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Abstract 
 
Background: A major challenge facing DNA copy number (CN) studies of tumors is 

that most banked samples with extensive clinical follow-up information are Formalin-

Fixed Paraffin Embedded (FFPE).  DNA from FFPE samples generally underperforms or 

suffers high failure rates compared to fresh frozen samples because of DNA degradation 

and cross-linking during FFPE fixation and processing.  As FFPE protocols may vary 

widely between labs and samples may be stored for decades at room temperature, an 

ideal FFPE CN technology should work on diverse sample sets.  Molecular Inversion 

Probe (MIP) technology has been applied successfully to obtain high quality CN and 

genotype data from cell line and frozen tumor DNA.  Since the MIP probes require only a 

small (~40 bp) target binding site, we reasoned they may be well suited to assess 

degraded FFPE DNA.  We assessed CN with a MIP panel of 50,000 markers in 93 FFPE 

tumor samples from 7 diverse collections.  For 38 FFPE samples from three collections 

we were also able to asses CN in matched fresh frozen tumor tissue.  

Results: Using an input of 37 ng genomic DNA, we generated high quality CN data with 

MIP technology in 88% of FFPE samples from seven diverse collections.  When matched 

fresh frozen tissue was available, the performance of FFPE DNA was comparable to that 

of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), 

with only a modest loss in performance in FFPE. 

Conclusions: MIP technology can be used to generate high quality CN and genotype 

data in FFPE as well as fresh frozen samples.  



 

Background 

DNA copy number (CN) studies hold great promise for the discovery of clinical 

biomarkers to predict disease course, recurrence risk, and response to therapy.  A recent 

meta-analysis has confirmed that the efficacy of highly toxic anthracyclines in early 

breast cancer is limited to women with HER2 (ERBB2) amplification or overexpression 

[1] and EGFR copy number holds promise in predicting response to the expensive 

monoclonal cetuximab, in contrast to the apparent failure of immunohistochemical 

staining for EFGR [2].  While exciting results have be found with genes already known to 

be involved in key pathways, confirming early results and genome-wide testing requires 

large numbers of well-characterized clinical samples.  A vast collection of stored FFPE 

samples already exists; extrapolation from the Genome Austrian Tissue Bank numbers 

suggests that ~500 million FFPE samples may have been collected in North America and 

Europe alone during the last quarter century [3].  Unfortunately many genomic assays fail 

to produce high quality CN and genotype data from FFPE samples [4-10], restricting the 

application of these promising whole genome scanning technologies to the limited 

number of fresh frozen samples.   

   

The FFPE process was developed over a hundred years ago, long before pathologists 

were concerned with the preservation of DNA.  Sample DNA is often damaged by 

exposure to formaldehyde and a potentially extremely acidic environment [11, 12]. This 

degradation creates short DNA fragments that are potentially unsuitable for existing high 

density CN platforms.  In addition, the chemical damage and modifications that FFPE 

DNA may suffer from can inhibit the enzyme-dependent chemistries necessary for a 



 

number of approaches [11].  This damage is reflected in the high rate of sequencing 

artifacts and genotyping failures seen with FFPE extracted DNA [13, 14].  Finally, often 

only limited tumor DNA is available from FFPE samples (particularly those from needle 

biopsies or small early stage tumors) while some CN platforms require large amounts of 

DNA.  Few studies have compared CN results in matched fresh frozen and FFPE samples 

and these studies have been small (with generally less than 20 fresh frozen/FFPE pairs).  

Some have reported spurious copy number changes in FFPE samples and generally FFPE 

samples fail more often than fresh frozen.  When genotypes are also measured, FFPE 

samples have substantially lower call rates (suggesting a loss of performance) and 

genotype discordances between FFPE and fresh frozen samples raise troubling questions 

about data reliability [5-10]. 

 

Molecular Inversion Probe (MIP) technology offers a potential solution to the challenges 

of CN and genotype assessment in FFPE-derived DNA samples.  The small intact target 

DNA sequence footprint required by MIP probes (~40 bp) makes the MIP platform well 

suited to working with degraded FFPE DNA.  MIP has previously been used to obtain 

high quality CN and genotype data from cell lines and frozen tissues and requires less 

than 100 ng of input DNA [15].  In this study, we show the successful application of the 

MIP technology in obtaining high quality CN and genotype data from seven diverse sets 

of FFPE samples (Table 1). 

 

Materials and Methods 
 



 

Samples 
Informed consent was obtained from all subjects and study protocols approval by the 

relevant institutional review boards. Sample information is provided in table 1. The Dana 

Farber tumor samples underwent manual microdissection to remove stromal components 

from H&E stained FFPE sections. Other sites/sources of samples were: the Cooperative 

Human Tissue Network (CHTN); Cancer Research UK (CRUK); Leader, Inc. 

(http://www.bio-leader.com/); MD Anderson Cancer Center; and University of 

California, San Francisco (UCSF).  For the UCSF samples only, CN data generated with 

a different technology (BAC arrays) were available. 

 

MIP assay and analysis 
The basic MIP assay has been previously described [16-19].  MIP probes are 

oligonucleotides in which the two end sequences are complementary to two adjacent 

genomic sequences; these two ends anneal to the genomic DNA in an inverted fashion 

with a single base between them (generally the site of a single nucleotide polymorphism; 

SNP).  In CN analysis, genomic DNA is hybridized to the MIP probe and the reaction 

split into two separate tubes containing paired nucleotide mixes (triphosphates of either 

Adenine + Thymine or Cytosine + Guanine) [15].  With the addition of polymerase and 

ligase, the MIP probe circularizes in the presence of the nucleotide complementary to the 

allele on the genome.  For the assessment of FFPE samples, we used 4X the amount of 

ligase and polymerase as compared to the traditional protocol.  Genomic DNA is limiting 

in the reaction such that the number of circularized probes proportionally reflects the 

absolute amount of template DNA.  After circularization, unused probes and genomic 

DNA are efficiently removed from the reaction by exonuclease leaving only circularized 



 

probes.  These probes are then amplified, labeled, detected, and quantified by 

hybridization to tag microarrays; tags are designed to have low cross hybridization.  An 

important advantage of the MIP technology is the allele discrimination is performed 

enzymatically and is highly specific, allowing highly multiplexed assays (>50,000 

markers) with very precise quantitation of signals.  The probes used in this panel are 

listed in Additional file 1. 

 

The MIP assay and CN determination have been described previously [15].  Since the 

amount of tumor DNA is often limiting we have implemented a change in the assay to 

use 37ng of DNA, half the amount that was used previously (75 ng). This input amount 

was selected after a series of experiments using various starting amounts of DNA and 

probe concentrations. Dropping the input amount further is possible, but maintaining 

similar performance requires very high probe amounts and concentration.  The other 

change is that an optimal reference was chosen for each tumor.  Reflection selection was 

guided by signals between tumor and reference samples; specifically we summed signal 

for the two allele of each marker and measured between sample sum_signal correlations. 

We found that selection a reference set with high correlation lead to better CN data in the 

tumor. Often we found that the normal samples from a study site had the highest 

correlation with tumor samples and hence just used site-specific normals.  If the site-

specific normals did not show the highest correlation (as was the case about half of the 

time), we selected the 3-10 normals with the highest correlation as the reference set (the 

number of normals picked was based on correlation; if 5 normals had high correlation 

with the tumor and 6th normal had much lower correlation, we used just 5 normals).  



 

 

ROC curves were generated for samples with known copy number changes; specifically 

we looked at copy number in normal male fresh frozen and FFPE samples.  For X-

chromosome markers we expect CN = 1, so if the CN was below the cut-off threshold 

and we inferred CN = 1, we called it a true positive; if it was above and we inferred CN = 

2, we called it a false negative. For autosomal markers we conservatively assumed all 

markers should have CN = 2 with no copy number variations, so if the CN was below the 

cut-off threshold and we inferred CN = 1, we called it a false positive; if it was above and 

we inferred CN = 2, we called it a true negative.  The curve is generated by varying the 

cut-off threshold.  In order to compare the 2p-RSE to the ROC curves, we needed to 

summarize the ROC curve data to a single value and chose the false positive rate at 50% 

sensitivity (FPR50).  In order to study this comparison over a broad range, samples 

exhibiting a relative large range of quality (i.e. large range of 2p-RSE values) were 

sought.  Since the reference set used is an important determinant of the quality of the CN 

data, we purposely used several reference sets for each sample to obtain a wide range of 

quality in the CN data. 

 

Results 
 

Metrics to evaluate CN performance: ROC and 2p-RSE   
The algorithm for estimation of CN has been previously described [20].  Briefly, a set of 

normal samples (assumed copy number 2) is used as a reference to establish the 

relationship between signal and CN on a marker-by-marker basis, with each allele of a 

marker assessed independently.  Signals from test samples can then be converted to CN 



 

estimates using the signal/CN relationship observed in the reference set.  While in 

previous studies with fresh frozen and cell line DNA, we found that the reference set 

selection had little impact on final data quality, we noted that for FFPE samples reference 

set selection markedly affected data quality.  Therefore to obtain “optimal” data quality 

we developed a simple algorithm to “pick” the best reference sets (see methods). 

 

We have previously described the performance of the MIP technology using receiver 

operating characteristic (ROC) curves with true positive/false positive analysis in samples 

with known CN changes (such as males with one copy of the X-chromosome) [15].  As 

ROC curves are useful only for assessing results in samples with known CN changes, we 

have developed a per sample data quality metric for this study that could be assessed in 

tumor samples with unknown CN changes. 

 

The two-point relative standard error (2p-RSE) measures the noise in CN data based on 

the fact that in almost all cases we expect two adjacent markers to have the same true 

CN; even in highly unstable tumors, the number of expected amplification/deletion 

breakpoints should be substantially less than the number of markers in our panel, hence 

the variation in CN between two adjacent markers is, in most cases, caused by noise.  

Hence, the median relative standard error value (2p-RSE) among all pairs of adjacent 

markers in a sample reflects experimental noise. The 2p-RSE is a per sample metric that 

can be assessed in samples with unknown CN changes.   

 



 

To validate 2p-RSE as a sample metric, we looked at its correlation with ROC curves in 

samples with known CN.  Each ROC curve was simplified to a single metric (the false 

positive rate at 50% sensitivity [FPR50], i.e. what percentage of positives is false when 

the sensitivity is sufficient to detect 50% of true positives?). The FPR50 and 2p-RSE were 

highly related; specifically their natural logs have a linear relationship [figure 1; ln(2p-

RSE) = -0.25 + 0.32 * ln(FPR50)]  with an r2 of 0.87.  Based on these data, we set a per 

sample passing threshold of 2p-RSE ≤ 0.25, which corresponds to a per marker 

(unsmoothed) FPR50 of approximately 3%.  We also set a “high quality” sample threshold 

of 2p-RSE ≤ 0.18, which corresponds to a per marker FPR50 of approximately 1.5%.  Of 

93 FFPE tumor samples with sufficient DNA, 82 (88%) passed, and of these 62 (76%) 

met the high quality threshold (Table 2 and Additional file 2). All of the 39 fresh frozen 

tumor samples passed the high quality threshold. 

 

Figure 2 shows CN data for a cross-section of FFPE tumor samples with different 2p-

RSEs: one of the best samples (a), a median “high quality” sample (b), a passed, non-

“high quality” sample (c), and the worst passed sample (d). 

 

Evaluation of 7 FFPE sample collections 

 

Genotyping 
The MIP technology generates marker genotype information as well as CN.  Genotypes 

can be useful in detecting sample tracking errors, assessing data quality, identifying copy-

neutral loss-of-heterozygosity (LOH), and recognizing allelic bias in copy number 



 

changes.  Genotyping of tumors is complicated by CN changes and normal tissue 

contamination, but to a first approximation, tumors can be genotypes as homozygous for 

either allele or heterozygous.  

 

To detect sample tracking errors, we compared genotypes between all samples. Genotype 

concordance were either high (> 94%, presumably for samples derived from the same 

individual) or low (<82%, presumably for samples derived from different individuals).  

Genotype concordances pointed to three sample tracking errors (“matched” sample with 

concordances below 82%) and in all three cases we could determine which sample was 

mistracked.   

 

Ability to genotype and genotype concordance both reflect data quality.  To pass 

genotyping, we required that a sample have a call rate above 85% although most passed 

samples had far higher call rates (average 98.5%, median 99.4%). Of 168 FFPE samples, 

96.4% passed genotyping and all 61 fresh frozen samples passed genotyping. We found 

that the average call rate was only slightly lower in FFPE tumors than fresh frozen 

tumors (97.5% versus 98.7%).  Consistent with previous reports, we found higher call 

rates in normal samples (98.9% FFPE and 99.8% fresh frozen) than tumors [6].  

Genotype call rate was inversely correlated with 2p-RSE (r2=0.54).  

 

Two normal samples from the same individual should have exactly the same genotypes 

and differences indicate data errors.  When we compared 20 normal pairs (FFPE versus 

fresh frozen), the average genotype concordance was 99.99% (range 99.93-100%). We 



 

expect slightly lower concordance in comparisons between tumor FFPE and fresh frozen 

samples as these samples are drawn from different portions of a tumor and genetic 

heterogeneity may lead to real differences; in 37 tumor pairs the average concordance 

was 99.90% (range 99.48-99.99%). 

 

Simple genotype concordance between normal and tumor tissues can be depressed by CN 

changes in the tumor.  Hence we instead assessed incompatible genotypes in the tumor; if 

the normal tissue is homozygous for allele A, any tumor genotype that has allele B (AB 

or BB) is incompatible with the normal genotype.  (Theoretically rare somatic mutations 

at the site of a SNP could create incompatibility, but we conservatively assumed that all 

incompatibilities were the result of genotyping errors.)  Comparison of genotypes in 

matched tumor and normal pairs found high compatibility; compatibility in 89 pairs was 

above 98.43%, with the exception of one sample that had 96.85% compatibility. CN 

analysis indicated that in this case the tumor and normal sample had been switched 

(“tumor” was all CN=2, while “normal” had multiple CN changes).  Correcting for this 

sample switch raised compatibility to 99.85%. Further CN analysis of samples indicated 

another sample tracking error in which both “normal” and “tumor” samples appeared to 

be derived from tumor tissue.  We found 5 sample tracking errors in 229 samples; sample 

tracking errors are expected when large numbers of samples are manually handled [21, 

22].  

 

As can be seen in Table 3, the percentage of incompatible genotypes in the 88 passed, 

matching normal-tumor pairs (after excluding the pairs mentioned above) was low in all 



 

the collections, but tended to be higher in FFPE pairs than fresh frozen pairs (average 

0.1% versus 0.01%). This difference appears to be largely due to FFPE samples with low 

genotyping call rates, which tended to correlate with increased genotyping 

inconsistencies (Additional file 2). 

 

Allelic ratios 
Separately measuring copy number for each allele allows us to determine the allele ratio 

(AR); AR = CN_allele1/ CN_allele2, where allele2 is the allele with the larger CN (a 

caveat described in Wang at al. [15] causes the allele ratio to occasionally be greater than 

1).  In a simple diploid sample with no copy number changes, the allele ratio should 

either be 0 (homozygous) or near 1 (heterozygous).  The allele ratio can be helpful in 

identifying LOH events (including CN-neutral events), and through these estimating the 

level of stromal tissue contamination in a sample. LOH events in the absence of stromal 

contamination should mimic homozygosity.  Figures 3a and 3b show the CN and AR for 

a sample with multiple CN changes.  In Fig. 3b homozygous markers have an allele ratio 

that clusters very tightly around zero, but there are no regions in which all markers appear 

to be homozygous with AR = 0 (i.e. there are no regions that show complete LOH).  

 

Most biopsy samples contain normal, stromal tissue and in the presence of this type of 

contamination we do not expect to find regions of complete LOH; if malignant cells in 

the tumor have undergone a deletion, the presence of stromal contamination will generate 

ARs above 0 but below 1.  Formulas for determining the relationship between the true 

and apparent CN and AR given y% contamination with normal DNA are shown in 



 

Additional file 3. The data suggest that ~45% of the “usable” DNA in the figure 3 sample 

comes from CN=2 cells, the majority of which are likely to be normal cells.  Assuming 

such a level of contamination, we would expect copy loss LOH events (e.g., 

chromosomes 15 and 18, and parts of chromosomes 8, 10, 17, 19 and 20) to have a CN 

value around 1.45 and AR values around 0.45, which are close to the values seen.  For 

amplification events where the tumor has 2 copies of one chromosome and 1 copy of the 

other (e.g., chromosomes 13 and part of chromosomes 20), we expect CN values to be 

around 2.55 and AR values around 0.65, again similar to the values seen. Finally, for 

amplification events where the tumor has four copies of one chromosome and one copy 

of the other (e.g., the qter of chromosome 8), we expect a CN value around 3.65 and AR 

value around 0.38. Chromosome 8 (in bright pink) is particularly interesting in that it 

appears to have a true CN of 1 from pter to ~34 Mb, then a region of CN= 3 from ~34 

Mb to ~43 Mb, and finally a region of CN= 5 (where one copy of the chromosome was 

amplified to four copies) from ~43 Mb to qter.  Inferring true CN may be even more 

complex if the tumor shows increased ploidy or genetic heterogeneity. 

 

CN assessment 
Of 93 FFPE tumor samples with sufficient DNA, 82 (88%) passed our 2p-RSE threshold, 

and of these 62 (76%) met the high quality threshold (Table 2).  (As normal samples are 

typically used as references, meaningful 2p-RSEs were not measured in these samples.) 

For three of the collections, fresh frozen samples from the same individuals were also 

available for testing.  For the UCSF collection, the median 2p-RSE for the fresh frozen 

and the FFPE tumor samples was essentially identical and for the CHTN and CRUK 



 

collections, the FFPE performance as measured by the median 2p-RSE of the FFPE 

samples was slightly worse than that of the fresh frozen samples (Table 2 and Additional 

file 2).   

 

CN profiles for FFPE and frozen tissue from the same tumor were generally very similar: 

see example in figures 4a and 4b (full CN and AR results are provided in GEO 

[http://www.ncbi.nlm.nih.gov/geo; GSE14353]; a translation table for probes is in 

Additional file 1 and for samples in Additional file 2). For some tumors, there were 

differences in CN between samples, suggestive of genetic heterogeneity.  Figure 4 shows 

one CN change between an FFPE tumor and a matched fresh frozen sample.  The FFPE 

sample (a) shows a CN reduction for chromosome 6, whereas the fresh frozen sample (b) 

appears to be near CN = 2.  Detailed examination found that in the fresh frozen sample 

the average CN for chromosome 6 is only 1.9 rather than 2, and the allele ratio (data not 

shown) indicates a partial loss-of-heterozygosity in the frozen sample.  We suspect that 

the FFPE sample has undergone a complete loss of one copy of chromosome 6 and the 

frozen sample is a heterogeneous mix of cells with and without the loss.   

 

When we further evaluated differences between two samples from the same tumor, the 

samples appeared to share a similar underlying pattern of CN changes with one of the 

samples sometimes harboring additional changes (i.e., one of the two samples appeared 

to match a presumed “ancestral” state as is seen for the chromosome 6 changes in the 

sample in figure 4) (data not shown). 

 



 

Eight of the fresh frozen samples used in this study were previously tested with BAC 

arrays [23].  The large segments of gain/loss from the BAC data were similar to those 

obtained with MIP from the corresponding FFPE samples [an example is shown in 

figures 5a (MIP) and 5b (BAC)].  However some of the finer aberrations found by MIP 

were not seen by the lower resolution BACs [figures 5c (MIP) and 5d (BAC)]. 

 

We also briefly looked at CN patterns to identify common amplifications or deletions in 

these tumors. Because our samples are from such diverse types of tumors (the study was 

designed to test reliability of the technology with diverse samples), we lack the power to 

systematically identify CN patterns. We note however that the most common 

amplifications gains of 8q and 20q (both seen in ~30 FFPE samples) and the most 

common loss was of 8p, seen in 15 FFPE samples. These three changes are all commonly 

reported in tumors [24-26]. 

 

Discussion 
 
 
We previously demonstrated the ability of MIP technology to generate high quality allelic 

CN data from cell lines and frozen samples [15].  We have now applied this technology 

to archival tumor material and developed an analytical framework to obtain high quality 

CN and genotype data for DNA extracted from FFPE samples.  We have developed a 

new data quality metric, the median 2p-RSE, which correlates closely with ROC curve 

data (a well established method of assessing quality), but unlike ROC curves, can be 

assessed in all samples, not just those with known CN changes.  By comparing 2p-RSE 



 

results in matched fresh frozen and FFPE samples, we find that CN performance is only 

modestly reduced in the FFPE samples. 

 

One of the challenges in studying FFPE samples is the variety of processing techniques 

used by different institutions over time, which may significantly impact sample and thus 

data quality.  We tested MIP CN quantitation in samples sets that originated from seven 

different sites including five in the US, and one each in the UK and China (Table 1).  

They represented many different tissue types (bladder, breast, colorectal, kidney, liver, 

and liver metastases of colorectal tumors), collection methods, storage times (blocks 

ranged in age from five months to over 20 years) and processing methods (Dana Farber 

samples were H&E stained with subsequent microdissection).  

 

Only a handful of previous studies have looked at CN in matched FFPE and frozen 

samples (and generally in less than 20 samples) and while some see much worse 

performance in FFPE samples, others find the same general patterns of amplifications 

and gains in matched samples and hence claim similar performance in FFPE and frozen 

samples [5-7, 9, 10, 27].  But finding the same general pattern does not prove equal 

performance in FFPE and frozen tissues. We believe that genotype results suggest that 

other allelic CN technologies may have substantially worse performance in FFPE than 

frozen samples. 

 

For any CN technology based on a genotyping platform (essentially all allelic CN 

technologies), one might expect genotyping performance to correlate with CN 



 

performance.  Consistent with this, in our study CN performance correlates with 

genotype call rate (r2 = 0.54).  Using genotype call rate as a surrogate metric for CN 

quality, we find only a slight performance decrease in FFPE versus fresh frozen tumors 

(98.7% vs. 97.5%).  In contrast, other studies see substantial drops in call rates (from 93-

95% in fresh frozen to 75-91% in FFPE) [5, 6, 9, 27]. (The extremely high genotype 

concordance we see for samples from the same individual rules out that possibility that 

our call rates are artificially inflated by adding poor markers.) 

 

 The extremely high concordance we find between normal fresh frozen and FFPE 

samples (99.99%) and tumor fresh frozen and FFPE samples (99.90%) also argues that 

FFPE samples have little extra variability in our assay. Other studies measure much lower 

concordance between tumor fresh frozen and FFPE samples (92-98%) and one study 

comparing normal fresh frozen and FFPE samples also found lower concordance (99.4%) 

[6, 8, 9, 27]. Finally, the low rate of incompatible genotypes we find between normal and 

tumor samples (0.01% for fresh frozen, 0.1% for FFPE) suggest that MIP performance is 

only slightly worse in FFPE samples than fresh frozen.  We found no data on genotype 

incompatibility in other studies. 

 

It should be possible to use the 2p-RSE (or a similar metric) to compare samples within 

each of these previous studies to determine the relative performance of FFPE and frozen 

samples within each study. We note that the 2p-RSE is not suited to comparing CN data 

generated using different platforms, protocols, or algorithms (i.e. across these studies).  

For example, by changing the protocol to saturate all the features, or altering the 



 

algorithm to make all calls very close to CN = 2, the 2p-RSE can be greatly artificially 

reduced but the data has clearly not been improved. 

 

The 2p-RSE can also be used guide subsequent smoothing of CN data. While this 

manuscript focuses on unsmoothed use of MIP CN data, smoothing of data over adjacent 

markers can improve false positive (FP) and negative (FN) rates at the cost of reduced 

resolution along the genome.  The 2p-RSE may be used to determine the degree of 

smoothing required to obtain specific FP and FN rates. 

  

The MIP platform generates allele specific CN which provide several advantages over 

total CN.  First, genotypes can be determined and used for sample tracking and data 

quality assessment.  Second, the allele ratio can be helpful in assessing levels of stromal 

contamination and derivation of true CN in the malignant cells of a tumor (copy number 

in the tumor is a joint assessment of malignant cells and contaminating normal stromal 

cells) [28, 29].  The allele ratio can also detect copy-neutral LOH events and assess if 

amplifications involve one or both alleles.  Finally, in a collection of samples, it may be 

possible to detect an allele bias in amplifications or deletions [30]. For example, if a 

tumor suppressor gene had two common alleles in a population and one of these alleles 

showed reduced activity, tumors from heterozygous individuals may have preferentially 

lost the more active allele. 

 

Conclusions 
 



 

The ability to obtain high quality allele CN data from FFPE samples using the MIP 

platform has tremendous potential.  Most follow-up clinical data are associated (and are 

likely to remain associated for some time) with FFPE samples rather than frozen samples 

but the degraded (and often limited) DNA that can be extracted from FFPE samples is not 

well suited to many molecular techniques.  The ability to obtain high quality CN data 

from limited amounts of degraded FFPE derived DNA should greatly facilitate the 

discovery of genomic aberrations as potential diagnostic, prognostic and predictive 

biomarkers and may point to novel drug targets.   
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Figures 
 

Figure 1. Relationship between the natural log of the false positive rate at 50% sensitivity 
(Ln_FPR50) and the natural log of the 2p-RSE (Ln_2p-RSE). Each point represents a 
single sample with copy number assessed using a particular reference set. Samples were 
assessed with multiple reference sets and hence may appear multiple times in the figure. 



 

In samples for which we can asses both the false positive rate at 50% sensitivity (FPR50) 
and 2p-RSE, the two metrics show a close relationship. 
 
Figure 2. Copy number data for 4 samples of varying 2p-RSEs. In each panel, markers 
are arranged along the chromosomes and colored by chromosome. Chromosomes are 
typically labeled; some of the smaller chromosomes are unlabeled due to space 
constraints.  The X axis represents chromosomes in genomic order of markers; the Y axis 
is the absolute copy number measurement.  Figure 2a shows one of the best samples with 
2p-RSE = 0.109.  Figures 2b shows an average “high quality” sample with 2p-RSE = 
0.147.  Figures 2c shows a sample that just fails to meet the high quality threshold with 
2p-RSE = 0.184.  Figures 2d shows the worst passed sample with 2p-RSE = 0.247. 
 
Figure 3. Copy number (a) and allele ratio (b) data from the same tumor illustrating how 
the information can be used in concert to infer stromal contamination. In each panel, 
markers are arranged along the chromosomes and colored by chromosome. 
Chromosomes are typically labeled; some of the smaller chromosomes are unlabeled due 
to space constraints. 
 
Figure 4. CN in FFPE (a) and fresh frozen (b) samples from the same tumor. In each 
panel, markers are arranged along the chromosomes and colored by chromosome. 
Chromosomes are typically labeled; some of the smaller chromosomes are unlabeled due 
to space constraints. 
 
Figure 5. MIP and BAC CN results from the same tumor as shown in figure 4. Markers 
are arranged along the chromosomes and colored by chromosome. Chromosomes are 
typically labeled; some of the smaller chromosomes are unlabeled due to space 
constraints.  Figure 5a shows the MIP data for the FFPE sample in figure 4b after 
smoothing.  The smoothing was a simple median of a 3 marker moving window (1 
neighboring marker on each side of the center marker).  Figure 5b shows the BAC data.  
It is of note that the relative density of markers between the two platforms differed across 
the chromosomes.  Therefore in figures a and b, some chromosomes are not aligned, but 
the color scheme used is the same.  (Differences in chromosome 6 are like those seen in 
figure 4 and discussed in the text.)  Figures c and d show chromosome 17 MIP (c) and 
BAC (d) data.  Some of the fine structure seen in the MIP data is missing in the BAC 
data, potentially due to resolution differences or genetic heterogeneity: an example is 
circled. 
 
   

Tables 
 
Table 1. FFPE Samples used in the study 
Institution Tumor 

sample 
type 

Age 
range 
of 
Blocks 
(years) 

Number 
of FFPE 
tumors 

Number 
of FFPE 
normals

Other features 



 

MD Anderson 
set 1 

Breast 
cancer 

<3 8 9   

MD Anderson 
set 2 

Breast 
cancer 

5 - 22 27 18   

UCSF Liver 
metastases 
from 
colorectal 

5 - 28 9 9 Matching frozen 
tumors and 
normals available 

Dana Farber Invasive 
breast 
cancer 

5 - 6 6 13 Microdissected 

CRUK Colorectal 0.5 - 5 17 16 Matching frozen 
tumors available; 
macrodissected 

CHTN Bladder, 
colorectal, 
kidney, 
liver 

1 - 3 13 15 Matching frozen 
tumors and 
normals available 

Leader Kidney 3 - 4 13 12   

 
Table 2. CN Performance of different FFPE and fresh frozen sets 

Institution (type) 
# with 

sufficient DNA 
# passed (% of 

all) 
# high quality (% 

of passed) 

median 2p-
RSE of 
passed 

CHTN (FFPE) 13 13 (100%) 11 (85%) 0.139 
CHTN (FF) 12 12 (100%) 12 (100%) 0.102 
CRUK (FFPE) 17 16 (94%) 12 (75%) 0.163 
CRUK (FF) 17 17 (100%) 17 (100%) 0.142 
Dana Farber (FFPE) 6 6 (100%) 1 (17%) 0.201 
Leader (FFPE) 13 7 (54%) 4 (57%) 0.155 
MD Anderson set1 (FFPE) 8 8 (100%) 7 (88%) 0.163 
MD Anderson set2 (FFPE) 27 23 (85%) 18 (78%) 0.167 
UCSF (FFPE) 9 9 (100%) 9 (100%) 0.115 
UCSF (FF) 10 10 (100%) 10 (100%) 0.116 
All FFPE 93 82 (88%) 62 (76%) 0.16 
All FF* 39 39 (100%) 39 (100%) 0.129 

  * Fresh frozen 
 
  



 

Table 3. Genotype Performance of different passed FFPE and fresh frozen sample sets 

Institution (type) 
Median call 

rate (%) # pairs^ 

Median 
genotype 

inconsistencies 
Range genotype 
inconsistencies 

CHTN (FF) 99.6 12 7.10E-05 2E-5  -  6E-4 
CHTN (FFPE) 98.6 11 1.60E-04 2E-5  -  3E-3 
CRUK (FFPE) 99.2 14 1.10E-04 2E-5  -  2E-4 
Dana Farber (FFPE) 93.9 6 2.80E-03 3E-4  -  8E-3 
Leader (FFPE) 98.5 9 2.40E-04 6E-5  -  1E-3 
MD Anderson set1 (FFPE) 97.5 6 4.90E-04 6E-5  -  9E-4 
MD Anderson set2 (FFPE) 97.8 13 2.70E-04 4E-5  -  2E-2 
UCSF (FF) 98.9 10 2.00E-05 2E-5  -  2E-4 
UCSF (FFPE) 99.2 7 7.10E-05 2E-5  -  1E-4 
All FFPE 98.4 66 2.70E-04 2E-5  -  2E-2 
All FF* 99.4 22 4.00E-05 2E-5  -  6E-4 

^ The number of pairs with available data allowing the Mendelian inconsistency calculation 
* Fresh frozen 
 
 
 
 
 
 
 
 
 
 
 
 
 
 












