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With molecular dynamics simulations of a fluid mixture of classical particles interacting with
pair-wise additive Weeks-Chandler-Andersen potentials, we consider the time series of particle dis-
placements and thereby determine distributions for local persistence times and local exchange times.
These basic characterizations of glassy dynamics are studied over a range of super-cooled conditions
and shown to have behaviors, most notably de-coupling, similar to those found in kinetically con-
strained lattice models of structural glasses. Implications are noted.

Facilitated dynamics, as encoded in various kinetically
constrained lattice models (KCMs) [1, 2], implies a gen-
eral picture of structural glasses in which never-ending
excitation lines coalesce, branch and percolate through-
out space-time [3, 4]. Particles cannot move except when
intersected by these excitation lines [5, 6, 7]. As such,
principal signatures of glassy dynamics can be viewed as
manifestations of the distribution of times for which a
particle must wait to first encounter an excitation, and
the distribution of times between subsequent encoun-
ters. These are what we have called the distributions of
“persistence” times and “exchange” times, respectively
[5, 6, 7]. Definitions and behaviors of excitation lines,
persistence and exchange are most obvious in idealized
lattice models. Nevertheless, these concepts have proved
useful for interpreting intermittent and heterogeneous
dynamics and transport de-coupling [8, 9] in continuous
force model systems and real systems [5, 7, 10, 11], sug-
gesting that these concepts are not limited to KCMs.
Here, we show that indeed, exchange and persistence are
well defined in terms of classical trajectories of the sort
computed from molecular dynamics or observed with mi-
croscopy [12], and for a specific continuous force model,
the distributions for exchange and persistence times be-
have similarly to those we have previously gleaned from
KCMs [6, 13]

Figure 1 illustrates our main result. It shows the dis-
tributions of persistence and exchange times for particle
displacement events obtained from molecular dynamics
simulations of an atomistic model. A local dynamical
event or excitation is defined as a displacement beyond
a specified cutoff length (see below). As the liquid be-
comes increasingly super-cooled the two distributions de-
couple, and the typical persistence time becomes much
larger than the typical exchange time. This de-coupling
occurs because excitations or mobility and their asso-
ciated excitation lines become relatively sparse at low
temperatures. As such, for low enough temperatures,
the time extent of space-time regions devoid of excita-
tion lines (regions that dominate persistence processes)
is typically very long compared to that for regions bridg-
ing the width of excitation lines (regions that dominate
exchange processes). Thus, the origin of this de-coupling

is the same as that of dynamic heterogeneity [3, 4, 5].

FIG. 1: De-coupling of exchange and persistence times in the
WCA mixture. A local event is defined as a particle moving
a distance larger than d. We show results for d = 0.5. (Top)
Distributions of exchange times and of persistence times for
particle species A and B for various temperatures T . (Bot-
tom) Ratio of the average persistence time, τp ≡ 〈tp〉, to the
average exchange time, τx ≡ 〈tx〉, as a function of T . The
inset shows τp and τx for both species as a function of 1/T .

This de-coupling is reflected, for example, in observed
breakdowns [8] in mean-field transport relations like the
Stokes-Einstein inverse proportionality between diffusion
constant, D, and structural relaxation time, τα. In par-
ticular, when de-coupling occurs, diffusion is much faster
than would be predicted from D ∝ 1/τα because diffu-
sion, being an exchange process, has 1/D proportional to
the first moment of the exchange-time distribution while
τα is the first moment of persistence-time distribution [5].

The model [14] we study is a variation of the binary
Lennard–Jones mixture of Ref. [15], which has been ex-
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tensively studied as a model super-cooled liquid (see e.g.
[16]). We modify this system by removing the attrac-
tive part of the Lennard–Jones interaction by adopting
the Weeks-Chandler-Andersen (WCA) separation of the
pair-potential [17]. We consider a mixture of two particle
species A and B in a cubic simulation box of side length L
and volume V = L3. The potential energy is the sum of
the pairwise interactions between two particles of species
µ, ν ∈ {A, B},

Vµν(r) = 4εµν

[

(σµν

r

)12

−
(σµν

r

)6

+
1

4

]

(1)

if their separation r is less than 21/6σµν , and Vµν(r) = 0
otherwise. Following [15] we choose σAA = 1, σBB =
5/6, σAB = (σAA + σBB)/2 and εAA = εBB = εAB = 1.
The particle masses are mA = 2 and mB = 1. Lengths,
times and temperatures are reported in units of σAA,
(mBσ2

AA/εAA)1/2 and εAA/kB, respectively. The number
of particles of species µ is Nµ, and the corresponding mole
fraction is Nµ/N = Nµ/(NA + NB).

Due to the shortness of the interaction range, 21/6σ ≈
1.12σ, each particle interacts with only its nearest neigh-
bors, significantly reducing the computational overhead
of calculating forces. We find that this feature makes
the WCA mixture up to one order of magnitude faster
to simulate than the corresponding Lennard–Jones mix-
ture [14]. It helps us study a reasonably large system at
significantly super-cooled conditions.

Figure 2 demonstrates that the WCA mixture has the
standard phenomenology associated with glass forma-
tion. The figure presents results from two-point time-
correlation functions for varying temperatures ranging
from the normal liquid regime to the super-cooled regime
[18]. Figure 2(top) and Fig. 2(center) show the mean-
squared displacement 〈|∆r(t)|2〉 and the self-intermediate
scattering function Fs(k, t) ≡ 〈eik·∆r(t)〉 for k at the peak
of the static structure factor k = k0, respectively, as
a function of time. The curves display the characteris-
tic low temperature features of increasing slowing down,
plateaus and stretching observed in simulations of similar
systems [15, 20]. Figure 2(bottom) shows the breakdown
of the Stokes-Einstein relation at low temperatures. At
the lowest temperature we have studied, the de-coupling
between the diffusion constant and the structural relax-
ation time is about an order of magnitude. This again is
similar to what is seen in similar systems [8]. A detailed
study of dynamic heterogeneity in the WCA mixture is
given in Ref. [14] and is left to a future publication.

To obtain the distributions shown in Fig. 1, we monitor
the time series of events for each particle in the system,
defining an event as a particle is displaced beyond a cutoff
length d. Consider particle i. At the initial time t = 0,
when we start the observation, its position is ri(0). The
first event time for that particle, t1, is the first time that
particle i has moved far enough so that |ri(t1)− ri(0)| =

FIG. 2: (Top) Mean squared displacement 〈(∆r)2〉 =
〈|∆r(t)|2〉 for both particle species A and B as a function
of time t for various temperatures T . (Center) Incoherent

scattering function Fs(k, t) = 〈eik·∆r(t)〉, evaluated at the
wavevector k = k0 of the first peak in the partial struc-
ture factors, for both species at the same temperatures as
above. (Bottom) Violation of the Stokes-Einstein relation
(dashed line) for decreasing temperatures. The inset shows
the corresponding relaxation times τα, defined by the rela-
tion Fs(k0, τα) = 0.1, for each species as a function of inverse
temperature 1/T .

d. A second event occurs for that particle at time t =
t1 + t2, when particle i manages to move again a distance
d, this time from its position at t1; i.e., |ri(t1 + t2) −
ri(t1)| = d. A third event takes place after a further wait
t3, and so on.

This convention establishes a set of waiting times be-
tween events for the i-th particle, {t1, t2, t3, . . .}. No-
tice, however, that t1 has an important physical differ-
ence from t2, t3, . . .. The time t1 is the time for the first
event to take place without condition on when the previ-
ous event occurred. The times t2, t3, . . . are times between

events. As noted, we call the time t1 a persistence time,
and the times t2, t3, . . . exchange times [21].

Figure 1(top) shows the distributions of exchange and
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persistence times for the two kinds of particles in the
WCA mixture, for temperatures ranging from the normal
liquid regime to the super-cooled one. We choose the
cutoff length d to be comparable to the particle size, so as
to probe particle motion relevant to structural relaxation
and diffusion. The distributions of Fig. 1 are for d = 0.5.
We have obtained similar results for d in the range d =
0.5–1.0.

At high temperatures, the exchange and persistence
time distributions coincide. This is the situation when
the distribution of exchange times is exponential [6]. As
the temperature is decreased the two distributions be-
come distinct, that for persistence moving towards longer
times. Fig. 1(bottom) shows the ratio τp/τx, where
τp ≡ 〈tp〉 is the average persistence time and τx ≡ 〈tx〉 is
the average exchange time. At low temperatures the av-
erage persistence time becomes much larger than the ex-
change time. This de-coupling mirrors that of the break-
down of the Stokes-Einstein relation of Fig. 2.

The de-coupling of exchange and persistence times in
the WCA mixture is similar to that observed in KCMs
[6, 13]. These distributions reflecting the time series of in-
dividual particle displacement events are non-Poissonian.
Event times cluster with periods of quiescence followed
by periods of high activity. This clustering of event times
is one way to view dynamic heterogeneity, or more pre-
cisely, a coexistence in space-time between active and
inactive dynamical phases [23]. Phase separation in tra-
jectory space is a distinguishing prediction of dynamic
facilitation [23]. De-coupling of persistence and exchange
processes is a consequence of this phase separation.

By describing dynamics in terms of exchange and per-
sistence, one is able to picture particle motion as a
continuous-time random walk [24]. An individual par-
ticle makes random walk steps at random times drawn
from the persistence and exchange time distributions
[5]. Along with accounting for the breakdown of Stokes-
Einstein relations [5], this simple picture also accounts
for the non-Fickian to Fickian crossover [7] and the shape
of the van Hove correlation function in a wide range of
systems [11].
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