscandian shield, 

with ages ranging from 3,100 Ma to 1,250 Ma. The rocks are composed of a complex 

mix of meta-sediments and meta-igneous units that have undergone several episodes of 

metamorphism and tectonic deformation. The major part of the Olkiluoto study site 

consists of various biotite-rich migmatitic mica gneisses.  

According to lineament studies, the Olkiluoto site is located inside of an 

elongated regional bedrock block, 11 × 3.5 km in size bordered by regional fracture zones. 

According to seismotectonic studies, the area within 100 km of Olkiluoto is characterized 

by low seismicity (i.e., relatively few and minor earthquakes). 

Geological studies included mapping outcrops, trenches investigation, and 

borehole interpretation (Anttila et al. (1999), Lindberg & Paulamäki 2003, Paulamäki 

2004a, 2004b, Paulamäki & Aaltonen 2004). In addition to surface mapping, 

petrographic and lithogeochemical studies were conducted on samples from outcrops, 

trenches, and drill core, based upon the following (Kärki & Paulamäki 2004): 

• Lithological classification  

• Metamorphic grade, texture, and structure 

• Major mineral composition 

• Petrophysical measurements (Paananen 2004) 
 

A summary of major geological parameters are listed on 
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Table 2.5-1. 
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Table 2.5-1. Geological parameters 

 Parameters 

Regional mapping Rock types 
Lineaments 
Fracture zones 

Geological (investigation 
trenches, outcrops, and 
borehole samples) 

 

Lithology 
Fracture mineralogy 
Fracture (dip, dip direction, fracture 
frequency, length, aperture) 
Ductile and brittle deformation (foliation, fold 
axis, axial plane, fault plane, lineation) 
Hydrothermal alteration minerals 

Petrographic and 
lithogeochemical (protolith 
and genesis) 

Metamorphism (mineral paragenesis and  
metamorphic grade) 
Mineral composition  
Migmatitic texture and structures 

 

Additional data were collected to support geological data of the Olkiluoto site and 

summarized in Table 2.5-2. This included the distribution and thickness of overburden 

and characteristics of the main soils, shoreline displacement, mapping of sea bottom 

sediments, and radioactivity surveillance in sea water, groundwater, and shoreline 

sediments (Posiva 2003a).  

Table 2.5-2. Overburden, sea bottom sediments, shoreline displacement parameters 

 Parameters 
Overburden   Uplift rate  

Thickness 
Density of soil particles 
Grain size distribution (Hellä et al. 2004) 
Permeability (Lahdenperä et al. 2005) 
Soil water chemistry from lysimeter studies 

Sea bottom  
sediments 

Sediment thickness, depths 
Topography 
Sediment density, quality, texture, structure 
Radionuclides 

Shoreline displacement Glacio-isostatic depression/uplift rate 
Global eustatic sea level lowering/rise rate 
Mass transfers 
Erosion rate 
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2.5.2 GEOPHYSICAL DATA 
 

Several geophysical surveys have been carried out in the Olkiluoto area from the 

air, on the ground, and in boreholes. Airborne geophysical surveys included magnetic, 

paleomagnetic, and radiometric measurements (Suomen Malmi 1988). Ground and 

subsurface geophysical parameters were obtained using the following methods: 

• Acoustic-seismic studies  

• Microseismic monitoring network  

• Ground penetrating radar (GPR) 

• Produced images from side-scan sonar  

• Single-channel reflection seismic  

• Surface-based refraction seismic measurements  

• 3-D reflection vertical seismic profiling (VSP) method   

• Horizontal seismic profiling (HSP)  

• Integrated global position system (GPS) monitoring system for local crustal 
deformation studies  

• Charged potential surveys 

• Standard logging (magnetic susceptibility, single point resistivity, resistivity, 
density, natural gamma-gamma radiation, seismic P-wave velocity, caliper, and 
fluid logging  

• Seismic VSP 

• Cross hole and walk away surveys 

• Borehole radar 

Table 
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Table 2.5-3 summarizes the main geophysical parameters: 
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Table 2.5-3. Geophysical parameters 

 Parameters 

Regional Airborne Total field and gradient of the magnetic field 

Total field and vertical quadrature 

Total potassium, uranium, and thorium 
Ground geophysical 
data 

Total field and gradient of the magnetic field 
Lithological variations, thickness 
Fracture distribution 
Water salinity 
Fracture zones 
Crustal movement 

Borehole Rock types, depth and distribution of fractures, 
radionuclides, temperature of water 
Fracture and fracture zones distribution 

 

2.5.3 HYDROGEOLOGICAL DATA 
 

Hydrogeological measurements have been carried out at various depths, including 

surface, near-surface, and subsurface (deep) bedrock. These hydrogeological studies had 

as their goal a greater understanding of the site-scale flow conditions and determination 

of the spatial and temporal variations in the groundwater table, groundwater recharge and 

residence times, and groundwater pressure distribution at depth (Posiva, 2003a). 

The surface hydrology studies included catchments areas and surface runoff. 

Olkiluoto is located on the island of Olkiluoto, which forms a hydrological unit of its own. 

Surface waters there flow directly into the sea (Posiva, 2003-02). The low topography 

and high evaporation (over 60% of precipitation evaporates) mean that only a few percent 

of precipitation infiltrates into the bedrock (Ahokas & Herva, 1992, Posiva, 2002–03, 

Ikonen et al. 2003, Mattila 2004) 

Hydraulic conductivity and hydraulic head were mainly obtained from double- 

packer tests, long-term pumping tests in fracture zones, flow logging, long-term 

monitoring of the groundwater table and its fluctuations, and direct measurement of 

natural groundwater flow by cross borehole flow in shallow and deep boreholes. 

Transmissivity was estimated by cross-borehole flow measurement for the upper 150 m 
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of the rock mass. The investigations carried out in this phase are presented in detail in 

reports by Tuominen (1994), Snellman et al. (1995), Ruotsalainen & Snellman (1996), 

Bath et al. (2000), Pöllänen & Rouhiainen (1996a,b, 2000, 2001a,b, 2002a,b), Rouhiainen 

(2000), Kukhonen & Lindberg (1995); and Kukhonen (2000). Table 2.5-4 illustrates the 

important hydrogeological parameters. 

 

Table 2.5-4.  Hydrogeological parameters 

 Parameters   
Surface  Runoff 

Flow rates 
Infiltration rate 
Evaporation 
Transpiration 

Boreholes 
 

Hydraulic conductivity (1, 2) 
Hydraulic head 
Transmissivity  
Porosoity 
Permeability 

 

At site scale, groundwater flow is affected by several factors, including the 

structure of the bedrock, transmissvity of bedrock structures, porosity of rock, effective 

hydraulic conductivity between the host rock and fracture zones, surface infiltration, 

chemical composition and temperature of groundwater, and surface topography and land 

uplift (Posiva, 2003a). 

2.5.4 HYDROGEOCHEMICAL PROPERTIES 
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Water samples from Olkiluoto site were collected from precipitation, surface 

water (reservoir, wells, and springs), Baltic seawater, and groundwater (shallow and deep 

boreholes). The aim of this study was to understand the hydrogeochemical characteristics 

of the site, identifying recharge and discharge areas, special coverage of samples at 

various depths, and distribution and concentration of saline groundwater and dissolved 

gases in saline groundwater (Posiva, 2003a). For more detail on these hydrogeochemical 

studies, see Olkiluoto Site Description 2004. Table 2.5-5 summarizes the main 

hydrogeochemical parameters.  

 

Table 2.5-5. Hydrogeochemical parameters 

 Parameters 
Phyisogeochemical 
Variables 

pH 
Electrical conductivity 
Temperature 
Density  
Dissolved organic carbon (humic  and fulvic acids) 
Salinity 

Anions HCO3, CO3, Cl, Br, F,Br, SO4, PO4, NO3, NO2, N, P  
Cations Na, Ca, Mg, K, Al, Fe, SiO2, NH4 
Trace elements Sr, Li, Ba, Cs, Zr 
Organics Total Organic carbon 

Dissolved organic carbon 
Isotopes δ2H, 3H, δ 18O, 222Rn, δ13H, 14C 

234U/238U, 34S, 18º, 87Sr/86Sr 
Total inorganic carbon 

Dissolved gases  
(deep borehole samples) 

N2, O2, CO2, CO, CH4, C2H2, C2H4, C2H6, C3H8, H2, He

Others Microbes (sulfur reducing bacteria (SRB), iron reducing 
bacteria (IRB) 
Colloids 
Methane (CH4) 

 

The hydrogeochemical data above are a compilation of the following: 

• Hydrochemical data (Posiva 2003a) and baseline properties (Pitkänen et al. 
(2004)) 

• Geochemical studies of groundwater (e.g. Pitkänen et al. 1994, 1996, 1999a, b, 
2004) 

• Hydrothermal alteration 
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• Fracture mineral studies 

• Mineral compositions 

• Petrological studies 
 

2.5.5 ROCK MECHANICS DATA 
 

The mechanical properties of migmatitic gneisses, granite/pegmatite and grey 

(tonalite) gneiss, were carried out in intact rock samples and fractured rock from outcrops 

and drill cores (Front et al. 2002, Lahti & Heikkinen 2004, Klasson & Leijon 1990, 

Ljunggren & Klasson 1996, Malmlund & Johansson 2002, and Sjöberg 2003). The 

primarily role of rock mechanics studies included the evaluation of the long-term stability 

of the bedrock, in situ stress, and seismic monitoring (Posiva 2003a). The geophysical 

methods employed at different scales included: 

• Seismic P- and S-wave velocities (Front et al. 2002, Lahti & Heikkinen 2004), 

• Surface-based refraction seismic measurements (Geotek 1975, 1978, Ihalainen & 
Lahti 2002, Ihalainen 2003),  

• Reflection seismic methods, crosshole reflection (Enescu et al. 2003, Enescu et al. 
2004),  

• Tomographic investigations (Enescu et al. 2003, Enescu et al. 2004),  

• Microseismic monitoring system (MS) (Saari 2003) and  

• GPS and surface leveling measurements 

The main laboratory tests conducted on intact rock samples consisted of uniaxial 

and triaxial loading tests, damage-control tests, tensile tests, and acoustic emission 

measurements (Matikainen & Simonen 1992, Kuula 1994, Johansson & Autio 1995, 

Tolppanen et al. 1995, Hakala & Heikkilä 1997a, b, Eloranta 2004). Some anisotropic 

testing has also been undertaken by Hakala & Kuula (2004) and Eloranta (2004).  

The mechanical properties of fractures were based on estimates of geological 

descriptions, such as their roughness, undulation, mineral filling, openness, and type (e.g. 

slickensided) (Posiva 2005-3 vol. 1 pp 36-, Rautakorpi et al., 2003). Studies performed to 

obtain fracture properties included the following follows: 

• A description of the geological and structural style of fracturing 
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• Identification of the mineralogical species of the fillings, including an 
approximation of the percentage of filling phases and their geochemical 
characteristics 

• Determination of the physical properties of the fractures and fracture fillings, 
including an estimate of the thickness of the fillings and their degree of 
cohesiveness 

• Determining the relationship between individual fractures, fracture zones, and the 
fracture system 

• Obtaining evidence for ancient fluid flow and for existing groundwater circulation  

• Special characteristics of the fractures and fracture fillings, including corroded 
cavities and those filling phases 

• Mechanical strength and deformation properties 

• Hydraulic fracturing and overcoring (Klasson & Leijon 1990, Ljunggren & 
Klasson 1996, Malmlund & Johansson 2002, and Sjöberg 2003) 

 

The presence of several brittle and ductile deformation zones at Olkiluoto 

represent major discontinuities in the mechanical continuum. The foliation in the ductile 

deformation zones has an effect on their mechanical properties. Using empirical 

correlations based on rock engineering classifications and additional analytical methods, 

it was possible to generally determine the mechanical properties of deformation zones. 

Horizontal in situ stress state was obtained from hydraulic fracturing at deep 

boreholes. Detailed description of the measuring methods and the field work was 

presented in Klasson & Leijon (1990) and Ljunggren & Klasson (1996). In situ stresses 

have been measured in deep boreholes by hydraulic fracturing and overcoring methods 

(Klasson & Lejon 1990; Ljunggren & Klasson, 1996) and bedrock stability has been 

monitored. 

Thermal properties of intact rock were determined in the laboratory, mainly by 

mineralogical composition such as feldspar, micas, and quartz, and on samples taken 

from boreholes. Thermal anisotropy and heterogeneity resulted from variations in texture, 

mineral composition, and orientation of migmatitic banding and foliation (Kuhhonen 

2000, Posiva 2003a). Table 2.5-6 summarizes the mechanical and thermal parameters. 
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Table 2.5-6. Rock mechanical and thermal parameters 

 Parameters 

Rock mass Uniaxial compressive strength 
Crack initiation strength 
Long term strength 
Peak strength  
Tensile strength 
Young’s modulus 
Poisson’s ratio 
Shear modulus 
Deformation module 
Stress orientation  
Creep 
Fatigue 
Complete stress tensor 
Horizontal stresses 
Seismic velocity (P and S-wave) 

Fracture Poisson’s ratio 
Cohesion 
Friction angle 
Normal stiffness 
Shear stiffness 
RQD 
Roughness  
Undulation  
Filling  
Openness  
Type 

Deformation zones Deformation module 
Displacement rate 

Thermal properties Conductivity  
Heat capacity  
Diffusivity  
Expansion  
Scale effect  
Mineralogical composition 

 

2.5.6 OTHER DATA 

2.5.6.1 CLIMATE AND METEOROLOGY PROPERTIES 
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Climate and weather conditions define the time-dependent boundary conditions 

for the system at Olkiluoto. Finland has experienced several periods of glaciations, with 

the last one ending about 13,000 years ago. This event diluted the seawater and resulted 

in sea level rise, affecting geological, geochemical, and hydrological properties. As part 

of the present surface conditions, long-term climate and meteorology monitoring are 

considered to obtain average values for each of the parameters listed in Table 2.2-28.  

 
Table 2.2-28. Climate and metereological parameters 

 Parameters 
Climate and 
meteorology 

Temperature (1, 2) 
Precipitation  
Snow cover  and ground frost thickness (1, 2) 
Water content (1, 2) 
Wind speed 
Wind direction 
Chemical deposition of precipitation (pH. DOG, N, 
NH4-N, NO3-N, Ca, Mg, K, Na, SO4-S, Cl) 

 

2.5.6.2  BIOSPHERE 

The Environmental Impact Assessment (EIA) of the Finnish program indicates 

that mapping and identification of key biotypes for the land and sea environments have 

been periodically undertaken since 1997. Sea surveillance includes analysis of physical, 

chemical, and biological parameters related to water quality, fish, and sea bottom 

vegetation (Ikonen at al 2003a, Posiva 2003a). Concentration of radionuclides and stable 

isotopes such as Cs-137, Sr-90, H3 have been under extensive regulatory surveillance 

within marine and land environments, owing to the presence of a nuclear power plant 

near Olkiluoto.  

2.5.7 SUMMARY 
Site characterization at Olkiluoto has been ongoing for 20 years. During detailed 

investigation, special attention was been paid to the fractured and hydraulically 

conductive zones, their location, orientation, and properties. The main investigations in 

the crystalline rock have been: (1) bedrock studies, including characterization based both 

on geological and geophysical (airborne, ground surveys, and borehole logging); (2) 
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hydrogeology studies, to understand the site-scale flow conditions and to determine the 

spatial and temporal variations of the groundwater table, groundwater recharge, and 

residence times, as well as groundwater pressure distribution at depth; (3) 

hydrogeochemistry studies, to identify recharge and discharge areas, special coverage of 

samples at various depths, and distribution and concentration of saline groundwater and 

dissolved gases in saline groundwater; and (4) rock mechanics, to evaluate the long-term 

stability of the bedrock, in situ stress, and seismic monitoring.  
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2.6 GENERAL SUMMARY 

As mentioned previously, characterization of a prospective high-level nuclear-

waste repository site is one of the most important activities for establishing the geological 

conditions and parameters of the site. In countries like the USA, Canada, Sweden, and 

Finland, site characterization has been conducted for over 20 years. Although site 

characterization is being carried out in different types of lithology (volcanic, plutonic, 

crystalline, metamorphic, and sedimentary), at different conditions (unsaturated and 

saturated zones) and in different tectonic and hydrological settings, it is clear that 

groundwater is one of the main issues for the safety of nuclear waste programs. In the 

evaluated programs, the amount and the rate of water contacting the waste package will 

ultimately affect all aspects of performance, from waste package lifetime to radionuclide 

movement.  

In the USA, the potential repository is located in unsaturated volcanic rock, with 

low infiltration, episodic records of earthquakes, and surrounded by Quaternary 

volcanoes. In the beginning of the program, given investigators’ simple understanding of 

the geology, hydrology, and fracture properties and the lack of numerical or mathematical 

models, the conceptualization of Yucca Mountain was very simple. It included low flux, 

extensive lateral flow, and no fracture flow. With better understanding of the geology, 

fracture properties, and the main hydrological properties (especially related to infiltration, 

percolation, and seepage), the main issues for the long-term performance of the 

repository system could be assessed, and uncertainties could thereby be reduced.  

In Canada, because of the stable tectonic region and large exposure and 

distribution of plutonic rock in the Canadian Shield, this rock is believed to be a suitable 

medium for storage of nuclear waste. The plutonic rock was used to develop a concept 

for disposal that involved the geosphere, vault (near-field) and biosphere and to develop 

related models for performance assessment. A major part of the geosphere research was 

to develop methodology and technology for site characterization. The method 

implemented by the AECL included a multidisciplinary and staged approach (i.e. from 

regional scale to candidate area to candidate site). For the Canadian program, fracture 

characterization was particularly important, because it allowed investigators to identify 
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different hydrogeological, geochemical, and geomechanical characteristics of the plutonic 

rock. 

Japan is located in an unstable geological setting, with active volcanoes as well as 

seismic and uplift/erosion processes. This makes the Japanese program one of the most 

challenging for nuclear waste disposal. Nevertheless, site characterization for an 

underground laboratory has been ongoing in two distinct rock types: plutonic and 

sedimentary rocks.  Some similarities that Japan has with the Canadian, Swedish, and 

Finnish programs is that all these countries have been conducting main investigation in 

saturated rocks and using a multidisciplinary approach for the URL site selection. In 

these programs, one of the main concerns is fractures and fracture zones, considered to be 

major structural features controlling the groundwater movement in the saturated zone. 

However, at depth, as fractures become sparse and permeability and porosity decrease, 

the main radionuclide transport may be significantly affected by diffusion and sorption. 

In Japan, extensive numerical modeling has been conducted to evaluate the effects 

of geological, hydrological, geochemical, and mechanical properties in the long-term 

performance of the system. Other important parameters affecting the performance of the 

saturated zone are hydraulic gradient, amount of recharge and discharge, hydraulic 

conductivity, flow interval and path, dispersivity, and advection. 

In Finland, the Olkiluoto site is located in a relatively stable geological setting. 

The island is composed by crystalline rock, primarily migmitite and gneiss.  During 

detailed site characterization, special attention was placed to the fractured and 

hydraulically conductive zones, their location, orientation, and properties.  Emphasis has 

been on characterizing the bedrock, and hydrogeological, hydrogeochemical, rock 

mechanical, tectonic and seismic conditions of the site.  

Table 2.6-1 summarizes the main parameters identified by the USA, Japan, 

Canada, Sweden, and Finland during site characterization. In this study, we have 

identified parameters commonly used during site characterization (Table 2.6-2). All sites 

have conducted similar studies, as follows: 

1. Regional and site-specific geological mapping and drilling. During surface-

based reconnaissance, traditional methods for field geology (i.e., surface-based 
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mapping, sampling, and testing of geological and hydrological properties) and 

features that represent the surface expression of major pathways for 

groundwater flow (i.e., major lineaments recognized from satellite images, 

aerial photos and geophysical survey) were used to establish the geological 

framework of a candidate site. The common parameters include: major 

lineaments, lithological contacts and depths, petrology, mineralogy, fractures, 

and faults (orientation, lengths, and fracture zones). 

2. Metereological investigation to understand surface and underground flow 

system. The physical process that controls the movement of water seems to have 

an enormous impact on site characterization, conceptual model and numerical 

modeling. The common parameters are precipitation, temperature, 

evapotranspiration, infiltration, wind direction and velocity, and recharge and 

discharge.  

3. Regional and site-specific geophysical investigations. A broad range of surveys 

were used to confirm major structures, depth of unconformities, faults, and 

thickness of lithologic units and contacts. Satellite images, airborne 

electromagnetic, radiometric, magnetic; seismic velocity, electric surveys, and 

geophysical logs in boreholes were the main types of surveys to confirm the 

existence of faults and fracture zones, rock boundaries, lithologic contacts and 

thickness, and depth of discontinuities. 

4. Surface and groundwater hydrological investigations to understand surface and 

groundwater flow system, including fracture-matrix and water-rock interactions. 

The common parameters for surface hydrology include: water level, drainage 

recharge, and discharge, runon and runoff, precipitation, evaporation, and 

moisture redistribution. Hydrogeological parameters for matrix and fractures 

include: porosity, permeability, hydraulic conductivity, hydraulic head, 

transmissivity. 

5. Geochemical and isotopic investigations to understand characteristics and 

variations on the physico-chemical properties of groundwater. Isotope analysis 

provides information on the origin and residency time of water. The main 
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hydrogeochemical parameters are: pH, Eh, major ions (cations and anions), total 

dissolved solids, trace elements, temperature, isotopes, dissolved gases. The 

main geochemical parameters for rock include: major and minor elements, 

secondary minerals, isotope to constrain the age of rock and infillings.  

6. Rock physical properties and rock mechanics measurements to understand the 

variations in porosity, density, rock strength, stress conditions at different 

depths, and the influence of rock properties on groundwater hydrology and 

chemistry. 

7. Investigation of transport-properties using tracer tests to understand the 

processes of advection, diffusion, dispersion, and sorption.  

8. Development of conceptual and numerical modeling.  All sites have developed 

and improved their conceptual models based on results from data and data 

analysis. Numerical modeling has been conducted to predict and estimate the 

effect of parameters in the natural system and to reduce data uncertainties. 
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Table 2.6-1.  Summary of important parameters for site characterization from evaluated sites 
 

Country Rock Type Geological & 
Structural 
Parameters 

Geophysical 
parameters 

Climate & 
Meteorological 
Parameters 

Hydrogeological 
Parameters  
 

Geochemical 
Parameters  

Physical  
Parameters 

Mechanical 
Parameters 

Thermal 
Properties 

USA  
 
 
Yucca 
Mountain 
 
 
Unsaturate
d zone 

Volcanic 
Rock 
 
 
Age: 14 -
7.5MA  
 

Regional Geology 
-Lithostratigra 
phic untis 
-Alteration & 
weathering 
-Mineralogy 
-Grain size and 
sorting 
-Percentage of 
volcanic glass 
-Degree of welding 
-Degree of 
crystallization 
-Percentage of 
lithophasae  
-Abundance and 
type of glass 
 
Textures 
- Grain size 
- Sorting 
-Abundance of 
volcanic glass 
-Degree of welding 
-Type and degree 
of crystallization 
-Abundance of 
lithophasae 
-Abundance and 
type of glass 
alteration 
 
Structures 
-Lineaments 
-Fault orientation 
-Fracture geometry 
-Fracture 
orientation, length 
-Fracture 
frequency  

Regional 
-Fault offset 
-Stratigraphy 
-Lithological 
contact 
-Size and 
shape of 
buried 
volcanoes 
-Fracture 
density 
 
Borehole 
-Density 
-Moisture 
content 
-Porosity 
-Saturation 
 

Climate 
-Temperature 
-Precipitation 
-Geology 
(topography, 
stratigraphy, 
fractures, 
fossils/microfossi
ls) 
-Surface 
hydrology 
-Type of soils 
-Sea level change 
-Isotopic data 
-Variation on 
earth orbital 
clock 
-Eccentricity 
 
Meteorological 
-Topography 
-Temperature 
-Pressure-
Precipitation rate 
-Snow fall rate 
Evapotranspirati
on rate 
-Surface run on 
& runoff 
-Humidity 
-Wind direction, 
velocity 
-Net infiltration 
 

Surface hydrology 
-Precipitation 
-Evaporation 
-Transpiration 
-Run-on 
-Run-off 
-Infiltration 
-Moisture 
redistribution 
-Groundwater 
recharge 
 
Matrix  
-Matrix porosity 
-Bulk density 
-Particle density 
-Water content 
-Matrix 
permeability 
-Moisture retention 
relations 
-Water potential 
-Hydraulic 
conductivity 
 
Fractures 
-Fracture density 
-Fracture aperture 
-Fracture porosity 
-Fracture 
permeability 
-Hydraulic 
conductivity 
 
Faults 
-Fault permeability 
-Fault porosity 
-Hydraulic 
conductivity 
-Tracer transport 

Groundwater 
-TDS 
-Major-ion 
chemistry (Al, 
Ca, Mg, K, Na, 
SiO2,HCO3,CO3
,36Cl, NO3, SO4) 
-Trace elements 
-Isotopes (H, 3H, 
18O,36Cl/Cl,14C, 
13C,87Sr/86Sr, 
234U/238U) 
 
Rock 
-Mineralogy 
-Alteration 
minerals 
-Major elements 
compositions 
-Secondary 
minerals 
-Sorption 
properties  
-40Ar/39Ar 
 
Gas  
CO2,

13,14 C, 18O, 
CH4, Ar, N2,  
 

-Hardness 
-Saturation  
-Particle 
density 
-Bulk 
porosity 
-Permeability 
 

-Compressive 
strength 
-Tensile 
strength 
-Young’s 
modulus 
-Poison’s 
ratio 
-Hardeness 
-Cohesion  
-Angle of 
internal 
friction 
-Normal 
stiffness 
-Shear 
stiffness 
 

-Thermal 
conductivity 
-Heat capacity 
-Thermal 
expansion 
coefficients 
-Thermal 
diffusivity 
-Heat dissipation   
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Country Rock Type Geological & Structural 
Parameters 

Hydrogeological 
Parameters 

Geochemical 
Parameters 

Transport Properties 

USA  
 
Yucca 
Mountain 
 
 
Saturated 
Zone 
 

Volcanic and 
Sedimentary 
(carbonate) 
Rocks 
 
 
Age: since 
Paleozoic 
 

Geology 
-Stratigraphy 
-Lithology 
-Lithological contacts 
-Mineral alteration 
 
Structures 
-Fault orientation, types 
-Fracture density 
-Fracture network 
-Folds 

Regional 

Recharge and Discharge 
- Lateral boundaries  
- Precipitation (rainfall, snow melt) 
-Evapotranspiration 
 -Altitude   
-Soil type 
-Rock type 
-Slope 
-Vegetation 
-Hydraulic gradient 
-Water level 

-Direction of groundwater flow 
-Flow velocity 
-Transmissivity 
-Hydraulic conductivity 
-Porosity 

Site-Scale 
-Infiltration  
-Fault orientation  
-Fault type  
-Fracture density, porosity  
-Matrix pore storage 
- Transmissivity 
- Flow velocity 
- Dispersion 
- Concentration of radionuclide 

Borehole 
-Matrix porosity 
-Fracture density 
-Hydraulic head 

-pH 
-Eh 
-Isotopes (234U/238U, 14C, 36 Cl , δ-
deuterium, δ18O, strontium) 
-Major ions (Na, Ca, K, Mg, sulfate, 
chloride, nitrate, fluoride) 
-Trace elements 
-Rare Earth Elements 

Porous Media (alluvium) 
-Advection 
-Sorption 
-Dispersion 
-Porosity 
-Sorption 
-Isotopes( 14C,δ 13C ) 
 
Fracture 
-Advection 
-Diffusion 
-Dispersion 
-Fracture spacing 
-Porosity 
-Aperture 
-Fillings 
-Sorption 
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Country Rock 

Type 
Geological & 
Structural 
Parameters 

Geophysical 
Parameters 

Meteorological 
Parameters 

Hydrogeological 
Parameters 

Geochemical 
Parameters 

Stress Field 
Parameters 

Rock Mass 
Properties 
Parameters 

CANADA 
URL 
 
Whiteshell 
Research 
Area 
(WRA) 
 
Saturated 
Zone 

Plutonic 
(Granite) 
 
Age: 
2679 
MA 
 
 

Site Screening 
- Major lineaments 
(fracture and fault 
orientations) 

- Pluton geometry 
(shape and size) 

- Rock boundaries 
- Lithological contact 
- Fracture zone 

- Petrographic 
analysis 
 
Site Evaluation 
- Rock type, 
- Percentage of dikes 
-Degree of 
metassomatic 
granitization, 
- Fracture 
(orientation, density, 
length, aperture, 
infillings),  
- Mineralogy, 
- Fabric (texture, 
deformation) 
- Mineral alteration 
- distribution of 
U,Th,REE 
 
Drill core 
- Fracture (density, 
orientation, aperture, 
connectivity, fillings) 
- Mineral alterations 
- Rock types 

Site Screening 
-Major lineaments 
(spatial frequency 
and distribution) 
-Length distribution 
-Boundaries of pluton 
-Overburden 
thickness 
- Fracture zones  
-Depth of batholiths 
 
Site Evaluation 
-Lithologic variations 
-Thickness 
-Fracture/fault zone 
-Stress orientation, 
-Rock boundaries and 
contacts 
-Shape 
 
Borehole 
-Location of fractures 
- Continuity and 
geometry of features 
between boreholes 

-Temperature 
-Windspeed and 
direction 
-Rainfall 
-Precipitation 
-Evaporation 
rate 
-Runoff rates 
-Spring 
locations 
(recharge/discha
rge) 
 

Site Screening 
-Drainage 
recharge/discharge 
-Runoff pattersn 
-Water level 
-Groundwater 
recharge/discharge 
 
Site 
Evaluation/borehol
e 
-Porosity 
-Fracture network 
-Permeability 
-Hydraulic 
conductivity 
-Groundwater 
pressure 
Compressibility 
hydraulic head 
-Hydraulic 
fracturing 

Site Evaluation 
-Major and minor elements 
-Radiometric dating 
-Radon and helium in soil 
Water 
-Surface water runoff/ 
groundwater discharge ratio 
-Water temperature 
BoreholeWater 
-Eh 
-pH 
-Anions (HCO3, SO4, Cl, Br, 
F, Fe+2, SiO2, NO3, I) 
-Cations (Na, Ca, Mg, K, Sr, 
Si, B, total Fe) 
-Total Dissolved solids 
(TDS) 
-Trace elements (Mn, Cu,Zn, 
Ni, V, Pb, Li, Ba, Al, Cr, Co, 
Cd , As and P, Li, Fe, Mn, V, 
Al +Others) 
-Dissolved organic carbon 
-Colloidal fractions 
-Density 
-Temperature 
-Isotopes (H,2H, 3H,18O , 
36Cl/Cl, 14C, 13C, S18O4, 
34SO4, 87Sr/86Sr, 
U,234U/238U,36Cl, 
129I,226Ra,222Rn) 
- Dissolved Gases 
(H2 ,He, O2, N2, CO2,   CH4, 
Ar,  H2 S) 
-Dissolved Inert Gases(He, 
3He/4He,Ne isotopes) 

Site 
Screening 
-Effective 
lithostic load 
-Active 
tectonic stress 
-Remnant 
stress 
 
Site 
Evaluation 
-In situ stress 
(hydraulic 
fracturing) 
 
Drill core 
-Uniaxial 
compressive 
strength, 
-Triaxial test 
for 
deformation, 
-Stress history 
-In situ stress 
-elasticity  
 

Drill core 
-Tortuosity 
- Porosity 
(surface area, 
pore aperture)  
-
Micromorpho
logy of pore 
- Diffusion 
- Permeability 
- Thermal 
expansion 
-Thermal 
conductivity 
-Thermal 
diffusivity 
-Magnetic 
susceptibility 
-magnetic 
anisotropy 
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Country Rock Type Geological & 

Structural 
Parameters 

Geophysical 
Parameters 

Meteorological  
Parameters 

Hydrogeologi 
cal 

Parameters 
 

Geochemical 
Parameters 

Rock 
Physical 

Parameters 

Mechanical 
Parameters 

Transport 
Properties 

JAPAN 
URL 
 
Mizunami 
Undergrou
nd 
Laboratory 
(Shobasam
a and 
Mizunami 
Sites) 
 
Saturated 
Zone 
 
 
 

Granite 
 
Age: 70 
MA 
 
 
Cover rock: 
Sedimenta 
ry 

Regional  
Geology 
-Stratigraphy  
-Geological units 
(contact, depth) 
-Petrology & 
mineralogy of fresh 
and weathered granite 
-Thickness sediment 
layer 
-Type of dikes, 
orientation, width 
-Infilling minerals in 
fault zones 
 
Structures 
-Lineament 
orientations 
-Faults  (geometry 
length, orientation) 
-Fracture 
(distribution, density) 
 
Core Samples 
-Rock type 
-Textural variations 
-Mafic mineral 
content 
-Contact depth 
-Degree of 
weathering/alteration 
-RQD 
-Fracture (density, 
location and dip, 
shape, aperture) 
-Nature of alteration 
products along 
fracture 
-Mineralogy of 
fracture filling 
minerals 

Regional  
-Boundary of 
granite 
-Geological unit 
thickness 
 -Lineaments 
-Depth of 
unconformities 
-Fault length 
-Fracture zones 
-U, Th, K 
 
Borehole 
-Fracture density 
-Density 
-Porosity 
-Lithology 
-Temperature 
-Velocity 
 
 

-Precipitation 
-Infiltration 
-Evapo 
transpiration 
-Wind velocity 
-Wind direction 
-Water level 
-Water budget 
-Soil moisture 
-Recharge 
-Discharge 
 
 

-Hydraulic head 
-Hydraulic 
conductivity 
-Hydraulic 
gradient 
-Permeability 
-Specific storage 
coefficient 
-Porosity 
-Pore pressure 
-Flow rate 
-Transmissivity  
 

Groundwater 
-pH 
-Eh 
-Total Dissolved  
Solid Content 
(TDS) 
-Temperature 
-Electrical 
conductivity  
-Chloride content  
-Colloids 
-Microbes 
 -Major elements 
(Si, Ca+2, Na+, 
HCO3

-+CO3
-2,  

Fe2+ ) 
-Isotopes (2H, 3H, δ 

18O, δ13C, 14C, 
36Cl/Cl) 
-Radiogenic 
isotopes (Th, U,  
K, Rd) 
 
Rock 
-Major elements 
(SiO2, TiO2, Al2O3, 
Fe2O3, FeO, MnO, 
MgO, CaO, Na2O, 
K2O, P2O5, H2O) 
-Minor elements 
(F, Cl, Sr, Rb, Li, 
Zn, Cu, Pb, Sn, Be) 
-Radiometric 
dating (87Sr/86Sr, 
U-Th-Pb) 
-REE 

-Apparent 
density 
-Effective 
porosity 
-Moisture 
content 
-Seismic wave 
velocity (P-
wave) 
-RQD 
 

-Coefficient 
of elasticity 
-Unconfined 
compressive 
strength 
-Poisson’s 
ratio 
-Tensile 
strength 
-Cohesion 
-Friction  
- In situ stress 
-Hydraulic 
fracturing 
-AE/DRA 

-Uranium 
sorption 
-matrix 
diffusion 
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Country Rock Type Geological & 

Structural 
Parameters 

Geophysical 
Parameters 

Meteorological 
Parameters 

Hydrogeologi 
cal 

Parameters 
 

Geochemical 
Parameters 

Rock 
Physical 

Parameters 

Mechanical 
Parameters 

Transport  
Properties 

JAPAN 
URL 
 
Horonobe 
Undergrou
nd Labo 
ratory 
 
Saturated 
Zone 

Argilite 
 
Age: 
Neogene 
 
 

Regional 
-Major lineaments 
-Stratigraphy 
-Major fault/fracture 
zones 
 
Core samples 
-Stratigraphy 
-Degree of diagenesis 
-Lithology  
-Fracture distribution 
-Mineralogical 
composition 
-Microfossils  
 

Regional/Site-
specific 
-Geological 
formations, 
structures 
(faults, fractures 
and folds)at 
depth 
- U, Th, K 
 
Borehole 
-Lithological 
contacts, 
boundaries 
-Porosity 
-Density 

-Precipitation 
-Temperature 
-Infiltration 
-Humidity 
-Wind velocity 
-Wind direction 
Evapotrasnspirat
ion rate 
-River flux 

-Hydraulic head 
-Hydraulic 
conductivity 
-Transmissivity 
 

Groundwater 
-pH 
-Eh 
-Dissolved gases 
(H2, He, N2, O2, 
CO, CO2, 
hydrocarbon) 
-Isotopes (D/H, 
18O/16O, 14C, 
13C/12C, 36Cl) 
-Major elements  
(Na, K, Mg, Ca, 
Si. F, Cl, Br, I, 
alkalinity) 
Minor elements 
(Al, Fe, Li, Sr, 
Mn, S. T.P, PO4 
T.N, NO2-, NH4,) 
-Microbe types 
-Methane gas 
 

-Porosity 
-Density 
-Swelling 
factor 
-Durability 
factor 
-Dissolved 
gas 
 
 

-Uniaxial 
compressive 
strength 
-Elastic 
modulus 
-Stress 
-P-wave 
velocity 
-Cohesion 
-Friction 
-Poisson’s 
ratio 
-Tensile 
strength 
-Unit weight 
-In situ stress 
-RQD 

-Diffusion 
coefficient 
-Dispersivity 
-Hydraulic 
aperture 
-Transport 
aperture 
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Country Rock Type Geological & Structural 

Parameters 
Hydrogeological 

Parameters 
 

Geochemical 
Parameters  

Rock 
Mechanics 

Thermal  
Properties 

Transport 
Properties 

Sweden 
 
SKB  
 
 
Saturated 
Zone 
 

Crystalline  
rock 
 
 

Site Identification (100-200km2) 
- lineaments  
 
Investigation Area (5-10km2) 
- lineaments 
- field descriptions 
- classification of fracture zones 
 
Site Description Model (SDM) 
- topography 
- soil layers 
- lithology 
 
Structural for SDM 
- ductile structures (folds, shear 
zones) 
- brittle structures (faults, fractures) 
 
 
 

- permeability 
- porosity 
-storage 
coefficient 
-rock 
compressibility 
- salinity 
-pressure head  
distribution 
 

- pH 
- Eh 
-Fe2+,HS-, HCO3

-

, Cl-, Na+, Ca2+, 
HA/FA 
-dissolved gases 
N2, H2, CO2, 
CH4 He, Ar 
- colloids 
- bacteria 
-SO4

2-, HPO4
2-, 

F-,HS-,Fe2+and 
Mn2+ 

- discontinuity 
- deformation 
properties  
- compressive / 
tensile strength 
- shear stress 
- fracture 
roughness 
- shear 
direction 
- young’s 
modulus 
- Poison 
number 
- rock 
classification 
(RMR, Q) 
- shear wave 
velocities 
- indentation 
index 
- wear index 
- blastability 

-thermal 
conductivity 
- heat capacity 
- thermal 
expansion 
- temperature 
in rock and 
groundwater 
- thermal 
boundary 
conditions 
- thermal 
gradient 

- dispersion 
- flow porosity 
- flow-wetted 
surfaces 
- fracture 
aperture/geometry 
- sorption 
- matrix diffusion 
- matrix porosity 
- biological 
activities 
- tracer 
- colloids and 
gases in 
groundwater 
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Country Rock Type Geological & Structural 

Parameters 
Geophysical 
Parameters 

Climate & 
Metereology 

Hydrogeological 
Parameters 

 

Hydrogeochemical 
Parameters  

Rock Mechanics Thermal  
Properties 

Finland 
 
Olkiluoto 
 
 
Saturated 
Zone 
 

Crystalline  
(Metamorphic) 
Rocks 
 
Age: Pre-
Cambrian 
 
 

Regional scale 
- Rock types 
- Lineaments 
- Fracturing 
 
Trenches, outcrop and boreholes 
- Lithology/mineralogy 
- Fracture mineralogy 
- Fracture (dip, dip direction, fracture 
frequency, length, aperture) 
- Rock texture and structure 
- Ductile deformation (folds axis, axial 
plane, foliation) 
- Brittle deformation (fault plane, 
lineation) 
- Hydrothermal alteration minerals 
 
Petrographic &Lithogeochemical 
(protolith and genesis) 
- Mineral paragenesis 
- Metamorphic grade 
- Mineral composition  
- Migmatitic texture and structure 
 
Overburden  
- Uplift rate 
- Thickness 
- Density of soil particles 
- Grain size distribution 
 
Sea bottom sediments 
- Sediment thickness 
-  Sediment depth 
- Topography 
- Sediment density, quality, texture, 
structure 
- Radionuclides  
 
Shoreline displacement 
- Glacio-isostatic depression/uplift rate 
- Global eustatic sea level lowering/rise 
rate 

Regional 
-Magnetic field 
- Frequency 
- Total field and 
vertical quadrature 
-Total U, Th, K 
-Crustal movement 
 
Ground geophysical  
- Magnetic field 
- Lithological 
variations, thickness 
- Fracture 
distribution 
- Water salinity 
- Fracture zones 
 
Borehole 
- Rock types 
- Fracture (depth and 
distribution) 
- U, Th, K 
-Temperature of 
water 

- Temperature  
- Precipitation  
- Snow cover  
and ground frost 
thickness  
- Water content  
- Wind speed 
- Wind direction 
- Chemical 
deposition of 
precipitation 
(pH. DOG, N, 
NH4-N, NO3-N, 
Ca, Mg, K, Na, 
SO4-S, Cl) 
-Cs-137, Sr-90, 
H3 

Surface 
-Flow rates 
- Infiltration rate 
- Evaporation 
- Transpiration 
 
Boreholes 
- Hydraulic 
conductivity 
- Hydraulic head 
- Transmissivity 
- Electrical 
conductivity  
- Porosity 
- Permeability 
 

- pH 
- Electrical 
conductivity 
- Temperature 
- Density  
- Dissolved organic 
carbon 
- Anions (HCO3, 
CO3, Cl, Br, F,Br, 
SO4, PO4, NO3, 
NO2, N, P) 
- Cations (Na, Ca, 
Mg, K, Al, Fe, 
SiO2, NH4) 
- Trace elements 
(Sr, Li, Ba, Cs) 
- Organics (Total 
Organic carbon, 
Dissolved organic 
carbon) 
- Isotopes (δ2H, 3H, 
δ 18O, 222Rn, δ13H 
234U/238U, 34S, 18O, 
87Sr/86Sr 
- Total inorganic 
carbon 
-Microbes (sulfur 
reducing bacteria 
(SRB), iron 
reducing  
bacteria (IRB) 
- Colloids 
- Methane (CH4) 
 
 
 

Rock mass 
-Uniaxial 
compressive 
strength 
- Crack initiation 
strength 
- Long term 
strength 
- Peak strength  
- Tensile strength 
- Young’s 
modulus 
- Poisson’s ratio 
- Shear modulus 
- Deforma 
tion module 
- Stress 
orientation  
-Creep 
- Fatigue 
- Complete stress 
tensor 
- Horizontal 
stresses 
- P and S-wave 
velocity 
 
Fracture zones 
-Poisson’s ratio 
-Cohesion 
-Friction angle 
-Normal stiffness 
-Shear stiffness 
-RQD 
-Roughness  
-Undulation  
-Filling  
 
Deformation 
zones 
-Deformation 
module 

-Thermal 
conductivity 
- Heat capacity 
- Thermal 
expansion 
- Mineralogical 
composition 
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- Mass transfer 
- Erosion rate 

-Displacement 
rate 
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Table 2.6-2. List of common parameters  

 
 

Geological 
Mapping and 

drilling 

Meteorological  
Investigations 

Geophysical 
Investigations 

Hydrological and 
hydrogeological 
Investigations 

 

Geochemical and 
Isotope 

Investigations 
 

Rock 
Properties 

Transport  
Properties 

Conceptual and  
Numerical Modeling 

-Major lineaments 
-Lithological 
contacts, 
boundaries and 
depths 
-Petrology 
-Mineralogy 
-Fracture and 
faults (orientation, 
length, locations) 

-Precipitation 
-Temperature 
-Evapotransipiration 
-Infiltration 
-Wind direction and 
velocity 
-Recharge and 
discharge 

-Location of 
faults and 
fracture zones, 
-Rock 
boundaries 
-Lithological 
contacts, 
thickness 
-Depth of 
discontinuities 

Surface hydrology 
-Water level 
-Drainage 
recharge, discharge 
-Run on and runoff 
-Precipitation 
-Evaporation 
-Moisture 
redistribution 
 
Hydrogeology 
-Porosity 
-Permeability 
-Hydraulic 
conductivity 
-Hydraulic head 
-Transmissivity 

Groundwater 
-pH 
-Eh 
-Major ions (cations 
and anions) 
-Total dissolved solids 
(TDS) 
-Trace elements 
-Dissolved gases 
-Isotopes (3H, 18O, 36Cl, 
U) 
 
Rock 
-Major and minor 
elements 
-Secondary minerals 
-Isotopes (U, Th, K, Ar, 
Rd) 

-Porosity 
-Density 
-Rock strength 
-In situ stress 
-Friction 
-Cohesion 
 

-Advection 
-Diffusion 
-Dispersion 
-Sorption 
 

-Geological, hydrological, 
geochemical and coupled 
processes 
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3 Lessons Learned 

本セクションではヤッカマウンテンやその他の内外のサイト特性調査プロジェクトで

得られた教訓を列挙する。これから日本で行われるであろう概要調査段階でこれら全て

があてはまるとは必ずしも言えないが、今後、遅かれ早かれまた、多かれ少なかれ

NUMO が直面するであろう課題に深く関連すると思われるものを選んで以下に述べる。

列挙した順序は必ずしも重要度とは関連していない。 

3.1 複数の概念モデル（アルターナティブモデル）が重要 

ヤッカマウンテンプロジェクトの初期から、涵養量が年間 1mm 以下であり、山に滲

み込んだ水の大部分は未固結の降下火山灰層に沿って処分場を迂回して斜め水平に流れ、

少量の水は垂直に処分場方向に流れるが、水はすべてマトリックスの中を通り、フラク

チャーは不飽和のままであり、核種が漏れても処分場の直下に位置するゼオライトを多

く含んだ地層が吸着するという概念モデルのみに基づいてモデリングやサイトの調査が

15 年間続けられて来た。近年になって涵養量は 5mm から 80mm の間であり、山に滲み

込んだ水の殆どは垂直に流れ、一部はフラクチャーを通り、処分場以深ではゼオライト

の地層を迂回する流れが存在するという概念モデルがより実際に近いという事が分かっ

て来た。マトリックスが不飽和でありながら、フラクチャーの中を流れる水が存在する

というのは当初の概念モデルでは全く考えられていなかった。ところが最近のモデリン

グやサイト調査の結果、マトリックスとフラクチャーの相互作用が理想状態よりはるか

に弱い可能性があることが判明した。 

サイトの調査を進めるにおいて、概念モデルの構築は重要であるが、ただ１つの概念

モデルに頼るのは避けるべきであり、代替モデルを平行して構築するのが肝要である。 

3.2 平行した数値モデルが必要 

上記の概念モデルに平行して数値モデルを構築することが必要である。数値モデルは

概念モデルのシナリオの検証やサイト調査データを反映させたり、逆にサイト調査の方

向付けに役立つ。ヤッカマウンテンでも当初から数値シミュレーターで検証が出来てい

れば近年の概念モデルの大幅な修正は避けられたかも知れない。ただし、数値モデルは、

概念モデルの具現化であり、あくまで限界がある事を常にわきまえておく必要がある。

時として数値モデルがあたかも現実のような錯覚にとらわれる傾向があるので注意が必

要である。 

3.3 主要パラメータ 

サイト特性調査で同定されるべき主要パラメーターは各国のサイトのほぼ共通してい

ると言って良い。一見、不飽和領域に処分場を予定しているヤッカマウンテンと他国の

飽和領域のサイトでは共通項は無いように思いがちであるが、実際は同定されるべき重

要パラメーターやフィーチャーは共通している。それらを以下に列記する。 

• 断層 
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• フラクチャー・マトリックスの相互作用 

• 通過流量 

• 境界条件 

 特に我が国においては、断層は遍在的に存在し、地下水の流れの方向や流量、速度

を大きく左右していると考えられる。また、H17 取りまとめ（JNC, 2005）からも明らか

なように、処分場の性能はマトリックス拡散に大きく依存するので重要なパラメーター

である。通過流量は透水係数と動水勾配に依存し、我が国のような飽和領域でのプログ

ラムでは比較的計測しやすいパラメーターである。一方、境界条件の同定は容易でない。 

3.4 100m 毎に１、２本の透水性の高い亀裂 

オルキルオト、東濃、レイモンド（米国カリフォルニア州）はそれぞれフラクチャー

性の花崗岩のサイトであるがこれらにサイトに共通している点は、それぞれの孔井にお

いておよそ 100m に 1 本か 2 本の透水性の高い亀裂が観測されている事である。また、

カナダの URL、スウェーデンのストリパ、スイスのグリムゼルサイトでも同様な観測が

なされている。無論、幾何学的な亀裂に関してはボアホールテレビやコア観測から

100m の区間では数十から 100 本程度記録されている。言い換えればおよそ 100 本の亀

裂に 1 本の割合で透水性の高い亀裂が観測されている。また、透水性の高い亀裂と層で

ない亀裂が外見的には区別がつかない場合が多い。 

3.5 フラクチャーマッピングはあまり有用でない 

前記のように結晶岩においてはフラクチャーが主な水みちであるのは疑問の余地がな

く、堆積岩環境においてもフラクチャーが透水係数に大きく寄与している例は多々ある。

このようにフラクチャーは水の流れを解明するためにはきわめて重要であるが、フラク

チャーの幾何学的な情報は今までのところあまり役立っていない。ヤッカマウンテンプ

ロジェクトの初期の 1980 年代後半には各地層の路頭でスキャンラインやグリッドを用

いて精細なフラクチャーのマッピングが行われた。さらに、 1990 年代の ESF
（Exploratory Studies Facility）トンネルの掘削中は TBM に連結された長い台車に数人の

地質学者が乗り込んで 24 時間体制で TBM の前進に合わせてトンネル壁に現れるフラク

チャーのマッピングが行われている。しかしながら、おそらく数十億円を掛けたであろ

う膨大な量のデータは未だに安全評価に使用されずじまいである。ストリパプロジェク

トでもフラクチャーのマッピングが行われ、統計的なデータからフラクチャーネットワ

ークを作成し、水の流れを予測する試みがされたが事実上、成功を収めたとは言えない。 

原因はフラクチャーの幾何学的性状と実際の水の流れに相関性が無いからである。瑞

浪やレイモンドにおいても孔井で観測されるフラクチャーの密度と岩体の透水係数の相

関性が極めて低いという結果が出ている。従って、少なくとも概要調査の段階でフラク

チャーのマッピングは不必要であると考えられる。 

3.6 物理探査データはソフトデータ（間接的なデータ） 

ヤッカマウンテンでは水みちや宙水層の位置を同定すべく種々の物理探査が行われた。

弾性波、電磁、電気抵抗探査などがそれである。しかし、何れも十分な成功を収めたと
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いえない。弾性波探査は亀裂の発達した岩盤ではあまり有効でない。また、物理探査手

法は水理的特性を直接測るのではなく、岩の密度や電気抵抗からフラクチャーや水の存

在を間接的に推測するのであくまでソフトなデータとして扱うのが望ましく、今後の改

良が望まれる。 

3.7 温度、ジオケミのデータは非常に有用 

ヤッカマウンテンにおいて不飽和領域を通過する水の流量は最重要パラメーターの 1
つであるが、これを直接計測する事は困難である。そこで、温度分布や地層中の残存塩

素の濃度を元に通過水量を逆解析的に推定すると、過去に推定されていた流量（1mm/y
以下）よりはるかに多い 5mm~80mm という値が推定された。この数字は不飽和領域に

も拘らず、フラクチャーの中を水が流れていることを示しており、ESF トンネル内で核

実験起源の Cl36や C14が観測されていることの説明がつく。 

水理データ（圧力、飽和度）は水の流れを推定する為に第一義的に重要であるが、フ

ラクチャー等が存在する不均質な場では点的なデータである事と測点数に限りがある事

により、不確実性が大きく、信頼性のある解析が難しい。そこで、自然に平均化が行わ

れている温度や地球化学的データを使用する事によって不確実性の幅を低減する事が可

能になる場合がある。 

3.8 バックグラウンドデータの取得を早期に開始 

ヤッカマウンテンでは 1990 年代初頭から TBM を使用して直径 7.5ｍ、長さ 8km に及

ぶ ESF が掘削された。これは言わば大規模な孔井試験のようなものであり、調査段階で

サイトに与えうる人工的なインパクトとしては最大級のものである。しかしながら、ト

ンネルの掘削が与える影響についてのモニタリングは特に行われす、大きなスケールの

試験データを取るチャンスを逃してしまった。近年、各種のセンサーの解像度や精度が

上がってきているが、いわゆるタイムラプス(経時的な)データを取ることによって解像

度はいっそう向上することも鑑みると残念なことであった。 

サイト調査を始めるにあたって、まず場を乱す前にバックグラウンドのデータの取得

を開始するべきである。 

3.9 QA の必要性 

ヤッカマウンテンではエンジニアリングと地球科学的調査との根本的な差異を無視し

て原子力発電所の建設に適用される QA（Quality Assurance）をそのままサイト調査の

QA に当てはめた事に因る弊害が数多く出た。QA 第一主義を徹底させた結果、サイト

調査に関わる研究者はゆうに 50%以上の時間を QA 関連の書類を書き込む事に費やし、

肝心の研究調査そのものがおろそかになった。QA の書類が揃っていない為に有用なデ

ータが採取できなかったり、データは存在しても規定の書式に沿ってない為に解析に使

用できなかったりした。しかしながら、適切な QA は必要不可欠のものである。 

データそのものの信用性や解析の正確さを保証したり、シミュレーターの正しさの検

証は科学に携わる者にとっては常識的な事ではあるが、時に見過ごされることがある。
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現行の日本のシステムではサイト調査は業者によって行われるが、再現性や追跡可能性

を第三者に保障する為にも実施主体が講じる QA 制度が必要である。 

原位置調査においては計測対象以外の要因が正しい計測を妨げる事が良くある。ヤッ

カマウンテンの飽和領域でスラグ試験（3.1.3.1.2.3 参照）が数多く行われたが、最も透

水性の高い地層でのスラグ試験では装置の圧力損失が大きく、結果的に地層の透水係数

を測らず装置の透水係数を測っていたが、後年まで誰も気がつかなかった。レイモンド

のサイトで行ったトレーサー試験では臭素の濃度が LBL のラボで誤って同定されてい

たが、暫く分からなかった。化学分析においてはダブルブラインドのサンプルを入れて

複数のラボで行うという常識が守られていなかった 

入力データや解析条件に無限の組み合わせがあるので数値シミュレーターのバグは時

として発見が困難である。2003 年の米国北東部大停電や数百億円掛かった火星探査機の

衝突もソフトウェアのバグが原因であった。ソフトウェアの QA も見落してはならない。 

3.10 サイエンスは重要 

当初、ヤッカマウンテンプログラムでは処分場の特性評価は既存の技術で実証できる

と考えられていたが、処分場通過水量やフラクチャーの性状に関して不確実性が大きい

事が判明した為、近年 OSTI（Office of Science Technology and International）という課を

発足させ、研究開発に力を入れ始めた。実際、地球科学の分野では未だに解明されてい

ない課題は多い。上記の主要パラメータのセクションで挙げた項目は何れもサイトの安

全評価の為に重要であるが、現状では不確実性が大きく、研究開発によって出来る限り

正確に同定されるべきものである。 

3.11 ‘想定外’を想定する 

近年ヤッカマウンテンにおいて不飽和体でありながら、水がマトリックスに毛管圧で

吸い込まれずにフラクチャーの中を流れる現象が認められたのは当初の想定外であった。

また、2006 年 3 月にヤッカマウンテンの南の飽和領域で行われた fulid logging 
(4.1..3.1.1.3 参照)試験でこれまでの想定の 1000 倍の流速と推測されるデータが観測され

た。また、ESF の掘削中の埃やラドンによる被爆が人体に害がある事が最近になって問

題視されてきた。これらも当初は想定外であった。しかし、ヤッカマウンテンが特別な

訳ではなく、他のサイト調査でも類似した事は起こっている。フィンランドの Olkiluoto
では、孔井から 80g/l という濃い塩分濃度が観測されている。現在のバルト海の塩分濃

度は 10g/l である事を考えると、想定外である。また、異常定圧ゾーンやメタンガスも

観測されているが、何れも想定外である。無論、データの QA が出来ていて初めて想定

外のデータが信用されるべきであるが、地球科学の分野では想定外は良く起こるとあら

かじめ想定しておくべきである。 

3.12 スケジュール最優先は危険 

スケジュール最優先の調査は避けるべきである。特に日本では単年度予算の為に 3 月

末までに何が何でもスケジュールを消化しようとする傾向があるが、これは極力避ける

べきである。孔井内圧力試験を例に取れば、仕様を満たす為に短期で終わらせた 5 回の
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試験結果より、1 回の正確に行われた長期試験の方がはるかに価値がある。QA の観点

から、また、安全面からもスケジュール最優先は避けられなければならない。また、距

離が近い複数の孔井を同時に掘削することも避けたい。1 孔を掘削中に他孔でモニタリ

ングするのは非常に有用である。 

3.13 フレキシブリティが必要 

上記 2 つのセクションで述べたように、地球科学関連の調査では想定外の事態は必ず

といって良いほど起こる。従ってスケジュールや調査計画も臨機応変である必要がある。

ヤッカマウンテンでは全ての調査に事前の QA 手続きが必要であった為、突然起こった

集中豪雨の影響をモニターする為の手続きが間に合わず、結局貴重な涵養量に関するデ

ータが取れなかった。時には即断も必要であるという教訓である。 

当初良いアイデアだと思われていた事が後になって実はまったく逆であったケースは

他の分野に於いて過去に例が多くある。ダムもその 1 例であろう。また、かつて米国で

2,30 年前に古タイヤを漁礁として使うプロジェクトがあり、古タイヤの再利用と魚の環

境保護を謳い、フロリダの海底に 100 万本以上のタイヤが沈められたが、結局魚は住み

着かず、タイヤは波の力で転がり回ってサンゴ礁まで破壊してしまい、現在は撤去作業

が進められている。また、鉛に代わるガソリン添加物として大々的に導入された MTBE 
(Methyl Tert-Butyl Ether) は近年になって発癌性がある事が分かり使用が中止された。処分場建

設のような何十年も掛かるプロジェクトでは、その期間中に種々の発明、技術革新がな

され、新しい理論が構築される可能性もある。それによって、それまでの方針や手法と

違う方向の展開になるとしても、その時点ごとにベストと思われる選択をする勇気とフ

レキシビリティが必要である。 

3.14 謙虚さ、透明性が重要 

2005 年に米国地質調査所（USGS）のある研究者がデータの取得日に関して虚偽の記

述を認めた Email が明らかになり問題となった。この事件に関する教訓は２つある。１

つは DOE の QA システムが虚偽を発見し、公にした事である。透明性に関しては正し

い処置であった。しかし、実際の実験や観測データが捏造されたわけではなく、処分場

の安全性や解析の科学的な品質が損なわれた訳ではないが、ヤッカマウンテンプログラ

ムの信頼性に大きな打撃を与えた。 

前に者べたが、地球科学の分野ではまだまだ解明されていない課題が多い。分からな

い事は分からないと認める謙虚さが必要である。その上で研究開発を進めていく必要が

あると考える。 
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4 Evaluation of Field Investigation Technologies 
Field investigations play a prominent role in the site characterization process. 

Numerous field investigation and exploration technologies are employed throughout the 

world to investigate contaminated sites, characterize waste disposal facilities, or search 

for oil, gas and mineral resources. Many of these are directly applicable to site 

characterization activities related to geologic storage of high-level radioactive waste. A 

review of existing and emerging geological, geophysical, hydrological, geochemical and 

geotechnical field testing, monitoring and analysis techniques follows. Their usable 

ranges, accuracies, and their applicability to site characterization will be evaluated. 

4.1 Evaluation of Existing Field Investigation Technologies 

4.1.1 GEOLOGICAL TECHNOLOGIES 
Regional and site geologic and geomorphic features including faults, fracturing, 

sediment structure, erosional unconformities, volcanic features, and rock type form the 

framework for most site characterization models (SCMs). Therefore, it is important to 

characterize surface and subsurface geology using drilling, logging and surface mapping 

techniques to build the geologic framework needed for the model. 

4.1.1.1 DRILLING TECHNIQUES 

Numerous drilling techniques are used to install borings and wells with the most 

common methods being solid and hollow stem auguring, direct-push methods, air rotary, 

air percussion, cable tool, mud rotary and diamond coring. Numerous textbooks and 

articles have been written on the subject of drilling, with the oil, gas, water well, 

environmental, and mining industries being the major source of this material. Detailed 

descriptions of drilling methods, including the advantages and disadvantages of each 

drilling type, abound in the literature (Driscoll, 1986; Lehr et al., 1988; Bradley, 1992; 

Hartman). It is not the purpose of this section to describe each of the drilling techniques; 

rather it is our intent to point out subtle issues related to drilling that can have a 

significant impact on site characterization and data quality. 

Drills and drilling techniques are used to install borings and wells, which are 

integral components of any site characterization program. Borings and wells are designed 
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to provide access to the subsurface for sampling, testing, and evaluating conditions that 

cannot otherwise be observed using remote sensing techniques. 

Drilling is an intrusive site characterization technique, and as such, it disturbs the 

rock, pore fluids and environmental conditions (e.g., temperature and pressure) in close 

proximity to the boring. Therefore, careful consideration must be given to the drilling 

method, speed, and downhole pressure exerted by the bit during the drilling process, type 

of drilling fluids used to flush the drill cuttings from the hole, and material used in the 

construction of wells, to insure minimal disturbance of samples and ambient formation 

conditions. For example, drilling fluids including compressed air, water, drilling muds, 

and additives must be carefully selected to minimize changes in pore-fluid quality if 

hydrochemical sampling and evaluation is the primary purpose of the boring or well. The 

type of material used for the casing and well screens, cementing agents and well 

development techniques must also be carefully selected for the same reason. 

The high cost of drilling deep wells for site characterization purposes can lead to 

the installation of only a few wells, thus limiting access to the subsurface and creating 

competition between scientist programs (hydrology, geology, geophysics, etc.) for their 

use. Fewer wells typically translate into borings or wells used for multiple activities that 

may have conflicting data requirements and goals. Therefore, each field activity must be 

carefully examined to determine the impact that it will have on the accuracy and data 

quality of the remaining field activities. Program priorities should be assigned to each 

activity in advance of drilling with the goal of minimizing test interference. Boring and 

well specifications are then developed based on the requirements of the highest priority 

activities. Competing activities of equal importance, but requiring significantly different 

well/boring design, may require installation of two or more holes to satisfy all program 

requirements.    

4.1.1.2 GEOLOGIC SAMPLING TECHNIQUES 

Geologic sample collection is an important component of any site characterization 

program. Samples are collected for various reasons including soil and rock-type 

identification, petrographic examination, and field and laboratory testing of samples for 

geomechanical, hydrological and geochemical properties. Collection techniques range 
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from simple grab samples to complex oriented rock or soil cores. Grab samples consist of 

physically grabbing samples that are generated during drilling (e.g., drill cuttings) and are 

readily available. By design, the sampler gives little attention to the exact depth, 

orientation, or precise location of grab samples. Grab samples are typically used to 

identify general lithology and the sample’s structure is often disturbed or destroyed 

during collection. At the other end of the spectrum, cored-rock samples or unconsolidated 

sediment samples collected using direct-push methods are least disturbed, thus preserving 

sample structure and integrity. Orientation and spacing of fractures and faults, dip 

direction and dip amount of bedding planes, and depth to geologic features can be 

determined from cores if the orientation and depth of the core barrel is maintained during 

the drilling operation. Cores are typically collected in the direction of bit travel; however, 

coring devices are also available allowing collection of side-wall core samples. Side-wall 

coring devices produce short cores called plugs, whereas axial core samples can be of any 

desired length.  

Sample specifications and procedures should be defined in advance of sampling 

to ensure that proper identification, preservation, and handling techniques are used to 

preserve the scientific and legal integrity of the sample. Samples must be labeled with 

unique identifiers. Preservation techniques may be required to stabilize the sample and 

keep it from degrading after collection. Hold times for samples or expiration dates must 

also be observed to ensure sample integrity. This is especially true for environmental 

samples that are analyzed for chemical composition. Special handling procedures may 

also be warranted to prevent the sample from crumbling, drying, or becoming jumbled or 

disoriented if its original orientation was maintained during drilling. Chain-of-custody 

procedures are used to document the transfer of samples from its original collector to 

subsequent custodians, eventually ending only when the sample is disposed of or 

destroyed. Finally, archiving of samples for subsequent logging, confirmation and use by 

other project participants is often desirable. This may require construction of a sample or 

core library designed to preserve and house samples. 

4.1.1.3 MUD LOGGING 
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Mud logging refers to the process of collecting and examining rock fragments cut 

by the drill bit (drill cuttings) and washed out of the hole by the drilling fluids, i.e., grab 

samples. Drilling fluids typically consist of compressed air, water, drilling muds and 

various additives. Muds are made up of a base fluid (water, diesel or mineral oil, or a 

synthetic compound), weighting agents (most frequently barium sulfate [barite]), 

bentonite clay to help remove cuttings from the well and to form a filter cake on the walls 

of the hole, and lignosulfonates and lignites to keep the mud in a fluid state. 

The mud logger collects samples of the drill cuttings during the drilling operation 

to identify the lithology and petrology of the rock strata. The logger estimates the sample 

depth by calculating and tracking the “lag” time, which is the time it takes for the cuttings 

to travel from the bit to the land surface. The greater the depth, the greater the “lag” time. 

The cuttings are labeled, washed, dried and examined with a binocular microscope to 

identify the predominant rock type. Rock types are often correlated with drilling rates to 

provide further information on the depth and subsurface distribution of the rock strata. 

Mud logging is an inexpensive screening tool with limited accuracy. Factors that affect 

accuracy include logger experience in a given geographic area, improper calculation of 

lag times, interbedded thin layers of multiple rock types, finely-ground rock fragments, 

sloughing of uphole rock material, and diligence of the logger. 

4.1.1.4 CORE LOGGING 

Drill cores are collected and inspected to identify formation lithology and fracture 

orientation, spacing, and coatings. Cores are collected using a diamond-impregnated bit 

attached to the end of a hollow tube (called a core barrel) and the drill pipe. When the 

drill rig turns the drill pipe, core barrel and bit, the donut-shaped bit cuts the rock 

adjacent to the outer bit face, but leaves the center rock intact. The uncut rock in the 

center of the bit travels up into the hollow core barrel as the bit advances deeper into the 

rock. After the core barrel fills with core, the drill pipe and core barrel are pulled back to 

the surface where it is emptied. Alternatively, some coring systems use an inner barrel 

that holds the core and fits inside the drill pipe and outer core barrel. A wireline device is 

sent down the interior of the drill pipe where it latches onto the inner barrel and pulls it 

back to the surface to retrieve the core. 
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Due to the relatively high cost of retrieving core, core logging may also include 

taking images of the core using digital or conventional photography, or scanning the 

cores using various geophysical techniques. For example, x-ray computed tomography 

has been used to create images of the core’s interior and rock density without breaking or 

destroying the samples. 

4.1.1.5 GEOLOGIC MAPPING 

- Detailed surface geologic mapping  

o Faults & structure 

o Stratigraphy & unconformities 

- Detailed geologic cross sections 

o Correlation of borehole logs 

o Underground maps from mines 

- Fracture pavement studies 

- Aerial photography/mapping 

- Digital photography 

- Surface Sampling/verification 

 

4.1.2 GEOPHYSICAL TECHNOLOGIES 
Geophysical surveys are commonly employed in the oil and gas, water well, 

environmental, and mining industries to explore for natural resources and to define the 

nature and extent of fluids or contaminants. Applied geophysics is the science of using 

physical measurements or experiments performed on the land surface, in the ocean, air, or 

from boreholes drilled from the surface to determine the physical properties and 

processes in the subsurface. Geophysics is ideally suited for remote sensing. That is, 

measurements made at a readily accessible location or surface (such as land surface or 

from a boring) are interpreted and used to infer larger-scale, volume-averaged properties 

of the porous media or fluid below the surface. In addition, geophysical methods do not 

necessarily measure the rock or fluid property directly, but instead measure a related 

parameter that must be interpreted to indirectly derive the desired property. For example, 

open-hole resistivity logs measure the electrical resistance of the fluid surrounding the 
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tool, which is correlated to the total dissolved solids or salinity of the fluid, which may be 

further correlated to porosity or permeability. 

Geophysical surveys can be divided into the following general categories or 

methods (Telford et al., 1976): 1) gravitational; 2) magnetic; 3) electrical; 4) 

electromagnetic; 5) seismic; 6) radioactivity; and 7) miscellaneous chemical, thermal and 

well/borehole logging methods. For the most part, most geophysical methods are not 

intrusive, meaning survey measurements can be made at the land surface or interface 

without cutting into, drilling, or otherwise disturbing the medium. However, deployment 

of geophysical sensors in boreholes and wells can provide detailed information regarding 

the vertical distribution of parameters, increase accuracy and provide added value to 

surface-based surveys.  

4.1.2.1 SURFACE-BASED GEOPHYSICAL SURVEYS 

4.1.2.1.1 Gravity Surveys 
Gravity surveys involve measuring small differences in the Earth’s gravitational 

field caused by local variations in rock density. Gravity anomalies are very small 

compared to the Earth’s gravitational field requiring the use of delicate and precise 

gravity meters. Data interpretation is complex, detailed topographic information must be 

available to evaluate the data, and the surveys are relatively slow and expensive. Surveys 

may be performed on a ship, in the air or above or below ground. Gravity is used for oil 

exploration and as a secondary method used for mineral exploration. Alternative 

applications include: 

• Mapping bedrock topography under landfills or alluvial-filled valleys; 

• Locating subsurface cavities; and 

• Locating geologic contacts. 
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4.1.2.1.2 Magnetic Surveys 
The magnetic method measures variations in the Earth's magnetic field. An 

induced magnetic field is created around a buried ferrous object when the object is placed 

in the Earth’s field. A magnetometer is used to measure the local variations or distortions 

in the magnetic field, which are referred to as magnetic anomalies. Magnetometer 

surveys measure the magnetic field strength at evenly-spaced points over the area of 

interest. The gradient method uses two magnetometers to simultaneously measure the 

total magnetic field at two elevations at the same location. The difference in magnetic 

intensity between the two magnetometers divided by their separation distance equals the 

vertical gradient. The gradient method reduces interference from solar magnetic storms 

and regional magnetic changes and is used for locating and determining the depth of 

small, shallow objects. The data acquired are processed and plotted as line profiles and/or 

contour maps. The size, shape, and amplitude (intensity) of the magnetic anomaly are 

used to identify the object. Magnetometer surveys have been used successfully to: 

• Explore for mineral resources; 

• Locate buried objects including underground storage tanks and buried drums; 

• Delineate landfill perimeter; 

• Identify geologic bedrock features such as mafic dikes or geologic contacts; and 

• Delineate military ordnance; 

Utilities, power lines, buildings, metallic debris, and solar storms can cause 

interference with magnetometer surveys. The size and depth of an object also influences 

its detectability using this technique. 

Langenheim et al. (1993), Langenheim (1995), Langenheim and Ponce (1995), 

and Blakely et al. (2000) performed and interpreted aeromagnetic and ground-based 

magnetic surveys to investigate several buried magnetic anomalies in the Yucca 

Mountain, Nevada region. The assessments were undertaken to characterize the 

likelihood of volcanic activity disrupting the proposed repository (DOE, 2001). O’Leary 

et al. (2002) concluded that the due to the strong magnetization, the anomalies were 
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probably of volcanic origin, consisting primarily of basalt dikes and cones from the Plio-

Pleistocene, and less likely consisting of Miocene tuff. 
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4.1.2.1.3 Electrical Surveys 

4.1.2.1.3.1 Self potential 

Self potential (SP) refers to the natural or spontaneous potentials or voltages that 

occur in the subsurface caused by natural electrochemical or mechanical processes. These 

potentials are associated with weathering of sulphides, variations in mineral content of 

rocks at geologic contacts, bioelectric activity, corrosion, and thermal and pressure 

gradients in underground fluids. Groundwater is the controlling factor in each case 

(Telford et al., 1976).  

The SP method uses special electrodes and a millivoltmeter to measure potentials 

at various locations. The end result is a series of profiles or contour map of equipotentials. 

Amplitudes range from a few millivolts (mV) to one volt, with values exceeding 200 mV 

representing good SP anomalies. SP surveys have shown that large anomalies are 

associated with mineral deposits; therefore, SP is used extensively in mineral exploration. 

4.1.2.1.3.2 Surface Resistivity 

The surface resistivity method involves driving two metal electrodes into the land 
surface and then applying a known current across the electrodes (point sources). A 
second set of electrodes is used to simultaneously measure the voltage drop, allowing 
calculation of the subsurface effective or apparent resistivity from the known electrode 
spacing and geometry, applied current, and measured voltage. Line sources consisting of 
electric lines in contact with land surface are also used in place of point electrodes to 
make the measurements. Surface resistivity is used to: 

• Determine depth of overburden; 

• Map the water table surface; 

• Investigate the depth, structure and resistivity of flat-lying sediments; and 

• Explore for mineral resources; 
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Surface resistivity is sensitive to minor variations in conductivity near land 

surface complicating data interpretation. The depth of investigation of this technique is 

dependent on the electrode spacing and applied current. Depth of penetration using 

commercially available, portable surface resistivity meters ranges from 50 to 100 m. 

4.1.2.1.3.3 Induced Polarization (IP) 

Induced polarization surveys use the standard four-electrode resistivity 

configuration to inject electric current into the earth. After a direct current is applied, the 

potential drops quickly eventually taking a few seconds for the voltage to decay to zero. 

The earth will retain charge, rather like a capacitor, with the decay rate depending upon 

clay content or type of minerals present. The decay voltage will be zero if there are no 

polarizable materials present. IP surveys can be performed in two modes of operation 

including time and frequency domain. In either case, the voltage response measured by 

the receiver is a function of conductive minerals disseminated throughout the survey area. 

This method can be used to probe to subsurface depths of thousands of meters. Uses 

include: 

• Detection of disseminated metallic minerals; and  

• Discrimination of clay from silt or sand where formation resistivities are similar. 

 

4.1.2.1.4 Electromagnetic Surveys 
Electromagnetic (EM) methods include some of the most commonly employed 

geophysical techniques used for near-surface environmental and geotechnical studies. 

Electromagnetic methods fall in two categories, frequency domain and time domain. 

Frequency domain measures the amplitude and phase of an induced electromagnetic field. 

Time domain measures the decay time of an electromagnetic pulse induced by a 

transmitter. EM surveys measure variability in subsurface conductivity, which can be 

naturally occurring (differing lithologic materials), or man-made (soil/groundwater 

contaminants or buried metal). EM surverys may be used to: 

• Locate buried metallic objects (drums, tanks, etc); 

• Map leachate plumes; 
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• Map soil salinity and salt water intrusion; 

• Delineate landfill and trench boundaries; 

• Map soil and groundwater contaminants; 

• Detect location and orientation of faults; 

• Identify small non-ferrous metallic objects such as ordnance; 

• Map lateral and vertical distribution of soil type; 

• Locate water resources; 

• Identify karst bedrock features; and 

• Predict areas prone to slope failure. 

Ground penetrating radar (GPR) provides a high resolution, cross-sectional image 

of the shallow subsurface. A short pulse of electromagnetic energy is radiated downward. 

When this pulse strikes an interface between layers of material with different electrical 

properties, part of the wave reflects back, and the remaining energy continues to the next 

interface. Depth measurements to interfaces are determined from travel time of the 

reflected pulse and the velocity of the radar signal. 

GPR surveys were successfully used to monitor changes in rock water saturation 

during several experiments performed underground at Yucca Mountain as part of the US 

Department of Energy’s site characterization program (Tsang et al., 1999). Additional 

uses of GPR include:  

• Map the location and burial depth of drums, underground storage tanks, and 

utilities; 

• Image man-made subsurface structures; 

• Delineate disposal pits, trenches, and landfill boundaries; 

• Locate voids and washouts along pipelines, under roadways, parking lots, and 

building floors; 

• Screen proposed borehole locations for subsurface interference; 

• Map water table and bedrock topography; 

• Delineate inorganic and organic free-phase contamination plumes; 

• Map stratigraphic layers; 
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• Evaluate mine and quarry rock; and 

• Investigate archaeological sites and cemeteries. 

4.1.2.1.5 Seismic Surveys 
Two types of seismic surveys are commonly performed including seismic 

refraction and seismic reflection.  In seismic refraction surveys, the travel time is 

measured for a wave to pass through a layer to another, refract along the interface, and 

return to the geophones at the surface.  For shallow investigations (less than 100 feet), 

refraction is commonly utilized for mapping bedrock topography.  Seismic reflection 

surveys make use of travel time and amplitude of all the reflected acoustic energy 

returning to each geophone.  Reflection surveying can produce detailed images of 

subsurface geologic structures.  This method is often applied to map faults, and fracture 

zones, which may represent migration pathways for contaminants. Additional uses of 

seismic include: 

• Determine bedrock depth and topography; 

• Determine groundwater depth; 

• Resolve strata and aquifer thickness; 

• Map fault and fracture zones; 

• Measure overburden thickness; and 

• Engineering properties: bulk or shear moduli 

Seismic surveys take on several different 

configurations depending upon the location of the 

sources (e.g., vibrator, shots) and receivers (e.g., 

geophones) and scope of the survey. Two-dimensional, 

3-dimensional, and 4-dimensional (i.e., time lapse) 

surveys have been reported in the literature. These 

surveys are used to image the subsurface by placing both 

the source and receivers at land surface. Time-lapse 

surveys (4-D) can be used to investigate changes in 

formation velocity resulting from changes in formation 

Figure 4-1. Installation of 
an orbital vibrator borehole 
seismic source used for 
cross-well seismic surveys in 
east Texas, USA. 
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and fluid properties, such as changes in water saturation that occur during an immiscible 

CO2 flood. Recently 3-D seismic survey is rapidly becoming a common 

exploration/characterization tool. Vertical seismic profiling (VSP) and cross-well seismic 

surveys take advantage of wells or borings. A string of receivers is placed in a borehole 

during a VSP survey to record the seismic response from a series of controlled shots from 

various source-offset locations. Cross-well seismic surveys utilize two wells or borings 

(one for the source and another for the receivers) to image the earth between the two 

wells (Figure 4-).  

Gritto et al. (2004) performed a surface-to-tunnel seismic survey to estimate 

fracture intensity and distribution in the repository host rock at Yucca Mountain, Nevada. 

A 5-km-long source line and a 3-km-long receiver line were located on top of Yucca 

Mountain and inside the mountain along the main drift of the Exploratory Study Facility 

(ESF), respectively. Tomographic inversion of the travel time data revealed a low-

velocity zone in the south central area of the proposed repository. Conversion of the 

velocity results to fracture-density tomograms showed good correlation with an area of 

intense fracturing mapped along the tunnel walls of the ESF. 

4.1.2.1.6 Radioactivity Surveys 
Uranium-238, thorium-232, and the progeny of their decay series and potassium-

40 are the most common emitters of natural-gamma radiation. The two elements, uranium 

and thorium, are important sources of fuel for nuclear reactors. Radiation surveys should 

be performed prior to waste acceptance to establish background levels for the facility. 

Naturally occurring radon, a colorless odorless gas, which is an alpha emitter, was 

detected in the volcanic rocks at the U.S. Department of Energy (DOE) proposed nuclear 

waste site at Yucca Mountain. The DOE implemented administrative and engineering 

controls to limit worker exposure to radon and integrated these controls into the existing 

site health and safety program.  

4.1.2.2 WELL AND BOREHOLE-BASED GEOPHYSICAL LOGS 

Numerous cased (i.e., well) and open-hole geophysical surveys are performed in 

the oil and gas, water well, and environmental industries to evaluate physical properties 
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Figure 4-2. Wireline 
logging operation in East 
Texas, USA. 

of the formation and fluid therein. Logs are performed by lowering a sensor, tool or 

device on a wireline or slickline into the well while continuously recording the sensor 

output for the parameter of interest (Figure 4-). Post processing of the sensor output is 

often needed to interpret the results. Many of the logs rely on the same principles of 

physics described in surface-based methods described earlier. The radius of investigation 

of cased and open-hole logs is small, typically penetrating only a few centimeters, and 

rarely more than a meter, into the formation. The most common logs in use are described 

in this section. 

4.1.2.2.1 Caliper Log 
When actuated, spring-loaded arms extend from the caliper tool pressing them up 

against the boring wall. The tool is slowly removed from the boring dragging the arms 

along the wall. Deflections in arm positions are measured electronically, producing a 

continuous record of the inside average diameter of a boring or well. Deviations in boring 

diameter are related to fracturing, lithology, and drilling technique and deviations in well 

diameter are caused by well-casing integrity. Caliper logs are often correlated with fluid-

resistivity and fluid-temperature logs to identify fluid-bearing fractures or zones. Caliper 

logs are also used to identify smooth sections of borehole for setting inflatable packers. 

4.1.2.2.2 Well Deviation Survey 
Borehole deviation logs, also called dipmeter logs, 

record the deviation of a borehole from its true 

orientation. Deviation of vertical boreholes is common 

because the drill bit glances off of subsurface objects or 

“walks” down dip in stratified formations causing the 

drill bit and string to deviate from its intended vertical 

direction. Horizontal or inclined holes have a tendency to 

“walk” down and in the general direction of bit rotation 

because of gravity and the cutting action of the bit. 

Deviation logs are used to calculate true orientation of 

the boring/well, depth of geologic features of interest and 
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to correct the strike and dip of fractures or bedding obtained from acoustic televiewer 

logs. 

4.1.2.2.3 Video Log 
Special video cameras equipped with external lights and designed to fit inside 

borings and wells are used to visually inspect open boreholes, well casings, well screens, 

and perforations. A permanent record of open borehole conditions, fracture spacing and 

orientation, lithology, well screen placement, and casing and well-screen integrity can be 

determined from the video log. Depth and orientation of the camera must be recorded to 

determine fracture spacing and orientation and the depth of a given feature. 

Two types of cameras are typically used including axial view and side view 

cameras. Axial view cameras point down the axis of the boring allowing the user to 

identify and inspect hole obstructions, washouts or lost tools. Side view cameras look 

directly at the wall of the hole or well allowing close inspection of fractures, breakouts, 

and geology. Video images may be analog or digital, color or black and white, with 

various degrees of resolution depending upon the camera manufacturer’s make and 

model. 

4.1.2.2.4 Spontaneous potential (SP) 
Records small differences in voltages caused by differences in physical and 

chemical properties of various rocks and differing fluids.  The differences permit 

identification of bed thickness, lithology, and changes in formation water quality. See 

self-potential. 

4.1.2.2.5 Natural gamma ray 
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Natural-gamma logs (or gamma-ray logs) record the natural-gamma radiation 

emitted from rocks penetrated by the borehole. Gamma radiation can be measured 

through casing, but the gamma response is dampened. Uranium-238, thorium-232, and 

the progeny of their decay series and potassium-40 are the most common emitters of 

natural-gamma radiation. Used to map lithology and provides relative porosity of soil and 

rock based on clay content. 

4.1.2.2.6 Resistivity 
Fluid-resistivity logs measure the electrical resistance of soil, rock, and pore fluid 

in the borehole. Resistivity is the reciprocal of fluid conductivity, and fluid-resistivity 

logs reflect changes in the dissolved-solids concentration of the borehole fluid. Fluid-

resistivity logs are used to identify water-bearing zones and to determine intervals of 

vertical borehole flow. Water-bearing zones usually are identified by sharp changes in 

resistivity. Measures the electrical resistivity of soil, rock, and pore fluid.  Maps lithology 

and provides for contaminant identification based on conductivity of pore fluids. 

Ramirez and Daley (1997) used electrical resistivity tomography (ERT) surveys at 

Yucca Mountain to map the change in rock water content around an artificially heated 

underground opening. Approximately 200 ERT probes were installed in 12 borings 

surrounding a heated drift. The work was performed as part of the Drift-Scale Test 

designed to simulate the heating and cooling of the rock caused by thermal/radioactive 

decay of the nuclear waste after emplacement. 

4.1.2.2.7 Electromagnetic induction (EM) 
Measures the conductivity of soil, rock, and pore fluid.  Provides similar 

information to resistivity with the advantage of logging capability through PVC casing. 

4.1.2.2.8 Density Log 
The density logger is a tool that contains a concentrated source of gamma rays 

(usually Cesium-137) and a detector (Geiger or scintillation counter). The device has a 

lead-shielded window that when pressed against the borehole wall allows gamma rays to 

penetrate 10-20 cm into the formation. The gamma rays that return are detected, allowing 
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the measurement of the bulk density of the formation based on the reduction in gamma 

ray flux caused by Compton scattering. 

4.1.2.2.9 Neutron Log 
The Neutron Log is used to measure formation porosity and water content. 

Modern neutron logging tools use sealed radioactive sources (Americium-241/Beryllium, 

AmBe), which bombard the surrounding formation with fast neutrons. The neutrons 

collide with hydrogen atoms of similar mass and are eventually captured emitting a 

secondary gamma ray. Older tools detect the gamma ray (neutron-gamma log), whereas 

most modern tools detect or count slow (thermal) neutrons (neutron-neutron log). 

The Neutron Log responds primarily to the amount of hydrogen in the formation 

including hydrogen contained in oil, natural gas, and water. When the hydrogen 

concentration is large, most of the neutrons are slowed down or captured close to the 

wellbore resulting in a low-count rate, indicative of high porosity. In constrast, a small 

amount of hydrogen near the wellbore allows the neutrons to penetrate deeper into the 

formation producing a high-count rate, indicative of low porosity. Hard, dense formations 

usually have higher count rates compared to porous zones (including low permeability 

shales), which usually have lower count rates. Neutron logs are commonly used in 

unsaturated zone studies to measure water content. 

Neutron logs can be used in open and cased holes, separately or in conjunction 

with virtually any other log.  The Neutron Log can be run in any type of borehole liquid 

(water, oil, or mud), or the hole can be air or gas filled (significant log shifts are seen 

when logging through a liquid / gas contact in the borehole). 

4.1.2.2.10 Sonic logs 
This is a technique used in the oil and gas industry to record the formation 

compressional slowness. It is a type of acoustic log that displays P-wave travel time 

versus depth. The tool emits a sound wave that travels from the transmitter (source) 

located in the well to the formation and back to the receiver, located above or below the 

transmitter. Acoustic-amplitude and microseismogram (variable-density logs) logs are 

two additional sonic logs (Telford et al., 1976) that measure the amplitude of the first 
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arrivals and the entire sonic wave train (i.e, first arrival plus the wave form), respectively. 

These logs are often used to measure the quality of the cement bond between cement-to-

casing and cement-to-formation. 

4.1.2.2.11 Acoustic Borehole Televiewer Log 
The acoustic borehole televiewer log is a magnetically oriented, 360 degree, 

photograph-like image of the acoustic reflectivity of the borehole wall. The acoustic 

televiewer is an ultrasonic imaging tool operating at a frequency of about 1 megahertz 

that scans the borehole wall with an acoustic beam generated by a rapidly pulsed 

piezoelectric source rotating at about three revolutions per second as the tool is moved up 

the borehole. Digital images from the televiewer are recorded by the computer, which 

collects and records the data. A smooth and hard borehole wall produces a uniform 

pattern of reflectivity. The intersection of a fracture with the borehole wall scatters the 

acoustic waves, producing a dark, linear feature on the image. Because the image is 

magnetically oriented, the dip and strike of the fracture can be determined. The advantage 

of a televiewer over a video log is that it can be used even when the borehole fluid is not 

clear. 

4.1.2.2.12 Nuclear magnetic resonance 
The Nuclear Magnetic Resonance (NMR) method measures the quantity of free 

water in soils and rocks.  Free hydrogen nuclei are oriented using a strong applied field. 

When the field is shut off, the nuclei briefly gyrate about the earth’s field before 

becoming randomly oriented again. This wobble sets up an alternating magnetic field that 

is detected by a receiver. Fluid-bearing zones can be identified using this technique, 

which is not sensitive to heavy hydrocarbons (like tar and asphalt) or water found in clay 

lattices. 

4.1.3 HYDROLOGICAL TECHNIQUES 
Transport of radionuclides in the groundwater from the waste package to the 

accessible environment (where receptors are present) is the most realistic and likely 

exposure scenario. Contaminated groundwater may discharge to surface water bodies 

including lakes, rivers or ocean or be pumped from wells and consumed, potentially 



 

193 

leading to receptor overexposure to contaminants. Hydrologic field-testing and 

monitoring techniques are used to characterize the hydrologic system and to help quantify 

the risk of exposure. Key components of a hydrologic characterization program may 

include: 

 
- Developing a general understanding of regional and site hydrology; 

- Identifying important economic and water resources including potable water 

supplies, fisheries, etc. that require protection to prevent exposure; 

- Identifying and characterizing key aquifers, aquitards and aquicludes; 

- Identifying and evaluating important flow and transport mechanisms and 

properties; 

- Identifying and evaluating preferential pathways (e.g., faults, fractures or high 

permeability sedimentary units) that can lead to fast flow and increased risk of 

exposure; 

- Identifying and characterizing important hydrologic boundaries including 

recharge (e.g., infiltration), discharge (e.g., springs, seeps) and interfaces between 

groundwater and surface water systems; and 

- Estimating liquid and contaminant fluxes. 

 

Hydrologic information gained from a well-designed and executed 

characterization program provides the framework for the SCM. Existing field testing 

techniques used in hydrologic characterization programs are described in the following 

sections.  

4.1.3.1 SATURATED ZONE TESTING 

Hydrologic field characterization of the saturated zone is accomplished using 

borehole logging, active testing and passive monitoring techniques.  

4.1.3.1.1 Hydrologic Borehole Logging Techniques 
Many of the geophysical logs described in previous sections are used to measure 

important hydrologic parameters including porosity, permeability and water quality. The 
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hydrologic borehole logging techniques described in this section supplement the 

geophysical logs. 

4.1.3.1.1.1 Fluid Temperature and Pressure Logs 

A temperature/pressure sensor is connected to a wireline and lowered into the 

boring to record downhole temperature and pressure of the fluid. Fluid-temperature logs 

are used to look for evidence of geothermal activity, identify fluid-bearing formations, 

and determine intervals of vertical borehole flow. The geothermal gradient is the natural 

increase in the Earth’s temperature with depth caused by internal heat production from 

radioactive decay and long-term cooling of the earth. The average geothermal gradient 

reported by Freeze and Cherry (1979) is 25ºC/km; therefore, identification of geothermal 

gradients much steeper than the average using fluid temperature logs could indicate 

thermally active areas. Sharp changes in the natural temperature also occur where fluids 

are entering or leaving the boring. Little or no temperature change is recorded along 

sections of borehole where fluid is moving vertically within or parallel to the boring. 

Temperature and pressure measurements can be used to estimate gas and liquid densities 

if the composition of the fluid is known. 

4.1.3.1.1.2 Heatpulse Flowmeter 

The direction and rate of borehole-fluid movement are measured with a high-

resolution heatpulse flowmeter. The heatpulse flowmeter operates by diverting nearly all 

flow to the center of the tool where a heating grid slightly heats a thin zone of water. If 

vertical borehole flow is occurring, the water moves up or down the borehole to one of 

two sensitive thermistors (heat sensors). When a peak temperature is recorded by one of 

the thermistors, a measurement of direction and rate is calculated by the computer 

logging the data. The range of flow measurement is about 0.01-1.5 gallons per minute in 

a 2- to 8-inch diameter borehole. Heatpulse-flowmeter measurements may be influenced 

by poor seal integrity between the borehole and the flowmeter or contributions of water 

from storage within the borehole during pumping. If the seal between the borehole and 

the heatpulse flowmeter is not complete, some water can bypass the flowmeter, resulting 

in flow measurements that are less than the actual rate. The quantity of water bypassing 

the tool is a function of borehole size and shape and degree of fracturing. Although the 
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heatpulse flowmeter is a calibrated tool, the data primarily are used as a relative indicator 

of fluid-producing zones. 

4.1.3.1.1.3 Flowing Fluid Electrical Conductivity Log 

The flowing fluid electrical conductivity log can be performed in an open 

borehole or across the screened interval of a well to identify the depth of inflow and to 

evaluate the transmissivity of the formation and electric conductivity (salinity) of the 

fluid at each inflow point (Tsang and Doughty, 2003). The well bore water is replaced by 

deionized or constant-salinity water at the start of this logging technique (Figure 4-). The 

borehole is then slowly pumped at a constant rate, during which a series of electric 

conductivity logs are run along the well bore. Changes in electric conductivity indicate 

inflow locations, or water bearing zones. 

4.1.3.1.2 Hydraulic Testing Techniques 
Numerous testing techniques have been 

developed in the oil and gas, water supply, 

environmental and mining industries to evaluate 

reservoir (aquifer) performance and measure 

formation properties. A select number of 

hydraulic testing techniques follow. 

4.1.3.1.2.1 Drillstem tests 

Drillstem tests (DST) are used in the oil 

and gas industry to collect reservoir fluids, 

evaluate flow rates, measure static and flowing 

bottom-hole pressures and to perform a short-

term transient test (Earlougher, 1977). DST tests 

Figure 4-3. Flowing fluid 
electrical conductivity log performed 
in 420 meter open borehole in the 
Amargosa Valley, Nevada. 
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are performed during the drilling process prior to well completion to measure reservoir 

conditions and properties, fluid composition, and formation damage caused by drilling; 

assess the economic potential of a new reservoir; and to provide information for optimum 

well design and completion. 

A special DST tool is attached to the drillstem and lowered to the desired depth in 

the borehole. Inflatable or mechanical packers (part of the DST tool) isolate the formation 

from the mud column in the annulus. Formation fluid is allowed to flow into the drillpipe, 

while the pressure is monitored using bottom hole pressure transducers. The drillstem 

testing sequence typically consists of a short production period (initial flow period), a 

short shut in period (initial buildup), followed by a longer flow period and a final shut in 

period (final buildup). The pressure response obtained during the initial and final 

buildups are analyzed for formation permeability, skin factor, and damage ratio using the 

Theis (1935) or Horner (1951) method. 

4.1.3.1.2.2 Modular Formation Dynamics Tester (MDT) 

The MDT is a downhole tool developed for the oil and gas industry that consists 

of individual modules that can be configured to meet almost any testing and sampling 

need. The MDT tool can be used to collect and analyze discrete downhole liquid and gas 

samples for fluid identification, measure reservoir pressures, and evaluate small-scale in 

situ horizontal and vertical permeability. The tool is deployed in an open hole and has a 

modular design, allowing the tool to evolve as new measurement technologies and 

options are developed.  

4.1.3.1.2.3 Single-Well Hydraulic Tests 

Single-well tests, as the name implies, use a single well test configuration to 

measure formation properties and wellbore conditions. Fluid is pumped from (or injected 

into) the well while monitoring the flow rates and downhole pressure response. The 

resulting pressure transient data are analyzed using a variety of techniques (Matthews and 

Russell, 1967; Earlougher, 1977; Freeze and Cherry, 1979; Lee et al, 2003) to yield 

estimates of the saturated hydraulic conductivity and formation storativity. Wellbore 

storage (van Everdingen and Hurst, 1949) and skin (van Everdingen, 1953) may 

influence the observed bottom-hole pressure response observed during the test, producing 
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erroneous estimates of the formation storativity.  Therefore, single-well tests are normally 

used to measure saturated hydraulic conductivity and wellbore skin factor, the latter 

being a measure of wellbore damage or improvement effects. 

Different types of single-well tests can be performed, with constant rate, constant 

head (pressure), slug (bail), and pressure buildup (recovery) tests being the most common. 

As the name implies, a constant pumping rate or constant water level are maintained in 

the well during a constant rate and constant head test, respectively. The pressure and flow 

rate responses are monitored in time and analyzed to estimate formation properties (Theis, 

1935; Cooper and Jacob, 1948; Ehlig-Economides, 1979; and Chen and Chang, 2003). 

Slug tests are common in the environmental industry because they are inexpensive and 

quick to perform. A slug (or bail) test involves quickly adding (or removing) a known 

volume of water from the well, then monitoring the sudden change in water level with 

time (Ferris and Knowles, 1954; Cooper et al., 1967; Bouwer and Rice, 1976; Bouwer 

and Rice, 1989; Karasaki, 1986). The flow-period data from a DST can be analyzed using 

the slug test method, as long a flow does not reach the surface (Ramey et al., 1975). 

Finally, a pressure buildup test (Earlougher, 1977) involves shutting in a well after 

pumping it at a constant rate for a known period of time. The pressure increases (builds 

up or recovers) when pumping ends, approaching its pre-pumping static pressure 

conditions. 

4.1.3.1.2.4 Multi-well Interference Tests 

Multi-well interference tests are also used to measure formation properties and 

wellbore conditions. This method utilizes a production or injection well and one or more 

observation wells where bottomhole pressures are measured. Unlike single-well tests, 

interference tests provide reliable estimates of formation storativity, as long as the 

pressure response from the observation well is used in the analysis, rather than the 

pumping well response. In addition, interference tests can be used to investigate the 

nature and location of aquifer boundaries and to evaluate formation anisotropy (Hsieh, 

1983; Hsieh et al., 1985a, 1985b), if three or more wells are available.  

Numerous examples of analytical and numerical solutions can be found in the 

literature for analyzing single- and multi-well hydraulic tests performed on porous media 
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and fractured rocks (Matthews and Russell, 1967; Earlougher, 1977; Freeze and Cherry, 

1979; Lee et al, 2003). 

4.1.3.1.2.5 Tracer Tests 

Tracer tests are frequently used to provide estimates of flow and transport 

properties, characterize flow paths, and directly assess contaminant migration. These may 

be difficult to obtain using conventional hydraulic or geophysical techniques. Tracer tests 

can be used to estimate the formation thickness-porosity product, hydraulic dispersivity 

coefficient, and the linear groundwater velocity. 

There are numerous articles appearing in the groundwater and surface water 

literature, and to a lesser extent in the oil and gas literature, describing studies that have 

used microbes, radionuclides, gases, or soluble organic (e.g., dyes) and inorganic 

compounds as tracers. A conservative tracer does not react with the porous medium or 

fluids in the formation. Rather, it moves with the groundwater, and its concentration is 

only affected by hydrodynamic dispersion. Ideal tracers have the following positive 

attributes: 1) The tracer is not present in the natural formation fluids (e.g., groundwater, 

surface water, oil); 2) the tracer does not absorb to aquifer material, nor is it retarded by 

other natural abiotic and biotic processes occurring in the porous medium (e.g., 

precipitation, oxidation/reduction, biological uptake or destruction by plants or bacteria); 

3) the tracer concentration is easy to quantify using analytical techniques; 4) it is safe to 

handle or use in potable water supplies; and 5) it is inexpensive to use. Reactive tracers 

that are relatively safe to use, are sometimes used as analogs to study the migration of 

hazard chemicals or radionuclides, which are known to react with the porous materials or 

fluids. 

There are three general categories of tracer tests including natural-gradient tracer 

tests, forced-gradient tracer tests, and recirculation tracer tests. Each test involves 

injecting one or more tracers into the groundwater, geothermal or oil and gas reservoir at 

a known concentration. Tracer injection may consist of an instantaneous pulse, slug (i.e., 

pulse of finite length), or continuous release at constant concentration. Arrival of the 

tracer and its concentration in time are monitored at a nearby observation well located 

downgradient from the tracer injection point (multi-well test), or the decrease in 
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concentration of the tracer is monitored in time at the injection point (single-well test). 

The time dependent concentration measured at the observation point(s) results in a 

diagnostic plot referred to as a tracer breakthrough curve.  

During natural-gradient tracer tests, the tracer migrates through the formation 

under conditions reflective of the natural hydraulic gradient, allowing measurement of the 

natural linear groundwater velocity. If multiple wells are used, then the average direction 

of groundwater flow can also be determined. Test methods utilizing a single well 

configuration include the point dilution method (Drost et al., 1968) and single-well drift-

and-pumpback method (Leap and Kaplan, 1988). A major disadvantage of the natural-

gradient technique is that it may take a long time for the tracer to migrate under natural 

conditions to the observation point. In addition, the point dilution and drift-and-

pumpback methods require prior knowledge of the effective porosity (and a flow 

distortion factor in the case of the point dilution method) to be able to calculate the linear 

velocity. 

Forced-gradient and recirculation tracer tests combine the benefits of a hydraulic 

test with that of a tracer test. These tests take advantage of the artificially steep hydraulic 

gradient created during a hydraulic test to force the tracer to the observation point much 

faster than would otherwise occur during a natural-gradient test.  Forced-gradient tests 

typically consist of wells arranged in a radial test configuration. During a converging 

radial test, the tracer is introduced as a pulse or step in an observation well and the 

concentration is measured at a distant pumping well, whereas, in a diverging radial test, 

the tracer is injected into a recharge well and the tracer distribution is observed in 

surrounding observation wells. A recirculation tracer test is a special type of forced-

gradient test requiring a minimum of two wells. Tracer is introduced into a recharge well 

and its breakthrough is measured at a distant discharge well. Water and tracer from the 

discharge well is pumped (i.e., recirculated) back into the recharge well creating a dipole-

shaped groundwater flow pattern (Grove and Beetem, 1971). Forced-gradient and 

recirculation tracer tests can be used to estimate formation dispersivity and the formation 

thickness-porosity product. 

4.1.3.1.2.6 Monitoring 
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It is standard practice to measure the hydraulic head in three or more monitoring 

wells to determine the hydraulic head gradient and groundwater flow direction (assuming 

the reservoir is isotropic and homogenous) for a given site. Routine measurement of 

hydraulic head should be made and piezometric surface maps should be created 

throughout the year to evaluate seasonal changes in the piezometeric surface. (Care 

should be taken to plot only piezometric data believed to be from the same aquifer). 

Examination and comparison of piezometric surface maps can lead to discovery of 

aquifer recharge and discharge areas, groundwater divides, perched water bodies, zones 

of vertical groundwater movement between aquifers, or other hydrologic features. Further 

investigation of these features should be undertaken if it is believed that they could have 

a significant impact on the site’s ability to isolate waste. 

Static water level measurements are made in wells by hand using a wetted tape, 

electric water level tape, sonic water level meter, or airline method, or measured 

automatically using a pressure transducer and data logger (Lehr, 1988). Measurements 

should be referenced to a known location on the casing that’s been surveyed, so that static 

water levels measurement from all the wells can be converted to hydraulic heads having a 

common datum. 

Seasonal water level fluctuations in monitoring wells are usually caused by 

seasonal variations in precipitation and evapotranspiration, which influence aquifer 

recharge. Daily, weekly and monthly water level fluctuations can be caused by on-off 

cycling of nearby irrigation or production wells, or in some cases by fluctuations caused 

by ocean tides, earth tides and barometric pressure changes (Todd, 1980). Water levels in 

wells penetrating confined aquifer systems have been shown to fluctuate because of 

barometric pressure changes. The so-called barometric efficiency of a confined aquifer 

can be measured and expressed in terms of aquifer and water properties, including the 

storage coefficient (Jacob, 1940). 

4.1.3.2 UNSATURATED ZONE AND SURFACE TESTING 

The primary source of unsaturated zone field experience is derived from studies 

associated with soil science, soil physics, agricultural engineering, radioactive waste 

disposal, and oil and gas exploration (i.e., multiphase flow). Soil-related unsaturated zone 
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studies abound in the literature, and typically address near-surface flow and transport 

processes including infiltration, precipitation, evapotranspiration, runoff, soil moisture 

redistribution in the subsurface, and pesticide transport. Deep unsaturated zone field 

studies are rare; however, the USDOE radioactive waste disposal program at Yucca 

Mountain is one exception. Site characterization work performed at Yucca Mountain over 

the past 20 years has produced a plethora of knowledge on deep, unsaturated flow and 

transport through fractured volcanic tuffs. In addition, the oil and gas literature is an 

important source of information for field-testing techniques, equipment and case studies 

describing multiphase, multicomponent (brine, water, gas and oil) flow through deep 

reservoirs. 

4.1.3.2.1 Pneumatic-Testing Techniques 
Pneumatic testing is equivalent to hydraulic testing with the exception that gases 

are used as the test fluid to measure formation permeability. Single-well and multi-well 

interference test configurations are still applicable, as are pulse (i.e., slug), buildup, 

constant rate and constant pressure test methods. Equipment used for pneumatic testing is 

similar to hydraulic testing. 

The compressibility of the gas must be taken into account when analyzing 

pneumatic test results. The partial differential equation and boundary conditions used to 

describe compressible gas flow through porous media are nonlinear, making rigorous 

analytical solutions to transient well-test problems impractical (Muskat, 1937). 

Techniques have been developed to linearize the equations producing approximate 

transient solutions that are formulated in terms of the gas pressure (p), pressured-squared 

(p2) or pseudo-pressure function (ERCB, 1975; Aziz et al., 1976). Steady-state gas flow 

equations, which do not include the nonlinear transient storage term, are linear and have 

been solved for various flow geometries. Steady-state pressure distributions were found 

to develop relatively quickly during low-pressure gas injection tests performed at Yucca 

Mountain, allowing the data to be analyzed using steady-state solutions (LeCain, 1997; 

Cook, 2000). History matching of gas flow data using a numerical model is another 

option when boundary conditions become too complicated to evaluate the data using 

analytical techniques. 
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4.1.3.2.2 Gas-Tracer Tests 
Gas tracer experiments are equivalent to hydraulic tracer tests, with the exception 

that gases are used in place of liquids to trace the ambient gas present in the formation. 

Gas tracers can be used to measure formation dispersivity and porosity (Freifeld, 2001) in 

a single-phase system, measure gas and liquid saturations in two-phase systems (Pruess, 

2005; Trautz et al., 2005) and identify flow paths. Test configurations and methodologies 

used for hydraulic tracer tests can be applied to gas tracer tests; however, specialized 

equipment is typically needed to analyze the gas samples to determine the tracer 

concentrations.  

4.1.3.2.3 Infiltration and Recharge Evaluation  
Infiltration refers to the process of water entry into soil, which generally occurs 

through the soil (or rock) surface and progresses vertically downward through the soil 

profile. The infiltration boundary at the land surface forms the upper boundary of the 

SCM; therefore, characterization of this boundary is important because it controls the 

amount of water entering the subsurface as recharge. Recharging water may eventually 

come in contact with buried waste causing corrosion of the waste canister, hastening 

subsequent migration of the waste from the repository. 

Numerous articles describing 

infiltration theory, test methods, and field 

equipment appear in the soil science and 

agriculture engineering literature. The 

majority of these studies focus on the 

relation between infiltration and the 

resulting availability and uptake of moisture 

by plants. In contrast, infiltration studies 

performed as part of the USDOE nuclear 

waste program at Yucca Mountain focused 

primarily on development and calibration of 

a large-scale infiltration model used to 

predict regional groundwater recharge, 

Figure 4-4. Water containing 
fluorescent dye seeps out of fractures 
intersecting the ceiling of an 
underground opening during an 
artificial infiltration experiment 
performed at Yucca Mountain. 
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under different climate scenarios. In addition, site-specific process models and small-

scale infiltration experiments were performed at Yucca Mountain to investigate the 

movement of water and solutes through faults and fracture systems (Salve et. al., 2004; 

Liu et al., 2004) and seepage into underground openings (Figure 4-, Wang et al., 1999; 

Trautz and Wang, 2002; Cook et al., 2003; Finsterle et al., 2003; Ghezzehei et al., 2004). 

Flint et al. (2000) provide a brief overview of the approaches used to estimate 

regional recharge in the Death Valley Region of the Mojave Desert, an arid area of the 

United States, encompassing Yucca Mountain. These approaches include water balance 

(Winograd and Thodarson, 1975), rainfall distribution (Hevesi and Flint, 1998), chloride-

mass-balance (Lichty and McKinley, 1995), and applied soil-physics techniques 

(Winograd, 1981; and Nichols, 1987). Flint et al. (2000) developed a detailed numerical 

model to simulate infiltration at Yucca Mountain using components of the mass-balance 

equation for near surface infiltration. The mass-balance approach and applied soil physics 

techniques are the most common methods used to estimate infiltration and recharge. 

4.1.3.2.3.1 Mass-balance approach  

The mass-balance approach uses a control volume to represent the soil column. 

The upper surface of the control volume represents the land surface and the lower surface 

represents an imaginary plane, below which, recharge takes place. Water entering the 

control volume as net precipitation (i.e., precipitation minus surface water runoff) at land 

surface, either exits the lower surface as recharge or is stored within the control volume, 

causing an increase in soil moisture content. Evapotranspiration removes soil moisture 

from the control volume by transferring it back to the atmosphere via transpiring plants or 

by evaporation, thus slowing or halting recharge altogether. A brief description of field 

methods used to measure precipitation, evapotranspiration and soil moisture conditions 

leading to recharge estimates are provided below. 

4.1.3.2.3.1.1 Precipitation measurements 

Precipitation is commonly measured using various types of mechanical rain gages 

(e.g., non-recording gages including cylindrical containers or recording rain gages 

including weighing, float and tipping-bucket type, Linsley et al. 1982). Mechanical 

precipitation gages are quite accurate, but because of their limited size, measure 
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precipitation at a given point in space. Therefore, a network of gages must be installed 

and averaging or interpolation between stations must be performed to produce 

precipitation distribution maps. Newer methods of measuring precipitation include 

ground-based radar. Most local weather radars transmit radio pulses that have a 

horizontal and/or vertical orientation. The electromagnetic radio pulses reflect off of 

clouds creating backscatter that is detected by the same station.  The backscattered energy 

from the reflector and wave propagation effects (i.e., phase change and power 

attenuation) are interpreted to produce precipitation estimates. Interpretation can be quite 

challenging because reflectance properties are dependent upon complicated atmospheric 

conditions including rain and ice particle size, storm intensity, cloud shape and height, 

and presence and density of aerosols in the atmosphere to name a few (Chandrasekar et 

al., 2003). 

4.1.3.2.3.1.2 Evapotranspiration measurements 

Evapotranspiration is the combined process of 

evaporation from open water bodies (e.g., lakes, reservoirs, 

rivers or playas), bare-soil evaporation and transpiration by 

vegetation (Freeze and Cherry 1979).  Bare-soil evaporation 

represents the amount of water evaporated from a bare soil 

surface, which for deep unsaturated soils is limited by the 

near-surface supply of soil moisture.  Transpiration is the 

uptake and transfer of water to the atmosphere by vegetation.  

If the soil (or fractured bedrock) becomes drier than what is 

conceptually referred to as the wilting point, transpiration will 

not occur even though there may be residual water in the root 

zone. Transpiration is much more efficient than bare-soil 

evaporation in removing water from soils and fractured 
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bedrock. This is because plant roots typically extend deeper than the near surface dry-out 

zone influenced by bare-surface evaporation, and plants can exchange large amounts of 

soil water with the atmosphere through the process of transpiration. 

Actual evapotranspiration is a function of 1) the potential evapotranspiration; 2) 

the availability of water at the ground surface and within the root zone; 3) vegetation 

characteristics such as timing of plant growth and root density; 4) and the chemical and 

hydrologic properties of the root zone. These processes are not independent, but, in 

general, the primary factors controlling actual evapotranspiration are potential 

evapotranspiration, soil-water availability, vegetation density, and seasonal vegetation 

growth. The more saturated the soil (or fractured bedrock) and the denser the vegetation, 

the closer the actual evapotranspiration rate is to the potential evapotranspiration rate. 

(Potential evapotranspiration is an energy-limited rate and is a measure of the ability of 

the atmosphere to remove water from the surface through the evapotranspiration process 

assuming unlimited availability of water). 

Numerous methods for estimating actual and potential evapotranspiration exist, 

none of which are globally applicable to all sites, conditions, and circumstances (Linsley 

et al. 1982). Long-term measurements of actual evapotranspiration are rarely made or 

readily available because of difficulty of measurement and cost and time required to 

obtain this information.  Actual evapotranspiration measurements are typically reserved 

for calibrating and validating meteorological models. 

Direct measurement of actual evapotranspiration is a difficult undertaking, 

because it requires accurate measurement of various energy balance, mass transfer, or soil 

water balance parameters. Methods employed to directly measure evapotranspiration 

include the Bowen ratio (Flint and Childs 1991), weighing lysimeter, and eddy 

correlation (Figure 4-, Levitt et al. 1996). These methods are often expensive, labor 

intensive, demanding in terms of accuracy of measurement and not readily amenable to 

sampling large study areas exhibiting numerous vegetative covers, microclimates and soil 

types. 

Evaporation-pans are the most widely used instrument for measuring potential 

evaporation from surface water reservoirs or saturated soils (Linsley et al. 1982).  



 

206 

However, the application of pan data to determine actual or potential evapotranspiration 

from vegetated or bare soils is very limited, especially under arid conditions where soils 

dry or drain rapidly so that saturated conditions (representative of pan conditions) do not 

persist for prolonged periods of time. 

Meteorological models were first introduced by Penman (1948) to overcome these 

limitations by indirectly predicting or estimating evaporation. Penman (1948) combined 

the energy balance equation with a physically based mass transfer function describing 

advection of water vapor and energy above a horizontal surface to derive an equation to 

compute the evaporation from a thin free-water surface.  The utility of Penman’s original 

approach is that it uses standard climatological records of sunshine, temperature, 

humidity, and wind speed (which are relatively easy to measure) to estimate evaporation, 

rather than relying on direct and difficult measurements of actual evapotranspiration.  

However, limiting assumptions and simplifications used by Penman (1948) to model the 

aerodynamic or mass transfer component of evaporation, make the Penman equation only 

useful for estimating potential evapotranspiration. 

Penman’s (1948) method was further refined by numerous researchers over the 

last five decades and has been extended to bare and cropped soil surfaces by introducing 

surface resistance factors and (or) parameters limiting evapotranspiration from water-

supply limited soils.  Monteith (1965) modified Penman’s original equation using surface 

resistance factors allowing calculation of actual evapotranspiration from cropped soils.  

The Penman–Monteith equation, however, requires detailed knowledge of the resistances 

to heat and water flow at the land surface, making it difficult to apply without having 

extensive measurements for the resistance parameters (e.g., aerodynamic resistance, bulk 

stomatal resistance, and active leaf area index).  The Penman–Monteith equation is 

typically applied to extensive cropped soils where water availability is not an issue. The 

Food and Agriculture Organization of the United Nations (FAO) has adopted the 

Penman-Monteith equation as the standard method for estimating reference 

evapotranspiration, and for evaluating other methods (Allen et al., 1998). 

Priestley and Taylor (1972) suggested an alternative, simpler form of the Penman 

equation that requires a single effective surface resistance parameter (Flint and Childs 
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1991; Levitt et al. 1996) to estimate the potential evapotranspiration rate.  The Priestley-

Taylor equation includes an empirical scaling term, which is multiplied by the energy 

balance term in the original Penman equation.  The Priestley-Taylor method does not 

utilize the aerodynamic resistance term found in the Penman and Penman-Monteith 

equation, but rather accounts for advection above the evaporating surface using the single 

empirical scaling term.  Levitt et al. (1996) and Flint and Childs (1991) demonstrated the 

successful application of the modified Priestley-Taylor equation for modeling 

evapotranspiration for arid climate conditions near Yucca Mountain and xeric soil 

conditions in Southern Oregon, USA, respectively. 

4.1.3.2.3.1.3 Soil moisture storage 

Changes in soil moisture storage can be determined from time-dependent 

measurement of water content at different soil depths. Alternatively, changes in soil 

moisture storage can be inferred from time-dependent measurement of soil water 

potential with depth, provided the functional relation between water potential and water 

content is known or measured in the laboratory. Section XX describes in greater detail 

applied soil physics techniques used to measure soil water content and potential. 

4.1.3.2.3.2 Applied soil physics techniques 

Soil physics is a branch of soil science that deals with the physical properties of 

soils, with special emphasis on the state and transport of matter (water) and energy 

through soil systems (Hillel, 1971). Applied soil physics techniques (used in the context 

of this paper) refer to a broad class of field and laboratory testing techniques used to 

measure liquid fluxes in the unsaturated zone from which estimates of infiltration and 

recharge rates may be determined. These techniques have evolved over the past 80 years 

beginning with and attributed to the important experimental work of Richards (1928, see 

also Gardner (1972)).  Numerous books and articles have been written on these 

techniques; therefore, it is not the intent of this paper to provide an exhaustive overview 

of this vast body of work. A relatively recent collection of papers on the characterization 

and measurement of hydraulic properties of unsaturated porous media is provided in van 

Genuchten et al. (1997) and Looney and Falta (2000). 
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It is important that the reader recognize that liquid fluxes derived from applied 

soil physics techniques are highly uncertain because of the highly heterogeneous nature 

and distribution of soils. Furthermore, analyses are typically limited to one-dimensional 

vertical flow at a given location, which essentially represents a single horizontally 

distributed point measurement. Given the complexity of soils and their inherent 

variability, a large number of tests must oftentimes be performed to adequately 

characterize even small study plots. With this said, liquid fluxes are typically determined 

using direct or indirect applied soil physics techniques.  

4.1.3.2.3.2.1 Direct rate and flux measurements 

Direct measurements include small-scale infiltration tests and fluxmeters. The 

most common methods of measuring small-scale infiltration rates include single and 

double ring infiltrometers (Amoozegar and Warrick, 1986), Guelph permeameters 

(Reynolds and Elrick, 1985; Reynolds and Elrick, 1991), and tension (or disk) 

infiltrometers (Ankeny et al., 1988; Perroux and White, 1988). Data obtained from 

infiltration tests are used to estimate saturated hydraulic conductivity, sorptivity and 

parameters associated with soil capillarity. These devices are typically deployed at land 

surface providing direct estimates of surface infiltration at or near saturated conditions. 

Sensor systems designed to measure flux directly are based on two general 

principles (Gee et al., 2002). The first method involves introducing a pulse of heat and 

then monitoring the temperature decline as the pulse is convected away from the source 

by groundwater flowing through unsaturated (Byrne et al., 1967, 1968; Byrne, 1971; 

Kawanishi, 1983; Cheviron et al, 2005) or saturated (Ren et al., 2000) soils. Test 

interpretation is dependent upon prior knowledge of the heat load and thermal properties 

of the soil. The heat-pulse method can be used to measure relatively high fluxes ranging 

from 103 to 106 mm/yr, but is not practical for measuring fluxes less than 1000 mm/yr. 

The second method involves intercepting soil water using a fluxmeter. Numerous 

approaches have been used ranging from buried ceramic cups connected to water-filled 

reservoirs and drip counters to buried containers or funnels, which collect water. The 

buried fluxmeter can cause a reduction in permeability or create a capillary barrier above 

the meter resulting in diversion of natural flow around the meter itself. This results in an 
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underestimation of the true flux. Gee et al. (2002) describe a fluxmeter with a flow 

divergence control mechanism capable of measuring unsaturated fluxes ranging from less 

than 1 mm/yr to more than 1000 mm/yr. 

4.1.3.2.3.2.2 Indirect flux measurements 

Indirect flux measurements are determined by measuring the individual 

components of the Darcy flux (written for unsaturated porous media) including the 

unsaturated hydraulic conductivity and water potential (or water content)1 gradient (Hillel, 

1971; Freeze and Cherry, 1979). Measurement of unsaturated hydraulic conductivity and 

its relation to water potential (or water content), referred to as characteristic curves, are 

typically performed in the laboratory under controlled conditions (Dane and Topp, 2002). 

These are tedious measurements, which can be highly uncertain because of the difficulty 

in obtaining undisturbed soil samples from the field. Field collection can modify or 

destroy pore and soil structure, thus changing the measured soil properties. Samples can 

be repacked in the laboratory and tested, but this rarely produces results that are 

comparable to undisturbed samples. Therefore, special care must be used when 

developing and implementing soil collection and handling procedures that minimize soil 

disturbance in order to produce representative laboratory results. 

Water potential (or water content) gradients can be measured and monitored 

directly in the field using invasive and noninvasive techniques. The overwhelming 

majority of techniques include installation of instruments in borings or wells, which by 

design provide intrusive access to subsurface soils. Surface-based geophysical techniques 

like ground penetrating radar or electromagnetic induction are noninvasive, but these 

instruments can also be used in downhole applications to determine the vertical 

distribution of soil properties. Gee and Ward (1997) and Scanlon et al. (1997) provide 

excellent summaries (including range and accuracies) of the instruments used for 

monitoring water potential and soil water content listed below: 

 Water/matric Potential 

- Psychrometers (Richards and Ogata, 1958) 
                                                 
1 If water content is measured in the field, then the characteristic curve relating soil water content to water 
potential must be measured in the laboratory to convert water content gradients into equivalent water 
potential gradients needed to calculate the Darcy flux. 
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- Heat dissipation probes (Phene et al., 1971) 

- Tensiometers (Richards, 1950; Faybishenko and Finsterle, 2000) 

- Osmotic tensiometers (Evans, 1983) 

- Granular matrix resistance probes 

- Water activity method 

- Filter paper method 

 
Soil Water content 

- Time domain reflectometry (TDR; Topp et al., 1980) 

- Neutron scattering (Gardner and Kirkham, 1952) 

- Capacitance methods 

- Ground penetrating radar (Hubbard et al., 1997; Alumbaugh et al., 2002) 

- Electromagnetic induction 

- Fiber optic sensors 

4.1.4  GEOCHEMICAL TECHNIQUES 
The geochemistry of subsurface fluids provides insight into important processes 

occurring in the subsurface related to: 1) dissolution and precipitation of minerals leading 

to changes in formation porosity and permeability; 2) tectonic deformation; 3) origin and 

age of groundwater; 4) heat transport in geothermal ground water systems; and 5) fate 

and transport of hazardous wastes injected into the subsurface (Kharaka and Hanor, 

2004). A geochemical sampling program should be developed in advance of sampling, 

which addresses monitoring objectives, data quality objectives, collection of 

representative samples, and design and construction of sampling points (e.g., wells, 

borings). Sample specifications and standardized sampling procedures should be 

developed in advance of field work to ensure that proper identification, preservation, and 

handling techniques are used to preserve the scientific and legal integrity of the fluid 

samples. 

Proper on-site preservation and handling of samples at the wellhead is essential to 

the scientific credibility and legal integrity of environmental samples. Many chemical 

constituents have limited hold times (e.g., ferrous iron, nitrate and nitrite) before they 

begin to naturally degrade or decay, or are sensitive to environmental conditions such as 
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heat or sunlight (e.g., fluorescein tracer). A good sampling plan developed prior to 

sampling should identify: 1) the type of media (water, soil, gas), approximate number and 

frequency of samples to be collected; 2) chemical constituents and analytical methods to 

be used in their evaluation; 3) collection, preservation, and handling requirements; and 4) 

data quality requirements. Numerous analytical testing techniques are available in the 

literature for evaluating fluid chemistry (USEPA, 1983; USEPA, 1986; and Clescrel et al., 

2005); the large number of analytes and techniques prevents us from describing them 

here. Instead, a brief description of the most common fluid sample collection techniques 

is provided below. 

4.1.4.1 SAMPLE COLLECTION 
TECHNIQUES 

This section briefly describes three conventional 

fluid sample collection methods using pumps, gas-lift, and 

wireline techniques. The U.S. Environmental Protection 

Agency (USEPSA, 1992, 1996) has published extensive 

information on groundwater sampling techniques and 

protocols related to environmental site characterization and 

remedial investigations. 

Pumps, bailers, and to a lesser degree, gas-lift 

techniques are used to purge fluid from a boring or well prior 

to sampling to ensure that stagnant fluids are removed from 

the casing and fresh representative samples of the formation 

are obtained. Numerous types of pumps are available for 

sampling purposes (Figure 4-). Pump selection must be based on depth to water and 

power requirements needed to lift fluids to the land surface. Pumps having wetted parts 

that come in contact with the fluid must either be decontaminated between wells to 

prevent cross contamination of subsequent samples or dedicated to sampling only one 

well. 

A bailer consists of a round tube with a one-way ball or check valve located at the 

bottom and a plastic or wire bail located at the top. A string or steel wireline is attached 

Figure 4-6. Multi-
stage electrical 
submersible pump used 
for testing and sampling 
a deep brine reservoir 
(Photo courtesy of Seah 
Nance, Texas Econ. Bur. 
of Geology). 
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to the bail and the device is lowered into the well where it sinks in the fluid. The one-way 

valve at the bottom of the bailer allows fluid to enter the bailer, but prevents it from 

exiting the bailer when the bailer is pulled back to the surface. Bailers are typically 

constructed of stainless steel or plastic, which can be decontaminated between uses. 

Disposable bailers made of plastic and designed for one-time use are commercially 

available.  

Gas-lift techniques consist of injecting compressed gas generated at land surface 

through a pipe, hose or tube to the bottom of a well (Nicklin et al., 1962). Compressed 

gas injected at the bottom of the well rises because of buoyancy effects, expanding and 

displacing water along the way. The lifting action of the piston-like gas bubble pushes 

groundwater out the top of the well. Gas-lift pumping techniques are commonly used for 

well development because there are no moving mechanical parts downhole that can be 

abraded or become clogged during operation. Therefore, the method is well suited for 

pumping both liquids and abrasive solids (e.g., sand). Gas-lift methods are not typically 

used to collect geochemical samples because the gas performing the lift comes in direct 

contact with the groundwater in the well. Direct contact may potentially contaminate and 

strip dissolved gases or highly volatile components from the liquid being sampled. 

Standard practices involve purging and sampling groundwater from wells using 

bailers or high-speed pumps to remove 3 to 5 casing volumes before sample collection 

begins. Grab water samples are normally collected during the purge process and 

evaluated on-site for wellhead parameters (e.g., dissolved oxygen, pH, specific 

conductance, temperature and oxidation-reduction potential) using handheld portable 

water analyzers.  Once the wellhead parameters stabilize, final sample collection for on-

site and off-site analyses can begin. 

Purging the well too aggressively can cause large changes in fluid pressure and 

turbidity, impacting fluid chemistry and sample quality. The USEPA (1996) recommends 

the use of low-flow rate sampling techniques in shallow wells to prevent samples from 

becoming too turbid. However, this practice may be impractical for sampling deep wells 

containing large volumes of water. In addition, collecting representative samples from 

wells penetrating deep reservoirs is complicated by the fact that dissolved gases in 
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equilibrium with downhole temperatures and pressures, may suddenly exsolve as fluid 

pressures drop, when samples are pumped to the surface. Groundwater chemistry may 

also change when gases exsolve and fluid pressures change, requiring immediate analysis 

of the sample upon collection at the wellhead. 

The Kuster sampler (Kuster Co., Long Beach, California, USA) is a simple 

wireline tool that allows the user to collect fluid samples at reservoir pressure, allowing it 

to deployed in deep-well sampling applications. The device consists of a sample chamber, 

spring-loaded valves, a locking device, and a mechanical clock. Operation consists of 

winding a manual timer or clock and lowering the tool into an open hole or well on a 

steel wireline. When the clock winds down to the appointed sampling time, it 

automatically releases the locking mechanism, the inlet valves open and the sample 

chamber fills. The valves close once the fluid pressure inside the chamber equilibrates 

with the in situ fluid pressure. Once the sample has been taken, the sampler must not be 

lowered deeper into the well, otherwise the increase in external pressure will re-open the 

valves and the sample will be contaminated. Contamination may also occur when warm 

samples are cooled as they are pulled back to the surface by the wireline. Cooling may 

cause a reduction in fluid volume and pressure inside the sample chamber, allowing the 

spring to reopen and leakage to occur. At the surface, the pressurized sample must be 

released using a special extractor body and transferred into a pressure-rated vessel. 

 

4.1.5 GEOTECHNICAL TECHNIQUES 
Earthquakes and active volcanism can cause serious disruption of waste 

operations and damage to surface facilities associated with nuclear waste disposal. 

Seismic monitoring networks can be used to predict volcanic eruptions and provide early 

warning of increased seismicity, potentially leading to a devastating earthquake. 

Tiltmeters have been successfully used to monitor volcanic activity (Dzurisin, 1992; 

Murray, et al., 1996). The repeated rise of magma into the dome at Mount St. Helens 

(Washington, USA) before the 1986 eruptions produced ground tilt on the crater floor 

that began 2 to 4 weeks before magma erupted onto the dome. Ground tilt was one of the 
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most reliable measurements of 

deformation used to accurately 

predict the Mount St. Helens 

eruption.  

Additional methods used to 

measure surface deformation 

associated with volcanism include 

short-range (<10 km) and mid-

range (< 50 km) electronic 

distance meters (EDMs), GPS, and 

satellite interferometry (see Section 

XX). When magma rises, it builds 

up pressure, melting and pushing solid rock both horizontally and vertically in advance of 

the intrusion, distorting the land surface by as little as a few millimeters (mm) to tens of 

meters. Benchmarks are established at land surface and changes in distance between 

benchmark pairs is frequently monitored using EDM (Lockwood et al., 1987). Short-

range EDMs transmit and receive electromagnetic radiation in the near visible infrared 

wavelength with an accuracy of approximately 5 mm. 

Monitoring earthquake activity associated with tectonic movement of plates is 

typically performed using seismometers. Vibrations generated by earthquakes, volcanic 

tremors and explosive eruptions are predominately < 6 Hz and typical seismometers used 

to monitor these events have frequency responses < 2 Hz. The United States Geological 

Survey (USGS) uses acoustic-flow monitor (AFM) seismometers to monitor for lahars 

(air-born debris flows associated with volcanic eruptions) that are sensitive to ground 

vibration with higher frequencies than a typical seismometer (Hadley and LaHusen, 

1995). An AFM has a frequency response of 10-250 Hz. Ground vibration generated by 

lahars is predominantly in the frequency range of 30-80 Hz. 

Induced seismicity resulting from changes in rock stress caused by mining (rock 

bursts), oil production, waste injection and geothermal energy production has also been 

reported in the literature and could be of concern to the integrity of a waste repository. 

Figure 4-7. Micro-earthquake monitoring 
station (foreground) and geothermal power plant 
(background) at the Geysers, California, USA. 
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Majer and McEvilly (1979), Stark and Majer (1989) and Stark (2003) installed an 

extensive network of micro-earthquake stations at the Geysers region of California to 

study the effect of geothermal energy production on induced seismicity. An extensive 

array of micro seismic stations (Figure 4-) was installed to monitor the effect of fluid 

production (steam) and injection (water) into the geothermal field near Cobb Mountain, 

California. Water injection was found to be a common trigger causing induced seismicity, 

but other reservoir conditions and properties including temperature, fluid and gas content, 

fracturing, permeability, and whether the area was tectonically active prior to injection 

were also found to be important factors. All of these properties may either interact to 

increase the seismicity when the system is perturbed by injection or withdrawal, or may 

constructively interact to have a smaller effect on seismicity. 

Land subsidence resulting from reservoir compaction during oil, gas, and 

groundwater production is common. Vasco et al. (2001) performed a coupled inversion of 

tiltmeter measurements made at land surface and pressure measurements made during 

hydraulic tests performed on a shallow fractured aquifer to determine subsurface 

permeability variations. Changes in fluid pressure resulting from pumping, caused small 

surface deformations measured using tiltmeters, allowing Vasco et al. (2001) to image a 

high permeability, north trending channel in a fractured zone at the Raymond field site in 

California. 

 

4.2 Evaluation of Emerging Field Investigation Technologies 

4.2.1 EMERGING DRILLING TECHNIQUES 
Cryogenic drilling and microhole technology represent two innovative drilling 

techniques that have been evolving over the past 5 to 10 years. Cryogenic drilling 

techniques were developed at the University of California – Berkeley and field tested at 

Lawrence Berkeley National Laboratory (Simon and Cooper, 1994; Cooper and Simon, 

1995). Low-temperature nitrogen gas or liquid is injected through the drill pipe to the bit, 

flushing the drill cuttings from the borehole and stabilizing the boring by freezing the 

surrounding ground. This technique is well suited for drilling in loose, unconsolidated 

soils that tend to collapse when disturbed. Freezing keeps the borehole walls from 
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collapsing, provided sufficient moisture is present in the formation. It also facilitates 

installation of a monitoring well by keeping the borehole open. 

Los Alamos National Laboratory (LANL), in collaboration with oil industry 

partners and the USDOE, is developing the microhole-drilling technology (Albright, et al., 

1998; 1999; Dreesen et al., 1997; Thomson, 1999). The technology takes advantage of 

recent advances in instrument electronics, which will result in smaller downhole logging 

tools and sensors (see section 4.2.2). Expensive, large-diameter borings will no longer be 

required to accommodate these tools and sensors. Instead, smaller borings and wells, 

installed at significantly lower cost, will be used to obtain important site characterization 

information. The microhole drilling system uses components, which are also used at a 

larger scale on commercially available coiled tubing rigs. These components consist of a 

mechanical rotary bit, a hydraulically powered positive displacement downhole drill 

motor, and a coiled-tubing drill stem. LANL has successfully drilled and cased 2-3/8-in.-

diameter microholes to depths of 850 ft in basin-and-range valley fill and volcanic tuff 

(Thomson et al. 1999). Dreesen and Albright (2000) determined that it should be possible 

to drill microholes to a depth of 10,000 ft using coiled tubing and miniaturized 

conventional drilling components.  

 

4.2.2 EMERGING SENSOR TECHNOLOGIES – MEMS AND 
MOTES 

Promising new sensor technologies have started to emerge 

that could potentially lead to low cost, densely spaced, sensor 

networks used to characterize and monitor micrometeorological, 

hydrological and geological processes. Micro-Electro-Mechanical 

Systems (MEMS) are integrated mechanical elements, sensors, 

actuators, and electronics on a common silicon substrate (Warneke 

and Pister, 2002). The electronics are fabricated using integrated 

circuit technology employed in the computer industry coupled with micromechanical 

components fabricated using compatible "micromachining" processes. MEMS could 

potentially revolutionize nearly every product by bringing together silicon-based 

Figure 4-8. A 
MEMS sensor 



 

217 

microelectronics with micromachining technology, creating intelligent systems-on-a-chip 

(Figure 4-). 

MOTES (short for reMOTES) are small devices that incorporate communications, 

on-board processing, MEMS-based sensors, and a power source into a very small 

package. MOTES represent autonomous sensor nodes that can communicate with one 

another using radio telemetry, thus creating a non-obtrusive, unattended (or unmanaged), 

and dynamically reprogrammable sensor network. Conceivably, they can be mass-

produced and distributed throughout the environment, potentially producing a relatively 

low cost sensor network. MOTES can monitor virtually all physically measurable 

quantities, such as acceleration, strain, displacement, atmospheric gas composition, 

quantitative microseismics, and magnetic fields.  MEMS-based force balance 

accelerometers, magnetometers, light-sensitive detectors, and high-quality MEMS-based 

temperature and humidity sensors are currently available.  Future work includes MEMS 

interferometers based on corner-cube retroreflectors, laser spectroscopy, and radiation 

sensors.  Long-term research needs include alternative power sources including 

harvesting energy from vibration, thermal gradients, or water and airflow (Warneke and 

Pister, 2004). 

 

4.2.3 INNOVATIVE FLUID SAMPLE COLLECTION TECHNIQUES – 
U-TUBE SAMPLER 
Collection of fluids from deep wells at reservoir conditions is very challenging 

using standard sampling techniques described in Section XX. Pumping-induced changes 

in fluid pressure can force dissolved gases out of solution, potentially changing gas and 

liquid chemistry. Gas-lift techniques strip dissolved gases out of the liquid and dilute or 

contaminate gas-phase samples, thus compromising gas chemistry. Kuster samplers 

collect samples at reservoir pressure, but are not completely fail safe because of their 

mechanical locking and timing mechanism. 

Freifeld et al., (2005) developed an innovative sampling device, called a U-tube 

sampler, to collect fluid samples at reservoir pressure from deep wells. The U-tube 

sampling device utilizes compressed gas to move the fluid to be sampled through a small 
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diameter tube that goes from the surface to the zone of interest (in a boring or well) and 

returns to the surface forming a “U” (Figure 4-). A short stinger with a check valve 

(located at the bottom of the U-tube) passes through a pneumatic packer used to isolate 

the perforated section of the well bore and terminates at an inlet filter sitting in the fluid 

to be sampled. Compressed nitrogen gas is injected into the 

drive leg of the U-tube at land surface causing the downhole 

check valve to close and the fluid in the tube is forced to the 

land surface via the sampling leg of the U-tube. After the 

fluid is sampled, the gas in the U-tube is vented to the 

atmosphere allowing the downhole check valve to open and 

reservoir fluid to reenter the U-tube through the inlet filter 

for the next round of samples. 

The U-tube sampler was used to monitor changes in 

fluid chemistry and phase-changes during CO2 injection into 

a brine reservoir at a depth of 1,500 m below land surface. 

Samples consisting of brine and dissolved gases were 

collected every 50 minutes from a nearby observation well 

using the U-tube sampler, producing high frequency sample 

results. Increasing levels of dissolved CO2 were detected in 

brine samples collected just prior to arrival of free-phase CO2. 

A quadropole mass spectrometer provided real-time gas 

analysis for gas tracers injected along with the CO2 and strain 

gauges mounted beneath high-pressure sample cylinders located at land surface allowed 

accurate measurement of changing fluid density. The U-tube sampler successfully 

captured the first arrival of the CO2 plume and tracers, and on-site analyses revealed 

rapid changes in fluid geochemistry. 

4.2.4 SATELLITE-BASED REMOTE SENSING 
Numerous satellite-based sensors have been launched into orbit since the early 

1960s to image the Earth’s surface and study atmospheric processes. Early satellite 

missions focused primarily on measuring meteorological conditions. In the early 1970s, 

Figure 4-9.
 Downhole 
assembly for the U-
tube sampler. 
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earth resource satellites (Landsat) were designed and deployed to map and monitor land 

cover, enabling direct observation of changes in global land surface caused by natural 

events and human action. Currently, more than a dozen satellites carrying different types 

of sensors are providing important data that improve our understanding of the Earth’s 

atmosphere, oceans, ice, snow and land (U.S. Congress, 1993). 

Numerous instruments have been deployed on satellites ranging from radiometers 

(NOAA’s AVHRR 2 ), spectroradiometers (NASA’s MODIS 3 ), microwave sounders, 

visible and infrared scanners (TRMM 4 ), radar magnetometers and ion scintillation 

monitors to name a few. The majority of instruments deployed detect reflected light or 

radiation from the Earth’s surface, clouds, or moisture in the atmosphere allowing 

measurement of land, cloud and aerosol boundaries, heights and properties; ocean color 

and properties (phytoplankton distribution and biogeochemistry); surface temperatures; 

and atmospheric temperature and vapor content. 

Recent advances in satellite-based instrumentation and image resolution has 

resulted in numerous geologic, hydrologic, and geotechnical applications. For example, 

interferometric synthetic aperture radar (InSAR) is a powerful tool used to construct 

digital elevation maps (DEMs) and image centimeter scale deformations of the Earth’s 

surface. Smith (2002) summarizes the many geotechnical and hydrologic applications of 

InSAR including: 

• Detection of slow slope movement; 

• Ground subsidence; 

• Erosion and deposition; 

• Measurement of soil moisture content; 

• Surface water extent and water level changes caused by flooding; 

• Extent of snow cover; and 

• Extent of river ice, leading to ice jams and flooding. 

                                                 
2 National Oceanic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (USA). 
3 National Aeronautics and Space Administration’s Moderate Resolution Imaging Spectroradiometer 
(USA). 
4 The Tropical Rainfall Measuring Mission Visible and Infrared Scanner (TRMM-VIS) is NASA’s first 
mission dedicated to observing and understanding the tropical rainfall and how this rainfall affects the 
global climate. It is a joint mission with the National Space Development Agency of Japan. 
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Smith (2002) compares the accuracy of InSAR-based DEMs and deformation 

maps with conventional measurements including airborne laser altimetry, photogammetry, 

and ground-based surveys using GPS and laser total station technology. In general, 

airborne laser altimetry and GPS are more accurate, but measurements are labor intensive 

or expensive, making detailed coverage of broad areas impractical. 
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5 Investigation of Uncertainties 

5.1 Introduction 

The state of various nuclear waste disposal programs over the world is still at an 

early stage, such that successes, failures, and lessons learned with respect to treatment of 

uncertainties cannot yet be ascertained. This is true even for the more advanced programs 

like Sweden’s. Nevertheless, sufficient consideration and evaluation of methodologies for 

site characterization and repository development have been conducted, and from these 

evaluations we can extract information on key uncertainties, as well as possible 

approaches to address them. 

Under this task, we have reviewed the planned or ongoing site characterization 

and safety assessment activities in the Swedish, UK, and Finnish programs, drawing 

extensively from the NIREX95 (1995), SITE94 (1996), TILA99 (1999), and SR97 (1999) 

reports published under these programs. In fact, these reports have “learned” much from 

each other, so that there is much agreement on their approaches and considerations. 

Additional information is gathered from recent reports from SKI in their current review 

of ongoing site investigation activities in the SKB nuclear waste disposal program.  The 

objective of this task is to identify and discuss potential site characterization and safety 

assessment uncertainties. 

We shall discuss uncertainties related to nuclear waste repository development in 

two steps. The first is more general and includes various uncertainties that need to be 

considered for the safety assessment of a potential nuclear waste geologic repository. The 

second is focused more specifically on uncertainties during the site investigation stage, a 

crucial first step to obtain information and data for determining the suitability of a site for 

locating a repository. 
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5.2 Uncertainties Involved in Safety Assessment 

5.2.1 CONTEXT FOR DISCUSSING UNCERTAINTIES IN SAFETY 
ASSESSMENT 
A number of reports published by the Nuclear Energy Agency (NEA 1991, 1997, 

1999, 2005) have summarized the international practice of classifying and treating 

uncertainties in the safety assessment of a nuclear waste repository. Generally, safety 

assessment involves an analysis of how a geologic system (with its current flow and 

solute transport patterns) will evolve after emplacement of a waste repository and under 

various internal physical, chemical, mechanical, and biological processes—and after a 

series of external events and influences such as climatic change and future human 

activities. In particular, we are interested in estimating whether the repository can be 

isolated for hundreds of thousands of years and, if the repository degrades, how much 

leakage of radionuclides will occur and over how long a time would it take the 

radionuclides to reach the biosphere. The time frame of concern is typically from ten 

thousands to a million years. 

Uncertainties to be evaluated in safety assessment may be grouped according to 

the main elements that compose such a safety assessment. One way to categorize these 

elements is presented as follows: 

• System Characteristics. Under this category, the concerns are: what features (F) are 
present in the geological system, what processes (P) are active, and what events (E) 
may trigger these processes. Here, features include fracture zones and other geologic 
structures; processes are all physical, chemical, and biological processes that may 
have an impact on the isolation and safety of the waste repository; and events include 
seismic events and also construction activities and creation of a large underground 
opening for the repository. They are referred together as FEPs. 

 
• Scenario Selection. This is to predict or anticipate possible conditions for the future 

environment at the geological site where the repository is located, such as climatic 
conditions and future human activities, e.g., mineral exploration. Sometimes these are 
discussed as external features, events, and processes: External FEP’s. Obviously, 
these conditions will have an impact on fluid flow and solute transport around the 
repository system thousands of years into the future. 

 
• Data and Specific Knowledge of Geologic Structures and Physico-Chemical 

Conditions. While “system characteristics” as defined above mainly identifies the 
types of features present in the geologic system, this particular element focuses on the 
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quantitative determination of the geometric locations and hydraulic or chemical 
properties of these features, as well as those of the fluids in the pore space. Multiyear 
site characterization programs are conducted at the site for such information. The 
results of site characterization will be integrated as a Site Descriptive Model (SDM) 
of the site. 

 
• Modeling. Based on our knowledge of system characteristics and specific quantitative 

data on geologic structures and properties, modeling can be conducted to study 
system responses to various possible future scenarios and to calculate the isolation 
potential of the repository and the flow and solute transport potential within the 
geologic medium. Modeling results will be the main input to risk and safety 
assessment. 
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5.2.2 DISCUSSING UNCERTAINTIES RELATED TO SYSTEM 
CHARACTERISTICS 
Here, the main issue is the comprehensiveness with which all FEPs important for 

repository safety have been identified and evaluated in a qualitatively correct way. 

Fortunately, there exist international FEP databases, which include thousands of possible 

FEPs that may occur in geologic systems. In the context of a particular site, many of 

these FEPs can probably be discarded quickly. However, to reduce the uncertainty in 

evaluating FEP’s (i.e., possibly discarding the wrong FEPs), care must be taken, and the 

experience and skill of the persons responsible for making such decisions must be at the 

proper level. Furthermore, some of the FEPs cannot be discarded without some 

evaluations. These FEPs need to be carefully reviewed for correctness. It is easy for a 

national waste program to conduct an FEP identification in a quick and superficial way, 

which can be a significant source of uncertainty.  

One important area of uncertainty in identifying FEPs is in determining the initial 

or current condition of a geological system. Often the system is assumed to be at steady 

state, which may well be inappropriate, especially considering the very long time frame 

covered by safety assessment. Determination of the appropriate, possibly transient, state 

of the initial system condition is not an easy exercise and can be a source of uncertainty. 

This uncertainty can be addressed to some degree by paleo-hydro-geochemical modeling, 

which evaluates how the system under study has reached the current hydrochemical 

conditions. For such modeling, a good set of data on current hydraulic and geochemical 

conditions is needed. 

In identifying processes that are active in the geologic system, we must recognize 

that processes often do not act independently of each other. Identification of influences 

among processes is not straightforward and can also be a source of uncertainty. Some 

approaches have been developed to try to identify and evaluate, in a systematic way, 

these couplings among processes. 
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5.2.3 DISCUSSING UNCERTAINTIES RELATED TO SCENARIO 
SELECTION 
The international FEP databases include “external” FEPs, which can be used to 

build up alternative future scenarios. Uncertainty, in this context, concerns the selection 

of a sufficient set of potential scenarios, which for the most part is done subjectively. To 

reduce such uncertainty, a structured and logical approach for developing the scenarios 

needs to be applied. To keep the potential scenarios to a reasonable number, we would 

discard some possible cases as having insignificant impact on repository safety—often 

done by simplified evaluation or bounding calculations. This practice needs to be 

carefully reviewed as it is a potential source of uncertainty. 

After identification of a scenario—for example, future glaciation events and 

climatic changes—a detailed definition of the scenario (along with its time dependence) 

often cannot be made with certainty. A range of possible time-dependence behaviors in 

these scenarios will need to be included in any safety assessment. 

5.2.4 DISCUSSING UNCERTAINTIES RELATED TO DATA AND 
SPECIFIC KNOWLEDGE OF GEOLOGICAL STRUCTURES 
AND PHYSICO-CHEMICAL CONDITIONS 

 
This is related to development of Site Descriptive Models (SDMs) and will be the 

subject of discussion in a later section (below). 

5.2.5 DISCUSSING UNCERTAINTIES RELATED TO MODELING 
Modeling uncertainties include all the uncertainties associated with system 

characteristics, scenarios, and geologic structures discussed above, since they are inputs 

to modeling. But in addition, modeling raises other uncertainties. 

One modeling uncertainty can be termed “Abstraction Uncertainty.” In model 

calculations, model design is normally simpler than the structural details present at the 

site, and, also, processes are often described by equations corresponding to a simpler 

representation of these processes. Such simplifications introduce uncertainties that need 

to be evaluated and bounded. Also, the model thus constructed will include parameters 

describing hydraulic or chemical properties of the different components of the model, and 
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parameter values will have to be abstracted from available site investigation data. This 

abstraction process involves potential uncertainties that need to be evaluated and 

understood. 

One example of this kind of uncertainty, one which is relatively well known, is 

the so-called upscaling problem. Since measurements at the site are often over a scale 

very different from the scale of parameters being used in the model calculation, methods 

need to be developed to relate the data between the two scales. This is not just a 

mathematical problem but a physical problem, since new physical structures and 

processes may become involved in the transition from one scale to another. Thus, it is 

important not only to develop upscaling methods, but also to conduct laboratory and field 

tests to confirm their applicability for the particular site and for their specific use in 

modeling. 

Another model uncertainty involves the treatment of spatial variability in the 

geologic medium. While major features, such as fracture zones and geologic stratigraphy, 

can be included deterministically in models, the smaller-scale heterogeneity has to be 

accounted for by averaging (smoothing) or stochastic methods. The impact of these 

methods on flow and solute transport modeling is often not obvious—and can be a source 

of uncertainty that needs to be evaluated. 

5.2.6 INTEGRATION OF UNCERTAINTIES IN SAFETY 
ASSESSMENT 

 

In the safety assessment of a nuclear waste repository, all the uncertainties 

discussed above tend to act together, and some of them are coupled with each other. For 

example, the identification of FEPs, their representations in model calculations, and the 

site data that provide estimates of the model parameters are closely related. Methods for 

uncertainty integration will need to be developed, especially for cases in which data 

uncertainties and the spatial variability of property parameters are represented by 

probability distributions, which are then used in models based on stochastic methods. 
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5.3 Uncertainties in Site Investigations TO OBTAIN Data and 
QUANTITATIVE INFORMATION of Geological Structures and 
Physico-Chemical Conditions 

Site investigation is a crucial first step in a national waste repository development 

program. It provides needed data to determine whether a site is suitable for hosting a 

repository and to conduct a safety assessment. More directly, the goal of site 

investigation is to arrive at a “Site Descriptive Model (SDM),” which gives the locations 

and characteristics of site features (such as fracture zones, type of rocks, topography, 

stress conditions, and water chemistry distributions), as well as the physical, chemical, 

and biological processes occurring at the site. The SDM is constructed from site data and 

information, and should be constructed in stages, as more and more data become 

available. Thus, each SDM is given a version number. Each stage or version is then based 

on site data available at that time, and successive versions represent improvements over 

the previous versions. In this way, the bases for the various details in an SDM, in terms of 

site information and data, can be tracked, reviewed, and verified, with their confidence 

level assessed. Of critical importance for site characterization (and the subsequent 

assessment of repository safety) is the understanding of uncertainties in the SDMs. 

5.3.1 TYPES OF SITE INVESTIGATION UNCERTAINTIES 
 

From site measurements to a SDM, several types of uncertainties can be 

identified:  

• Data uncertainties. These are measurement errors caused commonly by instrumental 
limitations. They are well recognized and can be handled through sensitivity analysis 
to arrive at parameter uncertainties. 

 
• Interpretation uncertainties. Given measurement data, parameters characterizing the 

SDM need to be derived. These often require assumptions about the conceptual 
model that may not be valid. One very simple example is pressure transient data from 
a pressure-pumping test across a fracture zone. If we assume that the fracture zone is 
homogeneous, with constant permeability over its plane, the value of the permeability 
can be calculated. However, if the fracture zone is actually heterogeneous and 
anisotropic, with varying properties over its plane (as is commonly the case), a 
homogeneous, constant-permeability assumption will introduce significant 
uncertainty into the interpretation. 
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• Conceptual or structural uncertainties. These are uncertainties involving the structures 
in the SDMs, such as positions of fracture zones, rock type distributions, and 
boundary properties. Since data are often sparse in space, it is often hard to pin down 
the extent, continuity, and direction of these features. 

 
• Simplification uncertainties. Geologic structures are detailed, with multiple levels of 

substructures. In SDMs, there is a need to simplify and average out details to a 
manageable resolution. Such simplification presents uncertainties. These uncertainties 
are a function not only of simplification approaches and methods, but also a function 
of the physical character of the underlying substructures or heterogeneity, and of the 
SDM’s uses (and its sensitivity to the simplified structures). 

 

Note that the above uncertainties are site characterization uncertainties, which are 

to be distinguished from the more general safety assessment uncertainties that have been 

discussed above. On the one hand, the latter is based on the former and includes further 

uncertainties in modeling codes, model construction, and accounting for heterogeneity 

(for example, the use of stochastic methods). On the other hand, safety assessment is 

narrowly focused on issues that impact safety and would for the most part be concerned 

with uncertainties in potential radionuclide transport and dose calculations for risk 

assessment. Generally, site characterization is aimed more broadly at identifying site 

features and structures, as well as understanding the hydrological, geochemical, 

geomechanical, and biological processes present at the site, whether or not they have an 

impact on repository safety. In this sense, it has a broader view and forms the foundation 

upon which safety assessment models can be built. 

Below, we will not discuss commonly known uncertainties, such as instrument 

accuracies, but rather focus our discussions on site investigation uncertainties, which are 

often not recognized. 

5.3.2 DISCUSSING UNCERTAINTIES RELATED TO 
STRUCTURAL MODEL 

 
Three remarks may be made regarding these uncertainties: 

• Site descriptive models (SDMs) may include structural uncertainties (geometries of 
deformational or fracture zones, rock type locations and extents, transmissivity 
distributions) that cannot be handled statistically or treated by conventional sensitivity 
calculations. To deal with such uncertainties, we must consider additional (perhaps 
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two, three or more) alternative SDMs, sometimes referred to as Alternative 
Conceptual Models (ACMs). These are models that are consistent with all available 
data and information, and yet different from each other. These ACMs need to be 
defined and tracked. Some of them may be modified or proven invalid as more data 
come in; however, it is expected that some ACMs would remain valid, and these 
should be carried through to the stage of assessing repository performance. At this 
point, the results will need to be presented as a range encompassing the predictions of 
all SDMs and ACMs, thus contributing to uncertainty estimation in repository safety 
assessment. 

 
• Special care needs to be placed in determining the boundary conditions of the SDMs. 

Often the boundaries are located according to the convenience of model construction, 
or according to measurement boundaries dictated by political or social factors. 
Wherever possible, the boundaries should be placed based on hydrogeological 
information. For example, a line along a ground water divide or a hydraulically non-
conducting fault may be a good boundary to use. Also, in general, evaluation should 
take into account whether the conditions along the boundary are constant in space and 
in time. Often, constant conditions are assumed without justification. Uncertainties in 
terms of transient and varying boundary conditions need to be assessed, documented, 
and tracked in the SDM or as part of an ACM. 

 
• In some waste disposal programs, because of the lack of site data, “expert judgment” 

is sometimes used. One example of this type of data is probability distributions of 
parameter values in a flow domain, developed by expert elicitation. In this elicitation, 
a group of experts with substantial experience in these parameters are requested to 
provide their best estimates of the distributions. Uncertainty in this process is hard to 
assess, but careful documentation of the basis and process of the elicitation is 
critically needed, so as to allow for future review and update. 

 

5.3.3 DISCUSSING UNCERTAINTIES RELATED TO DATA BIAS 
 

Three remarks may also be made about these uncertainties. 

• We must ensure that the existence or absence of features in a SDM does not result 
from variation in data density. For example, an area may be assumed to contain no 
fracture zones just because no measurements for fracture zones have been made in 
that area. Another common example is to assume a low occurrence of vertical 
fractures only because observational boreholes are mostly vertical and they are more 
likely to detect horizontal fractures and not vertical ones. Thus, it is helpful and 
important to evaluate different parts of the SDM and assign uncertainty levels to areas 
where data density is low. 

 
• Geologic formations are heterogeneous. In evaluating their parameters, we must 

identify the “support scale” of the parameters. In other words, measurements are 
related to a spatial scale over which the parameter values represent some kind of 
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average. For example, a pumping test may involve a spatial dimension of tens to a 
hundred meters (the so-called cones of influence), whereas measurements on core 
samples involve the dimension of only a few to tens of centimeters. If these support 
scales are not documented, significant uncertainties could be introduced into these 
parameters. Further, site characterization should aim at not only measuring averaged 
values (over the “support” scale), but also their variations (for example, in terms of 
standard deviations) over a wider area. 

 
• To manage data uncertainties, a proper Quality Assurance (QA) program needs to be 

established, to ensure that all data are traceable and transparent. Under a QA program, 
for example, the measurement tools used and interpretative methods applied will be 
documented. However, it is important to emphasize that a proper QA program should 
aim at ensuring only that data are traceable to their sources and transparently tied to 
how they are obtained. A proper QA program should not be a project management 
tool or a decision-approval procedure, which should be a separate unit in a nuclear 
waste management organization. Confusing these two functions can become a major 
cause of frustration and disruption to project progress. 

 

5.3.4 DISCUSSING UNCERTAINTIES RELATED TO OTHER 
ISSUES IN SITE INVESTIGATION 
An important and useful method to assess SDM uncertainties is to study the 

consistency between the geological (geophysical), hydrological, and hydrogeochemical 

aspects of the SDM. For example, it may be found that geological structures do not fully 

correlate with hydraulic flow zones. In one study of the Aspo site in Sweden, it was 

found that only 11% of the flow indicators in boreholes at the site corresponded to 

enhanced fracture densities in these boreholes, and that 23–34% of flow indicators did 

not correspond to obvious borehole structures. All these need to be understood. Similarly, 

whether water chemistry distributions are consistent with the identified geologic 

structures and calculated flow patterns can be used to assess uncertainties in the SDM. A 

substantial modeling effort is needed within a site characterization program to evaluate 

such uncertainties. 

Other issues related to SDM uncertainties include 

• The need to identify and characterize recharge and discharge areas of the 
hydrogeologic system. These areas provide very useful information on the flow 
field in the SDMs.  

 
• The importance of anisotropy as a characteristic in geologic systems. Ignoring it 

generates significant uncertainties. Thus, attempts need to be made to measure 
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anisotropy in thermal properties, stress fields, permeability fields, and fracture 
networks, as well as single-fracture transmissivities. 

 
• In evaluating laboratory data, the need to consider stress releases on samples 

when they are extracted from a deep borehole. These stress releases could cause 
microfractures that in turn could introduce significant uncertainties into laboratory 
measurements of porosity, diffusivity and other properties 

 

The above present some of the not-so-well-recognized uncertainties that can have 

a significant impact on development of site descriptive models through site investigation. 
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6 Geochemical Issues 

6.1 Introduction 

In this section, we will look ahead a little and discuss some geochemical issues 

that are relevant to the Japanese waste isolation program. Although it is highly unlikely in 

Japan that a preliminary investigation site will be found unsuitable because of its 

groundwater chemistry, it is nonetheless important that the ground water chemistry is at 

least chemically compatible with the planned engineering barrier design. 

The Japanese program to store processed high level radioactive waste (HLRW) 

underground takes advantage of two engineered barriers in addition to the geologic 

barrier in order to ensure long-term containment of radionuclides.  The two engineered 

barriers are respectively (1) a thick (approximately 15 cm) thick sacrificial steel overpack 

container, and (2) a backfill consisting primarily of bentonite.  The natural geologic 

barrier is tentatively identified as a sedimentary rock of argillaceous composition.  Such a 

rock type could possess favorable characteristics where incipient faulting and fracture 

generation resulting from excavation of the repository may tend to self-seal after closure. 

If spent fuel from a nuclear reactor is effectively processed, and all actinides are 

recovered, the residual HLRW will consist almost entirely of fission product 

radionuclides.  Most of these radionuclides possess relatively short half-lives, with the 

exception of Cs-135 and I-129, with half lives of 2.3E+6 yr and 1.5E+7 yr respectively.  

Chemical separation of I-129 should be feasible, and the small quantities of this 

radionuclide could be handled separately, either through construction of a dedicated 

repository with a 5.0E+7 containment period, or more practically, by neutron capture, or 

some other nuclear transformation in a reactor.  The separation of Cs-135 from Cs-137 is, 

however, impractical.  If both I-129 and Cs-135 are co-disposed with the remaining 

short-term radionuclides, then it must be presumed that their release from the waste 

container will become a near certainty after 1E+6 yr. 

After 1,000 yr, only Cs-135 will be the surviving Cs isotope, and if released, it 

will be subject to ion exchange with K+ and native Cs-133 in clays.  Therefore, it will be 

both retarded and diluted during transport.  I-129 will also be diluted with native I-127.  
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Retardation might be effected through anion exclusion, especially in compacted clays of 

the backfill and host rocks.   Because both I-129 and Cs-135 are β emitters with long 

half-lives, their toxicity is relatively low and they are unlikely to constitute a serious 

radiation hazard unless ingested in significant quantities; a very unlikely outcome. 

The processed HLRW is likely to contain traces of actinides, their concentrations 

depending on separation efficiency.  If the residual concentrations were sufficiently low, 

special requirements to ensure containment over prolonged time periods, i.e., 1E+5 to 

1E+6 yr would not be necessary. Although some produced actinides possess very long 

half lives, e.g.,  U-233 (1.59E+5 yr), U-236 (2.34E+7), Np-237 (2.14E+6 yr), Pu-242 

(3.75E+5 yr), Pu-244 (8.0E+7). Cm-247 (1.56E+7 yr), their concentrations in HLRW 

would be for the most part low, depending on the type of fuel cycle used, and the 

processing technology.  The potentially most hazardous radionuclides could be U-233, U-

236 and Np-237.  

6.2 Radionuclide Containment 

Geologic repositories for the storage of radioactive waste  must be  designed  with  

several considerations in mind.  These considerations involve a consensus as to what 

radiation doses would be considered tolerable for given radionuclides to prevent adverse 

environmental and human health effects, the minimum required containment period to 

meet these requirements, and the uncertainties associated with predictive calculations to 

estimate the containment period.  The containment period relates to the duration of the 

confinement of all radionuclides in a circumscribed volume of the geologic medium.  To 

minimize risk, containment is achieved through the imposition of a multiplicity of 

barriers to radionuclide migration.  They are divided into two categories; natural, i.e., 

geologic barriers, and engineered barriers.  The barrier system must provide assurance of 

adequate containment at reasonable cost.  In other words, if the cost of ensuring the 

required degree of safety for a given site proves to be excessive, then alternative 

combinations of engineered and geologic barriers must be considered. 

The design of an effective geologic repository is predicated on an ability to 

predict radioelement transport through multiple barriers with varying chemical and 

physical properties under the influence of transient thermal, chemical and radiation fluxes.   
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Much has been written on this topic over the past thirty years, and a large number of 

experimental, theoretical and modeling studies have been conducted in an attempt to 

clarify chemical processes and increase the confidence of repository performance 

predictions.  These studies have been conducted in the United States, Canada, Japan, 

several European countries, and in Russia, but only in Russia have large quantities of 

high level radioactive waste actually been disposed of in underground repositories, and 

then primarily in the form of liquid processing waste.  Although the Russian approach to 

subsurface waste disposal has not lead so far to any major reported environmental 

catastrophes, public and scientific opinion elsewhere is averse to the direct disposal of 

high-level liquid radioactive waste, regardless of the confidence placed in the long-term 

functionality of natural geologic barriers.  Elsewhere, and more recently in Russia, the 

primary emphasis has been on repositories designed to accept solid waste, either as Spent 

Unreprocessed Fuel (SURF), or as reprocessed High Level Radioactive Waste (HLRAW).  

Repository designs vary form country to country depending on the nature of the waste 

form, availability of suitable geologic formations, and a priori concepts upon which 

subsequent research is tailored to provide the needed justification.  Discussion of these 

various design concepts is beyond the scope of this communication.  Instead, emphasis is 

placed on the conceptual issues that should be addressed in repository design, and how 

modeling would allow for the design to be optimized in relation to containment and cost 

constraints.  

6.3 Engineered Barrier Design 

Figure 6-1 illustrates a cross section of a conceptual design of an engineered 

barrier system to confine high-level reprocessed radioactive waste.  The design 

incorporates five barriers to radionuclide migration.  Their characteristics are described in 

the following paragraphs: 

(1) The Waste Form.  The most common method of treating fission product 

radionuclides from waste reprocessing is to dissolve the radionuclides in a 

sodium borosilicate melt.  Most will dissolve, but some may remain as discrete 

oxides in suspension.  Other waste forms have been proposed, including 

“Synrock”, a concept developed by A.E. Ringwood of Australian National 
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University, Canberra, Australia, involving the synthesis of high-temperature 

crystalline alumino-silicate rock, designed to incorporate radionuclides in various 

igneous-rock forming mineral hosts, and a low-temperature ceramic assemblage 

of hydrated alumino-silicate mineral hosts that would form stably at hydrothermal 

temperatures, i.e., 100-250 C, an idea originally proposed by R. Roy at 

Pennsylvania State University.   Ideally, HLRAW stored in sedimentary 

formations should be designed to be thermodynamically compatible with the 

conditions of storage, a low ambient temperature being one of them.  Chemical 

stability can be engineered, in part, by consideration of the chemical composition 

of additional barriers.  It is thus evident that low-temperature hydrated ceramics 

would be the preferred choice.  However, the technology for design and 

fabrication of such waste forms has not proceeded to the stage of 

commercialization.  Another neglected consideration is the need to consider 

whether or not the waste form could to corrode the container.  Ideally, the waste 

should be in thermodynamic equilibrium with the container within the 

temperature range expected following repository closure.  However, it should be 

recognized that the HLRAW will emit a significant radiation flux, which will 

cause radiolysis, affecting the stability of both the waste and phases comprising 

the surrounding engineered barriers.  In most geochemical modeling, these issues 

are not taken into account, and therefore, the conditions to minimize the potential 

likelihood of radionuclide release from the waste form are ignored. 

(2) The Waste Canister.  The terminology for the waste containers has varied over 

the years.  In this context, the waste canister is defined as that container directly 

in contact with the waste.  The waste canister is usually thin-walled, and when 

holding a borosilicate glass waste form, could be the container into which the 

molten borosilicate liquid was initially poured.  Although the canister could be 

fabricated of any of a number of metal alloys, a particularly suitable material 

would be an invar alloy, particularly that with the composition NiFe.  The reason 

for this selection is that this alloy would be more noble than steel, and if a steel 

overpack is used, and is in contact with the canister, it would be galvanically 

protected against corrosion for as long as the any apart of the steel overpack 
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remains uncorroded.  Naturally occurring crystallized NiFe has been observed in 

association with kamacite (α-Fe) as a secondary mineral resulting from the 

hydrolysis of ultramafic rocks consisting dominantly of olivine and/or enstatite.  

A NiFe canister would be fabricated from rolled sheet taenite γ-(Ni,Fe) of the 

given composition rather than the structurally ordered form, which can only form 

at low, subsolidus temperatures below ≈ 400 °C.  However, it has been reported 

that a high radiation flux will induce sub-solidus ordering.  This flux can be 

conveniently supplied by the decay of fission product radionuclides in the waste 

form itself.  The cost of the canister can be controlled, as its thickness needs only 

to be sufficient to maintain physical integrity, as it will not corrode so long as the 

enclosing steel overpack has not corroded away.  After the overpack has been 

sacrificed, more oxidizing conditions could cause the formation of a layer of 

spinel, e.g. (Ni,Fe)O.Fe2O3, on the Ni-Fe canister, which could act as a 

passivating layer, thereby further inhibiting canister corrosion. 

(3) Sacrificial Steel Overpack.  The primary purpose of the steel overpack is twofold; 

to provide physical protection to the waste form and canister during transport, 

and to act as a radiation shield during handling.  Normally, a thickness of 

approximately 15 cm is sufficient to ensure both physical and radiation protection.  

If, after burial, the waste overpack is to be utilized as a sacrificial anode to protect 

the canister, then it should be fabricated from a low carbon steel, in order to 

minimize hydrogen embrittlement, and premature failure. 

(4) Composite Redox-Stabilized Protective Barrier.  The engineered barrier 

surrounding the steel overpack should be constructed of materials that induce 

reducing conditions, and limit or even prevent corrosion of the overpack while 

retarding access of water.  By analogy with the thermodynamic stabilization of 

kamacite in serpentinized dunites, this barrier should consist primarily of 

comminuted olivine in a plastic matrix.  This matrix could be composed of 

antigorite and kerolite or talc together with an expandable clay with saponitic 

affinities.  The olivine mesh size should be such that its reactivity will generate a 

sharp interfacial boundary between the redox state where kamacite is close to 



 

246 

thermodynamic equilibrium, and the anoxic reducing conditions typical of a 

sedimentary argillaceous formation.  The weight fraction of olivine should be 

maximized consistent with matrix plasticity and convenience of physical 

emplacement.  The water content should be kept to a minimum, and matrix 

permeability should be minimized.  It is assumed that in olivine, the following 

reaction is operative: 

3FeO(ol) +H2O = Fe3O4 + H2 

The hydrogen partial pressure rises to the point where Ni-Fe alloys are 

thermodynamically stabilized, and the stability field of a-Fe is closely approached.  

In effect, the barrier is also sacrificial, in that it protects the steel overpack from 

corrosion until all of the olivine has altered through hydrolysis.  If, during the 

protective phase of this barrier, the waste package were to fail, and radionuclides 

were to be released, then the reducing conditions would immobilize any residual 

actinides to the insoluble (III) and (IV) states.  Nuclides of Tc, Mo,  Ni and Sb 

could also be immobilized in the insoluble (II) state or metallic state, respectively. 

Note, however, that radiolysis of water could lead to the formation of hydrogen 

peroxide and hydrogen, thus: 

2H2O + γ = 2OH• + 2H•; 2OH• =HOOH; 2H• =H2 

Although it is possible that NiFe might catalyze the recombination of the products 

of radiolysis, it is more likely that hydrogen will diffuse from the barrier in a 

quasi-inert state, leaving reactive HOOH.  The extent of this adverse reaction 

would depend on the effectiveness of the steel overpack as a radiation shield, and 

the time after emplacement of the waste. 

(5) Clay Retardation and Sealing Barrier.  The essential purpose of the outer 

engineered barrier, assumed to be constructed primarily of bentonitic clay, is 

twofold; to provide an effective seal against the advective penetration of ground 

water, and to act as a barrier to radionuclide migration.  Many studies have been 

conducted to assess the potential of a smectite barrier to retard radionuclide 

migration, and it has been found that retardation is modest.  The mobility of 
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cations through the hydrated interlayers and between individual crystallites can 

be significant, and compaction is rarely sufficient to have a material effect in 

decreasing matrix permeability beyond a certain point.  

Various amendments can be incorporated into the inner composite and outer clay 

sealing barriers to serve specific purposes.  For example, a key requirement in 

maintaining the integrity of the steel overpack and NiFe canister is preventing the ingress 

of sulfate, which would be reduced to sulfide and precipitate various Ni and Fe sulfides.  

Because SO42- is ubiquitous in groundwaters, some means of retarding barrier 

penetration by sulfate should be found.  There are numerous potential solutions to this 

problem, some more practical than others.  For example, Ba(OH)2 could be incorporated 

in the outer clay layer, which would be reactive, and initially displace Ca2+ from the 

smectite.  However, both Ca(OH)2 and Ba(OH)2 would react with sulfate to precipitate 

either gypsum (or anhydrite if the temperature is high enough) or barite, which is 

extremely insoluble.  The precipitation of these phases will cause an net increase in the 

volume of solids, and could decrease barrier permeability temporarily inhibiting 

migration of SO42-.   Dissolved Ca(OH)2 and Ba(OH)2 could also diffuse into the pore 

and factures of the adjacent country rock, precipitating sulfates in situ and encapsulating 

the waste /barrier system. 

Another amendment might be the addition of Cu2O as a “getter” for I-.  Thus: 

Cu2O + 2NaI + H2O = 2CuI + 2Na(OH) 

CuI is extremely insoluble, and could be one means of containing I-129.  

However, NaI(aq) would also be in competition with NaCl(aq).  Thermodynamic 

calculations would have to be performed to establish whether Cu2O would be an effective 

amendment for this purpose. 

There are undoubtedly other creative modifications that could be introduced.  For 

example, illite is known to be an effective ion exchanger for Sc+.  Therefore, Cs 

migration the clay barrier might be decreased through the admixing of illite.  The 

introduction of mafic hyaloclastite to the clay barrier could expand the reducing 

environment beyond the inner redox composite layer.  Hyaloclastite reaction with water 
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will produce secondary nontronite and excess silica, which could precipitate in adjacent 

fractures in the country rock, thereby decreasing its permeability in a manner similar to 

that described above for alkali earth sulfates. 

Control of actinide transport could be established adjacent to the steel overpack in 

the composite barrier through the addition of a reactive form, e.g. amorphous uraninite 

synthesized with U-238 (depleted uranium).  During recrystallization, it would capture U-

233, U-236 and Np-237 radionuclides.  Because the concentration of U-238 would 

exceed the hazardous radionuclides by orders of magnitude, and the solubility of UO2 is 

low, isotopic dilution could lower the concentration of mobile U-233, U-236 and Np-237 

correspondingly by orders of magnitude. 

6.4 The Natural Geologic Barrier 

It is almost axiomatic that geochemists are inclined to place greater faith in 

engineered barriers as a primary defense against radionuclide migration, whereas 

engineers, mindful of the limitations of engineering design, are inclined to place greater 

faith in the geologic barrier.    Geologic formations tend to be heterogeneous by nature, 

and it is only in a restricted range of geologic environments where formations are 

sufficiently uniform that their lateral continuity can be predicted with confidence.  Such 

environments are usually found offshore, where sedimentary deposits show widespread 

lateral uniformity, although variations in the vertical direction can be extreme.  However 

it is the vertical dimension that can be characterized in detail during excavation of a 

geologic repository, and if the lateral extent can be confidently predicted, and all faults 

and their transmissivities determined, then the associated hydrologic regime can be 

similarly predicted with a fair degree of confidence.  Furthermore, hydro-geochemical 

characterization of the formation waters can be used to quantify groundwater migration 

rates and go a long way towards calibration of the hydrologic model. 

The chemistry of groundwater migrating past the emplacement drifts will be 

modified in chemical composition, and pick up any radionuclides released by the 

repository.  Although some secondary precipitation and/or ion exchange and adsorption 

can occur adjacent to the repository due to minor chemical incompatibilities between the 

engineered barrier system and the host rocks, as noted in the preceding section, 
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radionuclide transport is likely to be affected primarily by adsorption and ion exchange 

alone.  A proper characterization of these properties in situ will therefore allow for the 

formulation of a model where radionuclide migration might be predicted with reasonable 

confidence. 

6.5 Modeling the Geochemistry of the Barrier System 

During the last 40 years, an enormous degree of progress has been made in 

developing the capabilities for modeling chemical processes in natural systems.  However, 

many limitations still prevent quantitative predictions from being made with the 

confidence expected in the performance of many other civil and geologic engineering 

structures, primarily because repository performance must be predicted over time spans 

of unprecedented length, even exceeding the duration that modern man has existed on 

earth.  Therefore uncertainties of the order of one to two orders of magnitude in model 

predictions are to be expected. 

Current state of the art reactive geochemical transport models will permit the 

modeling of engineered barrier systems of the type illustrated schematically in Figure 6-1.  

One code used extensively for the modeling of both the near and far field environments at 

Yucca Mountain geologic repository in the United States is TOUGH-REACT (Xu et al., 

2006).  Other codes are also available that can perform similar functions.  Almost all 

codes will require modification and adaptation to meet engineered barrier needs, 

especially if the code is to be used to model complex barrier systems involving major 

variations in pH and Eh.  However, such modeling can be supported by the wealth of 

experimental data that has been conducted to assess the performance of bentonite 

backfills. 

A key requirement in geochemical modeling of geologic repositories is the need 

to know the uncertainty of model predictions, and to understand the sensitivity of various 

design parameters in affecting the repository containment requirements.  Such 

requirements are generally in response to licensing or regulatory needs, and are subject to 

critical review.   Government agencies recognize current limitations of model analysis 

and the lack, or insufficient accuracy, of available data, and require that additional 

modeling be performed to identify and assess those aspects that contribute significantly to 
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uncertainty.  Regulations also tend to place greater weight on conservative assumptions 

rather than realistic estimates.  Unfortunately, this emphasis on conservatism, and time 

constraints in meeting licensing deadlines, can result in sidestepping the challenges 

associated with rigorous modeling of geochemical processes in favor of simplistic and 

unrealistic models in conjunction with excessively conservative assumptions to 

compensate for their inherent uncertainties.  The regulatory burden, by diverting 

resources into conservative demonstrations therefore has the unintended consequence of 

deterring model refinements, which could ultimately provide scientifically more 

convincing demonstrations of environmental integrity.  

The continued use of overly simplistic geochemical models and associated 

excessive conservatism is no longer justified by current progress in modeling.  

Considerable strides are being made in analyzing uncertainty in chemical and 

geochemical models (Ekberg and Emren, 1996; Ekberg et al., 2000; Najm et al., 2003; 

Reagan et al., 2004), and such developments should be integrated fully in reactive 

transport models, so that model outputs will already incorporate output parameter 

uncertainties.   

Sensitivity studies are also a critical part of investigations into barrier design 

optimization.  With the substantial number of design parameters, it is especially 

important to identify those that can significantly influence radionuclide containment over 

time, and permit the design to evolve in a manner that not only makes the design safe, but 

also allows supporting research efforts to focus only on those parameters deemed to be 

important to the design. 

Finally, it should be emphasized that any given simulation of repository behavior 

describes the system’s evolution through a multi-component chemical hyperspace.  

Without supporting thermodynamic and kinetic analyses, system behavior will not be 

easily understood, and a constructive approach to model refinement will not be easy.  

Thus, the use of supplementary activity diagrams to illustrate the distribution of stable 

and metastable phases at various defined chemical potentials, or suitable Eh-pH diagrams 

to illustrate redox transformations in the system are essential aids that must be used in 

conjunction with reactive transport modeling studies.  Figure 6-2 illustrates an Eh-pH 
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diagrams in which the stability fields of phases in the system Fe-Ni-S-O-H are displayed.  

While this diagram would require revision in the light of more recent data, it illustrates 

the potential complexity of the redox stabilized barrier system, even without the essential 

addition of Si to the chemical system. 

6.6 Conclusions and Recommendations 

Current engineered barrier designs for HLRAW repositories do not take full 

advantage of opportunities for enhancing long-term containment through the use of 

galvanic protection, or redox buffering.  The uses of barrier compositions that allow 

quasi-thermodynamic stabilization of the waste package materials have not been 

adequately addressed.   Although reactive geochemical transport models incorporating 

parameter uncertainties remain to be developed, full advantage should be taken of 

existing state of the art codes to model engineered barrier system behavior, with a view to 

optimizing the design for long-term containment, consistent with the repository natural 

geochemical environment, containment requirements to ensure protection of the 

environment and human life, and realistic costs.   
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Figure 6-1. Schematic cross section of an engineered barrier system surrounding a high-
lebvel radioactive waste container.  Scale is approximate, and would depend ultimately 
on  design requirements. 
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Figure 6-2. An Eh-pH diagram of the System Fe-Ni-S-O-H at 25°C and one atmosphere.  
Total S concentration is 10-6 molal.  (From Apps and Cook, 1981) 
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7 Evaluation of uncertainties due to hydrogeological modeling 
and groundwater flow analysis  
− strategy for characterizing a new site − 

7.1 Introduction 

At the preliminary-site-investigation stage of repository siting, the quantity of 

available data is generally limited because of the restricted number of boreholes that can 

be drilled. Nonetheless, it is essential (from the limited data) to identify the parameters 

important to the safety of nuclear waste disposal and use those data in an iterative 

modeling study. Among the hydraulic parameters available from borehole tests, it is 

obvious that permeability and porosity are the most important ones. In the preliminary 

investigation stage, it is difficult to obtain statistically sufficient permeability data from 

the limited amount of well tests. Therefore, it is more realistic to use a representative set 

of permeability values for each hydrogeological unit. 

We investigate how  uncertainty affects the model outcome when the input values 

are based on a limited amount of well test data. In this final report, we describe the efforts 

to construct a “real” site from the most up-to-date data available from the Tono region in 

Japan. We compare the results of the models (constructed using limited amounts of data) 

to the results at the “real” site.  

We plan various preliminary-investigation configurations and conduct 

preliminary numerical investigations in a synthetic site constructed by using an available 

set of real data from an existing domestic characterization site. We then use these 

preliminary data to construct a model of the “real” site and make predictions of particle 

travel times to compare against those at the “real” site.  

We used an extensive data set from a domestic study site and constructed a “real” 

rock mass, for which we conducted numerical site characterizations using various drilling 

scenarios. Based on the data obtained from the boreholes, we constructed site models and 

made predictions of particle travel times, which we compared to the “real” data.  

7.2 Background 
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The Japan Atomic Energy Agency (JAEA) conducted a multi-national project to 

investigate the uncertainties involved in the prediction of flow and transport behavior of a 

fractured rock mass.  In the initial stage of the project, known as the CORE Collaborative 

Study (Oyamada and Ikeda, 1999; Doughty and Karasaki, 1999), several research 

organizations conducted numerical simulations of tracer transport through a hypothetical 

fractured rock mass at the 100 m scale.  Each group was provided with the same 

hydrogeological data set and was requested to use the same boundary conditions.  The 

groups’ results were compared to identify and quantify uncertainties in model predictions.  

The study found that discrete fracture network (DFN) models and effective continuum 

models (ECM) produced comparable results for mean values of flow through the model 

and tracer travel times, but that DFN models showed greater variability among stochastic 

realizations than did ECM. 

The second stage of the project took a similar approach, but provided site-

characterization data for a real field site, a 4 km by 6 km by 3 km region surrounding the 

MIU site in the Tono area of Gifu, Japan, and left the choice of boundary conditions up to 

the research groups.  The main results of the different groups’ models were the predicted 

particle travel times from specified release points to the model boundary.  LBNL 

developed an ECM and predicted relatively short travel times on the order of tens of 

years.  Our work is summarized in Doughty and Karasaki (2001).  There are no 

comparable field data available to directly validate the models, so, as in the first stage, 

model uncertainty was assessed by comparing among results of different models (Sawada 

et al, 2001).  Although the general features of the flow paths from the release points to 

the model boundaries were similar for all the models, travel times varied over a huge 

range – from 1 to 10,000,000 years.  Much of this variation could be attributed to the 

large range of fracture porosities assumed by the different groups, but direct comparison 

between models was difficult because of differences in how lateral boundary conditions 

were assigned. 

For additional modeling of the region surrounding the MIU site, JAEA specified a 

set of common lateral boundary conditions for all the groups to use, so that differences in 

results could be related directly to the modeling approach and property assignments.  In 

addition to examining steady-state flows and transport, we also did a transient-flow 
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analysis by simulating the Long-Term Pump Test (LTPT), and thermal analysis of 

steady-flow conditions. It was found that groundwater flow has a large impact on the 

subsurface temperature distribution and that the thermal analysis proved a valuable 

means of discriminating between alternative model boundary conditions, which other 

field observations failed to do. Cooling due to large surface recharge in the closed model 

produces temperature profiles at odds with the conduction-dominated profiles observed in 

the field, eliminating the closed model from further consideration This work is 

summarized in Doughty and Karasaki (2002). Comparison of the results of our 

isothermal studies with those of the other research groups is presented in Sawada et al. 

(2003), which concluded that the major source of uncertainty in hydrogeological 

modeling often lies in the conceptual model rather than the details of numerical 

simulation.  We were the only group to conduct thermal studies.  

Subsequent to the LTPT, we analyzed pressure transients collected before, during, 

and after the LTPT itself.  Strong pressure-transients were observed in a number of wells 

in response to the removal of a packer in well MIU-2, which enabled flow across the 

Tsukiyoshi fault.  We refer to the packer removal and subsequent replacement as the 

“inadvertent MIU-2 well test” and modeled it numerically by increasing permeability 

(packer removal) then subsequently decreasing permeability (packer replacement) of the 

grid block representing the intersection of Well MIU-2 and the Tsukiyoshi Fault.  We 

calibrated the model to observed pressure transients to infer permeability and porosity 

information for the vicinity of the Tsukiyoshi Fault (Doughty and Karasaki, 2003).  A 

key finding of the study was that pressure responses occur more slowly than our original 

model predicted, necessitating an increase in model porosity to effectively increase model 

storativity, and thereby slow model pressure responses.  This porosity increase then acted 

to lengthen predicted tracer travel times by about a factor of ten compared to our previous 

model. 

Next, the lateral domain of the model was increased to 9 by 9 km.  This extension 

enabled lateral boundaries to coincide with geographic features that provide a sound basis 

for assigning lateral boundary conditions: the eastern and southern boundaries of the 

model coincide with the Toki River, which is represented as a constant head boundary; 

the northern and western boundaries of the model coincide with topographic high points 
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(ridge lines), which are modeled as closed boundaries to represent the no-flow symmetry 

line of a watershed divide.  We modeled the steady-state head distribution, groundwater 

flow, and tracer transport from selected release points.  We developed models for a base 

case and several sensitivity study cases with additional faults included, stochastic 

distributions of flow properties, or different surface recharge rates.  The models were 

calibrated to steady-state head profiles in several wells, followed by a thermal analysis in 

which steady-state modeled and observed temperature profiles were compared (Doughty 

and Karasaki, 2004). 

We then investigated representing the fractured rock using a dual-continuum 

model (DCM), in which each grid block contains two sub-grid blocks, one representing 

the fracture network and the other representing the intact rock matrix (Doughty et al., 

2005).  Unlike the ECM, in which fractures and matrix are assumed to be in equilibrium 

within each grid block at all times, in the DCM, the fracture and matrix components of 

the model respond to applied perturbations separately.  The ECM and DCM produce 

identical results for steady-state pressure and temperature profiles, but in order to match 

the pressure transient response to the inadvertent MIU-2 well test, different fracture 

properties are required for the DCM compared to the ECM.  Specifically, because the 

matrix provides an additional storage term, smaller fracture porosity is required for the 

high-permeability “sandwich” layers along the Tsukiyoshi fault.  Although the pressure-

transient data are not very sensitive to the properties of the granite beyond the Tsukiyoshi 

Fault, one may suppose that the fracture porosity there would also be decreased when a 

separate matrix continuum is included in the model.  This assumption significantly 

shortens advective travel time through the model.  However, the addition of a separate 

matrix component also allows for diffusion and sorption into the rock matrix, which 

could greatly slow radionuclide travel through the model as a whole..      

In the present study, we take advantage of the available data set from the Tono 

region and construct a synthetic site, in which we conduct numerical preliminary 

investigations. The first task is to combine the calibration of the model to the data 

including steady-state temperature profiles, steady-state head profiles, and transient head 

responses, in order to use all available data to develop the best possible model of the 9 by 

9 km region as the ‘synthetic’ site.  Next, we examine how the data from each borehole 
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contributes to the complete model, by assuming we have to create a model using 

information from a limited number of boreholes: just three wells, from just six wells, and 

from just nine wells. Three would be a minimum number of boreholes to be drilled at an 

actural PI site and nine may be near the maximum number of boreholes, although the 

ultimate number of boreholes to be drilled at a given PI site would depend on many 

factors such as the budget and the number of condidate sites. We also examine the impact 

of key model assumptions on heterogeneity and boundary conditions on choice of well 

location.  Finally, we use the results of this effort to make general recommendations 

about choosing the locations of wells and the tests to conduct in order to characterize a 

new site. 

7.3 Complete Model of Tono Region 

7.3.1 STARTING MODEL  

7.3.1.1 GEOLOGICAL REPRESENTATION 

We begin with a geological model of the Tono region developed by JAEA in 

2005.  The model extends from the ground surface (ranging from 100 to 600 masl) to an 

elevation of -2000 masl.  Lateral boundaries are irregular, following local topographic 

features such as the Toki River along the southern and eastern model boundaries, and 

ridgelines along the western and northern boundaries.  Figure 7-1 shows the surface 

elevation over the domain of the model.   

The model is composed of five geological layers.  The bulk of the model is 

fractured granite, which is underlain by a deep, low-permeability granite and overlain by 

a weathered, more-intensely fractured granite several hundred meters thick.  Over much 

of the model, the weathered granite is overlain by sedimentary rocks (Mizunami Group 

sediments overlain by Seto Group sediments).  One major fault is included in the model, 

the east-west striking, sub-vertical Tsukiyoshi Fault.  Five additional sub-vertical faults 

are also included.   

We use the numerical simulator TOUGH2 (Pruess et al., 1999) to calculate the 

steady-state groundwater flow and temperature distributions in the model domain.  Large-

scale features such as lithologic layering and major fault zones are represented 
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deterministically.  Individual fractures are not modeled explicitly.  Rather, an equivalent 

continuum model (ECM) is used for steady flow simulations and both an ECM and dual 

continuum model (DCM) are used for transient flow studies.  Details of the difference 

between ECM and DCM formulations are given in Doughty et al. (2005). 

The computational grid is rectangular, with lateral grid spacing of 100 m.  

Vertical grid spacing ranges from 50 m in the upper portion of the model, to 100 m over 

most of the model, to 250 m for the deepest 1000 m.  We assign a material from the 

geological model to each grid block in the TOUGH2 model.  Lithologic layers 

representing the sedimentary rocks, the fractured/weathered granite, and the granite are 

treated as undulating layers in the model.  Figure 7-2 shows a perspective view of the 

model.  The model is locally refined around well MIU-2 as shown in Figure 7-3, to 

enable more accurate calculation of pressure-transient behavior during the inadvertent 

MIU-2 well test.   

The Tsukiyoshi fault is represented with a planer structure, in which a low-

permeability fault core plane is flanked on either side by high-permeability planes (called 

“sandwich” planes).  This structure is suggested by the geological and tectonic nature of 

the site, and is supported by steady-state and transient-pressure observations (Takeuchi et 

al., 2001; Doughty and Karasaki, 2003).  The location of the fault is adjusted to ensure 

that it intersects the model locations for the MIU wells at the depths observed in the field.  

The steep dip of the fault requires that each sandwich plane be at least two grid blocks 

thick in order to provide continuous flow paths.   This continuity requirement implies that 

the entire fault structure is probably thicker in the model than in reality, hence its 

intersection with vertical wells cannot be resolved very precisely.  The five additional 

sub-vertical faults are each modeled as a single plane, with an anisotropic permeability to 

enable large flow within the fault plane but restrict flow across the fault plane.  Figure 

7-4 shows several views of the model, highlighting the fault structure in relationship to 

the wells in the vicinity of Well MIU-2. 

7.3.1.2 FLUID AND HEAT FLOW PROCESSES 

TOUGH2 simulates two-phase (liquid and gas), two-component (water and air) 

flow, coupled to heat flow.  For the natural-state simulations that produce steady head 
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and temperature profiles, fully coupled fluid and heat flow are calculated using the ECM.  

Because temperature changes occur much more slowly than do pressure changes, for the 

transient model of the inadvertent MIU-2 well test, which lasts only a few months, we 

assign a geothermal temperature gradient that is consistent with temperature profiles 

observed in boreholes in the Tono area (surface temperature near 16oC, gradient 

0.022oC/m), but do not solve the conservation of energy equation, so temperatures remain 

fixed (in previous studies, this was referred to as the uncoupled thermal approach).  For 

transient simulations, we use both the DCM, which enables the fractures and matrix to 

respond on different time scales, and the ECM, which assumes the fractures and matrix 

remain in equilibrium, and hence respond on the same time scale.   

The bulk of the model remains single-phase liquid, but near the surface a shallow 

vadose zone develops in some areas. 

7.3.1.3 INITIAL AND BOUNDARY CONDITIONS 

Initial conditions for the steady-state simulations are chosen as a matter of 

convenience – they do not affect the final result, just how efficiently the computer 

reaches it.  Usually, the steady-state pressure, temperature, and saturation distributions 

for a similar problem are used as initial conditions.  The results of the natural-state 

simulation then serves as the initial condition for the transient simulation of the 

inadvertent MIU-2 well test, which we simulate using both the DCM and the ECM. 

The lateral boundaries of the model are chosen based on local geography.  Along 

the western and northern boundaries, the model boundary follows mountain ridge lines 

and is a closed boundary, to represent the watershed divide.  The southern and eastern 

model boundaries coincide with the Toki River.  Here, the model is closed at depth, but is 

held at atmospheric pressure at the ground surface, allowing exchange between 

groundwater and river water as governed by hydraulic head conditions.  The bottom 

model boundary is closed to fluid flow and contains a spatially distributed heat source to 

produce a geothermal gradient of 0.022oC/m throughout the model. This closed boundary 

condition, although a common practice, is not based on any hard observations, which can 

be a source of uncertainty in the model. A single grid block represents the Tono Mine, 
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which is held at atmospheric pressure.  Table 7.3-1 shows a summary of the boundary 

conditions imposed on the model. 

Table 7.3-1 Summary of the model boundary conditions 

 Flow Heat 

Top Boundary 
(Surface) 

Prescribed flow, 
Atmospheric Fixed Temperature 

Ridges (North, West) No flow 

Surface Open Lateral River 
(South, East) Depth No flow 

No flow 

Tono Mine Atmospheric Fixed Temperature 

Bottom No flow Fixed heat flux 

 

At the top surface of the model, pressure, temperature, and liquid saturation are 

maintained at fixed values as follows.  The gas pressure is maintained at atmospheric 

pressure.  Temperature is maintained at a seasonally-averaged temperature that decreases 

slightly with surface elevation z (T = T0 – 6.38.10-3 (z – z0), where z0= 105 m is the 

minimum surface elevation and T0=16oC is determined by matching to observed 

temperature profiles that are linear and hence represent conduction only). Liquid 

saturation is set such that the desired amount of water recharges or discharges the model, 

based on a previous calibration to head and temperature profiles (Doughty et al., 2005), 

as summarized below. 

 
1. Calculate the steady-state flow field for a constant-head boundary condition in 

which hydraulic head equals surface elevation.  That is, the water table 
coincides with the ground surface (there is no vadose zone).   

2. Record the steady-state flow distribution from surface boundary elements into 
or out of the model.  This flow distribution is most sensitive to surface 
topography and the vertical permeability of the materials composing the top 
layer of the model. 

3. Maintain the surface boundary elements with flow out of the model as 
constant-head boundaries.  Surface boundary elements with flow into the 
model are converted to constant-flow boundaries.  Flow rate is assigned as 
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1/10th of the constant-head flow, a value chosen by trial and error to best 
match observed head and temperature profiles.   

4. Calculate the steady-state flow field.  At inflow locations, the surface head 
and saturation can vary, enabling a vadose zone to develop.  Outflow locations 
remain water saturated, but as the specified inflow rate decreases, heads adjust 
so that less outflow occurs as well.  This adjustment process implies that the 
simulation result does not depend strongly on the actual fraction assigned for 
inflow rate reduction. 

5. The resulting steady-state surface conditions (P, T, S) are used as a constant 
surface boundary condition for further natural-state and transient simulations. 

 

7.3.1.4  MATERIAL PROPERTIES 

We begin using permeability and porosity values shown in Table 7.3-2, taken 

from the final 2005 model (Doughty and Karasaki, 2005), which was calibrated to the 

inadvertent MIU-2 well test and steady pressure profiles.   Note that for sediments and 

granites “within material” permeability is generally khor and “between material” 

permeability is kver, whereas in faults “within material” permeability is generally kver and 

“between material” permeability is khor. 

Table 7.3-2. Properties for starting 9x9 ECM. 

Permeability (m2) Material Type Porosity Within materials Between materials 
Seto Group 0.20      6.3.10-15 6.3.10-17

Mizunami Group 0.20      3.2.10-15 3.2.10-17

Weathered granite 7.3.10-03 10-14 10-16

Granite 3.4.10-03 10-15 10-17

Deep granite 3.4.10-03 10-16 5.10-18

Tsukiyoshi fault core 8.4.10-04 10-17 10-17

Tsukiyoshi fault hanging-wall 
sandwich  

7.6.10-03 2.7.10-13 10-15

Tsukiyoshi fault footwall sandwich  7.6.10-03 2.7.10-13 10-15

Tsukiyoshi fault footwall sandwich, 
special path to MIU-3 

3.8.10-3 5.4.10-13 10-15

Other faults    3.0.10-03 10-13 10-16

 

The material properties for the starting DCM are shown in Table 7.3-3.  Sediment 

materials are treated as an ECM rather than a DCM.  For the fracture component of the 
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DCM, permeabilities are the same as for the ECM, but porosities are generally smaller.  

More details on the choice of properties for the DCM are given in Doughty et al. (2005). 

Table 7.3-3. Properties for starting 9x9 DCM. 

Permeability (m2) Material Type Fracture 
Porosity Within materials Between materials 

Seto Group 0.20      6.3.10-15 6.3.10-17

Mizunami Group 0.20      3.2.10-15 3.2.10-17

Weathered granite 2.3.10-03 10-14 10-16

Granite 3.0.10-04 10-15 10-17

Deep granite 3.0.10-04 10-16 5.10-18

Tsukiyoshi fault core 3.0.10-04 10-17 10-17

Tsukiyoshi fault hanging-wall 
sandwich  

2.6.10-03 2.7.10-13 10-15

Tsukiyoshi fault footwall sandwich  2.6.10-03 2.7.10-13 10-15

Tsukiyoshi fault footwall sandwich, 
special path to MIU-3 

1.3.10-3 5.4.10-13 10-15

Other faults    3.0.10-04 10-13 10-16

Matrix properties: porosity 0.005, permeability 10-20 m2 
 

7.3.2 MODEL CALIBRATION PROCEDURE 
The starting model was developed by calibrating to steady and transient heads, 

using a DCM for transient simulations and a refined grid around well MIU-2.  For the 

present studies, we begin by running a steady-state fully-coupled fluid and heat flow 

natural-state model and compare the results to observed steady head and temperature 

profiles.  We use the ECM (which for steady-state problems gives the same result as the 

DCM) and remove the grid refinement around MIU-2 to allow bigger time steps.  We 

then modify permeabilities to improve the match (recall that steady-state profiles do not 

depend on porosity).  After several iterations, we use the resulting model (with grid 

refinement around Well MIU-2 reinserted, and conservation of energy equation not 

solved) to model the pressure-transient response to the inadvertent MIU-2 well test, using 

both ECM and DCM formulations.  Additional adjustments are made to permeability and 

porosity to better match the pressure transients.  The resulting models are used to model 

steady-state fully-coupled fluid and heat flow under natural-state conditions, and produce 

performance measures related to the advective transport of tracers released from various 
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locations within the model. A schematic of the calibration procedure is shown in Figure 

7-5 

7.3.3 COMPARISON OF STARTING MODEL TO FIELD 
OBSERVATIONS 

7.3.3.1 STARTING MODEL HEAD PROFILES 

Figure 7-6 compares the starting model natural-state head profiles to those 

observed in the field.  Steady-state head profiles are available for 11 wells within the 9x9 

model area.  Nearby similar profiles are combined, resulting in the seven plots shown in 

Figure 7-6, which are arranged on the page as the wells are distributed in space.  Most 

profiles show constant head with depth, with higher head north of the Tsukiyoshi fault 

(Wells DH-9, DH-11, and DH-13).  Wells MIU-2 and MIU-3 cross the fault, showing 

~40 m greater head in the footwall (north of the fault) than in the hanging wall (south of 

the fault), indicating that the fault provides a significant barrier to fluid flow.  The MSB 

wells show a sharp decrease in head with depth just below the surface: shallow probes in 

the sediments show normal heads, whereas deeper probes in the weathered granite show 

anomalously low heads, suggesting a low-permeability interface between these two 

geologic layers.  Nearby, the probes in Well DH-2 (all in the weathered granite) also 

show very low heads. 

Although the model matches are not perfect, most of the key features of the 

observed head profiles are captured by the model, in particular the 40 m head difference 

across the Tsukiyoshi fault.  The biggest discrepancy is the large over-prediction of the 

head in Well DH-2 and the lack of head decrease with depth in the MSB wells.  

7.3.4 STARTING MODEL TEMPERATURE PROFILES 
Figure 7-7 compares the starting model natural-state temperature profiles to those 

observed in the field.  Profiles for a conduction-only case, in which fluid flow has no 

effect on temperature profiles, are also shown for reference.  Steady-state temperature 

profiles are available for 11 wells within the 9x9 model area.   Nearby similar profiles are 

combined, resulting in the eight plots shown in Figure 7-7, which are arranged on the 

page as the wells are distributed in space.  
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When the observed temperature profile falls below the conduction-only profile 

(e.g., Wells DH-10, DH-13), it indicates that significant recharge of cool surface water is 

occurring.  Conversely, when the observed temperature profile falls above the 

conduction-only profile (e.g. Well DH-11), upflow of warm water from depth is indicated.  

An observed temperature profile that coincides with the conduction-only profile indicates 

that neither significant downflow nor upflow is occurring.  Either there is no significant 

fluid flow at all or flow is primarily horizontal. 

Not surprisingly, the largest infiltration occurs at Well DH-10, which is at the 

highest elevation (see Figure 7-1), where recharge is expected to be greatest.  Also, at the 

location of Well DH-10, weathered granite outcrops at the surface, allowing more 

infiltration than does the lower-permeability sediment layer that covers much of the 

model surface.  

Upflow is observed at Well DH-11 (and to a lesser extent at Well DH-9), a result 

of the low-permeability barrier to flow provided by the Tsukiyoshi fault.  Wells sited at 

lower elevations would not be expected to show significant infiltration, and they do not, 

with the exception of Well DH-4, in which the shallow vertical portion of the temperature 

suggests localized infiltration into the outcropping weathered granite, whereas the deeper 

conduction-type profile suggests no infiltration into the underlying granite. 

The model generally captures the trends observed in the field data, however 

model infiltration is not large enough at Well DH-4 or Well DH-10, and it is too large at 

Well DH-9 and Well MIU-3.  The upflow at well DH-11 is not captured at all, with the 

model showing erroneously large infiltration there. 

7.3.4.1  STARTING MODEL TRANSIENT PRESSURE CHANGES 

Figure 7-8 compares the starting model pressure transients for the inadvertent 

MIU-2 well test to those observed in the field.  The pressure-transient responses are 

available for eight wells within the 9x9 model area.  Similarly-responding wells can be 

combined, yielding the six plots shown in Figure 7-8.  When the packer was deflated, 

Well MIU-2 provided a flow connection between the high-head footwall and the low-

head hanging wall, so water flowed up the well. Unfortunately the flow rate was not 
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measured but the pressure ditsturbance created by the opening of MIU-2 well was much 

larger and lasted longer than the designed long term pump tests. Thus came the name of 

‘inadvertent’ well test. Pressure probes in the hanging wall show a pressure increase, 

whereas probes in the footwall show a pressure decrease.  Not every observation depth is 

plotted, but the full range of responses is shown.  For each well, increasing probe number 

corresponds to a greater probe depth.  In Wells MIU-3 and MIU-4 shallow probes show a 

pressure increase while deep probes show a pressure decrease, bracketing the depth 

interval where the well intersects the fault.   

The model pressure transients generally reproduce the observed ones, but pressure 

increases are too large initially in the shallow probes of Well MIU-4, too variable in Well 

SN-3, much too small in the deep probes of well MIU-3, and too small in Well SN-1 and 

in most of the AN-well probes.  Small differences exist between pressure transients 

calculated by the ECM and DCM, but neither model consistently matches the observed 

data better. 

7.3.5 MODEL CALIBRATION 
 

Before embarking on model calibration, it is useful to visualize the natural-state 

groundwater flow predicted by the model.  This may be done by plotting streamtraces 

beginning at selected locations (generally wells where natural-state head and temperature 

data are available).  Figure 7-9 shows such a plot for the starting model.  Several different 

sections through the 3D model are shown, and the head, temperature, and permeability 

fields are shown as background for different plots.  The general trend of groundwater 

flow from northern high elevations toward southern low elevations is apparent in the plan 

view and y-z plots.  The y-z plots also show the characteristic U-shape of a groundwater 

flow field within closed lateral boundaries, including infiltration at the high elevations 

and discharge at the low elevations.  This trend is interrupted by the Tsukiyoshi fault, 

which partially blocks lateral flow, diverting fluid up toward the surface just north of the 

fault.  Moreover, this upward flow is focused toward the location (~x = 6000 m, y = -

68000 m) where the sedimentary layers are absent and the fault outcrops at the surface, as 

shown in the plan view and x-z plot.  Just south of the fault there is a concentrated 

infiltration, as evidenced by the deeper penetration of cool temperature.  When 
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calibrating the model to the observed head and temperature profiles shown in Figure 7-6 

and Figure 7-7, respectively, it is useful to refer back to Figure 7-9 to see the context of 

the individual profiles. 

7.3.5.1 STEADY HEAD AND TEMPERATURE PROFILES 

Several variations on the starting model were made, to see their effect on the 

natural-state head and temperature profiles.  These are listed below, along with their 

motivation and effect, and the judgment on whether to keep the change.  

Case CA 
Change:  Five times higher permeability for granite. 
Motivation: Try to increase infiltration Well DH-10 and decrease head in well DH-13. 
Effect:  Head in DH-13 is lower (better).  Most temperature profiles show more 
infiltration – good for Well DH-13, bad for rest. 
Judgment:  May be useful, in conjunction with other changes. 
 
Case CB 
Change:  Other faults have granite properties. 
Motivation: Well DH-9, located at one of the other faults, shows too much recharge. 
Effect:  Head is slightly lower (better) at Well DH-9, most wells show less recharge, 
which is better.  
Judgment:  May be useful, in conjunction with other changes. 
 
Case CC 
Change:  Tsukiyoshi fault sandwich does not extend to surface where granite outcrops 
(already truncated through sediments); other faults have granite properties. 
Motivation:  Too much infiltration around Tsukiyoshi fault. 
Effect:  All heads are a bit higher (better for Well DH-11, others worse).  Well DH-10 
temperature is unchanged, rest show less recharge (better for all except Well MIU-1 and 
AN wells, which now show upflow). 
Judgment:  Keep. 
 
Case CD 
Change:  Five times higher permeability for granite; other faults have granite properties; 
Tsukiyoshi fault sandwich does not extend to surface; Tsukiyoshi footwall sandwich has 
five times lower permeability. 
Motivation: Combine good changes from above cases and try to enhance upflow in Well 
DH-11 by not having upflow localized in footwall sandwich layer. 
Effect: Head is lower in wells DH-11 and DH-13 (better), worse in MIU-area wells (too 
high).  Temperature is better in wells DH-2, DH9, DH-11, DH-10.  Temperature is 
different in Wells MIU-2 and MIU-3, not sure if better or worse. 
Judgment:  Keep these changes in succeeding cases. 
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Case CE 
Change: Increase permeability in weathered granite.  Interface permeability between 
sediments and weathered granite remains low. 
Motivation:  Try to get lower heads south of Tsukiyoshi fault in Well DH-2 and MSB 
wells; and try to reproduce non-linear temperature profile in Well DH-4. 
Effect: Temperature profiles worse at most wells, too much infiltration.  Head profiles 
little changed. 
Judgment:  Abandon. 
 
Case CF 
Change:  Increase sediment permeability by a factor of 10. 
Motivation: No specific motivation, want to see sensitivity. 
Effect: Too much infiltration, worse heads in most wells. 
Judgment:  Abandon. 
 
Case CG 
Change:  Decrease sediment permeability by a factor of 10. 
Motivation:  No specific motivation, want to see sensitivity. 
Effect:  Less infiltration – better for most wells. 
Judgment: Keep this change in succeeding cases. 
 
Case CH 
Change:  Increase permeability in weathered granite (see Case CE).   
Motivation:  With lower sediment permeability, hope to get good communication 
between Well DH-2 and Toki River to lower Well DH-2 heads, without producing too 
much infiltration. 
Effect:  Temperature profiles show too much infiltration at most wells, worse. 
Judgment:  Abandon. 
 
Case CI 
Change:  Increase permeability in granite by a factor of 10. 
Motivation:  With lower sediment permeability and unchanged weathered granite 
permeability, hope to get good communication between Well DH-2 and Toki River to 
lower Well DH-2 heads, without producing too much infiltration. 
Effect:  Too much infiltration. 
Judgment:  Abandon. 
 

For now, we consider Case CG the best case (with low head at Well DH-2 still 

not fixed), and use this model to simulate the inadvertent MIU-2 well test.   

7.3.5.2 PRESSURE-TRANSIENT CALIBRATION 

The changes made for model CG are incorporated into the DCM and used to 

simulate the inadvertent MIU-2 well test.  The biggest change is a much increased 
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pressure change in the deep probes of Well MIU-3, which is a big improvement for the 

model.   

Probe 4 in Well MIU-3, which is in the low-permeability Tsukiyoshi fault core, 

shows almost no response in the model, whereas in reality it shows a gradual pressure 

increase, suggesting that it should be in a transition zone near the upper edge of the fault 

core, where the influence of the hanging-wall is evident.  The model is not finely 

resolved enough to achieve this, so no modifications are attempted to address this 

mismatch.   

All the probes of Well MIU-4 still show too big a response; the upper three in the 

hanging wall and the lower two in the Tsukiyoshi fault core.  To attempt to lessen the 

pressure responses, the granite porosity is doubled and the permeability in the fault core 

is decreased by a factor of two.  These changes cause a modest improvement in the match 

to the observed pressure transients.  When they are applied to the natural-state modeling, 

they have only a small effect on head profiles and no noticeable effect on temperature 

profiles, so they are retained. 

7.3.6 FINAL MODEL 

7.3.6.1 COMPARISON TO OBSERVED DATA 

The comparison of the final model to the observed data is shown in Figure 7-10, 

Figure 7-11, and Figure 7-12.  Comparing steady head profiles for the starting model and 

final model (Figure 7-6 and Figure 7-10, respectively) shows that the final model match 

is better for wells DH-9, DH-11, and DH-13, but a little worse for the MIU wells and AN 

wells, which showed a pretty good match to the observed heads in the starting model, but 

too high heads in the final model.  It is hoped that when the large head decrease required 

for Well DH-2 and the MSB wells is achieved, it will lessen the head for the MIU and 

AN wells also. 

Comparing steady temperature profiles for the starting model and final model 

(Figure 7-7 and Figure 7-11, respectively) shows that the final model match is better for 

Wells DH-9, DH-10, DH-11, MIU-2, and MIU-3.  The matches for the other wells are 

little changed. 
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Comparing transient pressure changes for the starting model and final model 

(Figure 7-8 and Figure 7-12, respectively) shows that the final model match is better for 

all wells except MIU-4, where it is slightly worse.  In particular, the slower recovery of 

each pressure pulse for the final model matches the field behavior much better than did 

the starting model.  Although the matches for the ECM and DCM differ in some details, 

it is not possible to say that one or the other consistently produces a better match to the 

observed data. 

The properties for the final ECM and DCM simulations are shown in Table 7.3-4 

and Table 7.3-5, respectively.  Note that only the porosities differ between the two 

models.   

Figure 7-13 shows streamtraces for the final ECM.  Generally, these are similar to 

those for the starting model (Figure 7-9).  However, there is less infiltration around the 

Tsukiyoshi fault, as evidenced by the smaller penetration of cool water there.  Also, the 

streamtrace direction is less impacted by the other faults.  As in the starting model, there 

is a focusing of upflow toward the location where the Tsukiyoshi fault outcrops.  It would 

be of (academic) interest to look at field data to see if there are surface springs in this 

location.   

7.3.6.2 PERFORMANCE MEASURES 

Performance measures, consisting of path lengths and travel times for 

streamtraces beginning at six wells and the main shaft location, are compared for the 

starting models (Table 7.3-2 and Table 7.3-3) and the final models (Table 7.3-4 and 

Table 7.3-5) in Figure 7-14.  Because the ECM and DCM differ only in porosity, the 

same streamtraces are obtained in each case.  However, since tracer velocity is inversely 

proportional to porosity, average velocity and travel time for each streamtrace differ 

between the two models, with the smaller fracture porosity of the DCM producing higher 

velocities and correspondingly shorter travel times.  Note however, that the travel times 

shown are advective travel times.  Delays due to diffusion or sorption of radionuclide are 

not included.  Since these processes can significantly retard radionuclide travel, and since 

their dynamics will differ significantly between ECM and DCM, the advective travel 

times may greatly underestimate actual travel times.   
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Figure 7-14 indicates that changes made between the starting model and final 

model do not produce large differences in performance measures.  The porosity increase 

for the granite tends to lengthen travel time (in the starting model travel times as short as 

one-half year were obtained, whereas for the final model the minimum travel time for any 

streamtrace is 30 years).  The moderate increase in granite permeability coupled with the 

moderate decrease in fault-core permeability makes the fault more of a barrier, hence the 

streamtraces originating at Well DH-10 are diverted around the fault, making them much 

longer (compare Figure 7-9 and Figure 7-13). 

 

Table 7.3-4. Properties for final 9x9 ECM (values changed from 
starting model shown bold). 

Permeability (m2) Material Type Porosity Within materials Between materials 
Seto Group 0.20      6.3.10-16 6.3.10-17 
Mizunami Group 0.20      3.2.10-16 3.2.10-17 
Weathered granite 7.3.10-03 10-14 10-16 
Granite 6.8.10-03 5.10-15 10-17 
Deep granite 3.4.10-03 10-16 5.10-18 
Tsukiyoshi fault core 8.4.10-04 5.10-18 5.10-18 
Tsukiyoshi fault hanging-

wall sandwich  
7.6.10-03 2.7.10-13 10-15 

Tsukiyoshi fault footwall 
sandwich  

7.6.10-03 5.4.10-14 10-15 

Tsukiyoshi fault footwall 
sandwich, special path 
to MIU-3 

3.8.10-3 5.4.10-13 10-15 

Other faults    3.0.10-03 10-15 10-15 
 
 

Table 7.3-5. Properties for final 9x9 DCM (values changed from 
starting model shown bold). 

Permeability (m2) Material Type Fracture 
Porosity Within materials Between materials 

Seto Group 0.20      6.3.10-16 6.3.10-17 
Mizunami Group 0.20      3.2.10-16 3.2.10-17 
Weathered granite 2.3.10-03 10-14 10-16 
Granite 7.5.10-04 5.10-15 10-17 
Deep granite 3.0.10-04 10-16 5.10-18 
Tsukiyoshi fault core 7.5.10-5 5.10-18 5.10-18 
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Tsukiyoshi fault hanging-
wall sandwich  

2.6.10-03 2.7.10-13 10-15 

Tsukiyoshi fault footwall 
sandwich  

2.6.10-03 5.4.10-14 10-15 

Tsukiyoshi fault footwall 
sandwich, special path 
to MIU-3 

1.3.10-3 5.4.10-13 10-15 

Other faults    3.0.10-04 10-15 10-15 
Matrix properties: porosity 0.005, permeability 10-20 m2 
 
 

7.3.7 OUTSTANDING ISSUES 
One aspect of the observed data is not at all well matched by the present model.  

South of the Tsukiyoshi fault, in Well DH-2 and the lower depths of the MSB wells, 

observed heads are much lower than modeled heads.  Probes located in the weathered 

granite show the low heads, whereas probes in the sediments show normal heads.  There 

are no probes below the weathered granite for these wells.  The Toki River has lower 

head than the probes in Wells DH-2, suggesting that there is especially good 

communication between this well and the river, by virtue of a higher than usual 

permeability in either the weathered granite, the granite, or both.  Sensitivity studies have 

shown that weathered granite and granite permeability cannot be increased throughout 

the model, because increased permeability enables too much deep infiltration of surface 

water.  Thus, we must hypothesize a local area between Well DH-2 and the Toki River 

with larger permeability in the weathered granite or granite or both.  Additionally, 

property changes that improved the pressure-transient match for most wells worsen the 

match for Well MIU-4, suggesting that there is a localized variation in properties in that 

vicinity.  A conceptual model including deterministic heterogeneity at the kilometer scale 

would be useful for improving the match to observed data, along with a revisiting of the 

grid-block scale (100 m) stochastic heterogeneity employed in the past. 

7.4 Using a Subset of Wells for Site Characterization 

Next, we compare site characterization using all available information with that 

obtained from only a subset of wells. In other words, we evaluate models resulting from 

various preliminary investigation strategies by comparing model predictions to the ‘real’ 
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data (that are generated by running simulations in the ‘real’ model). The procedure 

consists of starting with a ‘real’ model, which has been created using all available 

information. Then, different sets of well locations are chosen and the properties of the 

real model are sampled at those locations, i.e., conduct PIs using different strategies. 

Porosity and permeability distributions are generated stochastically based on these 

samples. We thus create an SDM (Site Descriptive Model), or a trial model for each PI 

strategy represented by a set of well locations.  Natural-state simulations are run in each 

trial model to generate performance measures, which are then compared to performance 

measures obtained with the real model, to judge the value of the trial well locations (and 

numbers).  

7.4.1 SIMPLIFIED REAL MODEL 
To expedite the procedure, several simplifications to the final model described in 

the previous section are made, to create a simplified real model from which TRIAL 

MODELs will be created.  The simplifications are as follows: 

1. An ECM is used.  This choice is made because we assume that the initial stages of 
site characterization, when only a few wells have been drilled, will not include 
detailed matching of pressure-transient data as was done in the analysis of the 
inadvertent MIU-2 well test.   

2. The Tsukiyoshi fault is the only fault included, and it does maintain its sandwich 
structure with a low-permeability core flanked by two high-permeability 
sandwich layers. 

3. The two sedimentary materials are combined into one sedimentary material type. 

4. Stochastic permeability and porosity distributions are used.  A log-normal 
permeability distribution for each material is assumed, with the mean log-
permeability taken from the “within material” column of Table 7.3-4.  Standard 
deviation of log-permeability is assumed to be 1.5 for granite and weathered 
granite, 0.5 for the sedimentary material, and 1.0 for all other materials, based on 
distributions of properties from boreholes in the Tono region.  After log-
permeability for a grid block is drawn from the normal distribution for the 
material of that grid block, grid-block porosity is calculated by multiplying the 
mean porosity for the material of the grid block (Table 7.3-4) by the cube-root of 
the difference between grid-block permeability and the mean permeability for that 
material (Table 7.3-3).  In this way, the stochastic permeability and porosity 
distributions are correlated with one another rather than being considered 
independent distributions.  Furthermore, the form of the correlation is intended to 
take into account the fractured nature of the rock. 
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Table 7.4-1 compares the statistics of the porosity and permeability distributions 
created for the simplified real model with the constant values employed in the 
final model.  Mean log-permeabilities agree well, but mean porosities are 
consistently higher for the simplified real model, a consequence of the technique 
used to generate them.  The larger porosity will tend to slow tracer transport, 
therefore, one should not expect tracer travel times for the simplified real model 
to match those obtained for the real model.  Note that porosity standard deviation 
is also quite large; to avoid unphysical porosities (less than zero or greater than 
one), stochastically-determined porosities are bounded by user-specified limits of 
1E-5 to 0.8. 

5. The surface boundary condition is simplified – rather than allowing a vadose zone 
to develop, fully-saturated liquid conditions are assumed, but permeability in the 
top layer of the model is decreased by an amount comparable to the average 
relative permeability of the partially-saturated vadose zone obtained for the 
complete model.  Figure 7-15 shows the distribution of vertical flow into and out 
of the top surface for the final version of the complete model and for the 
simplified real model.  Although there are small differences between the two flow 
distributions, the main features are the same: inflow and outflow are strongly 
correlated to surface topography (Figure 7-1), with the largest inflows at the 
highest elevations in the northern portion of the model, and the largest outflow at 
the lowest elevations along the southern and eastern model boundaries, which 
coincide with the Toki River.  Large outflow also occurs near the middle of the 
model (x = 65000 m, y = -68,000 m), where the Tsukiyoshi fault is not overlain 
by sediments (Figure 7-2, top frame). 

6. The Tono Mine is not represented in the model. 
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Table 7.4-1. Comparison of properties for final model and simplified real model. 

Porosity log10(permeability in m2) 
Simplified real 

model 
Simplified real 

model Material Final 
model Mean Std dev 

Final model 
Mean Std dev 

Sediments  0.20 0.21 8.5E-2 -15.2, -5.5 -15.33 0.49 
Weathered granite 7.3E-3 1.4E-2 2.4E-2 -14.0 -13.99 1.50 
Granite 6.8E-3 1.3E-2 2.2E-2 -14.3 -14.30 1.51 
Deep granite 3.4E-3 4.6E-3 4.2E-3 -16.0 -16.00 1.00 
Fault Core 8.4E-4 1.3E-3 9.5E-4 -17.3 -17.27 0.97 
Hanging-wall 
sandwich layer 

7.6E-3 1.0E-2 9.9E-3 -12.6 -12.55 1.02 

Footwall sandwich 
layer 

7.6E-3 9.9E-3 9.9E-3 -13.3 -13.29 0.97 

 
 

A fully-coupled fluid and heat flow simulation of natural-state conditions for the 

simplified real model is run and performance measures are generated.  Figure 7-16 shows 

several views of the natural-state head, temperature, and permeability distributions, as 

well as streamtraces illustrating tracer travel pathways from the vicinities of three 

hypothetical repository locations.  Comparison with results of the final model (Figure 

7-13) shows that the main features of the final model are preserved in the simplified real 

model.  Streamtraces generally flow from north to south, illustrating groundwater 

downflow at higher elevations in the north and upflow at lower elevations in the south.  

The head and temperature distributions both illustrate this regional groundwater flow as 

well.  The Tsukiyoshi fault impacts the streamtraces by diverting some toward the surface 

and others around the fault to the east, but some streamtraces do cross the fault itself.  

Note that the addition of heterogeneity causes the streamtraces to be less smooth, as fluid 

flows preferentially through high-permeability grid blocks. 

7.4.2 CREATION OF TRIAL MODELS 
To create trial models, we pick well locations either at random or systematically 

representing different PI strategies, as summarized in Table 7.4-2 and illustrated in Figure 

7-17, and sample properties from the simplified real model at these locations.  For the 

randomly-chosen well locations, three well locations are chosen at random (Case 1, Cases 

11-15).  Then, Case 2 considers six wells, and Cases 3 and 16 consider nine wells each.  



 

277 

For the systematically-chosen well locations, three approaches are taken.  The first 

approach (Case 4) is to site three wells close to one another, as if interference hydrologic 

testing were to be conducted.  The second approach (Case 5) assumes that a major 

structure such as the Tsukiyoshi fault is known ahead of time from existing geological 

studies, and three wells are sited close to this feature, in order to investigate its effect.  

The third approach (case 6) is to site three wells far apart, so that their locations span the 

extent of the region being studied.  Then Cases 7-10 consider various combinations of 

systematic three-well placements.  

 

Table 7.4-2. Well locations under different PI strategies 

Case Number 
of Wells Method for choosing well location Fault 

Included 
1 3 Random No 
2 6 Random (combine Cases 1 and 11) No 
3 9 Random (combine Cases 1, 11, 12) Yes 
4 3 Systematic: close together No 
5 3 Systematic: close to Tsukiyoshi fault Yes 
6 3 Systematic: far apart No 
7 6 Systematic: close together and close to 

fault (combine Cases 4 and 5) 
Yes 

8 6 Systematic: close together and far apart 
(combine Cases 4 and 6) 

No 

9 6 Systematic: close to fault and far apart 
(combine Cases 5 and 6) 

Yes 

10 9 Systematic: close together, close to fault, 
far apart (combine Cases 4, 5, 6) 

Yes 

11 3 Random No 
12 3 Random No 
13 3 Random No 
14 3 Random Yes 
15 3 Random No 
16 9 Random (combine Cases 13, 14, 15) Yes 

 

For each trial model, we look at the pressure and temperature profiles from the set 

of wells, and decide if there is evidence of the Tsukiyoshi fault: a jump in the head profile 

at the elevation the well intersects the fault.  If there is not, the trial model does not 

include a fault; it contains four materials: sedimentary rock, weathered granite, granite, 

and deep granite, which follow the same undulating layers as in the real model.  If there 
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is evidence of the fault, then three additional materials are included in the model: a low-

permeability fault core, and the higher-permeability sandwich layers on either side of the 

core.  These materials occur at the actual location of the Tsukiyoshi fault in the real 

model.  Thus, there are two main classes of trial models, those including a major fault, 

and those without one, as indicated in Table 7.4-2.   

Figure 7-18 illustrates this procedure by showing the head profiles for the trial 

models with systematic well locations (Cases 4-10 in Table 7.4-2).  Most of the head 

profiles show sharp gradients near the surface, but are reasonably uniform over the 

remainder of their length.  The sharp jumps in head for Case 5 at elevations of -1000 m 

and -1500 m are interpreted as the intersection of the well and the fault plane, so Case 5 

includes a fault whereas Cases 4 and 6 do not.  Additionally, any combination case that 

contains Case 5 includes a fault.    

Permeability and porosity are assigned stochastically to the trial models, using a 

log-normal distribution for permeability and a normal distribution for porosity for each 

material.  The means and standard deviations for log-permeability and porosity are 

determined material by material, based on sampled values from the real model.  For log-

permeability, a 300 by 300 m2 neighborhood of each well is used as the basis for 

determining mean and standard deviation, as though long-term well tests had been 

conducted.  For porosity, only the porosities sampled along the wells themselves are used.  

Because well-only sampling produces a relatively small number of porosity values for 

each material, the standard deviation can easily be unrealistically large.  Therefore, if the 

standard deviation is greater than one-third of the mean porosity, it is set to one-third of 

the mean porosity, thus limiting porosity variability to a reasonable range.  If any 

porosities are less than zero or greater than one, they are bounded by user-specified limits 

of 1.e-5 to 0.8, as was done for the simplified real model. 

All trial models use the same boundary conditions as the simplified real model.  

Initial (T, P) conditions for the trial models consist of the final (T, P) conditions for the 

simplified real model.  Natural-state simulations with the trial models include fluid flow 

only; that is, temperature is not allowed to vary (but distributed) and heat flow is not 

modeled.  This greatly expedites the computations, but should not have a significant 
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effect on the final results, because the overall groundwater flow patterns are similar for 

the real and trial models.  Hence, the temperature distribution obtained with the real 

model is a reasonable approximation for what would be obtained for the trial model if 

fully-coupled heat and fluid flow simulations were done.  The results of the 16 trial 

models are illustrated in Figure 7-A-1 through Figure 7-A-16 in the appendix 7-A.  

Although there are differences in the details of the streamtraces among the different trial 

models, the general features are quite consistent.   

Comparison of the heterogeneous permeability distributions for the real model 

(Figure 7-17) and for the trial models (Figure 7-A-1 through Figure 7-A-16) shows that 

they share the same character.  Although permeability varies greatly (by six or seven 

orders of magnitude), the correlation length (the grid block size of 100 m) is small 

compared to the model domain (9 km).  Hence there are no long-range trends in 

permeability, except for those introduced deterministically (the layering and Tsukiyoshi 

fault).  A well located anywhere in the model will typically encounter the full range of 

properties for the granite materials. 

7.4.3 PERFORMANCE MEASURES 
The performance measures of the simplified real model and the 16 trial models 

are the mass flow rate across three control volumes representing hypothetical repository 

sites, and streamtrace path length and travel time for release points located in the center 

of these control volumes.  Figure 7-17 shows the locations of the control volumes; one is 

just south of the Tsukiyoshi Fault, one is just north of it, and one is far to the north.   All 

are located at elevations of -1000 masl, and are 1 km by 1 km in lateral extent.  Control-

volume flows provide a means of quantifying the amount of groundwater that could 

potentially contact waste canisters; they depend on model boundary conditions and the 

hydraulic conductivity (permeability/viscosity) distribution.  Streamtrace path length is 

the length of the path traveled by a tracer from its release point to whichever model 

boundary it first encounters; it identifies the direction of groundwater flow and also 

depends on model boundary conditions and the hydraulic conductivity distribution.  

Streamtrace travel time is the time it takes the tracer to reach the model boundary 

considering advective transport through the fractured rock; it depends on the porosity 
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distribution encountered by the tracer as it travels along the streamtrace, in addition to 

model boundary conditions and the hydraulic conductivity distribution.  Because 

diffusion and sorption of radionuclides by the rock matrix may significantly slow 

advective travel time, the streamtrace travel times presented represent lower bounds on 

actual travel times expected. 

Table 7.4-3 and Figure 7-19 show the control-volume flows for the trial models, 

and Table 7.4-4 and Figure 7-20 show path lengths and travel times of streamtraces 

originating at the center of the control volumes.   

 
 

Table 7.4-3. Material properties and control-volume flows for real and trial models. 
Granite Properties Control Volume Flow (kg/s) 

log10(k in m2) Porosity Case 
Fault 
or no-
fault 

# 
Wells Mean Std dev Mean Std dev South North Far 

North 
Real F    -14.30 1.51 1.32E-2 2.17E-2 0.81 0.55 0.44
Trial      

1 N 3 -14.26 1.62 1.08E-2 3.60E-3 0.64 0.32 0.26
2 N 6 -14.30 1.61 1.07E-2 3.57E-3 0.46 0.31 0.28
4 N 3 -14.31 1.54 1.90E-2 6.33E-3 0.46 0.42 0.31
6 N 3 -14.28 1.53 1.45E-2 4.83E-3 0.59 0.39 0.32
8 N 6 -14.29 1.54 1.64E-2 5.47E-3 0.58 0.32 0.46
11 N 3 -14.34 1.60 1.06E-2 3.53E-3 0.67 0.40 0.29
12 N 3 -14.33 1.57 1.12E-2 3.73E-3 0.63 0.31 0.23
13 N 3 -14.31 1.51 1.59E-2 5.30E-3 0.77 0.47 0.40
15 N 3 -14.26 1.51 1.00E-2 3.34E-3 1.04 0.41 0.59

      
3 F 9 -14.32 1.48 1.17E-2 3.90E-3 0.55 0.20 0.26
5 F 3 -14.47 1.46 1.11E-2 3.70E-3 0.56 0.25 0.26
7 F 6 -14.38 1.51 1.50E-2 5.00E-3 0.60 0.38 0.35
9 F 6 -14.36 1.50 1.28E-2 4.27E-3 0.64 0.26 0.31
10 F 9 -14.34 1.51 1.47E-2 4.90E-3 0.56 0.54 0.42
14 F 3 -14.5 1.47 8.51E-3 2.84E-3 0.47 0.26 0.16
16 F 9 -14.35 1.48 1.17E-2 3.90E-3 0.54 0.28 0.43
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Table 7.4-4. Stream trace results for z = -1000 m (hypothetical repository elevation) for 
real and trial models. 

Streamtrace Path Length 
(m) 

Streamtrace Travel time 
(yr) 

Average Streamtrace 
Velocity (m/yr) Case 

Fault 
or 
no-
fault 

# 
Wells South North Far 

North 
South North Far 

North 
South North Far 

North 
Real F    2078 3237 6627 1060 1890 3590 2.0 1.7 1.8
Trial     

1 N 3 2141 2448 6047 321 973 3091 6.7 2.5 2.0
2 N 6 2285 2634 3596 247 1947 2512 9.2 1.4 1.4
4 N 3 2534 4733 6612 728 3314 19,686 3.5 1.4 0.3
6 N 3 2135 6398 10,231 790 5793 17,190 2.7 1.1 0.6
8 N 6 2208 3331 11,307 491 3515 13,987 4.5 1.0 0.8
11 N 3 2200 2774 7386 475 945 10,170 4.6 2.9 0.7
12 N 3 1774 4188 10,175 571 2684 9985 3.1 1.6 1.0
13 N 3 2043 4228 4513 1238 3512 11,742 1.6 1.2 0.4
15 N 3 2367 2709 7167 110 1088 10,724 21.5 2.5 0.7

     
3 F 9 2003 6353 10,570 331 1908 5344 6.0 3.3 2.0
5 F 3 2041 2852 6837 553 1383 21,105 3.7 2.1 0.3
7 F 6 2143 2987 6948 1053 2415 8564 2.0 1.2 0.8
9 F 6 2034 4397 8192 397 2795 8442 5.1 1.6 1.0
10 F 9 2487 2161 5076 1744 389 2957 1.4 5.5 1.7
14 F 3 2054 2151 6113 620 1881 5302 3.3 1.1 1.2
16 F 9 2382 3491 6348 1590 977 1308 1.5 3.6 4.8

 

In addition to the control-volume flows, Table 7.4-3 also shows trial model 

statistics for the granite material, since that is the main rock type in which the 

streamtraces leaving the hypothetical repository locations at -1000 m elevation are found.  

Note that sampling permeability over a 300 by 300 m2 area around each well produces a 

very good estimate of the real-model permeability, even when only three wells are 

available.  In contrast, far fewer porosity observations are available, hence porosity 

distributions vary more between trial models.  Recall that control-volume flow and 

streamtrace path do not depend on porosity, but streamtrace travel-time does.  

Consequently, one would expect less variability among control-volume flows for the trial 

models (Figure 7-19) than for streamtrace travel times (Figure 7-20).   

Figure 7-19 indicates that control-volume flows do not differ significantly among 

the trial models.  This finding remains true even when too few wells are used to identify a 

major feature like the Tsukiyoshi fault – Figure 7-19 shows that there is no systematic 

difference between fault and no-fault cases.  In all cases, flow through the southern 
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control volume is slightly greater than flow through the other two control volumes, a 

consequence of the shape of the model, which narrows in the primary direction of 

groundwater flow (north to south).    Hence, we find that reasonable representation of the 

magnitude of groundwater flow can be obtained by using a minimal number of wells for 

site characterization, because for the present style of heterogeneity with short correlation 

length, the magnitude of groundwater flow depends strongly on model topography and 

boundary conditions. 

Figure 7-20 shows streamtrace travel time as a function of streamtrace path length 

for the real model and each trial model.  In addition, linear fits to the travel time versus 

path length points provide a measure of the average tracer velocity along streamtraces 

from the various control volumes (average tracer velocity is the reciprocal of the slope of 

the fitting line).  Figure 7-20 indicates that average tracer velocity along a streamtrace 

decreases slightly as one goes from south to north to far north control volume.  Figure 

7-16 and the Figure 7-A-1through Figure 7-A-16 show that the farther north the -1000 

masl streamtraces originate, the greater the fraction of their path is spent at large depths, 

where groundwater flow is slower, explaining this trend.  Similarly, Figure 7-20 indicates 

that no-fault average tracer velocity is slightly slower for the release-points north of the 

Tsukiyoshi fault and slightly faster for the release-point south of the fault, compared to 

the with-fault average tracer velocity.  The reason is that the fault acts to divert 

groundwater upward north of the fault and downward south of the fault, and whenever 

tracer moves shallower it tends to go faster.  Hence, the direction of groundwater flow 

does depend on whether or not enough wells are used to identify the presence of the fault, 

but the resulting change in tracer velocity is rather small relative to the range of velocities 

obtained for different release points.  Table 7.4-4 verifies that tracer velocity does not 

show a significant dependence on the number of wells used for site characterization – 

porosity is so variable and sampling so sparse that whether one samples from three or 

nine wells does not change the character of the porosity distribution. 

In summary, we find that, for the most part, our understanding of the regional 

groundwater flow and advective tracer transport does not improve significantly as more 

and more wells are used for site characterization.  These measures are controlled by 

surface topography, surface and lateral boundary conditions, and the permeability and 
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porosity distributions.  For the present short-correlation property distributions, using one 

well for site characterization provides as much information about material properties as 

using many wells does.  On the other hand, observing head profiles in more wells does 

increase the probability that large-scale features such as the Tsukiyoshi fault can be 

identified, and the presence or absence of such a fault does have a noticeable effect on 

streamtrace properties including the destinations of streamtraces.      

7.4.4 IMPACT OF KEY ASSUMPTIONS ON CHOICE OF WELL 
LOCATIONS 
The trial models described in the previous section all had different permeability 

and porosity distributions, but they shared a number of other features that may also 

strongly impact performance measures, including the constant-head surface boundary 

condition, the closed lateral boundary condition, and heterogeneity with short-range 

correlations.  In this section, we vary the choices make for these features, and investigate 

the implications for choosing optimal well locations.   

7.4.4.1 AMOUNT OF SURFACE INFLOW AND OUTFLOW 

The 50-m vertical resolution of the model is too coarse to accurately model near-

surface processes such as precipitation, evaporation, runoff, spring discharge, stream-

groundwater interaction etc.  Thus, the distribution of surface inflow and outflow in the 

model must represent the net result of all these processes, ultimately determining the 

amount of water that moves through the deep groundwater flow system.  In the complete 

model of the Tono site (Section 7.3), a vadose zone is included, which limits the amount 

of surface inflow and outflow compared to a fully-saturated medium.  In the creation of 

the simplified real model (Section 7.4.1), no vadose zone is allowed to develop and 

surface flow is limited by decreasing the permeability of all the elements in the 

uppermost layer of the model:  multiplying all permeabilities by 0.1376 is comparable to 

a model with a vadose-zone liquid saturation of 0.7 and no permeability reduction.  Here 

we consider a case with no permeability reduction, which results in higher surface 

inflows and outflows, and a case with a greater permeability reduction (a permeability 

reduction factor of 0.1376-squared or 0.0189), which results in lower surface inflows and 

outflows.   
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Figure 7-21 illustrates the surface inflow/outflow distributions for the simplified 

real model and these two additional cases.  Although the spatial distribution of inflow and 

outflow remains about the same for all three cases, the magnitude of both inflow and 

outflow decreases as surface permeability decreases.  Figure 7-19 shows control-volume 

flows for the three cases.  As expected, higher surface flows lead to higher control-

volume flows, but the effect is rather small.  Figure 7-22 shows streamtrace travel time 

versus path length for the three cases.  The high surface permeability (high surface flow) 

case shows slightly shorter travel times, consistent with the larger control-volume flows.  

However, for the low surface permeability (low surface flow) case, there is no consistent 

trend for travel time.   

Figure 7-23 shows head and temperature profiles for four hypothetical well 

locations (near the upgradient model boundary, near the middle of the model, near the 

Tsukiyoshi fault, and near the downgradient model boundary) for the three values of 

surface permeability.  Head profiles are most sensitive to surface permeability near the 

downgradient model boundary, but even there, the effect is small.  Temperature profiles 

are most sensitive to surface permeability near the Tsukiyoshi Fault, with the high-

permeability case indicating more infiltration (a more concave-up temperature profile) 

and the low-permeability case indicating less infiltration (a more linear temperature 

profile).  The small magnitude of head and temperature changes is consistent with the 

small difference in control-volume flow shown in Figure 7-19 for the different values of 

surface permeability.   

In conclusion, the quantity of water moving through the deep groundwater flow 

system does change as surface inflow/outflow changes, but the magnitude of the change 

is rather small – when surface permeability varied by a factor of 50, control-volume flow 

only varied by a factor of 1.3.  Consequently, head and temperature profiles are not very 

sensitive to this variation. 

7.4.5  CLOSED VERSUS OPEN LATERAL BOUNDARIES 
 

The simplified real model considers all lateral boundaries to be closed (no-flow) 

boundaries, based on the concept that lateral model boundaries represent watershed lines 
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across which groundwater flow does not occur (i.e., groundwater enters and exits the 

model only through the surface layer, which represents the Toki River along the southern 

and eastern model boundaries, and surface precipitation/discharge elsewhere).  As an 

alternative conceptualization, the lateral boundaries are assumed to be open, and are 

modeled as constant-pressure, constant-temperature boundaries.  Pressure is specified by 

atmospheric pressure at the ground surface and a hydrostatic profile below, and 

temperature is specified by a conductive geothermal gradient.  Hence, there is no upflow 

or downflow at the model boundaries, but lateral inflow or outflow to the model can 

occur.  The concept underlying these boundary conditions is that local topography does 

not control deep groundwater flow.  In other words, the 9 km by 9 km model is merely 

part of a much more extensive groundwater flow system. 

Figure 7-24 compares the distributions of surface inflow/outflow for closed and 

open lateral boundaries.  For the open case, less infiltration occurs in the high-elevation 

region near the upgradient model boundary and less upflow occurs in the low-elevation 

region near the downgradient model boundary.  Figure 7-19 shows the control-volume 

flows for the simplified real model with closed lateral boundaries and the case with open 

lateral boundaries.  The effect is striking – far more flow moves through the model for 

the open lateral boundaries. Figure 7-25 shows streamtrace travel time versus path length 

for closed and open lateral boundaries.  Again the effect is striking – travel times are far 

shorter for the open lateral boundaries.  Figure 7-26 shows several views of the 

streamtraces themselves for the case with open lateral boundaries.  In contrast to the 

streamtraces for the simplified real model (Figure 7-16), the vertical cross-sections show 

none of the U-shape typical for models with upgradient infiltration and downgradient 

discharge.  Furthermore, the plan view shows streamtraces exiting the model in an 

entirely different location. 

Figure 7-27 compares head and temperature profiles at four hypothetical well 

locations for closed and open lateral boundary cases.  Wells near the middle of the model 

do not differ appreciably between the two cases, but wells near the upgradient and 

downgradient boundaries of the model certainly do.  For the open boundary case, the 

head profiles show a much greater range (the high-head profile gets higher and the low-

head profile gets lower), and the temperature profiles are much more linear, clearly 
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indicating the lack of infiltration near the upgradient model boundary and the lack of 

discharge near the downgradient model boundary. 

In conclusion, the large impact that lateral boundary conditions have on all 

aspects of flow and transport makes it clear that for effective site characterization, one 

must have a good understanding of lateral boundary conditions.  If boundary conditions 

are not known by regional studies of topography and regional groundwater flow, wells 

can be located near the presumed upgradient and downgradient boundaries of the site, 

and their head and temperature profiles can be examined to look for the characteristics of 

closed and open systems illustrated in Figure 7-27.  

7.4.5.1 HETEROGENEITY WITH LONG-RANGE CORRELATION 

The stochastic porosity and permeability distributions used for the simplified real 

model and the trial models are not correlated between grid blocks.  Hence the effective 

correlation length for these distributions is the extent of the grid blocks themselves, 100 

m.  Under these conditions, we have seen that trial models constructed by taking porosity 

and permeability from only a few wells perform just as well as trial models constructed 

using more wells.  To examine the situation for property distributions with longer-range 

correlations, four property distributions with an idealized long-range correlation were 

created.  The simple algorithm employed is to divide the 9 km by 9 km model into 

quadrants: a northeast (NE), northwest (NW), southwest (SW), and southeast (SE) 

quadrant.  Then the original stochastic permeability distribution is modified quadrant by 

quadrant by multiplying all permeabilities within each quadrant by a factor.    

Figure 7-28 through Figure 7-31 shows the permeability distributions and 

streamtrace patterns for four cases, in which each of the four quadrants has its 

permeability decreased by a factor of ten.   It is clear that the tracer travel paths are 

greatly affected as water bypasses the low-permeability quadrants.  Figure 7-19 shows 

the control-volume flows.  The FN control volume is in the NE quadrant, the N control 

volume is in the NW quadrant, and the S control volume is in the SW quadrant.  Control-

volume flows are sharply lower for each case in which the control volume is in the low-

permeability quadrant.  Figure 7-32 shows the streamtrace travel time as a function of 

path length for the four quadrant-heterogeneity cases.   Whenever the control volume that 
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serves as the streamtrace release point is in the low-permeability quadrant, the travel time 

is significantly longer. 

Figure 7-33 shows the head and temperature profiles at four hypothetical well 

locations for the four quadrant-heterogeneity cases.  In general, head and temperature 

profiles only differ between cases when the well location is in the low-permeability 

quadrant.  For example, for the well located near the upgradient boundary (red curves in 

Figure 7-33), head and temperature profiles are nearly the same for all cases except when 

the NE quadrant, where the well is located, has low permeability (short dash).  Then, the 

temperature profile changes drastically, from a strongly concave-up profile indicating 

substantial infiltration of cool water, to a near-linear profile indicating a negligible 

amount of vertical groundwater flow.  Similarly, for the well located near the 

downgradient boundary in the SW quadrant (blue curves in Figure 7-33), when the SW 

quadrant has low permeability (long dash), the concave-down temperature profile, which 

indicates upflow of deep warm water, becomes nearly linear, indicating no vertical flow.  

In conclusion, if the permeability distribution has long-range correlations then a 

small number of wells are not as likely to provide a representative sample of rock 

properties, nor a true picture of the regional groundwater flow. 

7.5 Recommended Sequence of Developing an SDM for a New 
Site  

Based on the findings of the present study, we propose the following general 

procedure for prioritizing borehole drilling locations when conducting preliminary 

investigations at a new site and constructing an SDM of the site. 

1. Study regional groundwater flow, including topography, surface geology, 
meteorological and stream flow data, data from existing wells, and satellite data, 
to begin to develop a regional groundwater flow model. 

2. Choose lateral and depth boundaries for the model—this choice is important, for 
it ensures that the model has defensible, readily implemented boundary conditions. 

3. Conduct surface geophysical surveys (preferably 3-D seismics if sedimentary 
rocks) to explore disqualifying conditions and to identify subsurface structures, 
such as lithology and faults. 
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4. Drill the first characterization borehole in the vicinity of the middle of the 
investigation area (after priority boreholes to explore disqualifying conditions are 
exhausted). If a large-scale feature such as a fault is suspected, try to intersect it. 
Do conventional logging, including temperature logging, fluid logging, and core 
analysis. Conduct large-scale (one puckered-off section per lithology), long-term 
pump tests. Update the conceptual model for groundwater flow if necessary. 
Instrument with multipackers and continue pressure monitoring while drilling 
additional wells. 

5. Site the second borehole near the upgradient boundary of the site. Drill and log 
the second borehole, conduct large-scale pump tests, instrument with 
multipackers, Update conceptual model for groundwater flow if necessary. 
Continue pressure monitoring while drilling additional boreholes. 

6. Site the third borehole near the downgradient boundary of the site. Drill and log 
third borehole, conduct large-scale pump tests, instrument with multipackers. 
Update conceptual model for groundwater flow if necessary. Continue pressure 
monitoring while drilling additional boreholes. 

7. Optional additional boreholes: (1) if there is evidence of major heterogeneity 
between the first three wells, drill borehole(s) to try to intersect it; (2) drill 
boreholes to estimate the lateral boundary conditions, and (3) drill boreholes close 
enough together to do interference testing. Continue to update the conceptual 
model of regional groundwater flow as each borehole is drilled, siting new 
boreholes to provide information on least-constrained regions. Modify boundary 
conditions if necessary. 
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Steady head and temperature profiles provide information on regional 

groundwater flow direction, which determines where radionuclides will go if they escape 

a repository. Large-scale, long-term hydraulic testing provides spatially integrated 

permeability values, which impact how fast groundwater moves. At the preliminary stage 

of site characterization, these are the most valuable data to collect, and well-established 

techniques for data collection and analysis are in wide use.  

Unfortunately, a number of the other factors that also impact radionuclide 

transport time through fractured rock are very difficult to assess at the regional scale 

required for repository performance assessment. These factors include the porosity of the 

fracture network, the fracture/matrix interaction area, and the capacity of the matrix for 

diffusion and sorption. At present, there are no well-established means for determining 

these properties at the regional scale. 

7.6 Conclusions 

Instead of fabricating a “real” model based on a synthetically generated set of data, 

we chose to take advantage of the extensive data set available from the Tono area 

collected by JAEA under their geosciences program, although the Tono area would never 

be considered as one of the actual preliminary sites. A synthetic data set may contain a 

combination of features and/or parameters that may never exist in reality. In contrast, by 

using the actual data set in the “real” model, we are able to construct and investigate 

preliminary strategies of greater credibility.  

Further development of the model at the Tono region has produced improved 

matches to steady head and temperature profiles, and to the pressure-transient responses 

to the inadvertent MIU-2 well test. We consider this the most complete 9 km × 9 km 

model of the Tono site developed to date, using the data set available as of 2005. The 

changes made in the final model have relatively small impact on the performance 

measures of path length and travel time from specified release points to the model 

boundary. Most significantly, a porosity increase made to better match the long tail of the 

pressure-transient response to the inadvertent MIU-2 well test produces slightly longer 

streamtrace travel times. 
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We find that, for the most part, our understanding of regional groundwater flow 

and advective tracer transport does not improve significantly as ever more boreholes are 

drilled. These measures are mostly controlled by surface topography, surface and lateral 

boundary conditions, the permeability and porosity distributions, and the property of 

faults, if they exist. (In Japan, faults exist ubiquitously.) For the short-correlation property 

distributions in the present study, using information from only a few boreholes for site 

characterization provides as much information about material properties as using many 

boreholes does, provided that large-scale, long-term pump tests can be successfully 

conducted. On the other hand, observing head profiles in more boreholes does increase 

the probability that large-scale features such as the Tsukiyoshi fault can be identified, and 

the presence or absence of such a fault does have a noticeable effect on streamtrace 

properties. In particular, the locations where streamtraces manifest are greatly affected by 

faults. An additional caveat is that if the permeability distribution has long-range 

correlations, then a small number of wells are not as likely to provide a representative 

sample of rock properties, nor does a true picture of regional groundwater flow emerge. 

Lateral boundary conditions have a large influence on all aspects of flow and 

transport . Thus, a very good understanding of lateral boundary conditions is essential. If 

boundary conditions are not known by regional studies of topography and regional 

groundwater flow, boreholes should be located near the presumed upgradient and 

downgradient, and peripheral boundaries of the site. Their head and temperature profiles 

should be examined, to look for characteristics of closed and open groundwater flow 

systems. 

In summary, the parameters that influence, to the greatest extent, model 

predictions of particle trajectories and their travel times—and the parameters most 

difficult to estimate through field investigations—are: (1) effective porosity, (2) boundary 

conditions, and (3) fault properties. The overall average permeability does affect 

advective transport time, but it is less uncertain and easier to measure than the other 

parameters. Although one would find highly variable permeability at small scales, the 

overall average permeability is what is needed at the preliminary investigation stage, and 

is best estimated by conducting large-scale pump tests. Of the three parameters 

mentioned above, effective porosity is especially difficult to estimate. The current state-
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of-the-art characterization techniques are not adequate to reliably estimate the effective 

porosity of a large rock mass. Therefore, we recommend against conducting tracer tests, 

which are time consuming and expensive. Instead, we recommend conducting large-scale 

pump tests and observing steady-state pressure and temperature distributions, to narrow 

down the uncertainties in boundary conditions and fault properties. 
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Figure 7-1. Surface elevations of the 9x9 TOUGH2 model.  Surface locations of wells 
with steady pressure data or steady temperature data or both are shown as black dots.  
Zoomed-in region shows wells with pressure-transient data as red dots. 
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Figure 7-2. Top: Perspective view of the entire 9x9 TOUGH2 model showing 
different material types; bottom: same model but with grid blocks above depths of 100 or 
-500 removed, to better illustrate fault structure. 



 

295 

Connection

 
Figure 7-3. Schematic of local grid refinement around Well MIU-2 (plan view).  This 
refinement was done in all layers of the model. 
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Figure 7-4. North-south cross-sections of TOUGH2 model showing Tsukiyoshi fault 
location with regard to wells used for calibration to pressure transients. 
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Figure 7-5. Schematic of the calibration procedure to produce the ‘real’ site and the 
performance measure.
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Figure 7-6. Natural-state head profiles for the starting model.  The MSB wells are 
located in the vicinity of the point labeled Main Shaft in Figure 7-1.  The arrangement of 
plots on the page roughly corresponds to the locations of the wells. 
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Figure 7-7. Natural-state temperature profiles for the starting model.  The arrangement 
of plots on the page roughly corresponds to the locations of the wells. 
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Figure 7-8. Pressure-transient response to inadvertent MIU-2 well test for the starting 
ECM (top) and DCM (bottom).  The arrangement of plots on the page roughly 
corresponds to the locations of the wells. 
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Figure 7-9. Visualization of groundwater flow field for starting model.  Locations 
with observation data are shown as black dots; these points and selected other locations 
are used to initiate streamtraces that follow the groundwater flow field.  For the plots with 
head and temperature as a background, the Tsukiyoshi fault trace is shown as a heavy 
black line and the boundary of the weathered granite is shown with dashed lines. 
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Figure 7-10. Natural-state head profiles for the final model.   
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Figure 7-11. Natural-state temperature profiles for the final model. 
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Figure 7-12. Pressure-transient response to inadvertent MIU-2 well test for the final 
ECM (top) and DCM (bottom). 
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Figure 7-13. Visualization of groundwater flow field for final model.   



 

306 

Starting Model

1

10

100

1,000

10,000

0 2,000 4,000 6,000 8,000 10,000
Path Length (m)

Ad
ve

ct
iv

e 
Tr

av
el

 T
im

e 
(y

rs
)

DH-10
DH-13
DH-11
DH-9
MIU-2
MIZ-1
Main Shaft
Avg ECM time
Avg DCM time

Filled symbols - ECM
Open symbols - DCM

 

Final Model

1

10

100

1,000

10,000

0 2,000 4,000 6,000 8,000 10,000
Path Length (m)

Ad
ve

ct
iv

e 
Tr

av
el

 T
im

e 
(y

rs
)

DH-10
DH-13
DH-11
DH-09
MIU-2
MIZ-1
Main Shaft
Avg ECM time
Avg DCM time

Filled symbols - ECM
Open symbols - DCM

 
Figure 7-14. Advective travel time and path length for streamtraces originating at four 
depths between 250 and -1500 masl in six wells and at nine depths between 0 and -800 
masl in the main shaft, for the starting model (top) and for the final model (bottom). 
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Figure 7-15. Distribution of surface flow into (negative) and out of (positive) the model 
for the final version of the complete model (top) and the simplified real model (bottom). 
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Figure 7-16. Results of coupled fluid and heat flow natural-state simulation of the 
simplified real model.  Hypothetical repository sites are shown as black-outlined boxes.  
White dots on the plan view show locations of all wells where pressure or temperature 
data were collected. 
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Figure 7-17. Plan view of the simplified real model showing the permeability 
distribution at several depths, three hypothetical repository locations identified as S for 
south, N for north, and FN for far north, and the random and systematic well locations 
used to generate the trial models.  Although shown at all three depths, the repositories 
only extend from -900 to -1000 masl. 
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Figure 7-18. Modeled head profiles for trial models with systematic well locations.  
The jumps in head at elevations of -1000 masl and -1500 masl identify the intersection of 
the well and the fault plane. 
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Figure 7-19. Control-volume flows for simplified real model, trial models, and 
variations on the real model to test key assumptions.  Control volumes are labeled S for 
south, N for north, and FN for far north (see Figure 16 for exact locations). 
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Figure 7-20. Advective travel time as a function of path length for streamtraces 
originating at the S, N, and FN control volumes for the trial models.  The lines show least 
square fits to various subsets of trial models. 
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Figure 7-21. Distribution of surface inflow (negative) and outflow (positive) for no 
surface permeability reduction (top), the simplified real model (middle), and larger 
surface permeability reduction (bottom). 
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Figure 7-22. Advective travel time as a function of path length for streamtraces 
originating at the S, N, and FN control volumes for different values of surface 
permeability. 
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Figure 7-23. Head (top) and temperature (bottom) profiles at four hypothetical well 
locations (different colors), for different values of surface permeability (different line 
styles). 
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Figure 7-24. Distribution of surface inflow (negative) and outflow (positive) for the 
simplified real model (left) with closed lateral boundaries, and the case with open lateral 
boundaries (right). 
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Figure 7-25. Advective travel time as a function of path length for streamtraces 
originating at the S, N, and FN control volumes for the simplified real model with closed 
lateral boundaries, and the case with open lateral boundaries. 
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Figure 7-26. Results of coupled fluid and heat flow natural-state simulation of the 
model with open lateral boundaries.   
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Figure 7-27. Head (top) and temperature (bottom) profiles at four hypothetical well 
locations (different colors), for closed (simplified real model) and open lateral boundaries 
(different line styles). 
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Figure 7-28. Results of coupled fluid and heat flow natural-state simulation of the 
model with ten times lower permeability in the NE quadrant.   
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Figure 7-29. Results of coupled fluid and heat flow natural-state simulation of the 
model with ten times lower permeability in the NW quadrant.   
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Figure 7-30. Results of coupled fluid and heat flow natural-state simulation of the 
model with ten times lower permeability in the SW quadrant.   
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Figure 7-31. Results of coupled fluid and heat flow natural-state simulation of the 
model with ten times lower permeability in the SE quadrant.   
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Figure 7-32. Advective travel time as a function of path length for streamtraces 
originating at the S, N, and FN control volumes for heterogeneity distributions with one 
low-permeability quadrant. 
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Figure 7-33. Head (top) and temperature (bottom) profiles at four hypothetical well 
locations (different colors), for the four quadrant-heterogeneity cases (different line 
styles).  The legend identifies which quadrant has ten times lower permeability. 
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Appendix Figures 
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Figure 7-A-1. Case N01: three random wells, no fault. 
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Figure 7-A-2. Case N02: six random wells, no fault. 
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Figure 7-A-3. Case N04: three systematic wells (close together), no fault. 
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Figure 7-A-4. Case N06: three systematic wells (far apart), no fault. 
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Figure 7-A-5. Case N08: six systematic wells (three close together and three far apart), 
no fault. 
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Figure 7-A-6. Case N11: three random wells, no fault. 
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Figure 7-A-7. Case N12: three random wells, no fault. 
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Figure 7-A-8. Case N13: three random wells, no fault. 



 

335 

 
Figure 7-A-9. Case N15: three random wells, no fault. 
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Figure 7-A-10. Case F03: nine random wells, fault. 
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Figure 7-A-11. Case F05: three systematic wells (close to fault), fault. 
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Figure 7-A-12. Case F07: six systematic wells (three close together, three close to fault), 
fault. 
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Figure 7-A-13. Case F09: six systematic wells (three close to fault, three far apart), 
fault.
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Figure 7-A-14. Case F10: nine systematic wells (three close together, three close to 
fault, three far apart), fault. 
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Figure 7-A-15. Case F14: three random wells, fault. 
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Figure 7-A-16. Case F16: nine random wells, fault. 
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8 概要調査地域に於ける調査の最適化について 

概要調査地区での調査は、精密調査地区を選定するために必要なデータを取得するの

が主目的である。従って概要調査段階では、対象地域の地質環境を完全に理解するため

に必要な全てのパラメータを取得することや、不確実性を限りなく低減させる為に費用

や労力を多大に費やすことは不要かつ非現実的である。万一、不適格とされる要因が存

在すれば概要調査の早い段階での発見が望ましい。一方、概要調査地区の何れかは精密

調査地区に選定される筈である事を鑑みると、概要調査段階での調査は将来の精密調査

段階での調査との整合性を考慮したものでなければならない。例えば概要調査の為に掘

削する孔井の配置や孔内で行う試験の設定が精査段階でも有利に利用できることが望ま

しく、少なくとも精密調査の支障にならないようにする事が肝要である。一方、精密調

査段階でなされるべき調査を概要調査で行うのは無駄である。 

第２章, 第３章、および第７章でも触れたが、概要調査段階で最も特性評価が必要か

つ、可能な重要パラメーターは境界条件、および断層の性状である。特に我が国に於い

ては、断層は地殻変動環境の影響によりほぼ普遍的に存在する。従って、概要調査の対

象となり得る地域、地層に於いても例外なく断層が存在すると考えられる。断層は多く

の場合、その周辺の水理を大きく左右するが、断層によっては遮水的であったり、逆に

極めて透水性があったり、また、両方の特性を兼ね備えている場合があり、一義的にそ

の特性を予測するのは困難である。従って、処分候補地においては、断層の特性を正確

に評価する調査が極めて重要となる。 

第７章では、実データをベースにした仮想の“実サイト”を構築し、コンピューター

モデル内で種々の計画を用いてサイトの“概要調査”を行った。その調査データを元に

サイトモデルを構築し、パーティクルトラッキングによる移行速度を計算し、“実サイ

ト”での移行速度と比較した。その結果、境界条件の設定と断層が移行経路や速度に大

きな影響を及ぼすことが分かった。概要調査で不適格要因の探査の次に最重要ターゲッ

トとすべきは境界条件の把握、断層の性状の調査、大きなスケールの平均透水係数であ

ることが分かった。実サイトに特徴的な大きなトレンドや構造が無い限り、モデルの予

測結果はボアホールの本数や配置にはあまり影響されないことが明らかになった。 

本章では本研究のまとめとして概要調査段階でのサイトの特性評価の為の最適な現地

調査の方法や取り組み方について検討する。第２章で記したように、各国の処分プログ

ラムで重要で普遍的なパラメータやプロセスは概ね共通である。第７章の仮想サイトで

の“概要調査”の比較研究の結果を元に、最適な現地調査手法の組合せや仕様について

検討し、概要調査のアプローチについての提言を行う。特に概要調査に於いて最もコス

トが掛かるボアホールの掘削やボアホール試験の最適化に焦点を当てる。 

8.1 概要調査の取り組み方 

概要調査地域に於ける最優先課題は不適格要因の探査である。文献調査により不適格

要因が存在する事が明らかである地域は既に除外されているはずであるが、概要調査の

基本的な取り組み方としては、文献調査では特定できなかった不適格要因が存在する可

能性があるとの前提を置き、それを発見する為の調査が最優先されるべきである。合理

的に可能な手段を尽くした後にそれでも不適格要因が発見されない事が、その地域が次
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のステップ（精査）へ進める為の必要条件となる。無論、（次のステップへ進む為の）

十分条件は、候補地の数に左右される。例えば、候補地が２箇所であれば、両方とも自

動的に精査段階へ進むが、一方、候補地が多数ある場合はランキングが必要となる。従

って概要調査の第２番目の目的はサイトの大まかな特性評価である。核燃料サイクル開

発機構の H17 取りまとめ（JNC, 2005）は、我が国で考えられる地質環境において、不

適格要素さえ回避すれば、安全な処分場の建設は場所によらず可能と報告している。ラ

ンキングの項目は地球科学的要素を始め経済的、社会的条件等の要素等、多岐に及ぶ。

実際は、海外の例を見るまでもなく実務的、社会経済的要素がランキングを最終的に大

きく左右するが、本編では地球科学的要素以外の条件は考慮しないものとする。 

8.1.1 不適格要因の探査 

サイトが不適格となりうる主な要因は 

a. 活断層が存在する 
b. 火山が近傍に存在する 
c. 著しい隆起侵食 
d. 鉱物資源が存在する 

等が挙げられるが、これらの要因は、現地調査に進む前の文献調査段階で概ね存在しな

いことが確認されていると考えられる。そこで、実際の現地での概要調査において最も

現実的に発見され得る要因として考えられるのは伏在活断層であろう。伏在活断層の探

査は困難であるが、考えられる手法としては（4.1.2.1 を参照）、 

• 反射法、屈折法等の地震探査 

• 微小地震モニタリング 

• 地表面変位の観測 

- GPS 

- 高精度傾斜計モニタリング 

- 衛星搭載干渉合成開口レーダー（InSAR） 

• その他の物理探査手法 

- 電磁波 

- 比抵抗 

- 自然電位 

- 重力 

等が挙げられる。特に 3 次元地震探査は堆積岩質の地下の構造を推定するのに極めて有

効な手段であり、堆積岩での調査では必ず行われるべきである。3 次元地震探査のコス

トは米国に於いては 50 フィート立方の精度で 1 平方マイルにつきおよそ 25,000 ドルで

ある。10km 四方の概要調査地域であれば、約 1 億円の計算になる。つまり、ボーリン

グ孔 1 本を掘削するコストと同等か、より安いコストで探査が可能であるので、堆積岩

環境であれば、掘削するボーリング孔数を 1 本減らしてでも行うべきである。ただし、
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花崗岩のような結晶岩質の地質では弾性波探査はあまり有効でないと言われている。ま

た、表層の被りが厚いと地震波が減衰し良好なデータを取りにくい。また、表面の高低

が激しい地域では複雑な補正が必要となり、解析の不確実性が増すので事前の検討が必

要である。3 次元地震探査が困難と考えられる場合はボーリング孔を使った疑似３次元

VSP（Vertical Seismic Profiling）を行うことが考えられる。一般に VSP ではボアホール

の深度程度の半径(1km の深度のボアホールであれば、最大 1km のオフセット)の逆円錐

体の範囲の地下構造の判定が可能である。 

8.1.3 で触れるが、InSAR による地表面の観測は安価に広域のデータが得られる利点が

ある。候補地が決定次第、バックグラウンドデータを取得し地表面変位データの解析を

始める事が肝要である。加えて高精度傾斜計の設置も考慮すべきである。ただし、これ

らの手法は直ちに活断層の発見には繋がらない。長期間のモニタリングが肝要である。 

8.1.2 概念モデルの構築 

調査の初期段階から地域水理場の概念モデルの構築を始める事が肝要である。最初は

文献調査に基づいた極めて大まかな地質構造の概念から始まる。地表踏査や地表面から

の物理探査などのデータの解析に伴って概念モデルが複雑化していくが、それに平行し

て、どういった情報や調査結果により、モデルがどういう理由で、どう修正されていっ

たのかの記録を残すことが非常に重要である。これにはシステマティックな Rivision 
Control System (RCS) の導入が望ましい。加えて、仮定と調査に基づいた入力データと

の差別化を図る必要がある。例えば、概念モデルに於いては一般的に下面の境界条件は、

さしたる根拠も無く不透水境界条件に設定されるが、調査の段階で不透水性を示すデー

タが得られない限り、あくまで仮定である事を忘れてはならない。こういった境界条件

はモデル予測の結果を大きく左右し、不確実性に大きく寄与する。 

概念モデルは、「どのくらいの量の地下水が、何処から来てどのくらいの速さで何処

に行くのか」というサイトに関する最も基本的で重要な知識の根拠となるものであり、

当初からそれらの疑問の解明を調査目的とすべきである。 

8.1.3 バックグラウンドデータの取得、長期モニタリングの開始 

概要調査を行う地域が決定次第、初頭からバックグラウンドのモニタリングを開始す

るのが肝要である。既設の GPS が存在すればそのデータが利用も可能であるが、複数

点での観測が望まれる。また、InSAR などのリモートセンシングデータに関しても調査

開始前のデータを確保するべきである。さらに、高精度傾斜計の設置も考慮すべきであ

る。GPS や InSAR データと併用する事で解析の信頼性と精度が増す。また、微小地震観

測ネットワークを設置するのが望ましい。その他、温度等の環境データ、河川、海水サ

ンプルの定期的な採取プログラムを開始する必要がある。また、既存の井戸があれば、

可能な限り利用し、水位等の記録計を設置するべきである。要はサイトにボーリング孔

の掘削といった人的な影響を与える前の段階（バックグラウンド）のデータを押さえて

おく必要がある。 

バックグラウンドデータは精査の段階で重要になってくるもので、概要調査期間中に

著しい変化が認められない限り、バックグラウンドデータが概要調査から精査段階に進
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む際の評価基準になるとは考えにくいが、概要調査地域の何れかは精査段階に進むので

少なくとも有力候補地でのバックグラウンドモニタリングは早期に始めるべきである。 

8.2 ボーリング孔 

8.2.1 目的 

概要調査でボーリング孔を掘削する第一目的は 3 次元震探等の非侵襲的な物理探査手

法によって不適格要素の存在が疑われる箇所があった場合、その存否の確認である。第

二には、処分場建設に適すると予測されるボリュームの地層の性状のおおまかな調査で

ある。精査に進んだ段階で概要調査段階で掘削したボーリング孔を使って詳しい調査を

行うことが可能なので、再取得不可能なデータ以外の必要以上のデータの取得は避ける

のが時間的にもコスト的にも経済的である。例えば、詳細な圧力試験やトレーサー試験、

フラクチャーのロギング等は概要調査段階では不必要と考える。 

一方、我が国では 500m~1km の深度のボーリング孔を掘削すれば、殆ど例外なく断層

が確認される。第 7 章の結論からも明らかなように、断層の性状が周辺の水理場を大き

く左右するので、断層の性状の把握が重要である。従って概要調査段階ではボーリング

孔を掘削する主目的は地質データ取得に加えて主要断層の性状の調査と境界条件を把握

する為と考えるべきである。 

8.2.2 位置 

ボーリング孔の位置はリモートセンシング、3 次元地震探査等の物理探査や地表踏査

の解析結果に基づいて決定されるべきである。実際の掘削地点は用地の買収に関する要

件やアクセスなどの要因にも左右されるであろうが、基本的には 3 次元地震探査等の物

理探査に基づいて以下をターゲットとするべきである。 

a. 不適格要素の存在が疑われる地点や断層 

b. 処分場建設に十分な容積が取れる岩体 

c. 上流、下流、側方境界付近 

ボーリング孔は可能な限り、複数同時に掘削しない事が肝要である。スケジュールが

許す限り、先に掘ったボーリング孔から得られるデータに基づいて次の孔井の掘削地点

を決定するのが望ましい。先に掘ったボーリング孔は次の掘削による水理影響の観測井

として使うことができる。掘削のみならず、ボーリング孔を使った一通りの調査を行っ

た後にその結果を加味して次のボーリング孔の位置を決定して掘削をするのが理想的で

ある。ただし、掘削地点が数キロメートル離れていればお互いに干渉しないと考えられ

るので同時に掘削を進行させても問題はない。 

8.2.3 本数 

概要調査でボーリング孔を何本掘れば良いかは、他に候補地が幾つあるか、予算、ス

ケジュール、その他の要因に左右される。地球科学的な見地から言えば、地層の特性が
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ある法則を持った分布をしている事が既知でない限り、何本のボーリング孔を掘ればそ

の地域の特性がどの程度把握できるか前もって予測することは不可能である。また、概

要調査の段階でどの程度の詳しさと確からしさで特性を把握しなければならないかとい

う問題も、前出の要因に左右される相対的な問題である。無論ボーリングの本数が多い

ほど、より多くの断層等の地質学的特徴をサンプルできることは明らかであるが、１孔

数億円のコストが掛かり、精密調査段階に進むのは数箇所の概要調査地域の内 2 箇所程

度である事を考えると、概要調査のそれぞれの候補地で数多くのボーリング孔を掘削す

るのは現実的でない。第７章の研究では、（少なくとも東濃地域のような地層では）ボ

ーリング孔３本のデータを使ったモデルと９本のデータを使ったモデルで予測結果に大

きな違いは見られなかった。 

各概要調査地区に付き、例えば、ボーリング孔 10 本を目安にすると、その 10 本を上

記の a, b, c 間でどういう風に割り振るかが課題となるが、先ずは、不適格要素の存否の

確認と断層の性状調査の為のボーリング孔数を最優先するべきである。健常なホストロ

ックの性状と連続性の概要調査には多くの本数は必要がなく、多くても 3 本のボーリン

グ孔で足りると思われる。残りの本数は上流、下流の境界条件の調査のためのボーリン

グ孔を調査地域の境界付近に掘削する必要がある。 

一般に特別な地質学的特徴（大きな断層など）をボーリング孔が貫通するかそれらの

極めて近傍にない限り（上記 a 目的のボーリング孔）、ボーリング孔内で実行可能な調

査から候補地を大きく差別化するデータが得られるとは考えにくい。また、第 7 章の研

究からも明らかなように、文献調査のふるいを通った後の、我が国で考えうる地質条件

においては物質移行の予測結果を大きく左右するパラメーターは断層の性状、有効間隙

率、透水係数、ならびに境界条件である。これらの内、有効間隙率の推定は非常に困難

であり、未だ研究の域を出ておらず、概要調査の段階では意味のある確からしさで特定

する事は不可能である。よって、概要調査でのターゲットにするべきではない。無論、

精査の段階では、可能な限りの手段を尽くして有効間隙率の推定に努力するべきである。

これらの内、比較的推定しやすいと考えられるのは平均透水係数である。細かいスケー

ルでの透水係数分布を特定しようとすれば、多くのボアホールと孔井試験が必要となる

が、概要調査の段階では広域の平均透水係数が推定できれば良く、数多くの本数は不要

である。 

8.2.4 深度 

掘削深度は処分場のターゲット深度より最低 500m 以深に掘削する事が望ましい。例

えば、堆積岩で 500m の処分場深度であれば、1000m のボーリング深度が望ましい。結

晶岩質では 1000ｍのターゲット深度を想定すれば、1500m 程度の深度まで掘削するのが

望ましいと考える。 

8.3 掘削 

8.3.1 ログ 

ボアホール掘削中のドリルログは掘削の進捗や地質状況の速報の役割としてのみに終

わる事が多いが、実は掘削中の逸水や掘削速度等のデータは地層の水理特性の大雑把な
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推定に役立つ。特に逸水データから高透水性ゾーンの位置が推定でき、後の水理テスト

の設計の重要な参考になる。コアボーリングをしない場合は地質の専門家を常駐させて

カッティングのログを取る必要がある。また、掘削中の環境モニタリングを忘れてはな

らない。さらに、掘削水に SF6 等のトレーサーを混入させて掘削水による地層水の汚染

をマークする必要がある。これは、後に採取する地層水サンプルの地球化学データの信

頼性評価の為に重要である。 

8.3.2 傾斜掘り 

傾斜掘りは垂直に近い断層やフラクチャーをボアホールでサンプルする為に有用であ

るが、垂直孔に比べてコストが掛かる。概要調査の段階では、傾斜（dip）が鉛直に近

いフラクチャーをサンプルする為のみの理由で傾斜孔を掘削することは不要であると考

える。第 3 章でも触れたが、フラクチャーの統計的データや幾何学データは少なくとも

概要調査段階では全く使えないと言っても過言ではない。しかし、周辺地域の水理場を

支配しているであろうと思われる主要な断層に直交して貫通させる目的で傾斜孔を掘削

するのはそれなりの意味がある。 

8.3.3 コアボーリング  

核廃棄物処分場候補地の特性評価の為のボーリング孔掘削で全孔コアボーリングをす

る事は内外の処分プログラムでも慣例となっているが、コアを採取しない場合に比べ、

遥かに費用と時間が嵩む。実際、コア採取からコア貯蔵の施設の費用まで含めると膨大

なコストとなる。無論、岩石の強度試験や地化学データを得るためにコアは欠かせない

が、実際に実験用に使われるコアはほんの一部に過ぎない。予算が許せば全てのボーリ

ング孔を全孔コアボーリングするには越したことはないが、コストの最適化の観点から

見れば、コアボーリング孔 1 本と同じコストで 2 本のボーリング孔が掘削できれば、長

い目でどちらが有効かは意見の分かれるところであろう。コアが得られない代わりに 2
地点で圧力データや、水質データが得られ、全孔のコアを取るほど詳細ではないがドリ

ルログや検層から連続した地質データも取得可能である。特に、水頭圧や水質サンプリ

ングの為に調査地域の境界周辺に掘削するボーリング孔ではコアボーリングはさほど重

要でないと考える。同じ予算であれば、もう 1 本、ボアホールを掘削したほうがより重

要なデータが収集できると考える。折衷案として考えられるのは、場所によっては全孔

コアボーリングの代わりに、地質が変わる毎や一定区間毎にコアを採取し、掘削後にボ

アホールイメージングログ（可視又は音波）で代用する方法も視野に入れるべきである。 

8.3.4 ボーリング孔径 

口径が大きい程掘削コストが高くなる。従来はロギングツールを上下させたり、セン

サーを多数の深度に設置するためには、ボーリング径がある程度大きい必要があったが、

近年の MEMS、スマートセンサーやデジタル転送技術の発達（4.2.2 参照）に伴い、計

測装置の大きさが格段に小さくなってきている。加えて径 5-3/4 インチ程度の slim 
borehole (Hough, 2000)や 3 インチ以下の microhole（4.2.1 参照; DOE, 2006）の掘削技術が

発達してきており、コスト削減の為にも小孔径のボアホールの掘削を考慮すべきである。

ある試算によれば、径が半分になれば掘削コストは 40~50%になる。掘削コストのみな
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らず、掘削に必要な用地は約 1/4 で済み、リグが小さくて済むため検層コストやモニタ

リングコストも低減できる。 

8.3.5 掘削水 

掘削の際にはビットの冷却やカッティングを搬出させる為に水を循環させる必要があ

る。加えて泥岩などの軟岩では崩壊を防ぐ為にベントナイト等を加えた比重の重い泥水

を循環させる必要がある。しかし、この水が地層水を地化学的に汚染してしまう恐れが

ある事や、光学的ボアホールビデオログの妨げになることから、清水や純水を使って掘

削した例が国内外でみられる。しかしながら、清水や純水でも地層水とは地化学成分が

異なるので成分比の汚染は避けられない。従って概要調査の段階ではコストが嵩むわり

には利点は少ないと考えられるので最も掘削しやすい方法で掘削するのが望ましい。た

だし、前出のように、掘削水に SF6 等のマーカートレーサーを混入させることは重要だ

と考える。一方、ヤッカマウンテンの不飽和領域での掘削では掘削水そのものが飽和度

を変えてしまう恐れがある事から空気掘削技術を開発した経緯がある。無論、日本の調

査では空気掘りをする必要はない。 

8.4 検層 

掘削後は検層サービス会社が提供するスタンダードなワイヤーラインの孔内検層（比

抵抗、音波、温度、放射能、圧力、キャリパー等、4.1.2.2 を参照）を行うのは言うまで

もないが、加えて、純水で孔内水を置換する電気伝導度検層(Flowing Fluid Conductivity 
Log, 4.1.3.1.1.3 参照)を行い、孔井の深度に沿った相対透水性の分布を把握するのが望ま

しい。ただし、FEC Log は裸孔である必要があり、花崗岩のような結晶質岩では裸孔を

保てるが、軟弱な堆積岩ではケーシングの設置が必要となるので掘削直後に FEC Log を

行う必要がある。FEC Log から得られる相対透水性の分布情報はキャリパーと併せて、

パッカー配置を計画する際に役立つ。概要調査段階では細かい透水性の深度分布の情報

は不必要であるが、検層を終えたボアホールには水頭の違う地層間の短絡を防ぐ目的と

圧力や温度のモニタリングの為に複数のパッカーを設置する必要があり、パッカーをな

るべく最適な深度に必要最低限の個数で配置する事が望まれる。一旦パッカーを掛ける

と再び開孔するには時間とコストが掛かるので慎重に計画したい。 

深度方向の温度分布の情報は広域地下水理の推定に寄与するが、掘削直後に行う温度

検層は掘削の影響が残っており、しかも開孔状態ではボアホール内の水の流れによる動

的な温度分布しか観測できない。動的な温度分布は地層間の相対圧力と温度の違いによ

って起きるので有用ではあるが、静的な状態の温度分布を求めるにはパッカーの設置が

必要で掘削後かなりの時間を要する。 

8.5 ボアホール試験 

ボアホール試験は、コア試験に比較して大きなスケールで試験が可能であり、地下深

部の特性を直接的に評価する目的で行う。概要調査段階で行うべきボアホール試験は、

物理探査と水理試験である。ボアホール試験を行った後に、モニタリングの為のセンサ

ーを設置することになる。 
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8.5.1 ボアホール物理探査 

8.5.1.1 弾性波探査 

概要調査に必要で取得可能な地震波探査データは前に述べた 3 次元地震探査ですでに

取得されているのが望ましいが、地表付近の被りが厚く、表層で地震エネルギーが大き

く減衰してしまうと 3 次元地震探査では質の良いデータが取得できない恐れがある。そ

ういった場合は孔井を使った物理探査が有効である。孔間弾性波トモグラフィーは比較

的スケールの小さい地質性状の解明に寄与するが、概要調査段階では小さいスケールの

情報は必要でない。従って、孔間トモグラフィーを行うことを目的に孔井間隔を近距離

にするべきではない。一方 Vertical Seismic Profiling (VSP)は孔井間トモグラフィーに比

較すると解像度が低いが単一孔で実行可能であり、ボアホールを中心に放射状に側線を

取ることで 3 次元的なデータを取ることが可能である。サイトの適性に関るような性状

の断層の存在が疑われる際に近傍にボアホールを掘削した場合は VSP が有効な手段と

言える。 

8.5.1.2 ボアホールレーダー 

スウェーデンやスイスなどの花崗岩のサイトでの特性調査ではフラクチャーの検出に

ボアホールレーダーが用いられた例が幾度かあるが、セクション 3.5 でも述べたように

フラクチャーの頻度と透水性に相関性が見られた例は過去に殆どなく、特に概要調査の

段階では細かい亀裂情報は不要であるのでボアホールレーダー調査の必要はないと考え

る。 

8.5.2 力学試験 

ホストロック中の応力場に極端な異方性があれば処分場建設に困難をきたす事が考え

られるのでターゲット深度で水圧破砕などの手法を使って孔内応力測定試験を行うのが

望ましい。またボアホールのブレークアウトから応力方向や非等方性が推定できる他、

弾性波との相関性を仮定すれば一軸強度の分布の推定も可能である。後に述べるコアサ

ンプルの強度試験も必要となる。 

8.5.3 地下水サンプリング 

地下水の地化学的情報は大きなスケールでの水理場の解明に寄与する。地層区分にも

拠るが、ボアホールの貫いている基盤岩の浅部、処分場のターゲット深度、孔底の３箇

所程度の深度から地下水のサインプルを採取するべきである。ガスの存在が確認されれ

ば、ガスのサンプル採取も行う。採取をする際、揚水する必要があるが、マーカートレ

ーサーの濃度が十分低くなるまで（例えば、<1%）汲み出した後のサンプルを採取する

必要がある。ヤッカマウンテンでは当初、地質調査用、物理探査用、水理学用、地化学

用とそれぞれ別のボアホールを掘削したが、無駄が多すぎた。地下水サンプル採取は次

に述べる揚水試験と組み合わせて行うのが効率的である。 
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8.5.4 揚水試験 

概要調査のボアホール試験の中で最も重要な試験の 1 つが揚水試験である。揚水試験

はコア試験に比べてはるかに大きなスケールで地層の水理性状の推定が可能である。内

でも、定流量の揚水試験が最も有効な手段である。しかしながら、我が国では断層が遍

在するので、処分場建設に適すると目されるホストロックをターゲットに掘ったボアホ

ールでの揚水試験でも、断層の存在を抜きにした解析は考えにくい。 

揚水試験が不可能な程に透水係数が低ければ圧入試験や圧力降下試験という方法も考

えられるが、両者とも地下水サンプルが採取できない上に、後者は影響半径が限られる

ので大きなスケールについての特性は明らかにならない。もっとも、揚水試験ができな

い程透水係数が低ければ、少なくともそのボアホールに於いては、透水係数に関しては

概要調査の目的がすでに達成されたと考えても良いであろう。何故なら、透水係数が低

い事自体、サイト特性としては好条件であるからである。 

8.5.4.1 試験期間 

揚水期間が長ければ長いほど、大きなスケールでの平均の透水係数が推定できる。概

ね、倍のスケールを達成するためには 4 倍以上の揚水時間が必要である。よって、概要

調査では、環境に悪影響を及ぼさない範囲で可能な限り長期揚水試験を行うべきである。

ただし、周辺の井戸の水位や、水質によっては汲み上げた地下水の処分に注意する必要

がある。揚水井での圧力が定常になるまで、揚水を続けるのが理想である。また、揚水

停止後の圧力回復のモニタリングを欠かしてはならない。2 ヶ月の揚水期間であれば、

さらに最低 2 ヶ月の回復期間をあてがえたい。 

いずれにしろ、試験期間はできる限りフレキシブルにする必要がある。スケジュール

を守るためだけの試験を行って、結局得られたデータは使い物にならなかったケースは

過去に多々ある。信頼性の低い数多くの試験をするより、1 回でも信頼度の高い長期テ

ストを行うほうがはるかに重要である。 

8.5.4.2 揚水レート 

直感的には揚水レートが大きいほど、大きなスケールの試験ができると考えがちであ

るが、実際には影響される岩体のスケールは揚水レートに依存しないので、揚水レート

を制限することによって環境への影響を低減し、コストも抑える事が可能である。一方、

揚水量が大きいほど圧力変化が大きくなるので遠隔にある観測井で実際の圧力干渉とノ

イズとを差別化して捉え易いという利点がある。そこで、実際の現場で種々の要因を加

味して揚水レートを決定すべきである。掘削時の逸水データや事前の Fluid Logging やド

リルステムテスト（DST）等がレートを決める参考になる。いずれにしろ、観測にはで

きるだけ高精度、高感度のセンサー（例えば、Paroscientific 社製の Digiquartz）を使うこ

とが肝要である。 
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8.5.4.3 試験区間 

概要調査でもっとも必要なパラメータの１つはできるだけ大きなスケールの平均透水

係数である。よって、試験区間を細かく区切って、数多くの試験を行う必要は無い。基

盤岩を地質構造と区間長に基づいて大きく 3 区間程度に分けて試験をすればよいと考え

る。例えば、200ｍ以深が基盤岩の 1000ｍ深度のボアホールなら、１区間長が平均 300
ｍ程度で十分と考える。大事なのは、上述のように試験期間を可能な限り長く取る事で

ある。4 区間で 1/4 の長さの試験を 4 回行うより、全区間を 1 回の試験で 4 倍の長さの

試験をした方がより良いデータが得られる。 

8.5.5 トレーサー試験 

トレーサー試験は一般に有効間隙率、マトリックス拡散や吸着性を評価する目的で行

われるが、概要調査段階では行う必要が無いと断言できる。その理由は、トレーサー試

験はコストや時間が嵩むわりに意思決定の基準となるデータがまず得られないからであ

る。有効間隙率の推定やマトリックス拡散は物質移行時間の計算に不可欠であるものの、

未だに決め手となる調査手法が存在せず、概要調査段階で行うことができるトレーサー

試験では信頼性のある値が得られない。また、我が国で考えられる地質では、マトリッ

クス拡散や有効間隙率の違いが精査に進むがどうかの要素とはならないと考えられるか

らである。さらに、トレーサー試験結果を正しく解析する為には流れの場のジオメトリ

ーが既知である必要があるが、特にフラクチャーの卓越した岩盤では、流れの場が不明

であることが多く、不確実要素が大きい。また、孔間トレーサー試験を行うには近接し

た(100m 以下) 2 本以上のボアホールが必要であるが、概要調査段階ではよほど予算と時

間に余裕が無い限り、近接して複数のボアホールを掘削するべきでない。2 本のボアホ

ール間でトレーサー試験を行うことができ、解析が可能であったとしても、推定される

有効間隙率は 2 点間の特性でしかない。以上のことから、概要調査段階では有効間隙率

の測定を調査の対象にするべきでなく、トレーサー試験を行う必要はないと考える。 

8.6 コア試験 

概要調査段階でのコア試験で最も必要なのは力学強度試験であろう。ホストロックに

処分場建設に十分な強度があることをコア試験で確認する必要がある。また、我が国に

おいて、有望な鉱物資源が存在するとはまず考えられないが、この点も確認しておく必

要があるのでサンプル的に鉱物組成を調べる必要がある。また、コアから採取される地

下水やガス成分の分析を行っておく必要がある。一方、コアの透水試験はほぼ必要無い。

何故なら、ボアホール試験で確認される透水係数はほぼ例外なくコア試験の値より大き

な値を示すうえに、より大きなスケールを代表する値であり、より信頼性が高い。再取

得が不可能なデータについては抑えておく必要があるが、その他のコア試験も概要調査

の段階ではさして重要でなく、コアの状態の保存に留意すれば精査段階に先送りして問

題ない。 

8.7 モデリング 

概要調査の段階で性能評価の計算まで必要かは意見の分かれるところであるが、少な

くとも、どのくらいの量の地下水が何処から来てどこを通ってどの位の速さでどこに出
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て行くかを予測推定できる水理地質構造モデルが必要である。しかしながら、実際には

この一見、基本的で簡単な問題を細かく正確に解明するのは困難を極める。特に概要調

査の段階で完全に解明するのは不可能と言える。そこで、必要かつ調査可能なパラメー

ターを把握することを概要調査の目的とすべきである。 

第 7 章の研究からも明らかになったように、水理地質モデルの予測結果を最も左右す

るのは、以下の 4 つであるが、 

１） 平均有効間隙率 

２） 境界条件 

３） 断層の性状 

４） 平均透水係数 

１）の有効間隙率の正確な同定は現在の技術では極めて困難であり、概要調査の段階

での計測は不可能である。精査が終わる段階までにある程度の幅を持って推測できれば

良しとすべきであり、今後の技術開発が期待される。２）の境界条件の同定もかなり困

難である。涵養量、下方、側方境界を決定するには慎重で詳しい調査が必要であり、前

出のように境界条件の推定の為のボアホールを掘削する必要がある。３）の断層の性状

は概要調査でかなりの確からしさで把握されるべきであるが、断層の調査手法も未だに

確立されていないのが現状である。４）の平均透水係数に関しては、ボアホール水理試

験に加えて、モデル全体の水収支やエネルギーバランス、地化学データなどからある程

度の確からしさで把握できると考える。 

 概要調査段階でのモデリングの目的はサイトの特性の理解を具現化するものであり、

その理解がどういった調査データを使ってどういう風に変遷して行ったかのトレース

(証拠)を残す為のものである。また、モデリング結果を以後の調査計画に反映させるの

も重要な目的である。現実的には、概要調査地域間のモデリング結果の違いが複数の概

要調査地域の中から精査地域を選出する根拠や決定要素になるとは考えにくい。サイト

間の特性の違いそのものより、個々モデルの入力データの不確実性の幅が遥かに大きい

と考えられる。 

ここで強調したいのは、概要調査段階では不適格要因が存在しないことがある程度の

確からしさで確認されれば、サイト特性のパラメータに関して不確実性が大きくても良

いと考えるが、精査の段階では不確実性を低減するための調査と技術開発の努力を惜し

んではならない。 

8.8 まとめ 

本章で述べてきた概要調査の流れの略図を Figure 8-1 に示す。図中ではすべてのボア

ホールの掘削を終えた後にボアホール試験を行うことになっているが、ボアホールの距

離が離れている場合はボアホール掘削毎に試験を行っても問題ないと考える。また、両

方向の矢印は調査と概念モデルの間の相互のフィードバックを示す。最後に重ねて強調

されるべきは、調査手法もモデリング技術も今後、大きく発展する必要性と余地が残さ

れており、サイトの特性調査に関してはフレキシビリティを保ちつつ、その時点毎に入

手可能なベストな手法の選択を続けるのが良策と考える。 



 

354 

Figure 8-1: 概要調査の流れ
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Appendix 1 
 

NUMO-LBNL Collaboration on Feature Detection, Characterization and 
Confirmation Methodology 

-Implementation plan (Revised)- 
 
Task A: Survey of Site Characterization Programs 
 
Objectives:  
The objectives of this task are to identify key and common site parameters important for 
safe disposal of nuclear wastes, to identify and evaluate existing and emerging field 
testing technologies to obtain such parameters, and to compile the know-how’s based on 
the experiences from the countries with an active site characterization program. 

Approach: 
Task A-1: Identification of Important Parameters 

In this task data from Japan, U.S. and other international investigations will be evaluated 
to identify key parameters that are important for site characterization for a nuclear waste 
repository. At the preliminary investigation stage it is not necessary or practical to 
exhaust all the parameters that are needed to describe the site completely. Site description 
will have to be made using available data. Such data will come from surface 
investigations, hydraulic and geophysical tests and surveys in a limited number of 
boreholes and trenches. The task will initially focus on examining a list of key and 
common parameters from site investigations elsewhere. Such sites may include, but not 
limited to, Yucca Mountain (USA), Äspö (Sweden), Olkiluoto (Finland) and the sites 
being characterized in Japan. We will compose lists of key parameters at various sites 
from the U.S. and other international investigations including Japan and identify key 
parameters that are common to majority of the sites. 

Task A-2: Compilation of Site Characterization Know-how’s 

In this task we will analyze the success and failure stories and extract lessons learned 
from various site characterization programs from the world. We will then compile 
essential know-how’s of site characterization strategy. 

Task A-3: Evaluation of Site Characterization Technology 

In this task, available and emerging field investigation technologies in the US and other 
international investigations including Japan will be reviewed. Their merits and limitations 
will be evaluated as well as their applicability to site characterization. The study will 
encompass geological, geophysical, hydrological, geochemical and geotechnical testing, 
monitoring and analysis technologies. Initially the emphasis will be on those that can be 
used at preliminary investigation areas. As the siting process advances progressively 
through stages and time, it is reasonable to expect that there will be a continuing 
improvement of field testing technologies that can be applied for site characterization. 
Thanks to various technological advancements, it is becoming possible to acquire data at 
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ever higher resolutions and wider dynamic ranges, and in some cases it is even possible 
to collect a new set of parameters that has been previously unattainable. Such 
technologies available in the US include: (1) technology to estimate the heterogeneity 
structure much like the seismic tomography by measuring minute pressure changes at a 
very fast sampling rate during a cross-borehole hydraulic test, and by inverting the 
pressure arrival times and (2) automated wireless data acquisition technology applicable 
for borehole-based monitoring. Existing field investigation and exploration technologies 
available in the US, Japan and elsewhere including geological, geophysical, hydrological, 
geochemical, and geotechnical testing, monitoring and analysis techniques will be 
surveyed. Their usable ranges, accuracies, and their applicability to site characterization 
will be analyzed.  New and emerging site investigation technologies including geological, 
geophysical, hydrological, geochemical, and geotechnical testing, monitoring and 
analysis techniques will be evaluated based on accessible information. Their prospective 
performance and future applicability to site characterization will be examined. 

Task A-4: Investigation of Uncertainties 

Uncertainties exist in every aspect of site characterization. They can be associated with 
the data obtained during site investigation, data interpretation, the assumptions and 
parameters in the numerical model that uses the data as input, and the numerical 
technique itself. For example, the permeability of a formation, which is one of the most 
important parameters in site characterization, and is commonly estimated by conducting 
hydraulic tests in boreholes, can be wrongly evaluated due to various causes including 
equipment malfunctions, noises, limitations in the test configuration, mismatched 
interpretation technique, as well as the assumptions used in the model. Many 
interpretation techniques assume ideal test conditions based on analytical solutions. 
Detection of the location and depth of faults, a most important feature to be identified 
during preliminary investigation stage, are often attained by using geophysical techniques, 
which are not free of uncertainties. Furthermore, there has been no established technique 
for accurately estimating the hydrologic properties of faults to this day. In this task we 
will evaluate the uncertainties involved with the data obtained in the field and with the 
characterization results using the data. We will identify the causes of the uncertainties 
associated with the key parameters and quantify the degree of uncertainties. In addition, 
we examine the uncertainties due to the use of mismatched analysis techniques. 

Schedule and Deliverables: (Table 1) 

Task A-1: 

We conduct this task in the first and second half of FY 2005. The first half will focus on 
the U.S. program and the latter will examine the programs elsewhere. An interim report 
will be made at the end of July. The annual report available at the end of the fiscal year 
will summarize the whole task. 

Task A-2: 

We conduct this task in the first and second half of FY 2005. The first half will focus on 
the U.S. program and the latter will examine the programs elsewhere. An interim report 
will be made at the end of July. The annual report available at the end of the fiscal year 
will summarize the whole task. 



 

359 

Task A-3: 

We conduct this task in the first and second half of FY 2005. A summary of the existing 
technologies and equipment will be made in the first half and in the latter half we will 
examine new and emerging technologies as well as the usable ranges, accuracies, and the 
applicability to site characterization of the technologies. An interim report will be made 
at the end of July and the annual report will be available at the end of the fiscal year. 

Task A-4: 

We initiated this task in the latter of FY 2005. Interim results will be summarized in the 
annual report in March, 2006 and the overall results will be summarized in the final 
report in December, 2006. 
 
Task B: Geohydorlogical Modeling and Analysis 
 
Objectives:  
The objectives of this task are to reconfirm the list of important parameters identified in 
Task A, to examine the effects of the types, configurations, combinations and 
specifications of the tests and the model parameters on the test results and interpretation, 
and to evaluate the uncertainties involved in site characterization by constructing a 
geohydrological model and performing numerical analyses. 

Approach: 
Task B-1:  Modeling and Analysis of Hypothetical Site 

In this subtask, we will construct a hypothetical geohydrological model using an actual 
set of data available in Japan. Through the iterative process of model construction and 
update, we will reconfirm the important parameters identified in Task A-1. The effects of 
the types, configurations, combinations and specifications of the field tests and the model 
parameters have on the test results and interpretation will be investigated. The TOUGH2 
family of codes developed at LBNL will be utilized. We will elicit those data that are 
important but may be missing and those that are important and already included in the set 
but are associated with some uncertainty.  

Task B-2: Evaluation of Uncertainties 

In this subtask, we will conduct sensitivity analyses of the key parameters using the 
model constructed in Task B-1. We examine the effects of the uncertainties in the 
parameters used in the model on the model outcome. 

Schedule and Deliverables: (Table 1) 

Task B-1: 

This task will be performed in the first and second half of FY 2005, and in the first half of 
FY 2006. In the first half of FY 2005, a preliminary modeling is performed (head 
distribution, flow path and travel time). In the following periods, the model will be 
updated with additional data and the key parameters will be evaluated. The interim results 
are summarized in the report in July 2005, and the overall results will be reported in the 
annual report at the end of the fiscal year. 
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Task B-2: 

This task will be initiated in the last half of FY 2005 and the interim report will be made 
in March 2006. The overall results will be summarized in the final report in December 
2006.  

Task C:  Summary and Reporting 

Objectives: 

Based on the findingx in Task A and B, we develop an optimum investigation approach 
that describes the types of tests, test configurations, and test durations to be conducted for 
site characterization. The design should allow measurement and collection of a set of data 
to be used for a preliminary performance assessment and for the design of an 
underground facility. 

Approach: 

Task C:  Recommendations for Optimum Characterization Strategy 

The main objective of the field tests at the preliminary investigation sites is to collect data 
to determine which sites are suitable for detailed investigation. Therefore, at the 
preliminary investigation stage it is not necessary or practical to expend large costs and 
efforts to examine all the parameters for complete site description, or to decrease the 
uncertainties to the absolute minimum. However, it is desirable to detect the existence of 
any disqualifying conditions at the early stage. Given that at least one of the preliminary 
investigation sites is to be chosen for further detailed investigation, the field activities at 
the preliminary sites should be compatible with the future detailed investigations. For 
example, the locations of the boreholes and the test configurations during the preliminary 
stage should not compromise future investigations, if they are not directly usable. In this 
task, we will investigate the most optimum field investigation strategy for site 
characterization at the preliminary investigation stage. Specifically, the key and universal 
parameters and processes identified in Tasks A and B are to be investigated by using the 
most suitable technologies also identified in Task A. The optimum combination and 
specifications of the site investigation technologies will be examined with the assessment 
of the expected degree of uncertainty. Recommendations will be made for the optimum 
site characterization approach.  

Schedule and Deliverables: (Table 1) 

Task C: 

This task will be initiated in the beginning of calendar year 2006 to reflect the results 
form Task A and B. An interim report will be made in March 2006. The final report will 
be made available at the end of December, 2006. 
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Table 1: Task Schedule 

 JFY 2005 JFY 2006 
Task A-1 Apr              Jul  Nov          Feb  
Task A-2 Apr    Jul  Nov          Feb  
Task A-3 Apr    Jul  Nov                 Feb                              
Task A-4         Nov Sep 
Task B-1 Apr    Jul  Nov  Sep 
Task B-2  Nov Sep 
Task C  Feb Dec 

 

 

Interim 
Report 

Annual 
Report

Final 
Report


