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Abstract

In this paper a method for the estimation of the curvature along a condensed phase

interface is presented. In a previous paper in this journal [1] a mathematical rela-

tionship was established between this curvature and a template disk located at a

given point along the interface. The portion of the computed area of the template

disk covering one of the phases was shown to be asymptotically linear in the mean

curvature. Instead of utilizing this relationship, an empirical approach was proposed

in [1] in order to compensate for discrete uncertainties. In this paper, we show that

this linear relationship can be used directly along the interface avoiding the empir-

ical approach proposed earlier. Modifications of the algorithm are however needed,

and with good data smoothing techniques, our method provides good quantitative

curvature estimates.
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1 Introduction

Capillary phenomena can have an important role in different parts of ma-

terials science [2]. With capillary phenomena we mean processes involving

surfaces 1 which occur on length scales where the curvatures play an impor-

tant role. Over the past decades the study of high-temperature capillarity has

developed as a distinct research field with contributions both to fundamental

research and applications; see the recent special issue of Current Opinion in

Solid State and Materials Science on this diverse subject [3]. Curvature-driven

processes include grain boundary migration in bicrystals [4], dendritic growth

in solidification of alloys [5], dissolution driven crack growth [6], surface diffu-

sion in molecular beam epitaxy [7] and undercooling in eutectics [8]. Processes

like these include the movement or evolution of surfaces. Different approaches

to computer modeling exist for the simulation of these movements like level

set [9], fast marching [9], cellular automaton [10,11], diffusion-limited aggre-

gation [12], and equivalent sharp surface [13]. For simulations performed on

digital images [14], the curvature needs to be computed along the boundary

pixels of the moving surface.

∗ Corresponding author. Tel.: +47 51875026; fax: +47 51875200.
Email address: Inge.Frette@iris.no (Olav Inge Frette).

1 We are aware of the difference in the meanings of surface and interface in the

literature, but for our purpose these concepts are synonymous.
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In this paper we present an algorithm for computation of the curvature of a

smooth curve from its digital image. This algorithm is a modification of an

algorithm published in [1] some years back. The basic idea is as follows. Given

a curve in 2D, place a template disk of a given radius with its center at a

point along the curve. Asymptotically, the curvature of the curve at this point

dependent linearly on the area of the template disk that is on one side of the

curve. So the curvature can be estimated by computing this area.

Application of this algorithm to a digital image depends on the resolution,

which determines the discretization of the surface. For our purpose, a modi-

fication of the established algorithm was needed, and this new modified ap-

proach is presented in this paper. It should be noted that this algorithm is

suitable not only for material science simulations of surface evolution. It can

just as well be used in other scientific and engineering disciplines where digital

pictures are used and where quantitative estimates of the curvature is needed.

Some examples are heart wall analysis (medical science) [15], diatom identifi-

cation (biological science) [16], shape perception (robot engineering) [17] and

thin film stability (petroleum engineering) [18].

Our paper has three parts - theory, method and results. In the theoretical

part a short introduction into the mathematics of curvature is followed by an

overview of common approaches to the estimation of the curvature of a curve

from its discretized image. Then we present our new approach for curvature

estimation, followed by a comparison with the algorithm in [1]. In the method

part we describe our algorithm. In the last section we present results of com-

putations with this algorithm and compare them to analytical solutions. The

algorithm has also been applied to analyze real data – SEM images of sedi-

mentary rocks. Results of computed curvatures along the wall of a pore in the
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porous rock are included.

2 Theory

2.1 The curvature of a planar curve: continuous case

We will use the following formula for the curvature κ of a 2D curve x = x(t),

y = y(t) parameterized by a parameter t [19,20]:

κ =
y′′x′ − y′x′′

[x′2 + y′2]3/2
(1)

If θ is the angle between the tangent line and the x-axis and the arc length s

is selected as the parameter t, then, equivalently,

κ =
θ′√

x′2 + y′2
=

dθ

ds
(2)

We will also employ two more equivalent definitions of curvature

• Path based definition: κ = ±‖X′′(s)‖, where X(s) = (x(s), y(s)) and s is

the length of the curve.

• Osculating circle based definition: κ = ± 1

R(s)
, where R(s) is the radius of

the osculating circle touching the curve.

In both cases, the choice between “+” and “-” is determined by the local

convexity convention.

Numerical evaluation of the curvature of a curve using any of the formulae

presented above require a numerical differentiation, which is an ill-posed prob-

lem [21]. Below, we present an alternative approach.

4



2.2 Computing the discrete curvature of a curve

Several methods can be proposed to evaluate numerically the curvature of a

discrete object. For example, one could map the discrete object into contin-

uous space by using methods like orthogonal polynomials, linear regression,

or B-splines [22], and then calculate the curvature in a point using one of

the definitions for continuous curvature presented in the previous subsection.

Several problems associated with such a method have been noticed. Firstly,

the methods are limited since the input area needs to be reduced to provide a

given accuracy. Secondly, the algorithms based on methods like these are time

consuming for large input data [23].

In a widely referenced paper by Worring and Smeulders [24], different ap-

proaches found in the literature for the computation of discrete curvatures

are evaluated. The approaches are divided into three groups corresponding

to different formulae for the curvature, from the previous subsection: the

orientation-based approach which uses equation (2), the path-based approach

which according to Worring and Smeulders also include equation (1), and the

osculating-circle based approach. They note that these definitions are equiva-

lent in a continuous space, but not necessarily so in a discrete one.

For the orientation-based approaches three methods are evaluated. In the first

method, the curvature is estimated using a low pass differential filtering of the

estimated tangent direction. The second method is similar to the first one ex-

cept for resampling of the discrete contour in order to reduce the anisotropy of

the grid. The third approach is a line fit method. The curvature is calculated

finding the angular difference between two straight lines fitted to the data near
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the point of consideration. For the path-based approach one method is evalu-

ated. Using differential Gaussian kernels on the x- and y-coordinate sequences

the curvature can be estimated. In the osculating circle-based approach, the

curvature can be obtained by finding the circular disk that fits the contour

points best. Further literature references regarding the evaluation of different

methods can be found in Worring and Smeulders’ paper [24].

2.3 Computing curvature using a template disk

Our approach for computing the curvature at a point along a boundary of a

discrete object is based on the idea of computing the partial area of a template

disk that is placed with its center in the given point. Since there exists an

asymptotically linear relationship between this computed partial area and the

curvature, the curvature value can be estimated.

The theoretical basis for this approach is as follows. For a given curve sepa-

rating two 2D “phases” a disk template is placed with its center at a point

P of the curve, see figure 1. The radius b of the template disk is assumed to

be small compared to the radius of curvature of the curve at P . Assuming

sufficient smoothness of the curve, we locate the 2D Cartesian coordinate sys-

tem with origin in P and the x-coordinate axis is placed along the tangent

line of the curve. The position and orientation of the coordinate system imply

f(x)x=0 =

(
df

dx

)

x=0

= 0. Hence,

y = f(x) =
1

2

(
d 2f

dx2

)

x=0

x2 + O
(
x3

)
(3)
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By virtue of Equation (1),

y = −1

2
κx2 + O

(
x3

)
(4)

Rewriting this equation in dimensionless form scaled with the radius b of the

template disk, ( X = x/b, Y = y/b, K = κb), yields

Y = −1

2
KX2 + O

(
X3

)
(5)

In polar coordinates r and θ, with R = r/b, the equation can be written as

R sin θ = −1

2
KR2 cos2 θ + O

(
R3

)
(6)

Solving for θ, we get

θ(R) = sin−1
[
−1

2
KR + O

(
R3

)]
(7)

The angle θ can now be interpreted as the angle between the tangent line

passing through P and the x-axis. The area A of the template disk outside

the line segment can then easily be calculated (in scaled form a = Ab−2) as

a =

1∫

0

RdR

π−θ(R)∫

θ(R)

dθ (8)

Substitution of Equation (7) into (8) yields

a =
π

2
− 1

3
K + O

(
R3

)
(9)

Or, in terms of K,

K = 3a− 3π

2
+ O

(
R3

)
(10)
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The error in the last equation is small compared to the true curvature. Thus

equation (10) can be written (in physical coordinates)

κ ' 3A

b3
− 3π

2b
(11)

The above equation (11) establishes the linear relationship between the curva-

ture κ and the area A. This functional relationship will be the basis for further

discussion of curvature estimation below.

2.4 Computing curvature using a discrete template disk

The method described above can be applied to digital images or grids. In either

case it is assumed that the image or grid is represented in a binary form by

being divided into a background and into one or more regions. By convention,

the background is assumed to be white while the regions are assumed black.

The points in the image or grid are represented as square pixels. The discrete

template disk is placed with its center along the boundary pixels of the regions.

The calculation of area A then reduces to the counting of pixels belonging

to that part of the template disk laying outside the regions. Discretization

inevitably introduces errors in the curvature evaluation.

Firstly, there is an error in the area of the discrete template disk compared to

the theoretical template disk. This error depends on the diameter of the disk;

it decreases when the diameter of the disk increases, see figure 2. On the other

hand, equation (11) requires that the radius of the disk is small compared to

the radius of curvature. Hence the optimal size of the template disk should

be chosen depending on the curvature of the boundary. At the same time

large diameters contribute to an additional error due to non-uniformity of the
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curvature over larger area of the boundary.

When using equation (11) in a discrete way an additional error is introduced

since the area A is a discrete parameter while the radius b is not. Thus equa-

tion (11) needs to be reformulated in terms of fractional area. By introducing

Atot = πb2, equation (11) can be written as

κ ' 3π

b

(
A

Atot

− 1

2

)
(12)

Atot is the area of an analytical disk with radius b.

By approximating b from b2 ' Ad
tot/π (where Ad

tot is the total area of the

discrete template disk) and applying this expression to equation (11) we get

κ ' 3π

b

(
A

Ad
tot

− 1

2

)
(13)

Since both the numerator and the denominator are counted in pixels in equa-

tion (13), the fractional area,
A

Ad
tot

, is calculated in a consistent manner. Equa-

tion (13) establishes the linear relationship between the computed area and

curvature that will be used in this paper.

3 Our Method

Our approach focus on the application of equation (13) directly to the digital

image.
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3.1 Boundary representation

There are basically two different ways of representing the boundary (also called

border, contour) of such a region. The first is a pixel-based approach [17,25]. In

this approach, the boundary is represented by those pixels in the regions that

are neighbors to background pixels; see figure 3. If the pixels in the regions are

4-connected all boundary pixels must contain at least one 8-connected pixel

belonging to the background. If the regions are 8-connected all boundary pixels

must contain at least one 4-connected pixel belonging to the background [25].

In [1] the boundaries are pixel-based, and the boundary pixels are called sur-

face pixels. It is not clear whether the regions are 4- or 8-connected.

The second way of representing the boundary is the edge-based approach; also

called the inter-pixel approach [26,27]. Every square pixel has four sides - left,

right, top and bottom. These sides are also called edges. In this approach,

the boundary of a region is understood as the collection of edges that are

shared between the region pixels and background pixels; i.e. shared between

complementary domains, see figure 4. These edges are called crack edges. The

two approaches to boundary representation have different properties. Pixel-

based boundaries are dependent on the definition of the neighborhood, the area

of the boundary is greater than zero and the boundaries are not shared with

adjacent regions. On the other hand, edge-based boundaries have zero area, are

shared with adjacent regions, but contain sub-pixel elements - the edges. In our

paper we use the edge-based approach, and we think that this representation

of the boundary is well suited for the curvature algorithm presented below.
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3.2 The discrete template disk

We use template disks with odd pixel diameters, like in [1]. A discrete template

disk with a given diameter is generated by including all pixels which have their

center located at a distance from the center of the circle which is less than b,

the radius of the circle. Radius b is defined as 2b = Nξ where N is an odd

number and ξ is defined as one pixel unit. Figure 5 shows an example of a

template disk with pixel diameter equal to 15.

3.3 The simulation approach

For a given digital image that has been segmented, the curvature is computed

for each region. This is done by moving the template disk along the region

boundaries with its center in the boundary pixels, see figure 5. The contribut-

ing area of the disk will be calculated and from the curvature can be computed

from equation (13). It turns out that this approach still needs some modifica-

tion in order to get good results. Finally some data smoothing removes high

frequency noise from the computed values.

4 Algorithm modification, verification, and results

In this section, we present results for our algorithm. Firstly we describe the ad-

justments needed. Followed by this is a discussion about data smoothing where

we propose a simple adaptive algorithm of reduction of the high-frequency

noise. Thirdly the question about resolution is discussed. Then we compare

our approach with the method of Bullard et al., followed by results from a
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test using a SEM image of a sedimentary rock. Finally, we discuss some un-

certainties and limitations inherent in our method.

4.1 Test data set

For testing and verification we have used a synthetic case as digital region

- a digitized sinusoidal interface. This sinusoidal is defined as y = C sin(kx)

where C = 30ξ, k = 2π
λ

with λ = 100ξ, see figure 6. As above, ξ is equal to one

pixel unit. This test case was chosen since Bullard et al. used a similar one

in their paper. For the discussion about resolution quality we also used two

other sinusoidal interfaces - one which was twice the resolution of the original

and one which was four times the resolution of the original. Results from an

image of a sedimentary rock are included in 4.6.

4.2 Algorithm modifications

When computing the curvature using equation (13) and applying the template

disk as described above, we noticed a bias in the computed values compared

to the analytical results. The reason for this systematic error is related to the

choice of boundary.

4.2.1 Choice of boundary

In their paper Bullard et al. used template disks with odd pixel diameters.

With an odd diameter there is a unique center pixel in the disk. When the

template disk is applied along a given boundary region, the disk is placed

with its center pixel in each surface pixel, see figure 5. The number of pixels
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in the template disk that is located outside the given region is counted and

from this pixel number a curvature value is computed using equation (17). We

have also used odd pixel diameter for the template disk. However, since we use

edge-based boundary we need to find the corresponding boundary pixels (i.e.

the surface pixels) in order to use the template disk properly. Basically we do

the same as Bullard et al., but instead of using equation (17) the curvature

is computed using equation (13) instead. Results from a simulation using a

pixel diameter of 15 are shown in figure 7. A drift in the simulated results is

observed. We also did a similar simulation where the template disk was applied

to the so-called outer boundary 2 . Figure 7 shows results from this simulation.

We notice that the results are symmetrical around the analytical curve. The

errors are similar, but have opposite signs. This suggests that the solution

must lie somewhere “in between” those two situations. The two simulated

curves are computed from boundaries with extended thickness of one pixel.

The edge-based boundary on the other hand has zero thickness, like an ideal

analytical curve. Computing the curvature for a given boundary edge instead

of a boundary pixel could possibly be an approach to avoid the reported drift

errors. To accomplish this we need two computations for each boundary edge.

The template disk will be placed with its center both in the inner and outer

boundary pixels corresponding to the given edge, see figure 8.

The average value of the two computed areas is then used as input value for

2 A pixel-based boundary of a given region is defined as all pixels of this region

that are neighbors to background pixels. Alternatively, the boundary can be defined

as the set of background pixels that are neighbors to the pixels of the given region.

These two types of boundaries are respectively called inner and outer boundary [28].
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A in equation (13), which can be rewritten as

κ ' 3π

b

(
Aave

Ad
tot

− 1

2

)
(14)

where

Aave =
Ain + Aout

2
(15)

Ain is the number of pixels in the template disk covering the background

when the center of the disk is located at the inner boundary. Similarly, Aout

corresponds to the situation when the center of the disk is located at the

outer boundary. Notice that one must use identical disk diameters for these

two computations. Figure 9 shows the results of curvature computation with

the adjustments included: the bias is practically eliminated.

4.3 Data smoothing

All the figures based on the sinusoidal simulations have shown smooth results

for the curvature values. High frequency noise is unavoidable given the discrete

nature of the region boundaries. Figure 10 presents an example. Both the orig-

inal curvature plot and the smoothed version are included together with the

analytical curve. We observe that the noise fluctuations are distributed along

the whole curve. It seems that this noise is critical for small curvatures since it

can fluctuate between positive and negative values. This could be significant,

for example, when used in simulations of curvature driven processes. In these

processes the sign of the curvature indicates the direction of the process. The

low frequency signal is close to the analytical value. Thus it makes sense to

apply some form of low pass filtering to remove the high frequency noise in
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the curvature signal. There exist different methods; running averages, median

and least square filtering. Fixed windows or adaptive windows can be used in

conjunction with these methods. Fourier analysis can also be used: the noisy

part of the signal can be removed by truncation of the data in the frequency

space.

We propose a simple model for data smoothing using a running average algo-

rithm with adaptive window size where the window size is estimated from the

curvature value as

w = 0.5 ∗ 1

|κ| (16)

w is the window size in pixel units. All results presented have included data

smoothing using this approach. We have used a lower bound for the window

size of size 3 and size 20 for the upper bound.

4.4 Resolution

We can expect that the algorithm presented in this paper will provide better

results with a higher resolution. This has been tested by using two sinusoidal

images at resolutions x2 and x4 defined relative to the original image, see

Table 1. Curvature values have been computed for each case and rescaled for

comparison with the original sinusoidal. In figure 11, a subpart of the results

from the comparison is plotted. The average error of computed curvature - i.e

the average value for the difference between computed value and analytical

value - and the standard deviation has been estimated for all three sizes. This

has been done both for the original computed values and for the smoothed

values. The results show that a refinement of the resolution reduces the noise,
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and this confirms that higher resolution gives more precise results. When data

smoothing has been applied the average difference between computed value

and analytical value is reduced by 45% for the image with 2x resolution and

by 60% for the image with 4x resolution. For the standard deviation there is

a reduction of 30% and 50% respectively.

4.5 Comparison with the method of Bullard et al.

Our approach differs from that of Bullard et al. [1]. We established equa-

tion (14) using fractional area in order to avoid discrete error inherent in equa-

tion (11) and area measurements of both inner and outer boundaries to avoid

error bias. For the computation of curvature we use equation (14) directly.

Bullard et al. do not use equation (11) (which corresponds to equation (18)

in [1]) directly either. Instead they suggest an “experimental” approach. They

apply the discrete template disk on a set of discrete test circles with different

radii. For each test circle they let the template disk move along the boundary

and for each boundary pixel the outside area is computed by counting the

number of pixels in the template disk not covering the test circle. Then an

average value is estimated for the area. These average values are then plotted

against the true curvature of the test circles. Using linear regression the follow-

ing relationship (equation 22 in [1]) is established from these “experimental”

tests for a template disk of 15 pixel diameter

κ =
2.807

b3
〈A〉 − 2.586π

2b
, (17)

where 〈A〉 is the average pixel count.
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Note that equation (17) is valid only for b=15. There may however be situa-

tions where it would be more useful to apply template disks with diameters

different from 15. The computation of curvatures using images with very high

resolution and smooth region boundaries is one example. Another one is com-

puting the curvature of large-scale trends of the region boundaries. Finally we

mention situations where the regions in the image are so small that template

disks of 15 pixel diameters can not be used. For the two first examples an

increased pixel diameter is needed, while for the last example a reduced pixel

diameter is needed. When using the approach by Bullard et al. new numerical

experiments would be needed for every pixel diameter of the template disk in

order to establish the correct correlation between area and curvature, which

is cumbersome. Equation (17) can not be used for other pixel diameters, as

figure 12 illustrates, resulting in incorrect curvature values. It remains unclear

what sampling size is sufficient for justification of the correlation-based equa-

tion (17). This size and the fitting coefficients may differ from curve to curve.

Our approach does not rely on statistics. Rather, by direct computation of

the curvature using equation (14), any error bias is dramatically reduced by

symmetrization of the concept of the boundary.

4.6 Computed curvature for the geometry of a pore in a sedimentary rock

The algorithm has been applied to a digital image of a thin section of a

sedimentary rock sample, see figure 13. After preprocessing, including image

segmentation, a single pore was isolated for this test, figure 14. Computed

curvature values for a subpart of the pore (enclosed by the grey rectangle)

is presented in figure 15. The inner boundary of the pore is also included
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in this figure. The width of the subpart is 160 pixels, and the height of the

inner boundary pixels is given relative to the lowest point along the boundary.

The unit of the curvature values are given in [pixel−1]. To find the physical

curvature the computed values need to be rescaled using the resolution of the

image.

It is difficult to evaluate these results quantitatively since the true curvatures

are unknown. Assuming a proper threshold value in the segmentation process,

the results are qualitatively as expected. Both the sign and value of the com-

puted curvatures are consistent with the shape of the pore boundary, and for

flat segments of the boundary the curvature values are close to zero. Since it

has been shown from the synthetic test case that this algorithm gives good

qualitative results, we think that - within expected numerical errors - the

computed curvature values for the realistic test case are reliable.

4.7 Uncertainties and limitations

Numerous factors and assumptions may affect the output of the algorithm.

The impact of image resolution has been discussed above. Small variations

of segmentation threshold can assign an originally grey-scale image pixel or

a group of pixels either to the background or a region. The angularity of

natural rocks cannot be completely resolved due to the finiteness of the res-

olution. Some features, which can be naturally present in rock images, like

grain-to-grain contacts, make the very applicability of the concept of curva-

ture questionable. In a forthcoming paper [18] we will discuss the possible

effect the segmentation process has on the computation of the curvatures.

Different sorts of angularities and contacts can be detected once a database
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of digital signatures has been generated. This subject is beyond the scope of

this study.

5 Summary and conclusions

We have presented a modified algorithm for the computation of curvature in

digital images or grids. The approach is based on an edge-based boundary

which has the advantage of having no boundary thickness. The algorithm has

been modified to avoid errors related to the understanding of boundaries. With

a suitable data smoothing algorithm we are able to present computed values

that are in good agreement with simulated values from a synthetic test case.

We have also shown that an increase in resolution will reduce the noise in

the results. With the memory and processing power available nowadays - even

with a standard PC - these simulations are performed in a very short time

span. Thus the inclusion of edges (which increases the memory use) and the

double curvature computation for each edge (which increases the processing

time) makes this approach attractive from a computational point of view.

Using the algorithm on a realistic data set gives consistent and reliable results.

The approach in [1] relies on empirically constant coefficients which could be

inappropriate for different types of curves. The universality of our algorithm

makes it applicable for any types of curves.
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Fig. 1. There exists a linear relationship between the curvature of γ in P and the

area of the circle above γ. See text for details.
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Fig. 2. Relative error of discrete circles generated from square pixels. ξ equals one

pixel unit.
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Fig. 3. Pixel based boundary. Points marked with O are boundary pixels.

Fig. 4. Edge based boundary. The thick black line around the region represent the

edges. Each boundary edge is shared between a region pixel and a background pixel.

The thickness of the line is exaggerated.
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Fig. 5. Application of discrete template disk. In this example the pixel diameter is

15.

Fig. 6. Sinusoidal test image. Size 300x60 pixels. Curvature computed for the 100

pixels in the middle of the image from Start to End. Image is wider than test region

to avoid boundary effects. Region is black, and background is white.
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Fig. 7. Curvature bias due to boundary effects, with pixel diameter of 15 pixel. The

two curves represent computed values using both inner and outer boundaries.

Fig. 8. To compute the curvature for a given edge the template disk is applied twice

as shown in this schematic figure.
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Fig. 9. Computed curvature values based on equation (14). Pixel diameter used for

this simulation is 15.
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Fig. 10. Computed curvature values with and without data smoothing (noise re-

moval). Template disk diameter used is 15 pixels.
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Fig. 11. Comparison of different resolutions. See text and table 1 for details.
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Fig. 12. Results using equation (17) with a pixel diameter of 19. A biased error is

observed indicating that equation (17) is only suitable for pixel diameters of 15.

Data smoothing has been applied using equation (16).

Fig. 13. Digital image of sedimentary rock (chalk). Resolution in image is 0.313

µm/pixel. Arrow points at pore (figure 14) used in curvature computation.
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Fig. 14. Single pore (from figure 13) after image preprocessing. Boundary enclosed

by grey rectangle used in curvature computation.

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 40 80 120 160

X( )

(
¯¹
)

0

5

10

15

20

25

30

35

40

45

H
(
)

Fig. 15. Computed curvature [pixel−1] for subpart of pore (thin line). Boundary

pixels of pore (thick line). Pixel diameter for template disk is 15. See text for further

details.
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Image size [pixel] Template disk diameter [pixel]

100x60 15

200x120 31

400x240 61

Table 1

Data for resolution test.
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