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The Initial Value Representation of
Semiclassical Theory: A Practical
Way for Adding Quantum Effects to
Classical Molecular Dynamics
Simulations of Complex Molecular
Systems

William H. Miller’

It has been known since the 1970’s how one can in principle use
classical molecular dynamics (i.e., numerically computed classical
trajectories) as input to a semiclassical (SC) theory that provides a
good description of all quantum mechanical effects in the dynamics
of molecular systems. Over the last decade, various initial value
representations of SC theory have been shown to provide a practical
way for implementing these SC approaches for large molecular
systems, those of interest for applications in bio-molecular and
molecular-materials areas.

1. Introduction

With so many exciting things happening nowadays in the bio-molecular
and molecular-materials areas, there is a clear need for theoretical
calculations to model these large, complex molecular systems, to aid in
the interpretation of these phenomena and to carry out exploratory
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calculations to suggest new directions for experimental studies. The only
generally available approach heretofore for treating the dynamics of such
large systems is classical molecular dynamics (MD), i.e., classical
trajectory simulations, but this of course precludes the possibility of
describing any of the quantum mechanical aspects of the molecular
dynamics. Though for many purposes quantum effects will be
unimportant, there is no doubt that they will be significant in some
situations, most obviously when the dynamics of hydrogen atom motion
is a significant part of the process of interest. Furthermore, unless ones
theoretical treatment is able to incorporate quantum effects, even
approximately, one will not know whether they are important or not.

It has been known since the earliest days of quantum mechanics that
semiclassical approximations, such as the WKB approximation,”
describe quantum effects in molecules quite well, but the WKB approach
relies on an analytic solution of the corresponding classical problem,
which is in general available only for systems of one degree of freedom
(e.g., a diatomic molecule). In the late 1960’s and early 1970’s,
however, it was shown>> how such approaches could be generalized to
use numerically computed classical trajectories of multidimensional
systems as input to a general semiclassical (SC) description of molecular
dynamics. Applications’ of this ‘classical S-matrix’ theory to treat
inelastic and reactive scattering of small molecular systems, e.g., A + BC
— AB + C, demonstrated that in fact a// quantum
effects—interference/coherence, tunneling (and all other types of
‘classically forbidden’ processes), symmetry based selection rules, etc.
— are correctly described by this type of semiclassical theory, at least
qualitatively, and typically quite quantitatively. In the late 1970’s it was
furthermore shown®” how electronically non-adiabatic processes can be
incorporated within this framework.

So it has been known for some time how one can in principle use
numerically computed classical trajectories as input to a SC theory for
general molecular systems, and that such a treatment provides a good
description of essentially all quantum effects in molecular dynamics to a
very useful level of accuracy. The way that numerically computed
trajectories are used in SC theory, however, is more complicated than the
way they are used in ordinary classical mechanics. Thus what has been
lacking is a practical way for implementing SC theory for large
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molecular systems, and it is in this regard that various initial value
representations (IVRs) of SC theory®® have emerged'* as providing a
starting point for these purposes.

I have reviewed SC-IVR approaches" for adding quantum effects to
classical MD simulations several times in recent years, so my survey
below will be brief. There are several features of SC-IVR calculations
that make them more difficult than the corresponding classical MD
calculation, but these difficulties have now been largely overcome, as
will be discussed below. The main point I would like to make is that SC-
IVR calculations are now not extraordinarily more difficult than the
corresponding classical MD calculation. My ‘goal’ is to convince the
classical MD simulation community of this, so that they can bring to bear
on SC-IVR calculations all of the computational expertise that has been
accumulated in MD and Monte Carlo methodology over several decades.

2. SC-IVR Calculation of Time Correlation Functions

Since most quantities of interest in the dynamics of complex systems can
be expressed in terms of time correlation functions'® of the form

CAB(t) — tr[e—/)’HQAe—ﬂH/z eth/h ée—th/h] i (1)

I will focus the discussion on such quantities. Here H is the (time-
independent) Hamiltonian of the complete molecular system, and A and
B are operators relevant to the specific property of interest. [The
Boltzmann operator need not be factored as it is in Eq. (1), but it is
convenient in many cases to do so.] For example, if A = B is the dipole
moment operator, then the Fourier transform of the correlation function
is the absorption spectrum; if it is the velocity operator of a tagged
particle, or the flux operator related to a chemical reaction, then its time
integral gives the diffusion coefficient and the chemical reaction rate,
respectively.

The SC-IVR approximates the time evolution operator, exp (~iHt/ n)
— which determines all quantum dynamics—as a phase space average
over the initial conditions of classical trajectories,
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e—il:lt/h — fdpoquo M,,,, /(Zm'h)F eiS,(Po"Io)/hlqt S< q0| , (2a)

where F is the number of degrees of freedom, (po,qo) are the initial
coordinates and momenta for a classical trajectory, q: = q: (Po,qo) is the
coordinate (in the F-dimensional space) at time t which evolves from this
trajectory, S((po.qo) is the classical action (the time integral of the
Lagrangian) along the trajectory, and Mg, is the determinant of the
Jacobian (or monodromy) matrix relating the final position and initial
momentum,

M, =det[dq,(p,,q0) /P, ] - (2b)

[Eq. (2) is the original coordinate space,® or Van Vleck IVR; a popular
alternative is the coherent state, or Herman-Kluk IVR,’ whereby the
initial and final states are coherent states, and the pre-exponential
Jacobian factor is also modified.] For the correlation function one needs
to insert two such representations of the propagator into Eq. (1), yielding
the following double phase space average for the correlation function,

C,p(t)= Qah) " f dp, f dq, f dp,' f dqy' (MM, <q,14,1q,'>

eisr(l)()v(lo)/h e—isx(Po Qo' )/h < qtll B I qt > . (33)

A, = eMRiorn (3b)

For comparison, the correlation function is given in classical mechanics
by the following single phase space average over initial conditions

Cop(0)= Q)™ [ dp, [ da, Ay(y.90) B4, - @)

where Ay(p,q) and B(p,q) are the classical functions corresponding to
operators Aﬁ and B.
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Here one sees the two essential ‘extra difficulties” which must be
dealt with in carrying out SC-IVR calculations compared to a standard
classical approach:

1) Eq. 3 requires a double phase space average rather than the single
one in Eq. 4, but more serious than that is the phase factor of the
integrand in Eq. 3 which results from the difference in the action
integrals from the two trajectory beginning at (po,qo) and at (po’, qo’).
This introduces an oscillatory character to the integrand that makes
Monte Carlo evaluation of these phase space averages very
inefficient.

2) Eq. 3 also requires the monodromy matrix of Eq. 2b, the calculation
of which requires the Hessian of the potential surface (the matrix of
second derivatives),

*V(q,)
dq,9q,

= K(,) ®)

along the trajectory q.. The classical expression, Eq. 4, requires only the
gradient of the potential surface (the vector of first derivatives),
dV(q)/dqs, in order to compute the trajectory, so requiring the Hessian is
a major escalation of effort necessary to implement the SC-IVR
approach. Below I will sketch the ways we have developed for
overcoming both of these bottlenecks.

A. The Linearization Approximation

In the beginning of our efforts to make SC-IVR approaches practical for
large molecular systems, we introduced a very primitive approximation
in order to get started:'’ namely, we assumed that the dominant
contribution to the double phase space average in Eq. 3 comes from
phase points (po,qo) and (po',qo') — and thus the two trajectories
emanating from them — that are close to one another. To effect this
approximation one changes to the sum and difference variables
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_ 1 . _ 1 \ | !
Po =5 (Po+Py): Gy = (Ao +dy"), APy =Py ~Po’> Ay =~ o
(6)

and then all quantities in the integrand of Eq. (3) are expanded to first
order in Ap, and Aq,; the integrals over Ap, and Aq, thus become
Fourier integrals (since the phase of the integrand is linear in them),
giving the linearized SC-IVR (LSC-IVR), or classical Wigner model for
the correlation function,

Coy(t) = @an)™ [dp, [dq, A (p,.q,)B,(p,.q,) - ()

Here (po,qo) are the average values (i.e., the ‘bars’ have been removed),
and A, and B, are the Wigner functions corresponding to these
operators,

0,(p.q) = [dAq ™" <q-Aq/2101q+Aq/2> | (8)

for any operator 0.

The double phase space average of Eq. 3 has thus now become the
singe phase space average of Eq. 7, and in the process the monodromy
matrices in Eq. 3 have completely disappeared (they have not been
neglected, but rather explicitly cancel out in the course of carrying
through the linearized approximation). Thus both of the two ‘extra
difficulties’ noted above (after Eqgs. 4) are eliminated by the linearized
approximation. Eq. 7 is in fact seen to have precisely the same form as
the classical correlation function, Eq 4, the only difference being that
the Wigner functions for operators A and B replace the corresponding

classical functions.

The classical Wigner model has been obtained many times before, by
a variety of formulations. One such early paper is ref. 18, but it surely
goes back further than this. Heller'” discussed the approximation many
years ago (including an illuminating discussion of its limitations), and it
was used by Lee and Scully® to describe quantum effects in a collinear
model of inelastic scattering. More recently it has been obtained from a
different approach by Pollak,” and also by Rossky ez al.** directly from a
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path integral representation of the two time evolution operators in Eq. (1)
(again by linearizing in the difference between the two paths).

The importance of the above derivation is thus not the result itself,
for as noted, the classical Wigner approximation has been around a long
time, having been obtained from a variety of approaches. The important
point is realizing that the classical Wigner model is contained within the
SC-IVR description, resulting from a very well defined approximation to
it. This also makes it clear that if the SC-IVR can be implemented with

less drastic approximations, it will be even more accurate than the
classical Wigner model.

15—
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Figure 1. Arrhenius plot of the rate constant for a 1d Eckart barrier (with parameters
correspondingly approximately to the H + H, reaction). The solid line is the exact
quantum value and the dashed line that given by classical mechanics. The circles are
values given by the full SC-IVR and the squares its linearized approximation (LSC-IVR).
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However, as drastic as the linearization approximation (LSC-IVR)
seems, it is surprising that it can in fact describe some quantum effects
quite well, even when they are large. The thermal rate constant for a
chemical reaction, for example, is given by the long time limit of the
flux-side correlation function,” i.e., Eq. 1 with operator A being the flux
operator (with respect to some dividing surface) and operator B being a
Heaviside function that is 1 (0) on the reactant (product) of the dividing
surface. Figure 1** shows how it describes tunneling for a standard
model of the fundamental hydrogen atom transfer reaction, H + H, — H,
+ H. The Arrhenius plot of the rate shows the expected good agreement
with the exact quantum rate at higher temperature, where tunneling
corrections are small, but even at lower temperature where tunneling
corrections become significant it does reasonably well: at 300K, where
the tunneling correction factor is ~20, the rate given by the LSC-IVR is
only 10% too small, and at the lowest temperature shown (200K), where
the tunneling correction is a factor of ~2000, it is only 35% too small.
(The full SC-IVR calculation, on the other hand, is accurate to a few %
even down to 200K.)

The only non-trivial task required to implement the LSC-IVR for
calculating thermal correlation functions of complex molecular systems
— i.e., beyond what is required for an ordinary classical MD calculation
— is evaluation of the Wigner function for operator f\ﬁ. We have

recently found the thermal Gaussian approximation (TGA) that
Mandelshtam and Frantsuzov®” developed for approximating the
Boltzmann operator to be a very effective for this purpose. Use of the
TGA allows the Fourier transform in Eq. 12 to be evaluated analytically,
so that calculation of thermal time correlation functions becomes almost
as simple as a standard classical MD calculation. Figure 2 shows recent
results®® for the force-force correlation function of the Ney; cluster at
three low temperatures. As the temperature is lowered one sees that the
classical correlation function (solid lines) shows the onset of freezing
(i.e., structured behavior), while the SC result (dashed lines) shows only
the faintest hint of structure. This is clearly a zero point energy effect;
i.e., the classical cluster is beginning to freeze at the lower temperatures,
while the quantum zero point energy prevents this. We note that in
molecular liquids, such as water, one may very well see zero point
energy effects even at room temperature because of the high frequency
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of H atom motion.
Similar calculations have
been carried out for the
velocity-velocity
correlation function of
liquid para-hydrogen to
obtain its diffusion
coefficient, and also the
correlation functions
related to neutron
scattering.  Thus the
linearized approximation
to the SC-IVR approach
is an ‘operational’
methodology that can be
applied to essentially any
problem for which
classical MD simulations
are feasible, and it should
describe tunneling and
zero point energy effects
in them to a good
approximation.

Figure 2. The Kubo-
transformed force
autocorrelation function per
article for the Ne;; LJ cluster
system. Solid line: the
classical result. Dotted line:
the TGA-LSC-IVR result.
Temperature in three panels
are, respectively, (a) 7 = 14 K;
(b) T=8K;and (c) T=4K.

It should be noted
that there are several
other approaches that
have been developed for
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calculating the Wigner function for operator f\ﬁ, and thus applying the

LSC-IVR. Geva et al.”” have developed a local harmonic approximation
that also makes it possible to evaluate the multi-dimensional Fourier
transform analytically, and have carried out some impressive
applications for vibrational relaxation in liquids (where the relevant
quantity is a force-force correlation function). Rossky et al.** (using a
variational harmonic approximation to obtain the Wigner function
involving the Boltzmann operator) have treated a 1-dimensional chain of
helium atoms, and also liquid oxygen (32 O, molecules in a box) at low
temperature (70K), and Coker et al®® have extended the linearized
approximation to able to describe electronically non-adiabatic dynamics.

It should also be noted that there are several other approaches that
are very similar in character to the LSC-IVR/classical Wigner model,
though not identical to it. E.g., the ‘forward-backward’ approximation to
the SC-IVR correlation function used very effectively by Makri et al.” is
closely related to it. The centroid molecular dynamics approach
developed by Voth er al*® and the ring polymer molecular dynamics
(RPMD) method of Manolopoulos et al’' also have very similar
behavior to the LSC-IVR in that all of these approaches share the ability
to describe some of the quantum mechanical aspects of molecular
dynamics. They are not, however, able to describe quantum coherence
effects. Coherence effects arise (in a semiclassical picture) from the
interference between different trajectories; and since the LSC-IVR only
considers trajectories in the double phase space average [Eq. (3)] that are
infinitesimally close to one another, such coherence effects are explicitly
excluded within this approximation.

B. A Forward-Backward SC-IVR

To go beyond the linearized approximation, and be able to describe true
quantum coherence effects in the dynamics via the SC-IVR approach,
requires that one deal more accurately with the ‘two difficulties’ noted
above (following Eq. 4), namely that of the oscillatory integrand and the
need for the Hessian of the potential along the trajectory. The
‘oscillatory integrand’ problem is very effectively dealt with by the
‘forward-backward’ (FB) approach,”*** an idea that was suggested by
some earlier work of Makri ez al.* for different purposes.
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The motivation of the FB idea is as follows: suppose for the moment
that operator B in Eq. 1 involved only one degree of freedom, e.g., were
a function of coordinate q;, and furthermore that this degree of freedom
was separable from the remaining (many) F-1 degrees of freedom. The
Hamiltonian H would thus be separable, H = I:I1 + I:IF_I, and the
propagators factorable,

e:th/h _ prihtlh il tlh 9)

The propagator from 0 to t of the F-1 degrees of freedom,
exp (—iﬁ r_t/h), and that from t back to 0, exp (+iﬁ rt/h), would then
exactly cancel each other [since they commute with B(q;)], and the only
time dependence would be that from degree of freedom 1. Similarly, in
the IVR expression Eq. 3, the action integrals from the F-1 degrees of
freedom would exactly cancel, and the double phase space average
would collapse to a single phase space average for all degrees of freedom
except the one involving operator B.

To implement this idea — but without making any approximations
about separability of degrees of freedom — suppose that operator B in
the correlation function involves only a few (perhaps collective) degrees
of freedom, as is often the case. For example, if B(q) is a function of
one collective variable s(q) (e.g., a collective reaction coordinate),

B(q) = B(s(q)) , (10)

then the FB-IVR result for the correlation function is given by

w0 fdpx Blp,) @iy fdpoquo C(Po-90:P,)
<p05q0 IA(ﬁ)Ip0'5q0‘>€is(p0vqmpy)/h , (11)

where here the coherent state (Herman-Kluk) IVR has been used. (po,qo)
in Eq. (11) are the initial conditions for a trajectory that is evolved to
time t in the usual way, but here the momentum vector undergoes the
following momentum jump,
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ds(q,)
p, —p, + =) (12)
o,

and the trajectory is then propagated back to time 0; (po',qo") is the final
phase point of this forward-backward trajectory, S the classical action
along it, and C the Herman-Kluk pre-exponential factor; B(p,) is the (1-
dimensional) Fourier transform of B(s).
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Figure 3. Probability distribution of the vibrational coordinate of I, (modeled as a 1d
Morse oscillator) at time t = 192 fsec (~vibrational periods after excitation). The dashed
line and solid line (almost indistinguishable) are the exact quantum and forward-
backward SC-IVR (FB-IVR) results, respectively, and the dash-dot line the results of
linearized approximation to the SC-IVR (LSC-IVR).

This FB-IVR result thus involves only a 1d integral (over the ‘jump
parameter’ ps) in addition to a single phase space average over initial
conditions (which one recalls is also required for the standard classical
calculation), and is perhaps the simplest result of all that is capable of
describing quantum coherence. The contribution to the FB action
integral S (the phase of the integrand of Eq. 11) from all the degrees of
freedom that are coupled only weakly to the motion of the collective
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variable s(q) will largely cancel, so that the integrand of Eq. 11 is much
less oscillatory than the double phase space average of the full SC-IVR
expression; i.e., much of the oscillatory structure of the double phase
space average that would have cancelled numerically has been
eliminated analytically by this FB approach, by combing the forward and
backward time evolution operators into one effective forward-backward
propagator.

15 T T T
— T=0K .
10— -.— LSC-IVR  —
E | A
m -
a ]
u- = -
15 . .
L — T=100K A
10— -.— LSC-IVR A
E L .
=™
5k _
] { =T —
15 ; , ; . :
s — T=300K A
0+ -.— LSC-IVR 4
E = -
5 - —
i ]
[J i L - ==
22 2.8 30

Figure 4. Same quantity as Fig. 3, but with the addition of a harmonic bath that is
coupled to the Morse oscillator (Iy); T is the temperature of the harmonic bath. The solid
line is the result of the FB-IVR, and the dash-dot line that of the LSC-IVR.
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Figures 3 and 4 show the results® of a calculation which illustrates
this FB-IVR approach, namely a model of real time molecular structure
(i.e., a time-dependent radial distribution function). The specific model
is a Morse potential (with parameters corresponding to the B-state of I,)
coupled to a harmonic bath (modeling the environmental degrees of
freedom, e.g. a cluster, a liquid, etc.). |p> is the ground vibrational state
of the diatomic in the ground electronic state, which becomes (upon
Franck-Condon excitation) the initial vibrational wavefunction in the B-
state. The time-dependent radial distribution function — i.e., the
probability distribution of the diatomic coordinate at time t — is given by
the correlation function of Eq. (1), where operators ;\(/3) and B are

AB)=lp>< gl e (13a)
B(r) =6(r—F) (13b)

where H , 1s the Boltzmann operator for the harmonic bath. The
correlation Cag(t) is then Py(r), the probability distribution of the
diatomic coordinate at time t, i.e., the radial distribution function of I,.
Fig. 3 shows this for a time of 192 fsec (about 1% vibrational periods of

L) for the isolated diatomic (i.e., no coupling to the bath), and one sees
very pronounced coherence structure (due to the fact that the initial state
is a coherent superposition of many different vibrational eigenstates of
the B-state); the FB-IVR result is essentially indistinguishable from that
of the exact quantum calculation (which is easy for the isolated diatom
case). Also shown is the result of the LSC-IVR/classical Wigner
calculation, which shows none of the coherence structure. Fig. 4 then
shows Py(r) with coupling to the bath, for several values of the bath
temperature T. For T = 0, the result is essentially the same as the
isolated molecule result of Fig. 3, i.e., the bath is ‘frozen out’. But as T
is increased, the coherence structure is progressively quenched (or ‘de-
coherred’) by coupling to the bath, and by the time it has increased to
300K the coherence features have mostly disappeared (for the assumed
coupling strength), and in this case one sees that the LSC-IVR does an
excellent job in describing P(r). So just as one would expect, when
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quantum coherence features are averaged out, classical mechanics
(which is effectively what the LSC-IVR gives) works well. This is not a
surprising result. The point of this example is to show that semiclassical
theory is able to simulate these coherence effects (and the extent to
which they are quenched) in systems with many degrees of freedom.
This model system is of course a simple one, but the nature of the
calculation for a realistic model of a large molecular system would be
essentially the same (though the computational time for each trajectory
would of course be greater for a more complicated potential energy
surface).

C. Calculating the Hessian along a trajectory

Though the FB-IVR approach described above largely solves the
problem of the oscillatory integrand, it still requires the monodromy
matrices and thus the Hessian of the potential [Eq. 5] along the
trajectory. Having to explicitly calculate K(q) along the trajectory q
would be a major increase in computational complexity for a large
molecular system with a very complicated potential energy function.
Very recently, though, we have found a way to generate the Hessian
along the trajectory without explicitly calculating the matrix of second
derivatives of the potential.”’

We avoid explicit calculation of K by differentiating one of Hamilton’s
equations

%
L= - (qt) (14)
oq,
with respect to time, which (for a Cartesian Hamiltonian) gives
y rv.o
p, = - “q, = - K(q) - p/m. (15)
9,99,

Along a trajectory it is quite easy to obtain p,= p(¢;)at time grid point i
by finite difference,



W. H. Miller

p(r) = [p(t,,)+p(r_)-2p(t)]/Ar* (16)

so knowing p(#;,) and p(¢,)at times {t;}, one can use Eq. 15 to determine
K (assuming it to be approximately constant for a short time interval).
To see how this works, it is useful to write Eq. 15 in component notation

mp,; = - E Ky Pri > (17)
-

where k and k' = 1, ..., F (the number of degrees of degrees of freedom),
and the matrix py; = pk(ti), etc. If one uses F time points {ti}, then { pi;}
and {pg;} are square matrices, so that one can solve the matrix equation,
Eq. 17, to obtain

Kkj(‘ = - m E ﬁk,,-(P_l)[kr > (18)

where p™' is the inverse matrix of {Pxi}-

As described above, one needs F time points {t;}, a large number for
a large molecular system, and this would largely invalidate our
assumption that K is approximately constant for a short time interval.
But this is not the case. Thus consider Eq. 17: for fixed k, the LHS is a
vector (index 1), Ky ' is a vector (index k'), and py ;is a matrix. For fixed
k, the index k' takes on only a small number of values, because the force
constant matrix is highly banded (along its diagonal), i.e., it is only non-
zero for a small number of k' values (for fixed k). Thus only a small
number of time values {t;} are necessary to make {px i} a square matrix
(and thus invertible). The matrix p”' in Eq. 18 is the inverse of this
‘small square’ matrix. Since one needs only a small number of time
steps for each inversion, the approximation of a constant K matrix should
be reasonable for that time interval. This calculation does have to be
carried out for every value of k, which takes on F values, meaning that
the overall procedure is linear in the number of degrees of freedom, i.e.,
the same order as the trajectory calculation itself.
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3. Concluding Remarks

Ways of handling the additional complications of a semiclassical
dynamics calculation, compared to the corresponding classical treatment,
are now in hand, and a number of examples of increasing complexity
have been carried out which demonstrate these capabilities. The
simplest, most approximate version of semiclassical initial value
methods — its linearized approximation, which leads to the classical
Wigner model — is able to provide a good description of tunneling
effects in chemical reactions and zero point energy effects in dynamical
processes. The forward-backward IVR goes further and is able also to
describe true quantum coherence effects in the dynamics, thus showing
when these effects are present or when they are averaged out (quenched,
or ‘de-cohered’). Both of these approaches are more difficult to apply
than a standard classical MD simulation, but not extraordinarily so.

There are many cases, of course, for which quantum mechanical
aspects of the dynamics will not be significant, but one may not always
know this a priori; and if one is only able to perform classical MD
simulations there is no way to know whether such effects are present or
not. In other situations, e.g., dynamical processes which involve H atom
motion, one can be fairly certain that quantum effects will indeed be
important. In these cases the ability to still use classical MD
methodology, but as input to a semiclassical treatment, should provide a
useful enhancement of theoretical capabilities.
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