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Abstract

Dense electron beams can now be generated on an ultrafast timescale using laser driven photo-

cathodes and these are used for a range of applications from ultrafast electron defraction to free

electron lasers. Here we determine a lower bound to the emittance of an electron beam limited by

fundamental stochastic Coulomb interactions.

PACS numbers: 29.27.Bd, 41.75.Ht, 41.85.Ct
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The advances in diverse fields such as electron microscopy and the free electron laser

drive demand for high brightness electron sources[1]. Apart from the intrinsic properties

of the cathode material, the Coulomb interaction among emitted electrons is the other

major factor that limits the brightness of the final beam. In fact, these two factors are

intertwined such that the optimal source for a given system is a compromise between them.

The study of Coulomb interactions among electrons has a long history [2, 3] and has become

progressively more active due to increasing brightness requirements [4]. In order to achieve

higher brightness than the state of the art, a more detailed understanding of this effect is

needed.

This paper is an attempt to extend understanding of Coulomb interactions among elec-

trons emitted from a cathode. Since the stochastic parts of the coulomb interaction are

characterised by short-length scale phenomena, collisions, we adopt a bottom-up approach

and utilize N-Body methods from astrophysics [5]. This is in marked contrast to the spa-

tially discretized particle-in-cell (PIC) methods [6, 7] commonly used in electron transport

codes. The main advantage of this method is that no spatial grid is needed, which ensures

that all length-scales of the Coulomb interaction are included up to the limits of numerical

precision. Yet, for direct summation of the coulomb interaction over the beam, the scaling

law of O(N2) for the computation time poses a limit on the number of electrons that can be

realistically simulated (roughly 104 for a PC). The tree-code algorithm developed by Barnes

and Hut [8] is an elegant solution. Instead of direct summation, the force on each electron is

approximated by lumping distant electrons, which fall inside a certain solid angle, into one

macro particle. As a result, the scaling law for the computation time becomes O(NlogN) and

increases the upper limit of the number of electrons to the order of 106 on a small computer.

The Coulomb interactions among emitted electrons manifest themselves in two ways. One

is the correlated expansion of the beam due to the mean field, which is sometimes referred

to as the space charge effect. The other is the uncorrelated or stochastic scattering, which

has different names in different fields. In this paper, we shall refer to it as the stochastic

Coulomb interaction. The main difference between the two effects is that the space charge

effect conserves the phase space volume whereas the stochastic Coulomb interaction leads

to an increase in phase space volume. The space charge effect generates various correlations

in the phase space which may result in the degradation of the brightness of the beam. It

has been demonstrated that the linear part of the correlated motion can be removed [9]

2



and in principle the nonlinear parts may be removed as well [10]. The stochastic Coulomb

interactions, on the other hand, result in an irreversible increase of the phase space volume

and concomitant degradation of brightness. Hence it is of crucial importance that a detailed

knowledge of this effect be obtained.

In our simulation, two steps were taken to isolate the stochastic Coulomb interactions

from the space charge effect. First, the geometric shape and distribution of the bunch are

chosen such that the nonlinear correlations are absent. It is well known that the electrostatic

field in a homogeneous ellipsoid is linear in all directions [11]. Hence only linear correlations

are present in the phase space, which is true for all time as long as the external field is

also linear in space [12]. As a result, a homogeneous ellipsoid is used throughout this paper

unless stated otherwise. Secondly, the linear correlations are removed through evaluating

the determinant of the 6×6 second-order moment matrix of the phase space variables, which

is the 6D emittance of the electron bunch. Specifically, the phase space variables are x, px

= Px/mec, y, py = Py/mec, z and pz = Pz/mec, where me is the rest mass of the electron

and c is the speed of light. The rms 6D emittance is defined as

ǫn =

< x2 > < xpx > < xy > < xpy > < xz > < xpz >

< pxx > < p2

x > < pxy > < pxpy > < pxz > < pxpz >

< yx > < ypx > < y2 > < ypy > < yz > < ypz >

< pyx > < pypx > < pyy > < p2

y > < pyz > < pypz >

< zx > < zpx > < zy > < zpy > < z2 > < zpz >

< pzx > < pzpx > < pzy > < pzpy > < pzz > < p2

z >

(1)

=

< x2 > < xγβx > < xy > < xγβy > < xz > < xγβz >

< γβxx > < γ2β2

x > < γβxy > < γβxγβy > < γβxz > < γβxγβz >

< yx > < yγβx > < y2 > < yγβy > < yz > < yγβz >

< γβyx > < γβypx > < γβyy > < γ2β2

y > < γβyz > < γβyγβz >

< zx > < zγβx > < zy > < zγβy > < z2 > < zγβz >

< γβzx > < γβzγβx > < γβzy > < γβzγβy > < γβzz > < γ2β2

z >

, (2)

where γ is the relativistic factor which is the ratio of the total energy and the rest energy of

a particle and βi = vi/c for i = x, y, z. For a homogeneous ellipsoidal bunch, all higher-order

moments, hence all nonlinear correlations, vanish. Furthermore, the rms 6D emittance ǫn
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is an invariant of motion in the mean field, which entails that all linear correlations are

removed and any change in ǫn is due to the stochastic Coulomb interactions.

Due to the rapid expansion of the electron bunch in the vacuum, from both the space

charge effect and an external accelerating field, the stochastic Coulomb interactions dimin-

ishes quickly. As it becomes clear below, the time range the stochastic Coulomb interactions

are important is typically on the order of 100 ps. As a result, the energy of the electrons

remains low for typical accelerating fields and a non-relativistic approximation is sufficient.

Hence the rms 6D emittance becomes

ǫn =

< x2 > < xβx > < xy > < xβy > < xz > < xβz >

< βxx > < β2

x > < βxy > < βxβy > < βxz > < βxβz >

< yx > < yβx > < y2 > < yβy > < yz > < yβz >

< βyx > < βypx > < βyy > < β2

y > < βyz > < βyβz >

< zx > < zβx > < zy > < zβy > < z2 > < zβz >

< βzx > < βzβx > < βzy > < βzβy > < βzz > < β2

z >

. (3)

Before the main results of the simulation are shown, the specifics of the numerical tool

and the choice of relevant parameters are described below. Since the electrons are non-

relativistic, the force among them is simply the Coulomb force. This allows us to use an

existing tree-code package written by one of the original inventors of the technique [13]. The

Coulomb force is calculated in the modified form of (r2 + a2)−2 (with a = 1.3e-12 m) to

avoid artificial collisions at short distance. The numerical integration is performed using

the second-order symplectic integrator. The parameters that affect the accuracy are the

(fixed) size of the time step (δt) and the opening angle (θ) within which the electrons are

lumped into one macro particle. Although this package has been tested extensively [13], we

compared the transverse emittance over the time range of 12 ps for different δt and θ under

the initial conditions of our interest (see below). We find that convergence is reached for δt

below 25 fs and θ below 1.5 rad. We chose δt of 12.4 fs and θ of 0.8 rad for our study.

The results of the simulation are presented below. To simplify the problem, all electrons

are created at the same instant in time with the same energy and with zero transverse

velocity. Furthermore, no external field is applied. As a result, the transverse emittance

obtained here is the upper limit of that in an electron gun due to the absence of the lon-

gitudinal cooling and the thermalization between the transverse and the longitudinal phase
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FIG. 1: Transverse (top) and longitudinal (bottom) phase space plots of the ellipsoidal and the

cylindrical electron bunches at t = 1.5 ps. The number of electrons is 1048576 (220) for both cases.

The initial kinetic energy is 1 eV. For the cylindrical bunch, the radius is 10 µm and the length is

30 µm. For the ellipsoidal bunch, the semi-axes are 10 µm, 10 µm and 15 µm.

spaces [14]. Figure 1 shows the transverse and longitudinal phase spaces of a cylindrical and

an ellipsoidal bunches at t = 1.5 ps. The linear nature of the latter shows that nonlinear

correlations in the phase space are absent. In another word, ellipsoidal bunches remain

ellipsoidal.

In order to test the validity of the code, the dependence of the 6D emittance on the

spatial distributions of the electrons and the number of electrons has been studied (see

Figure 2). The dependence of the 6d emittance on the spatial distributions of the electrons

is simulated using two cases of initial condition, both of which are spherical bunches. In

the first case the electrons are distributed randomly throughout the spherical volume in

uniform a distribution. In the second case the electrons are distributed on a 3d cartesian

grid within the same spherical volume, with constant grid spacing such that the number

density and total number of electrons within the sphere is that of the first case. From the

theoretical point of view, the 6D emittance of a spherical bunch with electrons launched

from a Cartesian grid should be close to zero, with the residue coming from the finite size

of the bunch and the edge effects. In our simulation, the tree algorithm, in principle, also

contributes to the residual emittance as the tree structure will at some level disturb the

symmetry of the distribution. Our results show that the value of the grid distribution is

two to three orders of magnitude smaller than that for the random distribution. As shown
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FIG. 2: 6D emittance plots of spherical electron bunches. All traces are normalized to the case

with 220 electrons. The longitudinal initial kinetic energy is 0.4 eV for all cases. The number of

electrons are 217, 218, 219, 220 and 221. The radius of each of the cases is 5 µm, 6.300 µm, 7.937

µm, 10 µm and 12.599 µm. The group of traces on the top are bunches with random spatial

distributions and those on the bottom are bunches with electrons on the Cartesian grid (grid size

0.16 µm). For the bottom group, the traces for the cases of 217, 218, 219, 220 and 221 electrons are

purple, red, green, blue and black, respectively. The average and the standard deviation at t = 30

ps for the random distribution are 1.803E-28 and 5.053E-30. Those for the grid case are 5.429E-31

and 4.637E-31.

in Figure 2, the average emittance of the random distribution is 300 times larger than that

of the grid distribution. The dependence of the emittance on the number of electrons is

studied by varying the number of electron and the radius at the same time while keeping

the number density constant. The fact that the standard deviation of the emittance for the

grid distribution is 85% of the average entails that the emittance is not related to the number

density. Hence we conclude that it is the result of the residual effects such as the finite size

and edge of the sphere, the tree algorithm and numerical errors. On the other hand, the

standard deviation for the random distribution is merely 3% of the average, showing that

the emittance is due to the stochastic Coulomb interaction which is determined by the

number density. It is clear that our code is working properly and the emitance is truely that

generated by stochastic Coulomb interactions. Furthermore, this number is a good measure

of the error bar of our results.

The relation between the transverse emittance and the number density is studied by
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varying the number of electrons while keeping the radius of the bunch fixed. Other initial

conditions are the same as the cases discussed above. In figure 3, the transverse emittance

as the function of time is plotted, which shows that the 6D emittance starts to saturate at t

= 100 fs and increases with the number density. In order to study quantitatively the relation

between the transverse emittance and the number density, the transverse emittance as the

function of the number density is plotted (figure 4), together with an analytical estimation

developed by Jansen [14, 15]. From Ref. [14, 15], which assumes that thermal equilibrium

is reached, the kinetic energy per electron generated by potential energy relaxation is

Ek =
3

2
(4πa2)1/3C0n

1/3, (4)

where n is the number density, C0 = e2

4πǫ0
and a = 0.08702. Assuming equal partition among

the 3 degrees of freedom, the rms transverse emittance can be expressed as

ǫx,y =
r

2

√

2Ek

3mec2
, (5)

where me is the mass of the electron and c is the speed of light. As shown in figure 4,

the numerical result is about 2 times larger than the analytical estimate. Furthermore,

the scaling with number density is also different. In the analytical model, the emittance is

proportional to one sixth power of the number density. Yet the empirical model fitted to

the simulation result is

ǫx,y = Crnα, (6)

where C = 2.62× 10−14 and α = 0.319. Note that the exponent almost doubles that of the

analytical estimate. These differences may be due to the excess potential energy resulting

from the fluctuations of the random distribution. Using eq. 5, we estimate that, for the case

with 220 electrons, around 40% of the excess potential energy, which is the difference between

the random and grid distributions (52 meV out of the total amount of 90.6 eV per electron),

is transformed into uncorrelated kinetic energy. Furthermore, the lack of Debye screening

may be another reason (see table I), since eq. 4 is obtained assuming Maxwell-Boltzmann

distribution in the screened potential [14].

The simulation result and the empirical law help to answer the question that how “good”

is a cathode good enough in terms of transverse emittance. For a given number density

near the cathode, a cathode is good enough if the transverse emittance produced by the

transverse momentum of the emitted electrons is as low as that generated by the Coulomb
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N 217 218 219 220 221

n (1020 1/m3) 0.313 0.626 1.252 2.503 5.007

ND 0.072 0.101 0.135 0.186 0.254

ωp (THz) 0.316 0.446 0.631 0.893 1.262

TABLE I: The radius is 10 µm; The quantities “N”, “n”, “ND” and “ωp” are the number of elec-

trons, the initial number density, the Debye number and the initial plasma frequency, respectively.

Note that the Debye number is the estimate of the upper limit, which is obtained from eq. 5 by

plugging in the final emittance obtained from simulation and the initial radius.

scattering. This serves to define a ”stochastic limit” in terms of cathode performance. For

a given current density j and rms energy spread E0, assuming homogeneous momentum

distribution, the rms transverse and longitudinal velocities are

vx = vy = vz =

√

2E0

3mec2
. (7)

Hence the number density near the cathode is

n =
j

e
√

2E0

3mec2

(8)

and, from eq. 6, the transverse emittance due to potential energy relaxation is

ǫxp = Cr





j

e
√

2E0

3mec2





α

. (9)

Similarly to eq. 5, the transverse emittance due to the initial momentum distribution is

ǫxk =
r

2

√

2E0

3mec2
. (10)

and the optimum energy spread is then reached when ǫxp = ǫxk, which is

E0 =
3mec

2

2

[

2C
(

j

e

)α]

2

α+1

. (11)

As an example, let us consider the case of a bunch with a charge of 1 nC, pulse length of 10

ps and radius of 1 mm. The peak current is 100 A and the peak current density is 3.2e+03

A/cm2. From eq. 11, the optimum energy spread is 29 meV. The minimum transverse

emittance is the quadrature of eq. 9 and 10, which is 0.14e-6 m rad. Furthermore, when
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FIG. 3: Transverse emittance versus time of spherical electron bunches. The initial kinetic energy

is 0.4 eV and the radius is 10 µm for all cases. The number of electrons are 217, 218, 219, 220 and

221.
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FIG. 4: Transverse emittance versus number density of spherical electron bunches. The initial

kinetic energy is 0.4 eV and the radius is 10 µm for all cases. The number of electrons are 217, 218,

219, 220 and 221. The emittance is scaled to the radius of 1 mm. The function of the fitted curve

is ǫx = 2.62 × 10−14n0.319.

the average longitudinal energy Ea is different from the energy spread E0 and remains a

constant, the optimum energy spread E0 ∝ j2α/Eα
a . For larger Ea, the optimum energy

spread is smaller and hence the minimum emittance.

In summary, we have shown through N-body calculation that there is a finite emittance

associated with the stochastic Coulomb interaction among particles in an electron beam.
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This interaction was successfully reduced to a simple empirical law that should be of great

value in accessing the conditions needed for achieving a defined emittance. Furtheremore,

we have shown the benefit of launching electrons from a lattice, rather than randomly,

something that may well be possible using field emitting tip arrays [16].
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