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Abstract 
 
Wellbores have been identified as the most likely conduit for CO2 and brine leakage from 
geologic carbon sequestration (GCS) sites, especially those in sedimentary basins with historical 
hydrocarbon production. In order to quantify the impacts of leakage of CO2 and brine through 
wellbores, we have developed a wellbore simulator capable of describing non-isothermal open-
well flow dynamics of CO2-brine mixtures. The mass and thermal energy balance equations are 
solved numerically by a finite difference scheme with wellbore heat transmission handled semi-
analytically. This new wellbore simulator can take as input the pressure, saturation, and 
composition conditions from reservoir simulators and calculate CO2 and brine fluxes needed to 
assess impacts to vulnerable resources. This new capability is being incorporated into the 
Certification Framework (CF) developed for risk assessment of GCS sites. 
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1. Introduction 
 
Wells are widely identified as likely pathways for CO2 leakage through otherwise contiguous 
sealing formations overlying geologic carbon sequestration (GCS) reservoirs (e.g., [1]). 
Understanding the hazard of leaking wells in terms of quantifying CO2 or brine fluxes that can be 
sustained by wells under various conditions is critical for risk assessment. In this study, we 
describe a wellbore flow simulator developed to model two-phase CO2 and brine flow from large 
depths upward to the surface. The wellbore flow simulator will be used in the Certification 
Framework (CF) for evaluating CO2 and brine leakage risk [2,3]. In this paper, we briefly discuss 
leakage processes in wells, present the equations and methods used in the new simulator, and 
present results of an example problem. 
 
2. Modeled processes 
 
The potential processes associated with CO2 and brine leakage through wells include (1) well 
cement degradation by geochemical reactions, (2) geomechanical effects on cement fractures and 
cement bonding, (3) upward flow of CO2 and brine with transition from supercritical to gas 
phase, with (4) potential transition to liquid phase CO2 depending on degree of Joule-Thomson 
cooling, (5) exsolution of CO2 from the aqueous phase as pressure and temperature change, (6) 
heat transfer with the surrounding formation, and (7) cross-flow into or interaction with 
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layers of surrounding rock. If flow is occurring within degraded cement, it is likely that existing porous media flow 
simulators can model the CO2 or brine leakage [4]. The focus of this work in on the upward (or downward) flow in 
the well occurring either in the tubing, within an annular region between casings, or between the casing and the 
rock, all of which fall into non-Darcy flow regimes. Regardless of the region in which flow is occurring, physical 
processes involving viscous or turbulent flow, phase change, and advective and conductive mass and heat transfer 
are relevant. In this work, we focus on two-phase flow of CO2 and brine with non-isothermal effects and neglect 
well cement degradation and geomechanics.  

3. Methods 

3.1. Introduction 

The approach we use for describing wellbore flow is based on the drift-flux model (DFM) [5] for transient two-
phase non-isothermal flow of CO2-water mixtures. Conservation equations for mass, momentum and energy under 
different flow regimes in the wellbore are solved numerically while wellbore heat transmission is handled semi-
analytically. We implement the DFM in TOUGH2 [6] with the ECO2N equation of state module [7]. The 
conventional approach for calculating the mixture velocity in the drift-flux model (DFM) is often based on the 
steady-state pressure loss equation for wellbore flow [8]. To improve simulation performance in well-bore flow 
processes involving high fluxes, we have extended the DFM to include the transient terms of the momentum 
conservation equations in calculating the velocity from the pressure gradient.  

3.2. Mass and Energy Conservation  

According to mass and energy conservation principles, the generalized conservation equation of mass 
components and energy in the wellbore can be written as  
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where superscript κ is the index for the components, κ = 1 (H2O), 2 (CO2), and 3 (energy, taken as internal and 
kinetic energy here), Mκ are the accumulation terms of the components κ; qκ are external source/sink terms for mass 
or energy components; and Fκ are the mass or energy transport terms along the borehole due to advective processes. 
Note in this development we refer to H2O and CO2 components, but the treatment of components is general and our 
implementation includes CO2, H2O, and NaCl to model CO2 and brine. Note further that we refer to liquid and gas 
phases, but the gas phase includes both true gas and supercritical forms of CO2 depending on pressure and 
temperature.  

3.3. Accumulation Terms 

The accumulation term (Mκ) of Eq. 1 for the mass components (H2O and CO2) in single- or two-phase system is 
given by  

κκκ ρρ LLLGGG XSXSM +=  (κ = 1 and 2)   (2) 
where Xβ

κ is the mass fraction of component κ in fluid phase β (β = G for gas; β = L for liquid), ρβ is the density of 
phase β; and Sβ is the local saturation of phase β defined as  
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where A is the well cross-sectional area, and AG and AL denote the cross-sectional areas occupied by gas and liquid 
over the cross section at a given distance along the well. The accumulation term for energy is defined as 
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where Uβ is the internal energy of phase β, and uβ is the average phase velocity in the wellbore. The two right-hand-
side terms in Eq. 4 represent the accumulation of internal and kinetic energy, respectively.  

3.4. Flow Terms 

Transport along the wellbore is governed in general by processes of advection, diffusion, and dispersion, and is 
also subject to other processes such as exchanges with the formation at feed zones. The total advective mass 
transport term for component κ can be written in one-dimension as   

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+
∂

∂
−=

z
X

z
X

F LLLGGG uu κκ
κ ρρ

   (5) 

where uβ is the average velocity vector of phase β within the wellbore, and z is the along-wellbore (typically 
vertical) coordinate. 

 
The transport terms for energy in the wellbore include those due to (1) advection, (2) kinetic energy, (3) potential 

energy, and (4) lateral wellbore heat loss/gain. The overall one-dimensional energy transport term can be written as  
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where hβ is specific enthalpy of fluid phase β, g is the gravitational acceleration, and q" is the wellbore heat 
loss/gain per unit length of wellbore. 

3.5. Momentum Conservation Using the Drift-Flux Model (DFM)  

In order to model the advective transport terms (Fβ and uβ), we invoke the DFM [9, 5] to describe both single-
phase and multiphase flow in wellbores. The basic idea of the DFM is to consider the two-phase liquid-gas mixture 
as a single effective fluid phase with slip between gas and liquid arising from non-uniform velocity profiles, as well 
as from buoyancy forces accounted for by empirically relating phase fractions and velocities to the mixture velocity.  

 
The gas velocity uG is related to the mixture velocity u as  

dG uuCu += 0      (7) 
where C0 is the profile parameter (or distribution coefficient), and ud is the drift velocity of the gas describing the 
buoyancy effect [5], where  
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where Ku is the Kutateladze number and uc is the “characteristic velocity,” a measure of the velocity of bubble rise 
in a liquid column.  Bubble rise is given by  
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where σGL is the surface tension between gas and liquid phases. By definition, the average mixture velocity (u) is the 
volumetrically weighted velocity  

LGGG uSuSu )1( −+=      (10). 
Therefore, the liquid velocity can be determined as 
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The profile parameter C0 varies from 1.0 to 1.2 and is assumed to be a smooth function of gas saturation: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>

≤≤⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

++

<

=

2

21
12

1

1

0

0.1

cos11.01

2.1

SS

SSS
SS
SS

SS

C

G

G
G

G

π  (12) 

with the two turning saturations, S1 and S2, set at 0.8 and 0.9999, respectively. 
 
To calculate the mixture velocity, we use the transient momentum conservation equation with the steady-state 

assumption about the wall shear stress.  Specifically, we start from the transient momentum equation  

( ) ( ) θρ
ρ

ρρ cos
4

2
2 g

r
uf

L
Pu

L
u

t w

−−
∂
∂

−=
∂
∂

+
∂
∂

  (13) 

where u is the mixture velocity in the wellbore, L is a length of the wellbore section (positive upward), ρ is the 
mixture density and θ is the local angle between wellbore section and the vertical direction. The friction coefficient 
(f) is a function of the Reynolds number (Re) for laminar and turbulent flows by  
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where the Reynolds number is defined as Re = ρud/μ where μ is the mixture viscosity.  
 
The fundamental challenge of implementing the transient DFM is in handling the coupling between friction 

factor and velocity. The first-order approach is to use a velocity from the prior time step to calculate the friction 
factor for the current time step. Our experience with this approach produced unsatisfactorily small time-step sizes, 
and motivated us to use a different approach as described below.  

3.6. Solving the Discretized Equations 

In the framework of TOUGH2, the mass and energy flux terms are calculated at each Newtonian iteration from 
the most recently updated primary variables (usually pressure, mass fractions, and temperature). Within the wellbore 
at each iteration, we calculate the mixture velocity (Eq. 10) first, and then calculate the gas velocity (Eqs. 10-11). As 
for marching in time, the momentum conservation equation (Eq. 13) is solved semi-explicitly as  
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where, the superscript n and n+1 indicate the previous and current time levels, respectively; Δt is the time-step size, 
and DR is the total driving force given by  

θρ cosg
L
PDR −
∂
∂

−=     (16). 

Normally, the pressure gradient caused by elevation change contributes from 80 to 95% of the total pressure 
gradient and the friction loss represents 5 to 20%, whereas the acceleration component is normally negligible and 
can become significant only if a compressible phase exists at relatively low pressures [8]. Therefore, the solution of 
Eq. 15 is more like an implicit formulation considering the above-normal pressure gradient components.  
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When the system reaches steady state there is no mass accumulation, thus Eq. 13 reduces to the pressure loss 

equation [8] given by  
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The component mass- and energy-balance equations of Eq. (1) are discretized in space using the conventional 
integral finite-difference scheme of TOUGH2 for the 1-D wellbore system. Apart from the special treatment of the 
momentum equation (Eq. 15), time discretization is carried out using a backward, first-order, fully implicit finite-
difference scheme. The discrete nonlinear equations for H2O, CO2, NaCl, and energy conservation at node i (well 
block) can be written in a general form as   
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where superscript n denotes the previous time level, with n+1 the current time level to be solved, subscript i refers to 
the index of N wellbore gridblocks, Δt is time-step size, Vi is the volume of wellbore node i (wellbore diameter may 
vary). The flow terms in Eq. 18 are generic and include mass fluxes as well as heat transfer. The mass flow term is 
given by  
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The total heat flux along the connection of nodes i and j, including advective and radial heat conduction terms, 
may be evaluated by 
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and heat loss/gain by lateral wellbore heat transmission is given by  
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where Awi is the lateral area between wellbore and surrounding formation, Kwi is thermal conductivity (or overall 
heat transfer coefficient) of wellbore/formation, T∞(z) is ambient temperature, and f(t) is the Ramey’s well heat loss 
function. 

 
In evaluating the flow terms in Eqs. 19 and 20, subscript ij + 1/2 is used to denote a proper averaging or 

weighting of advective mass transport or heat transfer properties at the interface or along the connection between 
two blocks or nodes i and j (j = i - 1 or i + 1). In addition, fully upstream weighting should be used in Eqs. 19 and 20 
for numerical stability. The mass or energy sink/source in Eq. 18 at node i, Qi

κ, is defined as the mass or energy 
exchange rate per time and can be used for interaction with feed zones in the well. 

 
The standard TOUGH2 fully implicit residual-based method is used to solve the discrete nonlinear equations 

using Newton iteration. In general, we need to solve for four primary variables (pressure, saturation or mass 
fractions of H2O or CO2 in fluids depending on phase conditions, mass fraction of NaCl, and temperature) per node. 
The remaining variables such as viscosities, densities, thermal conductivities, etc. are secondary variables that can 
be calculated from selected primary variables. The Newton iteration process continues until the residuals are 
reduced below preset convergence levels. The sparse Jacobian matrices arising in Newton’s method are solved by 
conjugate gradient or direct linear equation solvers provided in TOUGH2. 
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4. Verification 

To verify the well-bore flow solution approach, we simulated a case of isothermal steady-state single-phase water 
flowing up the wellbore at 25 oC at a rate of approximately 2 kg/s and compared the result with the theoretical 
pressure profile along the well from the steady-state pressure loss equation (Eq. 17). A sketch of the model system 
used for this verification problem (and for the test problem that follows) is shown in Figure 1a. In the verification 
problem, we increased the pressure at the bottom boundary slightly above hydrostatic and ran the model to steady 
state under isothermal conditions (T = 25 oC). The differences in pressure in the well between the flowing steady-
state result and the initial hydrostatic condition calculated in the simulation are of order 0.1%. Shown in Figure 1b 
are the theoretical (Eq. 17) and calculated pressures along the wellbore, along with the relative error. As shown in 
Figure 1b, the relative error between the theoretical and calculated pressures is negligibly small. This verification 
problem confirms the ability of the code to solve a steady-state single-phase flow up the well.  

 
(a) 

 

(b) 

 

Figure 1. (a) Schematic of the wellbore flow problem with initial conditions. (b) Results of verification problem comparing theoretical pressure 
and pressure calculated using well-bore flow simulator along with relative error for single-phase liquid flow up the well bore at ~2 kg/s (note this 
verification problem was isothermal at 25 oC).  

5. Example leakage problem 

To demonstrate the capabilities of the new wellbore flow model, we present results for a case of two-phase flow 
up an open wellbore. The system initial conditions are hydrostatic pressure, temperature varying linearly top-bottom 
from 15-45 oC, and 100% water in the well as shown in Figure 1a. Starting from hydrostatic conditions in the well, 
an overpressure of 0.1 MPa (1 bar) is applied to the reservoir to mimic an injection-induced overpressure. The 
scenario envisioned is that of the tip of a migrating CO2 plume at 10% gas saturation encountering an open well 
initially filled with water. Note that unlike other conditions in CO2-brine systems [10], this problem results in a 
steady-state non-oscillatory flow which we chose for simplicity in testing the model.  

 
With reference to Figure 2, we observe in this test problem the early-time upward flow of water within the well at 

all depths as driven by the 0.1 MPa pressure perturbation at the bottom. Gas flow does not begin until approximately 
t = 20 s when gas appears at the bottom of the well.  By t ~ 500 s, gas flows at the middle and top of the well. The 
flow rate of CO2 reaches approximately 1.4 kg/s in this open wellbore case.  

 
Further insight into the processes modeled can be obtained from Figure 3 which shows gas saturation, gas 

density, pressure, and temperature throughout the well as a function of time. As shown, the well is initially filled 
with water and gas progressively fills the well from the bottom up. After 30 minutes (1800 s), gas is fairly evenly 
distributed throughout the well from 10% at the bottom to nearly all gas at the top. The reasons for this increase in 
gas saturation are (1) the exsolution of gas from the liquid as pressure drops and (2) the large expansion that CO2 
undergoes as it transitions from supercritical to gaseous conditions. This transition occurs around the critical 
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pressure of 7.4 MPa (74 bar), at a depth of approximately 800 m. The gas density plot in Figure 3 shows the sharp 
decrease in gas density at depths around 800 m. Temperature also affects CO2 solubility, but temperature becomes 
relatively constant as steady flow develops, resulting in decreasing CO2 mass fractions being controlled mostly by 
pressure. The temperature contour shows the evolution from a conductive profile controlled by the geothermal 
gradient to an advective profile controlled by upward fluid flow. In between the initial and steady states, there are 
some local maxima and minima arising from expansion and dissolution of CO2 as gas phase rises upwards.   
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Figure 2. Flow rates and velocities of CO2 and water at three levels in the well (bottom, middle, and top). 

 

Figure 3. Profiles of .gas saturation, gas density, pressure, and temperature in the wellbore as a function of time. 
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6. Conclusions 

We have developed a well-bore flow simulator that models two-phase CO2-brine mixtures for use in GCS leakage 
studies. This simulation capability is intended to be used for quantifying potential leakage up wells using pressures 
and CO2 saturations at depth calculated by reservoir simulation. Although the test problem is based on flow up an 
open borehole, the approach can be used for flow in an annulus region by suitable modifications of roughness 
coefficients and geometric parameters. The fundamental elements of advection, diffusion, and phase change are 
independent of the particular flow geometry. Similarly, the approach can be applied to non-vertical and horizontal 
wells with the caveat that flow in the well is always one-dimensional. Finally, the wellbore simulator can be used for 
downward flow, e.g., injection calculations to determine bottom-hole pressure for given flow rates to avoid 
exceeding formation fracture pressure.    
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