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SUMMARY 

 
The mechanical properties of cohesionless granular materials are evaluated from grain-scale 
simulations. A three-dimensional pack of spherical grains is loaded by incremental displacements 
of its boundaries. The deformation is described as a sequence of equilibrium configurations. Each 
configuration is characterized by a minimum of the total potential energy. This minimum is 
computed using a modification of the conjugate gradient algorithm. 

Our simulations capture the nonlinear, path-dependent behavior of granular materials 
observed in experiments. Micromechanical analysis provides valuable insight into phenomena 
such as hysteresis, strain hardening and stress-induced anisotropy. Estimates of the effective bulk 
modulus, obtained with no adjustment of material parameters, are in agreement with published 
experimental data. The model is applied to evaluate the effects of hydrate dissociation in marine 
sediments. Weakening of the sediment is quantified as a reduction in the effective elastic moduli.  
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1. INTRODUCTION 
 

The mechanical properties of cohesionless granular materials are important in many applications, 
making them the subject of intensive research [1]. When a granular material undergoes 
deformation, its bulk response is determined by the interactions among discrete grains. This 
property of granular materials makes grain-scale numerical simulations a valuable tool [2–5]. For 
instance, such simulations provide contact forces in three-dimensions (3D) which are currently 
unavailable from experiments [5], and enable insight into the mechanical response of granular 
matter [6]. 

Interactions between grains are modeled by a contact law, relating the loads at the grain 
contacts to their relative displacements and deformations. For elastic deformations, the force 
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component acting normal to the contact interface can be calculated by the Hertzian model [7],
which has been verified by experiments [8]. To evaluate loads related to intergranular friction
such as tangential force and torsional couple, the model by Mindlin and Deresiewicz [9] (M-D)
is considered adequate [10]. Since it is cumbersome to implement M-D theory for multiple
contacts, simplified versions are used for computations, e.g. [10]. However, simulations show
that the normal components of the contact forces dominate many aspects of the bulk response
[11–14]. Thus, essential aspects of the mechanics of granular materials can be captured by
using a “frictionless” contact law, accounting for the normal contact forces only [15].

Deformation can be described by a quasi-static model, as a sequence of equilibrium
configurations, corresponding to incremental changes of the boundary conditions. These
configurations are found by using a discrete model. Most grain-scale simulations are based
on the Discrete Element Method (DEM) [16]. In DEM, interactions between the grains are
treated as a dynamic process, accounting for their inertia. The equilibrium configurations are
found by numerical integration over time. The tight constraints imposed on the time step used
in the integration [17], make DEM simulations time consuming. To accelerate computations
and damp grain oscillations, material properties such as the density of the grains and their
contact stiffness are often adjusted [13, 18] to unrealistic values.

In this paper, we present a technique which does not require such adjustments. The input
parameters in our model are the sizes, densities and elastic moduli of the grains, obtained
from published experiments. We use a quasi-static model, where each load increment is
followed by a static equilibrium. The contact forces are determined by the Hertzian model,
assuming frictionless contacts. Thus, all forces can be obtained as gradients of a potential field.
Employing a variational approach, we seek for the equilibrium configurations by minimizing
the total potential energy of the system. A similar variational approach was employed in other
discrete models [19, 20].

Three-dimensional micromechanical analysis is used to demonstrate mechanisms leading to
phenomena such as hysteresis and stress-induced anisotropy. Macroscopically, our simulations
capture the nonlinear, path-dependent response observed in experiments. With no adjustment
of material parameters, our estimates of the effective bulk modulus are in agreement with
published experimental data. However, the shear modulus is underestimated; this is attributed
to the frictionless contact model employed. Elsewhere [21], we extend our variational approach
to account for intergranular friction. This extension produces more accurate predictions of the
moduli.

Our model is applied to evaluate the mechanical response to dissociation of gas-hydrates
in marine sediments. Hydrate dissociation caused, for instance, by hot fluids produced from
deep formations, can destabilize the ocean floor and lead to landslides [22], risking nearby
structures such as offshore platforms. The mechanical properties and structure of hydrate-
bearing sediments (HBS) are not well-known, due to difficulties in in-situ sampling and creation
of representative artificial samples [23]. We quantify the degradation of strength in an HBS
sample by a reduction in elastic moduli.

The outline of this paper is as follows. Section 2 describes our model and the simulations
methodology. Grain-scale and macroscopic observations from our simulations are presented in
Section 3. In Section 4, we quantify the effects of hydrate dissociation in marine sediments.
We discuss our results in Section 5.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2007; 00:1–6
Prepared using nagauth.cls



GRAIN-SCALE SIMULATIONS: A VARIATIONAL APPROACH 3

2. SIMULATING DEFORMATION OF GRANULAR MATERIALS

We simulate loading of cohesionless grains packed in a rectangular container. Load is applied
by incremental displacements of the container walls, allowing the grains to reach static
equilibrium. Each equilibrium configuration is computed by minimizing the total potential
energy of the system. The initial conditions are the positions of the grains, prior to the
simulated test. The positions and orientations of the container walls determine the boundary
conditions, from which the strains are evaluated. By applying uniform or different normal
strains in three principal directions, we simulate an isotopic or a polyaxial test. A uniaxial test
is simulated by loading in a single direction.

2.1. Grain Pack Model

We model granular matter as a heterogeneous, irregular (“random”) 3D packing of spherical
grains, see Figure 1. Each grain is homogenous and isotropic. To model heterogenous materials
such as clastic sediments, we assign the grain sizes and elastic moduli from a given distribution.
The deformations are assumed to be small and localized near the contacts, allowing for the
shape of a deformed grain to be approximated by a sphere.
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Figure 1. Left: a typical pack with 5036 grains used in the numerical simulations. Right: schematic
description of the contact geometry. The initial configuration of the grains is marked with grey dotted

lines. The dashed lines represent grain overlap caused by deformations.

In a fixed coordinate system, the geometry of each grain is fully described by the coordinates
of its center and its radius. This is since the orientations of the grains are of no importance
under the assumption of frictionless contacts. Thus, for a 3D pack of N grains, each
configuration has 3N degrees of freedom, i.e. the grain centers coordinates. Labeling all grains
with a single index i = 1, 2, . . . , N , we denote the radius-vector of the center of grain i by ri.
Given a reference configuration in equilibrium, we perturb the boundary conditions, forcing
the grains to deform and rearrange to a new equilibrium configuration (“current”). Let ui

denote the displacement of grain i: ui = ri − ri(0), where subscript (0) denotes the reference
configuration, see Figure 1. The radius of grain i is Ri, its mass is mi, and the Young’s modulus
and Poisson’s ratio of its material are Ei and νi, respectively. Subscript w denotes a boundary
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wall.

We hypothesize here that in a tight packing, the macroscopic stress is mostly affected by the
normal component of the contact forces [11–14]. This assumption is based on the argument
that the size of the asperities that resist lateral or angular displacements is much smaller than
the size of the grains themselves. Thus, we only account for the normal force components.

2.2. Contact Model: Force-Displacement Relation

According to Hertzian contact theory, the magnitude of the compressive normal force acting
at the contact between a pair of grains i and j is

‖P ij‖ =
4

3
E∗

ij

(

R∗

ij

)1/2
(hij)

3/2
(1)

where ‖a‖ = (a · a)1/2 is the magnitude of a vector a. Parameters R∗

ij =

(

1

Ri
+

1

Rj

)

−1

and

E∗ =

[

(1 − ν2
i )

Ei
+

(1 − ν2
j )

Ej

]

−1

are the effective radius and elastic coefficient associated with

that contact, respectively. Eq. (1) is applicable to a grain-boundary contact, by modeling the
latter as a grain of infinite radius. The contact deformation is measured by the overlap hij ≥ 0,

hij = Ri + Rj − ‖rij‖ for grain-grain contact

hiw = Ri − (ri − xw) · nw for grain-boundary contact
(2)

where rij = ri − rj , the initial contact point with the wall w is xw, and nw is an inward unit
normal to the wall, see Figure 1. As long as the orientation nw is held fixed, xw can be chosen
arbitrarily on the boundary w. The force acting on grain i at the contact with another grain j

or a wall w is directed along rij or nw, respectively. No moment relative to the center of the
grain is developed.

2.3. Obtaining Equilibrium Configurations

At equilibrium, the balance of forces for each grain yields three scalar equations, a total of 3N

equations for N grains. The unknowns, grain displacements, can be written as a column vector
θ = [u1 . . . uN ]

T
. Here ui is a row vector, and superscript T is the transpose. The exponent

of 3/2 in Eq. (1) makes the system of equations nonlinear.

We seek an equilibrium configuration by employing a variational formulation. Namely, an
equilibrium configuration is characterized by a set of displacements θ corresponding to a
minimum of the total potential energy of the system. This minimum is found numerically
using a modification of the conjugate gradient algorithm [24], see Appendix. The total energy
is a function of the deformation (strain energy) and the gravitational energy of the grains. The
elastic strain energy of a pair of grains in contact is equal to the sum of work done on each
grain to deform it. This work is the dot product of the force with the displacement increment,
integrated over the total displacement. Thus, the strain energy Uij stored in the deformed
contact region between grains i and j is (cf. Eq. (9.15) in [25]):
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Uij(ui, uj) =
8E∗

ij(R
∗

ij)
1/2

15
(hij)

5/2 (3)

The total potential energy of the system is the sum of the strain energy of all contacts and
the gravitational potentials of all grains

Π(θ) =
N

∑

i=1







1

2

Ni
g

∑

j=1

Uij +

Ni
b

∑

w=1

Uiw + mig(ri · êz − z∗)







(4)

Here z∗ is an arbitrary fixed reference elevation, êz is a unit vector pointing opposite to the
direction of gravity, and g is the gravity acceleration. By N i

g and N i
b we denote the number of

contacts of grain i with other grains and boundaries, respectively. The coordination number
of grain i is N i

g + N i
b . Note that the set of contacts for each grain varies with the deformation

of the pack, introducing additional nonlinearity.
The gradient of Π with respect to θ is a column vector ∇θΠ = −[F 1 . . .F N ]T , where the

row vector F i is the sum of forces on grain i,

F i =

Ni
g

∑

j=1

P ij +

Ni
b

∑

w=1

P iw − migêz (5)

Thus, the vanishing gradient of Π is equivalent to the balance of forces.

2.4. Initial Grain Pack Generation

To simulate deformation of a grain pack, a sufficiently dense initial configuration is required
[26, 27]. Such an initial configuration could be obtained from a physical sample, using advanced
imaging [28, 29]. Alternatively, an initial configuration could be generated numerically using
either “constructive” or “dynamic” algorithms. Constructive algorithms are based on geometry
alone and thus require relatively small computing time; however, the current state-of-the-art
constructive algorithms produce 3D arrangements with low coordination numbers, gaps, or
anisotropic structure [27]. In dynamic algorithms, a loose packing is created by placing a
relatively small number of grains in a bounded domain. Then, its density is increased by
either expanding the grains or moving the boundaries closer together. A static equilibrium
configuration is found by simulating intergranular interactions, e.g. using DEM. The large
number of collisions and grain rearrangements makes such a procedure time-consuming [27].

Instead, we use a quasi-static algorithm. Here, we start by selecting a portion of a pack
generated by DEM [30], bounding it by a rectangular domain. This packing is loose, with many
grains supported by less than 4 contacts, rendering them mechanically unstable. To obtain a
denser packing we first expand these unstable grains, until their coordination numbers is at
least 4. Then, we shrink the pack by equal displacements of all boundaries, and apply our
algorithm to obtain an equilibrium configuration. This process is repeated until practically all
grains have coordination number of 4 or more, and appreciable contact forces develop.

2.5. Evaluating Macroscopic Parameters

2.5.1. Stress and Strain. There are several methods for transforming between discrete, grain-
scale parameters and macroscopic, continuum stress and strain (e.g. [31, 32]). We consider the
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pack to be a representative volume of a larger medium, and compute the average stress and
strain within this volume as described below.

The external normal forces applied on the boundaries are calculated from the sum of the
contact forces on the container walls. The average normal stresses are evaluated by dividing
these external forces by the area of the respective walls. To confirm the validity of our stress
evaluation procedure, we also calculate the averaged Cauchy stress, taking into account the
entire set of contact forces within the sample volume [31]. This calculation yields values similar
to those obtained from our procedure.

To estimate numerically the macroscopic strains ǫ =
[

∇xu + (∇xu)T
]

/2, we replace the
derivatives with finite differences. In the last equation, x is a radius-vector to an infinitesimal
volume, and u is its displacement [25]. For a rectangular domain, the normal strain in the l-
direction (l = 1, 2, 3) reduces to

[

Ll − Ll(0)

]

/Ll(0), where Ll and Ll(0) are the current and the
reference (undeformed) length of the domain in that direction, respectively. In our simulations,
the strains determine the boundary conditions, enforced by displacing the container walls.

2.5.2. Elastic Moduli. To describe the mechanical properties as they evolve with the
deformation, we discretize the load path, and assign a set of constant effective elastic moduli
for each loading interval. The moduli for each interval are evaluated by fitting the stress-strain
results with Hooke’s law. Hooke’s law for a homogenous, isotropic body is σ = λtr(ǫ)Î + 2Gǫ,

where σ is the stress tensor, tr(ǫ) is the trace of ǫ, and Î is a unit second order tensor. The
moduli λ and G are Lame’s constant and the shear modulus, respectively. Other elastic moduli
can be evaluated from λ and G [25].

The moduli evaluated using the procedure above are the bulk-averaged, effective moduli,
corresponding to an effective homogeneous and isotropic elastic medium. Because the moduli
depend on the loads, stress-induced anisotropy can develop when loads in different directions
are significantly different [33]. This phenomenon was observed in our simulations, see Section
3.3. To verify whether a grain pack is isotropic, we simulate a polyaxial test and compare the
moduli for each pair of principal directions. If they are similar within a given tolerance, we
consider the response isotropic. We minimize stress-induced anisotropy by applying relatively
isotropic strains, evaluating the moduli at different loads by a uniaxial test. Macroscopically
isotropic systems may exhibit local anisotropy, if the number of grains within the selected
volume is too small [15]. To avoid such scale-related anisotropy, we use packs with sides not
smaller than ∼15 grain diameters. This length scale depends on the properties of the grains
and their spatial arrangement, and was determined by trial and error. As a result of using the
above measures, the estimates of the moduli in different directions are practically identical.

3. SIMULATIONS

3.1. Model Parameters

To verify our model, we compare our simulation results with published experiments. In
particular, we compare our results to experiments on glass beads, since they are relatively
spherical and smooth. Thus, the elastic moduli of the grains were assigned mean values of
Ē = 70 GPa for Young’s modulus and ν̄ = 0.2 for Poisson’s ratio (corresponding to bulk
and shear modulus of K̄ = 38.9 GPa and Ḡ = 29.2 GPa, respectively), similar to glass beads
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Figure 2. The distribution of the grain sizes (left) and Young’s modulus values (right) for pack G5036,
representing a sample made of 5036 glass beads.

[34]. In other simulations, quartz sand was modeled by assigning Ē = 100 GPa and ν̄ = 0.15
(K̄ = 47.6 GPa and Ḡ = 43.5 GPa) [35, 36]. The elastic moduli were normally distributed
with a standard deviation of 10% of the mean. The radii of the grains used to generate the
initial pack were distributed uniformly between 0.07-0.13 mm. Since the initial pack generation
procedure involves expansion of the unstable grains, the grain radii slightly deviate from this
distribution. The density of the glass and quartz grains was taken to be 2.42 and 2.65 g/cm3

[35]. The number of grains used was 5036 and 2654 for the glass beads and quartz sand,
denoted by G5036 and Q2654, respectively. The distribution of the grain sizes and Young’s
modulus values for G5036 are plotted in Figure 2.

3.2. Macro-mechanical Analysis

3.2.1. Stress-Strain. To capture hysteresis and stress-induced anisotropy, we simulated a
loading-unloading cycle in a polyaxial test on sample Q2654. The porosity and mean
coordination number varied as 35.8-30.5% and 7.23-8.26, accordingly, with stresses of ∼60-
300 MPa. The stress-strain curves calculated for Q2654 are plotted in Figure 3. The abrupt
change in the slopes is associated with variations in the complex network of contacts (“fabric”)
and contact forces. Some of these microstructural variations are irreversible, contributing to
the hysteretic response observed in experiments [37]. This hysteresis is evident in Figure 3 as
different loading and unloading curves.

3.2.2. Elastic Moduli. To verify our model against experiments on glass beads, we simulated
isotropic compression of sample G5036, evaluating the macroscopic elastic moduli for different
loads by an incremental uniaxial loading. In these simulations, the porosity and mean
coordination number varied as 37.4-35.1% and 6.24-7.15, accordingly, with stresses of ∼1-35
MPa. Our moduli estimates are plotted in Figure 4 vs. the confining stress σc, defined by the
mean of the lateral stresses perpendicular to the principal loading direction. Figure 4 also shows
results of acoustic experiments, simulations and analytical solutions by [34, 35, 38], conducted
using packs of glass beads with micro-properties similar to those used in our simulations. The
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Figure 3. Stress-strain curves obtained from simulations of a polyaxial loading-unloading cycle on
sample Q2654. Hysteresis is evident as different loading and unloading curves. This hysteresis is

related to the abrupt change in the slopes (encircled).

DEM and EMT calculations in [34] employed a contact law which prohibits sliding of grains,
i.e. assigning infinitely large intergranular friction.

Our bulk modulus (K) estimates are in good agreement with the published experimental
data, with some values slightly lower than the data. In addition, except at σc < 2 MPa, our
evaluated shear modulus (G) growth agrees with the experimental data, showing faster growth
rate than the power law σc

1/3 predicted by the EMT [39]. The discrepancy between the EMT
predictions and experimental data is discussed in [34, 40, 41].

At the same time, our shear modulus strongly underestimates the experimental data. In
particular, at low stresses, the evaluated shear modulus drops sharply with the stress. Loss
of shear rigidity is observed as the mean coordination number approaches 6 and the porosity
exceeds ∼37%. However, loss of rigidity is expected to occur at lower packing densities, as
intergranular friction strengthens the pack [42]. We associate the discrepancies between our
predictions and the data with the frictionless contact assumption, because the shear modulus
greatly depends on the intergranular shear [42].

3.3. Micromechanical Analysis

Relating grain-scale parameters to macroscopic, continuum parameters can improve our
understanding of the complex behavior of granular materials [14]. The effect of the spatial
distribution of grain-scale parameters cannot be captured by averaged, macroscopic quantities.
For example, by tracking the contact forces larger than a certain threshold, we observe force
chains, as most of the load is carried by relatively few grains. This can lead to fracturing and
failure of the material, which cannot be predicted from averaged quantities such as stress.
Force chains have been observed in experiments using photoelastic disks (e.g. [43]) and in
DEM simulations (e.g. [3, 6, 12, 15, 42]).

Correspondence between abrupt change in the slopes of the stress-strain curves and
substantial variations in the contact network and the force chains was noticed in
our simulations. A similar correlation was observed between deviator stress drops and
microstructural variations [3]. Some of these variations are irreversible, contributing to
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Figure 4. The effective bulk (left) and shear (right) modulus vs. the confining stress σc. The evaluated
moduli from simulations on sample G5036 are compared with published results of acoustic experiments
in glass beads [34, 35, 38], in addition to DEM simulations and effective medium theory (EMT)

calculations by [34]. The published data was digitized from Figure 1 in [34].

the hysteretic bulk response. Tracking hysteresis via grain-scale parameters can be done
quantitatively using the fabric tensor [37]. Qualitatively, we observe that these abrupt
changes were correlated to relatively large displacements experienced by several grains. These
displacements are possible at particular combinations of contact forces and geometry, as grains
are “pushed” through constrictions. Following such events, the local set of contacts and the
shapes of these constrictions are altered significantly, so that a reverse-perturbation of the
boundary conditions cannot restore the original configuration. In loading, these rearrangements
create an overall stiffer pack, which may be interpreted as strain hardening.

Stress-induced anisotropy was observed in simulations of highly anisotropic loading on
sample Q2654. To investigate the mechanisms leading to such anisotropy, we analyzed the
directions of the contact forces which were larger than the mean. Under isotropic loads these
directions were uniformly distributed. In contrast, under anisotropic loads corresponding to
anisotropic moduli, these forces were preferentially aligned with the direction of the maximum
external load. Similar observations were made from experiments [43] and simulations [12].

4. IMPACT OF HYDRATE DISSOCIATION IN MARINE SEDIMENTS

4.1. Modeling Hydrate Dissociation

We apply our model to quantify the mechanical response to hydrate dissociation in HBS. Gas-
hydrates are solid materials formed under a range of high pressures and low temperatures.
Dissociation converts them into liquid water and free gas. The volumetric expansion of gas
can lead to an appreciable increase in pore pressure [22], reducing the effective stress. Thus,
dissociation impacts the mechanical properties of HBS by reducing both the solid fraction of
the sediment and the effective stress.

The pressure increase varies with factors such as dissociation rate, sediment permeability,
and initial pore pressure [22]. Predicting the excess pressure as a function of dissociation is
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outside the scope of this paper. Thus, we consider a number of dissociation scenarios. A range
of dissociation amounts and excess pressures, taken from other models [22], is used as input
parameters in our simulations.

The distribution of hydrates within the pore space depends on the formation mechanism,
among other factors, and a wide variety of distribution models exists [44]. To model interactions
between the host sediment and the hydrate, we consider methane-hydrate formed preferentially
in the larger pores, rather than in the pore-throats. This type of hydrate distribution can
occur if small amounts of hydrates are slowly introduced in the aqueous phase [23]. Such a
distribution makes hydrates a part of the solid skeleton, i.e. load-bearing solid particles.

We quantify the amount of dissociation by the decrease in hydrate saturation from S to
S + ∆S, where ∆S < 0. The hydrate saturation is defined by S = V h/V , where V h is the
volume occupied by hydrate and V is the total pore volume, including the hydrate. We model
the reduction in solid fraction due to dissociation by shrinking the hydrate grains, assuming
all grains experience a similar volumetric strain. The impact of the excess pore pressure,
pex, is modeled at both the grain and the sample level. We assume uniform pore pressure
within the sample. Since the contact area is much smaller than the surface area of the grains,
we isotropically compress the grains, neglecting the net force applied by the fluid pressure.
The volume of grain i, Vi, is changed by ∆Vi < 0. For small changes in volume, ∆Vi/Vi is
approximately equal to the volumetric strain, and can be determined by −pex = Ki∆Vi/Vi.
Here Ki is the bulk modulus of grain i. At the sample scale, the reduction in effective stress is
modeled by applying a tensile macroscopic strain ǫkk > 0, expanding the sample isotropically.
This strain is determined from the poroelastic constitutive equation αbpex = Kǫkk, where αb

is the Biot-Willis coefficient [45].

4.2. Elastic Moduli Following Hydrate Dissociation

The effect of dissociation in HBS is quantified via the evolution of the elastic moduli. The
initial state of an HBS sample is modeled as a dense arrangement of spherical grains, where
some of the smallest grains are methane-hydrate. Hydrates are assigned with elastic moduli
of Ei = 6.6 GPa and νi = 0.32 (Ki = 6.1 GPa and Gi = 2.5 GPa), and density of 0.9 g/cm3

[46]. To model quartz sand as the host sediment, the other grains were assigned properties of
quartz, see Section 3.1. A typical value for sand of αb = 0.8 was used [47]. The initial porosity
and hydrate saturation was φ ≈45% and S = 0.215. The effective stress for this initial packing,
determined from the contact forces on the walls (see Section 3.2.1), was ∼21 MPa. The initial
pore pressure may be larger than hydrostatic pressure if the sediment is confined by a low-
permeability layer. The resulting total stress, which is considered fixed in our simulations, can
exceed the lithostatic stress if the sediment carries the weight of a nearby offshore platform.

By varying the excess pressure and the saturation decrement independently, we produce
a series of configurations, covering a range of possible scenarios. For each configuration, the
elastic moduli are evaluated by simulating a uniaxial test. In Figure 5 (left), these moduli are
plotted against the excess pressure, for a fixed saturation decrement, ∆S = −0.01. Conversely,
Figure 5 (right) shows the moduli vs. ∆S, for a fixed excess pressure pex = 1 MPa. The initial
moduli prior to dissociation are plotted in the left-most parts of both figures.

Weakening of HBS is evident from a reduction in elastic moduli, as the sediment becomes
looser and softer. This observation is in qualitative agreement with experiments [23, 44] and
other numerical simulations [48]. Further dissociation may lead to a significant decrease in
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Figure 5. Simulating a reduction in bulk (dashed line) and shear (solid) modulus due to hydrate
dissociation. Left: varying the excess pore pressure pex, for a fixed saturation decrement, ∆S = −0.01.

Right: varying the saturation decrement for a fixed excess pressures pex = 1 MPa.

the solid support, with a possible loss of shear rigidity. In such a state, the sediment is more
susceptible to landslides and subsidence, threatening the safety of adjacent offshore platforms.

5. DISCUSSION

A technique for estimating the mechanical properties of cohesionless granular materials from
numerical simulations has been presented. We model granular matter as a 3D disordered
packing of elastic spherical grains, bounded by a rectangular container. Using a quasi-static
model, the pack is loaded by incremental displacements of the container walls. The contact
forces are calculated using Hertzian contact theory. Each equilibrium configuration is found by
minimizing the total potential energy of the system. A modification of the conjugate gradient
algorithm is used to obtain this minimum. This approach results in an efficient computational
procedure, which is also used to generate a dense initial arrangement.

By micromechanical analysis we demonstrate mechanisms responsible for hysteresis, strain
hardening, and stress-induced anisotropy. Macroscopically, our results capture the nonlinear
and path-dependent response observed in experiments. We have verified our physics-based
model against published experimental data, using similar grain properties. All material
parameters used in our model, i.e. the sizes, densities and elastic moduli of the grains, serve
as input parameters which are obtained from published experiments. The good agreement
between predicted and measured values of the macroscopic bulk modulus has been achieved
with no adjustments of parameters.

These results confirm that the normal contact forces play an important role in determining
the overall response, and that grain-scale elasticity is suitable to describe many features of the
inelastic response of granular materials. The bulk modulus, for example, mainly depends on the
normal contact forces, which are adequately described by the Hertzian theory. Nevertheless,
our model underestimates the shear modulus. We attribute this deficiency to the frictionless
contact model employed. Extension of our variational approach to account for shear and sliding
at the contacts provides more accurate predictions of the moduli [21].
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We apply our model to quantify the effect of hydrate dissociation in marine sediments.
Hydrates are modeled as load-bearing solid particles within the pores. To model dissociation,
we reduce the solid fraction by shrinking the hydrate grains. The effect of the related excess
pore pressure is modeled by expanding the sample to account for the decrement of effective
stress, and compressing the grains. A series of possible scenarios has been simulated, showing
degradation in sediment strength as a reduction in the macroscopic elastic moduli. This trend
agrees qualitatively with the published results of experiments and numerical simulations.
Further dissociation might lead to loss of solid support of the skeleton, causing seafloor
landslides and subsidence. To predict such instabilities and their impact on offshore platforms,
our model can be used to produce constitutive relationships for large-scale simulations (e.g.
[48]). To quantitatively verify our predictions, more experimental data will be required.
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APPENDIX: MINIMIZATION ALGORITHM

Each equilibrium configuration is found numerically, using a modified conjugate gradient (CG)
algorithm. We seek displacements θ which provide a local minimum of the functional Π. Iterative
updates θ

k+1 = θ
k−αk

p
k are performed until the displacements converge to provide a local minimum

of Π within a desired accuracy. Superscript k denotes the iteration index. The updates are performed

in the so-called search directions p
k = R

k − βk
p

k−1, where βk = −
“

‖Rk‖/‖Rk−1‖
”2

. The residual

vector R
k equals the gradient of Π, R

k = −[F k

1 . . . F k

N ]T .

We use the steepest descent method, finding a value for the scaling coefficient αk which provides a
minimum for Π(θk − αk

p
k). To avoid nonphysical artifacts such as grain permutations, the value of

α is restricted within each iteration. The iterations are stopped if at least one of the following holds
true:

Πk − Πk+1 < ε1Π
k or ‖Rk+1‖2 < ε2N

`

ĒR̄2
´2

(6)

where R̄ is the mean grain radius. For example, for sample Q2654, Ē = 1011 Pa and R̄ = 1.003 · 10−4

m. The tolerance parameters were chosen to be ε1 = 10−10 and ε2 = 10−3. These values provide for
each grain a residual force F i, which was smaller than the maximum contact force on that grain by at
least 3 orders of magnitude. Note that due to inevitable round-off error, the chosen tolerance cannot
be arbitrarily small.

For a linear system of the order 3N with a positive-definite matrix, CG is proven to yield an
exact solution within 3N iterations [24]. However, the nonlinearities related to the force-displacement
relation and variations in the fabric, in addition to accumulated round-off error, may cause loss of
convergence, as updating θ

k in the direction of p
k may not reduce the value of Π. To avoid this

behavior, we refresh the CG algorithm by performing an update in the direction of the gradient R
k.

The frequency of this operation is determined by trial-and-error.
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