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Abstract

Ultrafast Magnetization Dynamics of SrRuO3 Thin Films

by

Matthew Clemens Langner

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joseph Orenstein, Chair

Itinerant ferromagnet SrRuO3 has drawn interest from physicists due to its unusual trans-

port and magnetic properties as well as from engineers due to its low resistivity and good

lattice-matching to other oxide materials. The exact electronic structure remains a mystery,

as well as details of the interactions between magnetic and electron transport properties.

This thesis describes the use of time-resolved magneto-optical Kerr spectroscopy to study

the ferromagnetic resonance of SrRuO3 thin films, where the ferromagnetic resonance is

initiated by a sudden change in the easy axis direction in response to a pump pulse.

The rotation of the easy axis is induced by laser heating, taking advantage of a

temperature-dependent easy axis direction in SrRuO3 thin films. By measuring the change

in temperature of the magnetic system in response to the laser pulse, we find that the

specific heat is dominated by magnons up to unusually high temperature, ∼ 100 K, and

thermal diffusion is limited by a boundary resistance between the film and the substrate

that is not consistent with standard phonon reflection and scattering models.

We observe a high FMR frequency, 250 GHz, and large Gilbert damping parameter,

α ≈ 1, consistent with strong spin-orbit coupling. We observe a time-dependent change in

the easy axis direction on a ps time-scale, and we find that parameters associated with the

change in easy axis, as well as the damping parameter, have a non-monotonic temperature

dependence similar to that observed in anomalous Hall measurements.

Professor Joseph Orenstein
Dissertation Committee Chair
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Chapter 1

Introduction

Understanding and eventually manipulating the electron’s spin degree of freedom

is a major goal of contemporary condensed matter physics. As a means to this end, con-

siderable attention is focused on the spin-orbit interaction, which provides a mechanism for

control of spin polarization by applied currents or electric fields. Despite this attention,

many aspects of spin-orbit coupling are not fully understood, particularly in itinerant fer-

romagnets where the same electrons are linked to both rapid current fluctuations and slow

spin dynamics.

SrRuO3 (SRO) is a material well known for its dual role as a highly correlated

metal, and an itinerant ferromagnet with properties that reflect strong spin-orbit (SO)

interaction. Ferromagnetic resonance (FMR) provides direct information about the SO

coupling but is unobservable in a standard FMR experiment due to the high precession

frequency induced by the SO coupling.

Over the past decade, ultrafast magnetization measurements have provided an ex-

perimental tool capable of measuring magnetization dynamics on the time-scales of funda-

mental spin relaxation and precession. SRO is an ideal system for this type of measurement.

A temperature-dependent easy axis direction allows for near instantaneous perturbation of

the magnetic equilibrium in response to the pump pulse, and due to the strong spin-orbit

coupling, the resulting response occurs on time-scales too fast for other experimental meth-

ods.

Work on time-resolved magneto-optics on SRO thin films was done previously

by Ogasawara et al. [70], as part of a larger survey of temperature-induced changes in

magnetism in thin films. The data included temperatures down to 77K on a 600 nm

SRO/STO thin film for a single pump fluence. This data was taken on a nanosecond time-
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scale. This thesis is a more detailed look at the SRO system, encompassing a wider range

of tempetures, sample thicknesses, and time-resolutions that allows for the observation of

physics not observable within the parameters of the previous study.

The following paragraphs offer a brief outline of the structure of this thesis.

Chapter 2 provides an overview of the properties of SRO thin films, including dis-

cussion of the magnetic properties and a brief discussion of the unusual electronic transport.

The focus of this thesis is FMR, which is intimately linked to the magnetic anisotropy. SRO

exhibits a low Curie temperature, indicating small spin-spin coupling, but strong coupling of

spins to the magnetic easy axis. In thin films, both intrinsic and extrinsic anisotropies play

a role in determining the easy axis direction. Electron transport is coupled to the magneti-

zation through spin-scattering contributions to the resistivity and through the anomalous

Hall effect.

Chapter 3 gives an outline of the theoretical constructs needed to model magneti-

zation dynamics. Uniform magnetic precession and damping is treated phenomenologically

through the Landau-Lifshitz-Gilbert equation while microscopic mechanisms leading to the

damping are still unknown. While the full picture remains unclear, spin-orbit coupling plays

a key role in many microscopic theories of damping. In addition to uniform magnetization

precession, the thin film structure allows for coherent, non-uniform magnetization dynamics

that exist in the form of standing spin-waves that can contribute to the time-resolved signal.

Chapter 4 details the experimental setup of the ultrafast magnetization measure-

ments, and describes the fundamentals behind optical magnetization measurements. The

successful interpretation of the optical measurement depends on properly describing the

flow of energy from the electrons excited by the laser to other forms of energy in the sys-

tem. The three temperature model describes this energy flow in terms of electron, phonon,

and spin temperature baths.

In Chapter 5 we present analysis of the thermal aspects of our optical measure-

ments. After laser excitation, the magnetization quickly settles into a higher-temperature

equilibrium state. By comparing the laser-induced magnetization change with the magneti-

zation temperature dependence, we can determine the functional form of the specific heat.

Time-resolved measurements also provide insight into the subsequent flow of heat out of

the system, which we analyze within the three temperature model.

In Chapter 6, we discuss the characterization of the magnetization precession and

anisotropy dynamics induced by the laser pulse. We find that a modification of the Landau-

Lifshitz-Gilbert equation provides a good description of the dynamics, and that both the
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magnetic damping and the time-dependence of the anisotropy direction suggest a link be-

tween the magnetization dynamics and previously observed electron transport effects.

1.1 Spin-Orbit Interaction in SRO

One property that makes SRO stand out from other materials is an exceptionally

strong spin-orbit interaction. The spin-orbit interaction has implications for many material

properites:

(1) Magnetization dynamics, in that it sets the strength of the magnetic anisotropy and is

an important factor in precessional damping

(2) Heat transfer, in that it communicates relative temperatures between the spins and

electrons

(3) Electron transport, in that it plays an integral role in the anomalous Hall effect.

Because spin-orbit coupling is required for understanding such a wide range of topics, I’ll

give a brief description of it straight-away.

Spin-orbit coupling is a result of the relativistic motion of the electrons relative

to the periodic potential of the lattice; the moving electrons see the stationary electric

potential as an effective magnetic field. The spin orbit coupling can be written in terms of

the electron momentum p and potential V as:

HSO = − 1
4m2c2

σ̂ · (p ×∇V ). (1.1)

Here, m is the electron mass, c the speed of light, and σ̂ a vector representing the electron

spin. The most direct effect of the effective magnetic field is to create a preferred direction

for the alignment of the electron spins. This creates a magnetic anisotropy, as discussed

in section 2.4.2, which in SRO has previously been measured as having an effective field

strength of several tesla [62]. Because spin-orbit coupling is a relativistic effect, this strong

spin-orbit coupling has been attributed to the relatively high charge of the Ru atoms.
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Chapter 2

SRO Thin Films

Single crystal SrRuO3 (SRO) is an itinerant ferromagnet with a Curie temperature

(TC) of 160K [58]. Although it is considered to be metallic, electron-electron correlations

are thought to play a significant role in determining the transport properties. This chapter

describes the basic physics relevant to the transport and magnetic behavior, and discusses

the specific properties of SRO thin films.

2.1 Film Growth

SRO films grown on SrTiO3 (STO) substrates are the focus of this thesis, although

films grown on DyScO3 and GdScO3 were also studied. STO is the substrate of choice due

to close lattice matching with SRO crystals and the ability to manipulate the growth of the

SRO films through substrate miscuts. SRO single crystals have a pseudo-cubic perovskite

structure with lattice parameters a = 5.53 Å, b = 5.57 Å, and c = 7.84 Å[43]. Thin films

grown on (001) STO substrates have lattice parameters a = 5.55 Å, b = 5.56 Å, and c =

7.85 Å. Relative to single crystals, thin films have a reduced Curie temperature, from 160

K in single crystals to 150 K in thin films [29], and higher residual resistivities [15, 45].

The data in this thesis were taken on films grown by pulsed-laser deposition or

molecular beam epitaxy. Pulsed-laser growth was done at 680-700◦C in 100 mTorr oxygen,

and high-pressure reflection high-energy electron diffraction (RHEED) was used to monitor

the growth of the SRO film in-situ. By monitoring RHEED oscillations, SRO growth was

determined to proceed initially in a layer-by-layer mode before transitioning to a step-flow

mode. RHEED patterns and atomic force microscopy imaging confirmed the presence of

surfaces consisting of atomically flat terraces separated by a single unit cell step ( 3.93 Å).
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Figure 2.1: Lattice parameters of STO (left) and SRO (right) from 0 to 300 K. Figures
adapted from [71] and [43].

X-ray diffraction indicated fully epitaxial films and x-ray reflectometry was used to verify

film thickness.

STO substrates provide a good lattice match for SRO films, and by using a sub-

strate with a miscut growth plane, structurally mono-domained samples can be grown [36].

On (001) oriented STO substrates, SRO films can grow with either the (001), (110), or

(110) plane oriented parallel to the STO surface. The STO substrate has a cubic crystal

structure, and for a non-miscut, (001) oriented substrate, the (010) and (100) directions are

indistinguishable. The miscut introduces a slight slant to the substrate plane that breaks the

symmetry between two orthogonal in-plane directions. This creates a preferential growth

direction for the SRO film, which can be achieved with a miscut of less than 1◦. The SRO

grows with the b-axis perpendicular to the sample plane, with the a-axis lying along the

direction of the miscut.

In general, the lattice parameters of the substrate and film are temperature de-

pendent, which leads to a temperature dependent strain in the thin film through thermal

expansion mismatch. SrRuO3 exhibits the Invar effect; the lattice parameters are nearly

constant as a function of temperature, with small fractional changes, Δa
a ≈ 10−4, over a

temperature range from 0 to 300 K [43]. The temperature dependence of the lattice param-

eters show a change in slope at the magnetic transition temperature, with the temperature

dependence becoming weaker in the magnetic phase. The magnitude of the change in the

lattice parameters of SrTiO3 is similar to that of SRO, with a change in slope of the c-axis

temperature dependence at a structural phase transition at 105 K [71]. This structural

phase transition has no apparent effect on the properties of the SRO films.
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2.2 Electronic Properties

Electron transport in SRO is complicated and often defies conventional theories.

SRO is classified as metallic but exhibits lower conductivities than elemental metals such

as Co and Fe by an order of magnitude. Hall effect measurements show the carrier concen-

tration to be (2×1022 cm−3), lower than a typical metal but higher than high-temperature

superconductors [45]. In addition, SRO shows evidence of strong electron correlations. In

an attempt to summarize the electron transport properties, I’ll start with brief description

of Fermi Liquid Theory and continue with some highlights of relevant experimental results.

2.2.1 Non-Fermi Liquid Behavior in SRO

The simplest model for highly mobile electrons is that of a Fermi gas of non-

interacting particles, and in many cases, this independent electron approximation gives an

accurate picture of systems even with electron-electron interactions. While it would seem

that the electron interactions would invalidate the independent electron approximation,

the basis of Fermi Liquid Theory (FLT) is that interacting electrons can be treated as

non-interacting electrons at low enough energy [61, 3].

The presence of electron-electron interactions renormalizes the energies for the

single-particle wave functions, and these wave-functions are no longer stationary states

of the system. FLT treats the system as a sum of single-particle wave-functions with

renormalized energies (quasiparticles), with scattering between the single-particle states.

If the scattering due to electron-electron interactions is slow relative to other scattering

mechanisms, the single-particle approximation is valid. Often electron-electron induced

scattering is relatively slow, due to a lack of available scattering states near the Fermi

surface.

The failure of a systems to follow Fermi liquid-like behavior therefore indicates

important electron-correlation effects, and can indicate novel electronic structure beyond the

single-particle approximation [63]. An extreme case where the single-particle approximation

breaks down is that of superconductivity, where the correct eigenstate is a Cooper pair of

electrons. In SRO, the non-Fermi liquid (NFL) behavior has been modeled as originating

from unusual hybridization between the ruthenium 4d electrons and oxygen 2p electrons

[55].

The evidence for NFL behavior in SRO starts with the temperature dependence of

the conductivity. At higher temperature, the resistivity of a normal metal saturates when
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the mean free path becomes shorter than either the interatomic spacing or the de Broglie

wavelength of the Fermi wave vector. This is known as the Ioffe-Regel limit. In SRO, the

resistivity fails to saturate when the mean free path reaches the Ioffe-Regel limit around

500 K, indicating NFL behavior [2, 44, 23, 16]

Photoemission and IR conductivity studies provide further evidence that SRO be-

haves as a NFL [54, 28]. Photoemission spectra show a broader 4d Ru band than is expected

from non-interacting band theory, and IR conductivity shows non-Fermi-like frequency de-

pendence of the conductivity. For a Fermi liquid, the conductivity is expected to follow the

Drude form, described by a representative scattering time τ by [3]:

σ(ω) =
σ0

1 − iωτ
. (2.1)

The Drude conductivity follows a frequency dependence of ω−2 at high frequencies.

In SRO, the conductivity is shown to have a much weaker frequency dependence of ω−1/2,

a result interpreted in the context of a frequency-dependent scattering rate τ(ω).

The bad-metal properties of SRO are also thought to be responsible for spin-

scattering effects on the resistivity observed below the Curie temperature [45]. The resistiv-

ity data show an unusually high divergence in the temperature derivative of the resistance

(dR/dT ) at TC , with different critical exponents for the divergences along different direc-

tions of the sample. The strong dependence of the resistivity on magnetic ordering is similar

to other materials where band theory is inadequate to describe electron transport.

2.2.2 Anomalous Hall Effect

The aspect of electron transport most relevant to this thesis is the anomalous Hall

effect (AHE). Anomalous hall conductivity is similar to the classic Hall conductivity, only

instead of the off-diagonal term in the conductivity coming from an applied magnetic field,

it is the result of the sample magnetization. The total Hall resistivity, ρxy, as function of

temperature and magnetic field, H , is given by:

ρxy = R0(T )H + Rs(T )M(T, H). (2.2)

R0 is the normal Hall coefficient, and Rs is the anomalous hall coefficient. The

AHE is driven by spin-orbit coupling, which is necessary to couple the magnetization to the

electron current [74, 85]. The AHE in SRO has a non-monotonic temperature dependence,

and the origin of this behavior has been a matter of debate [64, 48, 27].
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The debate centers on whether the AHE conductivity is driven by asymmetric

scattering off of impurities or by intrinsic effects due to band structure. Experimentally

the different contributions can be difficult to distinguish. The resistivity dependence of

the AHE can distinguish between different extrinsic contributions but not between intrinsic

and extrinsic contributions. Intrinsic and extrinsic effects may be distinguishable by the

zero-temperature limit of the AHE, but a consensus is yet to form [8, 74, 68].

Extrinsic Contributions to the AHE

The extrinsic scattering is impurity based and encompasses a classical asymmetric

scattering mechanism known as skew-scattering [87] and a quantum mechanical scattering

mechanism known as side-jump scattering [7]. Skew-scattering describes a situation where

an electron traveling along a direction φ = 0 is scattered into a direction φ = φ′ by a

magnetic scattering center. The time-reversal symmetry breaking induced by the magnetic

moment allows φ′ to be preferentially positive or negative, resulting in a net transverse flow

of current. The side-jump mechanism also relies on this symmetry breaking, but instead of

a change in propagation angle at the scattering center, the electron wave-packet undergoes

an effectively instantaneous change in position transverse to its direction travel - i.e. an

electron traveling in the +x direction jumps an amount Δy. This side-jump mechanism

is a result of distortion of the electron wave-packet at the scattering center. In general,

these two impurity effects will both contribute to the anomalous Hall conductivity, and for

a simple single-spin model, they can be distinguished by the resistivity dependence of ρxy.

For skew-scattering, ρxy ∝ ρxx, while for the side-jump scattering, ρxy ∝ ρ2
xx.

Intrinsic Contributions to the AHE

The theory of an intrinsic contribution centers on an anomalous velocity that

occurs as the result of band structure. This theory was initiated by Karplus and Luttinger

in 1954[59]. Karplus and Luttinger considered the perturbation of an applied electric field,

HE = eE ·r on electron Bloch wavefunctions altered by the spin-orbit interaction (equation

(1.1)). Because of the modification of the Bloch wavefunctions, matrix elements of different

bands become non-zero:

〈
un′,k |eE · r| un,k

〉
= ieE ·

〈
un′,k|dun,k

dk

〉
�= 0, (2.3)

where un,k represents the periodic part of the Bloch function, and the bands are labeled by

n and n′. These non-zero matrix elements lead to an anomalous transverse velocity.
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Decades later, this was recognized as an effect of Berry’s phase [74, 72, 27, 68];

the brief discussion of Berry’s phase here in based on the review by Ong in reference [72].

Berry’s phase is an additional phase that is picked up when a parameter, Q, is integrated

over a closed-loop in curved space, with the electron constrained to remain in the eigenstate

specified by Q. The phase, χ, is dependent on the integral path C, and is written in terms

of a vector potential, A:

χ(C) = −
∮

C
dQ ·A (2.4)

A = 〈n, Q |i∇Q|n, Q〉 . (2.5)

The constraint in the Karplus-Luttinger anomalous velocity calculation is that the

electron remain in the same energy band when the electric field is applied, and the integral

path is the result of electron motion in k-space due to the applied field. The resulting

Berry’s vector potential is:

X(k) =
∫

d3r u∗
nk(r)i∇kunk(r), (2.6)

where the integral is taken over the unit cell. This vector potential implies that the different

indices of the position vector x no longer commute, and the electron velocity is given by:

h̄v = −i [x, H ] = ∇kεn(k) + E ×∇k × X(k). (2.7)

The second term is the anomalous velocity from the Berry’s phase, and the first term is

the normal group velocity from the curvature of the energy band εn(k). The anomalous

velocity has the desirable property of only appearing when the system breaks time-reversal

symmetry, but it has the undesirable property of producing a resistivity dependence of the

AHE indistinguishable from that of the side-jump mechanism, ρxy ∝ ρ2
xx.

Without a clear method to experimentally separate intrinsic from extrinsic ef-

fects, recent theoretical efforts have focused on comparing the relative sizes of the various

contributions to the AHE. A calculation by Fang et. al showed that the intrinsic AHE

is dominated by points in the band structure where the Fermi level is near degeneracies

broken by the spin-orbit coupling [27]. A subsequent calculation of the size of this effect

relative to the size of extrinsic effects suggested that in a regime of parameters satisfied

by SRO, the intrinsic effect should dominate [75]. Linear response theory leading to the

Kubo formula, described in the following section, was the the basis of the calculations the
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intrinsic contribution to the AHE [27, 74]. The application of linear response theory is not

limited to calculation of electron currents, and Onoda et al. postulated if the AHE is in

fact dominated by near degeneracy points in the band structure, other physical observables

should be as well [73].

Kubo Formalism

Linear response functions describe the the response of a system to an external

stimulus. Kubo formulas are linear-order calculations of these response functions from

quantum-mechanical principles [56, 61]. The external force is treated as a perturbation to

the equilibrium Hamiltonian, and the expectation value of the perturbing Hamiltonian is

calculated while considering the time-evolution of the eigenstates.

To linear order, the eigenstates of the unperturbed system respond to the pertur-

bation as:

|φ(t)〉 = |φ0〉 − i

∫ t

−∞
dt′H1(t′) |φ(t)〉 (2.8)

∼= |φ0〉 − i

∫ t

−∞
dt′H1(t′) |φ0〉 . (2.9)

The second equation derives from the first by iteratively substituting the the expression for

φ(t) into the integral, and eliminating terms above linear order.

The response function of the system is calculated by using the time-dependent

expression for φ to calculate the change in expectation value for some system observable.

We’ve assumed that the eigenstates of the system evolve smoothly under the perturbation,

which is equivalent to assuming that the perturbation is turned on adiabatically. In the

math, this is represented by introducing a parameter η, that represents the switch-on time

of the perturbation. The results are considered in the limit η → 0. The time-dependence

of the observable under the perturbation is:

〈x〉 = 〈φ(t) |x|φ(t)〉 (2.10)

∼= 〈φ0 |x|φ0〉 − i

∫ t

−∞
dt′eηt′ 〈φ0 |[x, H1]|φ0〉 . (2.11)

And the change in observable is then:
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δ 〈x〉 = 〈φ(t) |x| φ(t)〉 − 〈φ0 |x| φ0〉 (2.12)

∼= −i

∫ t

−∞
dt′eηt′ 〈φ0 |[x, H1]|φ0〉 . (2.13)

In particular, the Kubo-Greenwood formula is a calculation of the frequency de-

pendent conductivity, where the perturbation is treated as a vector potential:

A =
cE

iω
e−iωt +

(
cE

iω
e−iωt

)∗
. (2.14)

The conductivity relates the applied electric field, E to the expectation value of the current

operator,

j = − e

m

[
P +

e

c
A
]
. (2.15)

The calculation is additionally complicated by the change in the momentum due to the

vector potential, P → P + e
cA. Combining all of these factors, the result is [74]:

σxy(ω) =
〈jy〉

Exe−iωt
= i

∑
n�=m

∑
k

f(εm(k)) − f(εn(k)
εn(k) − εm(k)

× 〈nk |jy|mk〉
ω − iη + εm(k) − εn(k)

. (2.16)

The bands are labeled are by the indices n and m, with εn representing the band energy.

The functions f(εn) represent the Fermi occupation factors at the band energies.

The Hall conductivity is the DC limit of the Kubo formula, and so we can make

some loose generalizations about this function in reference to the discussion in section 2.2.2.

Partial criteria for a dominant intrinsic AHE is the placement of the Fermi level near an

avoided crossing in the band-structure. If the Fermi energy lies between two bands, the

difference in the occupation functions will be relatively large: f(εn) 
 f(εm). An avoided

crossing implies that the energy difference between the two bands is small, meaning terms

in the denominator of the form (εm− εn) will be small at the point in k-space corresponding

to the avoided crossing relative to other terms in the sum over k. If the expectation value

of jy varies relatively smoothly in k-space, the sum in (2.16) will be strongly dependent on

the terms representing the near degeneracy points.
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2.3 Itinerant Ferromagnetism

Magnetic ordering is a result of Coulomb interactions that energetically favor the

alignment of electron spins. Compared to electrons in a symmetric spatial state, electrons

in an anti-symmetric spatial state have relatively lower Coulomb energy as they are rela-

tively delocalized. This delocalization leads to a lower electrostatic energy from electron-

electron interactions. The Pauli principle states that the overall electron state must be

anti-symmetric, and the lowest-energy spin state is therefore symmetric [88]. The decrease

in Coulomb energy for electrons in the anti-symmetric state therefore favors magnetic or-

dering. While discussions of the exchange interaction generally occur in the context of a

prototype two-electron atomic model, the basic principle remains the same for more com-

plicated structures, even while the calculations become much more complex.

In itinerant systems, the electrons carrying the ordered spins are highly mobile, and

the magnetic ordering implies an energy difference between spin up and down electrons. The

delocalized spins are exemplified by non-integer spin moments per atom [86]. Magnetism in

SRO comes from electrons of 4d character from the Ru atoms, with the exchange mediated

through hybridization with O 2p orbitals, and exhibit a zero-temperature saturated moment

of ∼ 1.6μB/Ru [44, 15, 55].

2.3.1 The Stoner Model

The explanation of partial spin magnetic moments comes from band theory. The

Stoner model is the simplest band model for itinerant magnetism, and describes itinerant

ferromagnetism as a splitting in the bands for minority and majority spins resulting from

the exchange interaction (the discussion in this section is based on information combined

from references [61, 88, 56]). The shift of one band relative to the other places more states

of the majority spin below the Fermi energy, and therefore there are more majority than

minority spins. The net magnetization in this theory is then simply μB(N↑ − N↓), where

we’ve arbitrarily assigned the up spin to be the majority spin, and μB is the Bohr magneton

representing the magnetic moment of a single spin. A simple diagram illustrating the band

splitting is shown in the left panel of figure 2.2. The right panel shows a calculation of the

density of states for SRO done by Allen [2], with the majority band plotted on the top axis.

The band-splitting in the Stoner model comes at a cost of kinetic and potential

energy, as the minority spins are effectively promoted to higher energies. Without the

exchange interaction, the bands of the two spins are equal, and there will be a Fermi level,
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E ′
F , with equal number of up and down spins occupied beneath it. The cost of favoring

one spin over the other is the cost of taking one minority spin from beneath the energy E ′
F ,

and placing it in the majority spin band above E ′
F . This will be favored only if the band

splitting lowers the Coulomb interaction energy (the exchange energy) more than this cost

in kinetic energy. This is known as the Stoner criterion, and can be written as:

2μBH0
mol

N↑ + N↓
D(EF ) ≥ 1, (2.17)

where H0
mol is the molecular field, and D(EF ) is the density of states at the Fermi energy.

The fundamental excitations in the Stoner model are spin-flips of the majority spin.

In the case where the Fermi energy lies in the middle of both the majority and minority

band, as shown in figure 2.2, this energy will be small. It is also possible for the majority

level to be completely occupied, and for the Fermi energy to be above the highest level of the

majority spin. In this case, there is a gap between the highest occupied majority state and

the lowest unoccupied minority state. This gap is known as the Stoner gap, and materials

possessing such a gap are termed ’strong’ ferromagnets, whereas materials without such a

gap are ’weak’ ferromagnets.

The strength of the Stoner theory is its ability to reasonably explain fractional

spin saturated moments for itinerant ferromagnets, but its main weakness comes from its

failure to accurately the predict temperature dependence of the magnetization. In the

Stoner theory, the temperature dependence comes from Fermi occupation functions of the

minority and majority states at the Fermi level. Predictions based on this model fail to

accurately predict the temperature dependent behavior of the magnetization, especially

near the Curie temperature [88, 83].

2.4 Anisotropy

2.4.1 Shape Anisotropy

In a magnetized material, each spin experiences the dipole field of every other

spin [18]. These dipole fields cancel each other, except for the fields produced by the free

poles at boundaries of the material. This dipole field points in the direction opposite to

the magnetization, is referred to as the demagnetization field. Because the field is created

by the poles at the boundaries, the demagnetization energy is dependent on the shape of

the material. For thin films, in which the x- and y- dimensions are much larger than the

z-dimension, the dipole energy is given by [37]:
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Figure 2.2: Left: Diagram of band shifting in the Stoner Model. Right: Calculated DOS
for SRO [2]

Ed =
1
2
μ0M

2cos2θ, (2.18)

where θ is the angle between the magnetization direction and the normal direction of the

film. In thin-film geometry, the demagnetization energy favors alignment of the spins in the

sample plane.

2.4.2 Magnetocrystalline Anisotropy

In an anisotropic crystal, the internal energy is dependent on the direction of the

magnetization. Intrinsic anisotropy is a result of spin-orbit coupling, where the spins choose

a preferred direction due to the electronic structure [37]. The simplest case of anisotropy,

and the type of anisotropy seen in SrRuO3, is uniaxial anisotropy, where alignment of the

magnetization along a single direction is favored.

Energetically, uniaxial anisotropy is not the same as an applied magnetic field since

in an anisotropic system alignment of the magnetization vector is favored either parallel or

antiparallel to the anisotropy vector. Hence, the anisotropy energy can be written by ex-

panding in even powers of an angle φ, where φ represents the deviation of the magnetization

direction from the anisotropy direction [18]:

Ea = K2 sin2(φ) + K4 sin4(φ) + · · · . (2.19)

The signs of the coefficients Ki can be chosen such that the model system exhibits either

uniaxial anisotropy (Ki > 0) or easy-plane anisotropy (Ki < 0).
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2.5 Effect of Strain on Magnetic Properties

Additionally, the anisotropy of a thin film is affected by strain in what is essen-

tially an inverse magnetostriction effect. The change of magnetization with applied strain is

termed the Villari effect. Magnetostriction is a result of changing bond lengths in response

to magnetization direction; the spin interaction energy is dependent both on the mag-

netization direction and distance between individual magnetic moments, and the ordered

magnetization adds an additional dipole-energy term [18].

In a thin film without any external stresses applied, the internal strain is a result

of the lattice mismatch between the film and the substrate [21]. The epitaxial layer is forced

to match the lattice parameters of the substrate, causing a homogeneous strain across the

interface and a distortion of the film normal to the surface. The distortions of the lattice

parameters relax toward the bulk values in layers away from the substrate, leading to

different strain effects in films of different thicknesses [76].

Calculations of SrRuO3 structure suggest strong magneto-structural coupling, and

therefore strong changes in magnetic properties under strain [99]. Magnetic measurements

on SrRuO3 indicate that strain reduces the saturated magnetic moment and lowers the

transition temperature by about 10 K [29], even though the strain from lattice mismatch

in SrRuO3/SrTiO3 thin films is small - approximately 0.64%. The reduction in saturated

moment indicates a reduction of the anisotropy due to the strain. The magnetic transition

is also broader in temperature for thin films, indicating non-uniform strain through the

sample.

The change in magnetic properties correlates with structural change in the oxygen

octahedra, which can either tilt or deform in response to external strain. The high-spin state

of SrRuO3 is a result of four Ru electrons occupying three degenerate t2g orbitals, leaving

two spins uncompensated. A distortion of the bond lengths in the oxygen octahedron can

lift the degeneracy of the t2g orbitals, and a strong distortion can create a low-energy state

where the Ru electrons occupy only two orbitals, with no net magnetic moment.

2.6 Magnetic Anisotropy in SRO Thin Films

SRO has an anisotropy field of several tesla (see section 1.1), and the direction of

the easy-axis rotates in the a-b plane as the sample is cooled below the Curie temperature

[44]. The easy axis makes an angle of approximately 45◦ to the film normal at the Curie

temperature, and is aligned at approximately 30◦ from the normal as T approaches zero.
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Figure 2.3: In-plane (red), out-of-plane (blue), and total magnetization (black) as a function
of temperature. The angle of the easy axis relative to the sample normal is shown in the
inset. Figure taken from [44].

The easy axis rotates further out of plane as the sample is cooled and the size of the

magnetization increases, indicating that the easy axis rotation is due to changes in the

intrinsic magnetocrystalline anisotropy and not due to shape anisotropy.

For a system with a rotating anisotropy direction such as SRO, the anisotropy is

modelled with competing signs between the Ki coefficients in equation (2.19), i.e. a negative

K2 and a postive K4, where the magnitudes of K2 and K4 are temperature dependent. The

equilibrium position for a system truncated at the K4 term is sin(φ0) =
√

− K2
2K4

.

The SRO/STO films are structurally monodomained, but can still be magnetically

aligned either in or out of plane along the easy axis. The magnetocrystalline anisotropy

terms in the free energy scale as even powers of |M |, and the anisotropy energy is minimized

for M ||HA or (−M)||HA. In order to saturate the magnetization in the films during

experiments, we cool the films in a magnetic field of ∼ 0.5 T. The divergence of the magnetic

susceptibility at TC allows us to align the magnetization with a moderate field when the

sample is cooled through the transition. At low temperature, the coercive field needed to

switch from one orientation to another, i.e. M → −M , is less than 1 T.
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Chapter 3

Magnetization Dynamics

3.1 Damped Precession - Landau-Lifshitz-Gilbert Equation

When a magnetic field is applied to a magnetic moment, the moment feels a

torque that causes it to precess about the direction of the applied field. This precessional

motion is the change in angular momentum due to the torque from the external field. The

magnetic moment is related to the angular momentum through the gyromagnetic ratio,

γ = −eμ0g/2me. The equation of motion of a magnetic moment in an external field is then:

γ
dL

dt
=

dm

dt
= γ [m × H ] . (3.1)

The torque experienced by a spin in a magnetic field originates from the commu-

tation relations between spin operators [66]. The commutation relation is [73]:

[Si, Sj] = ih̄εijkSk, (3.2)

where εijk is positive one for right-handed permutations of x,y, and z, and negative for

left-handed permutations.

These commutation relations come into the calculation of the time evolution of a

quantum mechanical spin under an external magnetic field. The expectation value of the

spin evolves according to the same quantum-mechanical rule for the time evolution of an

operator [30]:

−ih̄
d 〈S〉
dt

= 〈[S, H ]〉 . (3.3)

Under an applied field, B, the appropriate Hamiltonian is:
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H = −gμB

h̄
S ·B. (3.4)

Using the spin commutation relation (3.2), the calculation of (3.3) leads to:

d 〈S〉
dt

=
gμB

h̄
(〈S〉 × B) , (3.5)

which is equivalent to (3.1).

The precessional motion will eventually decay and the magnetic moment will line

up with the applied field. This behavior can be treated mathematically by adding a damping

term to the equation for the precessional motion (3.1). Since the result of the damping

is to decrease the amplitude of the precession, the damping torque is perpendicular to

the direction of the magnetic moment. This phenomenological treatment of a damped

precessional motion is described by the Landau-Lifshitz equation, where the damping is

treated through a damping parameter α [10, 88]:

dm

dt
= γ [m × H] +

αγ

|m| [m × (m × H)] . (3.6)

The Landau-Lifshitz equation is appropriate for small damping parameters, but

is not an accurate description when the damping is large. To better describe more highly-

damped motion, a higher-order term in α can be added to the Landau-Lifshitz equation,

leading to the Landau-Lifshitz-Gilbert equation:

(1 + α2)
dm

dt
= γ [m × H] +

αγ

|m| [m × (m × H)] . (3.7)

This equation is commonly re-written as:

dm

dt
= γ [m × H ] +

α

|m|
[
m × dm

dt

]
. (3.8)

3.2 Magnetization Dynamics in Anistropic Materials

The magnetization dynamics in a uniaxially anisotropic material can be modeled

using the LLG equation and an effective field due to the anisotropy. For the time-resolved

magnetization dynamics in SRO, the motion is initiated through a sudden change in the

anisotropy coefficients Ki from equation (2.19) in response the laser pulse. To describe a

shift in the equilibrium direction of the magnetization, such as that seen as a function of

temperature in SrRuO3, at least two of the Ki must be non-zero. For small changes in the
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equilibrium position, the potential well of an anisotropy characterize by K2 and K4 can be

approximated by keeping only the lower order K2 term and considering the magnetization

vector away from equilibrium at t = 0.

To fully describe the motion of the spins, the anisotropy, external magnetic fields,

and the demagnetization field must be considered. Keeping only the lowest term in the

anisotropy, and taking a coordinate system such that the magneto-crystalline anisotropy

direction is along the z-axis, the full energy is given by [56]:

E = −1
2
κM2

z − H · M +
1
2
(D · M)2. (3.9)

The vector D points along the direction normal to the sample in the rotated coordinate

system, and this term accounts for the shape anisotropy. The addition of anisotropy leads

to an effective field given by:

H = dE/dM. (3.10)

The inclusion of quadratic and higher order terms in the free energy to account

for the anisotropy results in an effective magnetic field that is dependent on the direction

of the magnetization vector, and hence the effect of the anisotropy in conjunction with an

applied magnetic field is to produce an elliptical precession.

3.3 Spin Waves

Spinwaves are excitations of the uniform magnetization in the form of spin-flips

spread over multiple spin sites. The thermal excitations of this type are discussed in chapter

4.10. Here, we’re interested only in the effects of these spin waves on the magnetization

dynamics.

In general these waves will travel through the sample in a manner determined by

the spin-wave dispersion relation, but the geometry of thin films allows for the creation of

standing spin waves (SSW) in the direction normal to the sample plane. These are spin

waves with wave vector (q = nπ/L) resonant with the sample thickness L. In the absence

of any interfacial spin-pinning, the spins will be free to precess at the sample/substrate

interface and at the sample surface, a configuration referred to as open boundary conditions.

The zero-order mode of the open-boundary SSW, known as the Kittel mode, is the

uniform magnetization described by the LLG equation. A first-order SSW has been observed

in optical dynamics measurements [93]. In this case, the sample thickness is longer than
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the absorption depth of the exciting laser pulse, resulting in a non-uniform excitation of the

sample that selectively excites this first-order mode.

3.4 Damping

In the LLG description of magnetization dynamics, damping of the magnetic mo-

tion is introduced phenomenologically. The damping represents a transfer of energy and

momentum from the magnetic precession to other modes in the system. A complete de-

scription of the source of this damping will in general include many different scattering

mechanisms, and the relative contributions from different sources is still the subject of

study. A few theories of magnetic damping are described below. In metallic thin films, the

predominant intrinsic damping mechanism stems from spin-orbit effects [33].

3.4.1 Damping Due to Defects

In addition to damping that occurs due to intrinsic material properties, extrinsic

damping effects occur due to defects and other structural irregularities.

In a homogeneous system, spin-wave modes are decoupled and therefore do not

exchange energy. Inhomogeneities in the magnetic system allow these modes to couple,

allowing scattering between the uniform mode that represents the magnetic precession and

higher order modes. This scattering mechanism does not transfer energy out of the magnetic

system, but rather transfers energy between modes of the magnetic system [57].

Damping can also occur from irregularities in the direction of the anisotropy [4].

In this case, individual spins spiral into anisotropies that are not parallel to the anisotropy

felt by the uniform precession. The stray spin is then pulled back into the precession by the

exchange interaction, representing a transfer of energy away from the uniform precession.

This process is known as ’dry magnetic friction’, in reference to the fact that this type of

damping occurs even if the precession is arbitrarily slow. Dry magnetic friction contributes

to the damping only when the anisotropy is relatively strong in comparison to the exchange

coupling.

3.4.2 Direct Electron and Phonon Coupling

A precessing magnetic moment can couple directly to electrons through Faraday’s

law; the changing magnetic field creates an electric field that induces a current in the
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itinerant electrons. Energy is then lost from the magnetic precession through resistive

losses in the current. For thin films, the damping parameter from this mechanism is [33]:

α =
Mγ

6

(
4π

c

)
2σL2. (3.11)

Here M is the magnetization, γ the gyromagnetic ratio, L is the film thickness, and σ is

the electrical conductivity. This type of damping can be identified relatively easily experi-

mentally by either varying the sample thickness, or measuring the temperature dependence,

which should be dominated by the temperature dependence of the electrical conductivity.

Magnetic precession couples to phonons through magnetoelastic deformations. As

the magnetic moment precesses, shear waves are created in the film. This effect is appre-

ciable only if resonant conditions exist for the elastic wave, and the resonant frequency is

similar to that of the FMR frequency. Due to the long wave-length of such resonant modes,

direct phonon coupling is not a significant contribution to precessional damping [49].

3.4.3 Breathing Fermi Surface Model

An early model explained the damping through scattering of itinerant s-p electrons

with localized spins of d electrons. The damping results from a random torque created when

itinerant s-p spins become mis-aligned relative to localized d-spins through scattering. The

s-d model fails to give an accurate description of an itinerant ferromagnet system, as the

electrons cannot be nicely divided into itinerant electrons and localized magnetic ones.

A theory without this limitation can be constructed by considering the spin-orbit

Hamiltonian instead of the s-d exchange energy functional [40] [53]. Mathematically, the

damping is calculated in a similar way as in the s-d model, using Kubo-Green formalism

and the Random Phase Approximation [33]. The physical interpretation of the damping

is based on the observation that the Fermi energy of a system with spin-orbit coupling is

dependent on the magnetization direction. When a magnetic moment rotates and the Fermi

energy changes, the electrons re-distribute in reaction to the change in Fermi surface. This

redistribution occurs on a finite time scale, leading to a phase lag between the change in

Fermi surface and electron redistribution that leads to magnetic damping. In the case of a

precessing magnetization, the alteration of the Fermi surface is periodic, and therefore the

model is referred to as the “breathing Fermi surface” model.

The breathing Fermi surface model gives a microscopic picture of the source of

magnetic damping, but still treats the electron relaxation phenomenologically through the

momentum relaxation time, τm. The damping parameter is given by the relation [33]:
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G ∝
∫

dk3
∑
α,β,σ

〈
β
∣∣L+

∣∣α〉 〈α ∣∣L−∣∣ β〉 δ (εα,β,σ − εF ) h̄ω

× h̄/τm

(h̄ω + εα,k,σ − εβ,k+q,σ)2 + (h̄/τm)2
. (3.12)

Here, q represents a spin-wave momentum, and σ is the electron spin. The electron bands

are represented by α and β, and the damping parameter is proportional or inversely propor-

tional to the relaxation time for intraband or interband scattering processes, respectively.

The temperature dependence of the damping will scale with conductivity if intraband scat-

tering is dominant, and with resistivity if interband scattering is dominant. As with the

anomalous Hall effect, regions of k-space with near-degeneracies in the band structure can

dominate the damping behavior from interband scattering [53].

3.5 Measurements of Magnetization Dynamics

There are several experimental methods to measure magnetization dynamics, a

few of which are outlined below. All of the methods described below can be used to look at

the uniform precession mode, and are therefore measurements of the magnetic anisotropy.

Excluded are discussions of common methods such as Brillouin light scattering, which is

used to measure the traveling spin-wave spectrum. A more complete list of magnetic char-

acterization techniques can be found in references [26, 9]

3.5.1 Ferromagnetic Resonance

In a ferromagnetic resonance (FMR) measurement, a DC magnetic field aligns

the magnetization, and a small AC magnetic field perturbs the magnetization, causing a

precession about the total effective field created by the sample anisotropy and the applied

DC field, Htotal = HA + HDC . This process occurs in a microwave cavity, and microwave

absorption is measured as the DC field is tuned. Tuning |Htotal| such that the precession

frequency matches the microwave frequency enhances absorption of the microwave radiation.

Hence, as the DC field is tuned, the peak absorption corresponds to the resonant frequency

[32]. A typical FMR experiment can measure resonant frequencies up to ω0 ∼ 70 GHz.

The absorption of the microwave radiation is given by the imaginary part of the

susceptibility and has a Lorentzian line-shape [33]:
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χ(ω) ∝ Γ
(ω − ω0)2 + Γ2

. (3.13)

This function is peaked at ω = ω0, where ω0 is the resonant frequency of the magnetic

precession. Information about the magnetic relaxation is given by the FMR line-width,

represented by Γ.

3.5.2 Time-Resolved X-Ray Magnetic Circular Dichroism

X-Ray Magnetic Circular Dichroism (XMCD) exploits the difference in absorption

between left and right circularly polarized x-rays in a magnetic material [79]. In basic

principle this method is the same as the Kerr or Faraday effect, but with higher energy x-rays

giving access to different quantum mechanical transitions. In the soft x-ray range, different

atoms in complex materials have distinct absorption energies, and XMCD can distinguish

between the magnetic contributions from these different atoms. Magnetic contrast between

left and right circular polarizations is a result of dipole selection rules for different spin

states.

Time-resolution of the XMCD signal is achieved with an experimental design sim-

ilar to that of an optical pump-probe experiment. Polarized X-ray pulses act as the probe,

and the system is pumped using short magnetic pulses from a coil. This requires synchro-

nizing the x-ray pulses with the magnetic field pulses. In this way, magnetization dynamics

for individual elements in a thin film can be studied. A time-resolved XMCD experiment

has a time-resolution on the order of 1 ns.

3.5.3 Time-Resolved Kerr and Faraday Effects

Another optical technique utilizes ultrafast pulsed lasers and the effect of mag-

netization on the polarization of the laser pulses to measure fast magnetization dynamics.

Ultrafast lasers typically generate pulses with pulse widths < 100 fs, giving laser-based

systems a time-resolution generally limited by the rise-time of the magnetic stimulus.

For SRO, this time-resolution is crucial to observing magnetization dynamics. The

high magneto-crystalline anisotropy sets the resonance frequency (ν0) above 200 GHz, be-

yond the frequencies measured by other techniques. Additionally, the magnetization can

be perturbed by a laser-induced change in the magnetic anisotropy, making the switch-on

time of the magnetic stimulus on the time-scale of the laser pulse. This technique will be

discussed in greater detail in the following chapters.
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Chapter 4

Ultrafast Magnetization

Measurements

4.1 The Magneto-Optical Kerr Effect

4.1.1 Phenomenological Description

The magneto-optical Kerr effect describes the change in the polarization of light

when the light is reflected off of a magnetized material. For the case of transmitted light,

the effect is referred to as the Faraday effect. The change in polarization is a result of

time-reversal symmetry breaking, either through an applied magnetic field or spontaneous

magnetic ordering. This time-reversal symmetry breaking can be described as a breaking

of the symmetry between left and right handedness. Phenomenologically, the Kerr effect

is a difference in index of refraction for right and left circular light caused by this intrinsic

handedness.

The Kerr effect can be described by incorporating this symmetry argument into the

formula for light propagation generated by Maxwell’s equations. The symmetry breaking

information is contained in the response function of the material. The displacement vector

represents the response of a material to an external electric field, and is related to the field

by a dielectric permeability tensor, ε(ω):

D = ε0ε(ω)E. (4.1)

This dielectric tensor is incorporated into Maxwell’s equations, which then describe the
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propagation of an electric field in the material by:

∇× (∇× E) = −μ0ε0ε(ω)
∂2E

∂t2
, (4.2)

with plane-wave solutions of the form:

E = E0exp [−i (ωt − k · r)] . (4.3)

The symmetry breaking from the magnetization dictates that the off-diagonal elements of

the dielectric tensor are odd in the magnetization, and the diagonal elements even [84].

εij(M , ω) = εji(−M , ω). (4.4)

The simplest case is that of a cubic material (εxx = εyy = εzz), where the only symmetry

breaking comes from the magnetization. The dielectric tensor for a cubic material with an

arbitrary magnetization can be written as [97, 98]:

ε(M , ω) = εxx

⎛
⎜⎜⎝

1 −iQmz iQmy

iQmz 1 −iQmx

−iQmy iQMx 1

⎞
⎟⎟⎠ , (4.5)

with

Q = i
εxy

εxx
. (4.6)

The mi represent the direction cosines of the magnetization M. The off-diagonal terms

proportional to εxy are anti-symmetric with respect to time-reversal. The magnitude of the

magnetization, and therefore the magnitude of the Kerr angle, is related to the magnitude

of εxy.

As equation (4.5) illustrates, the Kerr angle is dependent upon the relative di-

rection of the light propagation to the magnetization direction. The simplest geometry,

and therefore the most utilized experimentally, is the polar configuration, where the light

propagation is along the direction of the magnetization, with both perpendicular to the

material surface. As a result of the time-reversal breaking, the direction of the Kerr angle

depends on whether the light propagation is parallel or anti-parallel to the magnetization,

and is therefore non-reciprocal. In the longitudinal geometry, the magnetization is in both

the sample plane and the plane of incidence of the light. The transverse geometry refers to

the case where the magnetization is in the sample plane, but perpendicular to the plane of

incidence.
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For a magnetization in the z-direction, equation (4.5) simplifies to:

ε(M , ω) =

⎛
⎜⎜⎝

εxx εxy 0

−εxy εxx 0

0 0 εxx

⎞
⎟⎟⎠ . (4.7)

Considering the polar geometry, with k||M and Ez = 0, and by using the dielectric tensor

described in (4.7), equation (4.2) can be written in matrix form as:(
ε0μ0ω

2 − εxx −εxy

εxy ε0μ0ω
2 − εxx

)(
Ex

Ey

)
= 0, (4.8)

which can be diagonalized as:(
εxx + iεxy 0

0 εxx − iεxy

)(
Ex + iEy

Ex − iEy

)
= 0. (4.9)

The two eigenvectors correspond to right and left circularly polarized light, and the eigen-

values are the respective indices of refraction.

To consider the effect of the symmetry breaking on linearly polarized light, we

can re-write the linearly polarized light as a linear combination of left and right circular

polarizations: (
1
0

)
=

1
2

(
1
i

)
+

1
2

(
1
−i

)
(4.10)

{linear} = {right} + {left} .

The rotation of light of this polarization, which in general is complex, is given by

θK =
−2εxy

(εxx + iεxy)(εxx − iεxy) − 1
. (4.11)

Equation (4.11) is derived for a magnetization out of plane, with the laser along the magne-

tization. A full equation for the Kerr effect, including in-plane magnetizations and arbitrary

angle of incidence, is derived in reference [97]. In terms of the components of the Fresnel

matrix, the Kerr angles for light initially s or p polarized are:

θp
K =

rsp

rpp
(4.12)

θs
K =

rps

rss
.
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For initial medium with refractive index n0 and final medium with refractive index n1, and

for an angle θ of the light away from normal, the Fresnel coefficients are given by:

rpp =
n1cos θ0 − n0cos θ1

n1cos θ0 + n0cos θ1
− i2n0n1cos θ0 sin θ1mxQ

n1cos θ0 + n0cos θ1
(4.13)

rsp =
in0n1(mysin θ1 + mzcos θ1)Q

(n1cos θ0 + n0cos θ1)(n0cos θ0 + n1cos θ1)cos θ1

rps = − in0n1(mysin θ1 − mzcos θ1)Q
(n1cos θ0 + n0cos θ1)(n0cos θ0 + n1cos θ1)cos θ1

rss =
n0cos θ0 − n1cos θ1

n0cos θ0 + n1cos θ1
.

4.1.2 Quantum Mechanical Description

The off-diagonal component of the optical conductivity is calculated formally using

the Kubo formalism [84], and the optical conductivity is directly related to the dielectric

susceptibility discussed in the previous section through the formula:

ε(ω) = 1 +
4πiσ(ω)

ω
. (4.14)

The equation for the off-diagonal optical conductivity calculated in the Kubo formalism is

[61]:

σxy = − e2

im2ωV

[∑
nm

(fn − fm)
〈n |Px|m〉 〈m |Py|n〉
En − Em + h̄ω + iη

]
. (4.15)

In this equation, fn is the occupation probability of state n, Px,y are momentum operators,

and V is the total volume. Equation (4.15) is complex, with real and imaginary parts related

by the Kramers-Kronig relations. The real part of equation (4.15) gives the absorption of

incoming light, and the difference in absorption of right and left circular light gives a Kerr

rotation. The dissipative part of the optical conductivity can be written in terms of right

and left circular momentum operators (P± = Px ± iPy) [11]:

σ
′′
xy =

πe2

4h̄ωm2V

∑
nm

fn [1 − fm]
[
|〈n |P−|m〉|2 − |〈n |P+|m〉|2

]
δ(Em − En − h̄ω). (4.16)

Equation (4.16) shows that the difference in absorption between left and right circular light

corresponds to a difference in transition rates between occupied states n and unoccupied

states m for the different light polarizations. Quantum mechanically, the absorption of a

photon is explained by electron dipole transitions between different energy bands. These

transitions governed are by both momentum and energy conservation. The delta function
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Figure 4.1: Schematic of energy levels in a ferromagnet. Δex is the energy splitting from
the exchange interaction, and ΔSO is the spin-orbit splitting. Figure from [11]

in equation (4.16) accounts for energy conservation, and momentum conservation restricts

the allowed transition states through the selection rules Δ� = ±1 and Δm� = ±1.

The difference in absorption arises from the energy splitting caused by the exchange

interaction and spin-orbit coupling. The exchange interaction splits energy levels with

up and down spins, and spin-orbit coupling splits energy levels with different quantum

numbers m�. Right circular light selects a transition with Δm� = 1, and left circular selects

Δm� = −1. An example for a d to p level transition is diagrammed in figure 4.1. Here,

right and left circular polarizations cause transitions from m� = ±1 states to the same final

state with m� = 0.

4.2 Magneto-Optical Kerr Measurments

The goal of a magneto-optical Kerr measurement is to measure small changes in

light polarization induced by a magnetized sample. Several schemes have been developed to

measure such angles. Ultrasensitive measurements of the Kerr angle in SrRuO3 thin films

have been done as a function of temperature using an interferometry technique [46]. We uti-

lize a simpler polarization modulation technique for DC characterization measurements, and

a balanced photodetection scheme for time-resolved measurments. In both time-resolved

and DC experiments, measurements were performed in the polar Kerr configuration.

For all measurements, we used a KM-Labs Ti:Saph laser to generate 100 fs laser

pulses with a repetition rate of 90 MHz and center wavelength of 800 nm. Peak power
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V(t)

Figure 4.2: Diagram of PEM output polarization with a retardation of λ
2 . The primary

axes of the PEM are at 45 degrees to the linearly polarized light.

in pulse mode is approximately 500 mW at the laser output. The Ti:Saph laser itself is

pumped with a diode-pumped Spectra-Physcis Nirvana Nd:YVO4 laser, with a wavelength

of 532 nm and continuous 4.5 W output. The laser output has a slight divergence; so a lens

pair is placed immediately outside the cavity to collimate the beam. To preserve the size of

the beam waist, lenses of equal focal lengths are used. The back lens in the pair is mounted

on a translation stage and its position finely adjusted to collimate the beam.

4.3 DC Kerr Measurements

For DC (non-time-resolved) measurements, we used a Hinds photoelastic modula-

tor (PEM) to modulate the polarization of the light incident on the sample. The PEM is

arranged such that the incoming light polarization is 45 degrees from the PEM’s principle

axes. The PEM causes a variable retardation of the light along one of the principle axes at

a frequency of 50 kHz. A diagram of the light polarization coming out of the PEM is shown

in figure 4.2. The intensity of the light reflected off of the sample is measured after passing

through a polarizer aligned with the PEM’s principle axes. Using this method, both the

real and imaginary Kerr angles can be measured simultaneously. The imaginary Kerr angle,

also called the ellipticity, is modulated at 50 kHz, while the real Kerr angle is modulated

at 100 kHz.

For a given retardation A0, the measured intensity is given by [69]:

I(t) = I0 [1 + 2θkJ0(A0) − 4εkJ1(A0)cos(ωt) + 4θkJ2(A0)cos(2ωt)] , (4.17)

where Jn is the nth bessel function of the first kind. For retardation of 2.405 radians, J0 = 0,
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and the Kerr angle can be recovered by dividing the signal at 2ω by the DC intensity:

I2ω

IDC
=

4θkJ2(A0)√
2(1 + 2θkJ0(A0))

. (4.18)

The output of a single channel of a Nirvana balanced photodiode was connected to

a lockin amplifier to make DC Kerr measurements. The lockin reads the signal modulated

at 100 kHz, and the DC output of the Nirvana was averaged using one of the auxiliary

inputs to the lockin. The lockin reads the RMS value of the modulated signal, leading to

the factor of
√

2 in the denominator of equation (4.18). The normalization of the 2ω signal

must also be adjusted to account for the difference in gain between the balanced channel of

the Nirvana at 100 kHz and the signal monitor at zero frequency. The difference in gain is

a factor of 10, so the lockin reading at 2ω divided by the signal monitor gives (10× θK) in

radians.

4.4 Time-resolved MOKE

In a time-resolved pump-probe experiment, a pump pulse excites the sample, and

the resulting changes to a much weaker probe pulse are measured to determine the effect

of the excitation. Time resolution is achieved by varying the path length of the pump or

probe pulse, which changes the relative arrival times of the two pulses. Beaurepaire et al.

first utilized this pump-probe technique to measure magnetization dynamics in nickel thin

films [5], where they observed a reduction in the magnetization on a picosecond time-scale

in response to the pump pulse.

To make TR-MOKE measurements on SRO thin films, we utilize a reflection ge-

ometry. The SRO films have a penetration depth of approximately 37nm at a laser energy

of 1.5 eV. Typical films were > 50 nm thick, making them optically thick to the laser pulse.

The sections below describe the optical setup for the time-resolved system, as well as the

electronic scheme utilized to record the MOKE signal.

4.4.1 Optics

The time-resolution of the pump-probe system is ultimately limited by the tempo-

ral width of the laser pulse. The pulse width can modified through alignment of the prisms

in the laser cavity, but is also modified as the pulses travel through the optical system. As

the laser pulse travels through the optics, the pulse width increases due to group velocity

dispersion (GVD), as a result of the frequency-dependent refractive indices of the optics.
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Figure 4.3: Diagram of time-resolved pump-probe setup

This pulse widening is pre-compensated using a prism pair. The refraction angle of the

light through the prisms is frequency dependent, causing light of different frequencies to

travel different path lengths going through the prism pair. This frequency-dependent path

length induces a negative GVD in the laser pulse. To create a symmetric path through

the prism pair, the prisms are rotated relative to the incoming beam to achieve minimum

angular deviation of the beam.

A beamsplitter is used to separate the single beam into pump and probe paths. The

beamsplitter reflects 90 percent of the laser power into the pump path, and the remaining

transmitted power is used as the probe. Due to power loss through the optics, typical pump

power at the sample is approximately 150 mW. Both pump and probe paths pass through

neutral-density filters, with adjustable intensity from full power down to <1% of full power.

The two beams are focused onto the sample using an achromatic doublet lens with

a focal length of 150 mm. The spot size on the sample is approximately 100 microns, giving

a maximum pump fluence of about 0.1 J/cm2 per pulse. We aligned the overlap between

the two pulses by placing a 100 micron pin-hole in the laser path, and then adjusting the

pin-hole position to maximize the reading on a power meter placed behind the pin-hole.

The position of the pin-hole was adjusted to maximize the power of the pump beam, and

then a steering mirror was used to maximize the probe beam power through the pin-hole.

To achieve time-resolution, the path length of either the pump or probe path can be

altered, depending on the desired time-scale. To measure short delay times, we used a Clark

fast-scanning delay line with a retroreflector in the pump path. The Clark continuously
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varies the path length at a frequency of 22 Hz, with a time delay of approximately 50 ps.

For long delay times, we use a retroreflector mounted on a Newport motorized translation

stage in the probe path, which has a maximum delay of 500 ps. The 22 Hz repetitive

scanning in Clark mode offers additional averaging over the stepper-motor data mode, and

therefore gives a better signal-to-noise ratio. For the fast-scanning motion of the Clark to be

stable, the retroreflector mounted on the Clark is small, with a diameter of approximately

1 cm. In order to achieve a clean reflection off of this retroreflector, the beam waste is

reduced using a prism pair with a front prism with a focal length of 500 mm, and a back

prism with a focal length of 100 mm.

4.4.2 Detection

We measure the rotation of the probe beam by separating the light into horizon-

tally and vertically polarized components with a Wollaston prism, and then measuring the

intensity of the components using a Nirvana balanced photodiode. The balanced photo-

diode electronically subtracts photocurrent from two photodiodes, and therefore subtracts

the intensities of the two perpendicularly polarized beams coming from the Wollaston. This

subtraction makes the detection sensitive to rotations of the light’s polarization, and also

reduces noise from laser amplitude fluctuations. During measurements, we balance the DC

signal of the Nirvana by rotating the polarization of the light before the polarizing beam-

splitter, using a half-wave plate mounted in a Newport high-precision motorized rotation

stage. Time-resolved ellipticity can be measured by balancing the Nirvana DC signal with

a quarter wave-plate in place of the half wave-plate.

To record the changes in the polarization of the probe beam, we put the output

from the Nirvana into a Stanford Research Systems SR850 lockin, which is referenced at the

frequency of the modulation of the sample excitation. The sample excitation is modulated

by chopping the pump beam at 100 kHz, which we achieve using the Hinds PEM. A polarizer

is placed at the output of the PEM, and aligned perpendicular to the light polarization at the

input (see figure 4.2). To normalize the size of the measured Kerr angle, the 100 kHz signal

is divided by the DC signal from a single channel of the Nirvana, which is measured using

one of the auxiliary inputs on the SR850. The gain settings on the lockin and differences

in gain between the 100 kHz signal and DC signal on the Nirvana are corrected for in the

data acquisition program. For measurements using the Newport stepper motor, the 100

kHz signal from the lockin is read directly to give the Kerr angle. All values read from the

lockin are averaged at 512 Hz using the lockin’s internal data register. To speed the transfer
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Figure 4.4: Diagram of balanced photodetection scheme

of values from the lockin to the computer, values are transferred as they are stored in the

lockin and converted to real values by the computer. The lockin stores values as pairs of

integers (a, b), which are converted to decimal values by the expression:

value = a × 2(24−b). (4.19)

For measurements using the Clark scanning delay line, we connect the output from the

lockin channel into a Lecroy oscilloscope, which is triggered on the 22 Hz signal from the

position output of the Clark. The time trace of the Kerr signal results from averaging this

trace on the scope. The position of the Clark is measured as a sinusoidal voltage on the

scope, and this is averaged as well. The time-delay of the scan is calibrated by comparing the

voltage amplitude of the Clark output with the distance moved by the Clark retroreflector,

which is measured by finding the difference in step-motor position when the pump-probe

t=0 time is translated to either end of the the Clark motion.

4.4.3 Derivative Measurements

For Fourier analysis of the time-resolved Kerr data, the numerical derivative of

the time-trace was used to reduce windowing effects (see section 6.1). In order to eliminate

the need to smooth the time-trace data and compute the derivative, derivative data on

BiFeO3/SRO bilayer samples was measured experimentally.

To measure the derivative, a double lockin scheme is utilized. The output from the
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lockin triggering on the PEM is sent to a second lockin that triggers on the Clark frequency.

This is the same configuration as used when taking data with the Clark, only the second

lockin replaces the oscilloscope. The Clark motion is reduced to a sub-picosecond amplitude

of motion, and the time-dependence of the derivative is measured by stepping the Newport

delay line. The Clark motion remains sinusoidal for amplitudes down to approximately 0.5

ps, becoming distorted for lower ranges of motion.

4.5 Cryostats

For magnetic measurements of the TR-MOKE, we used an Oxford SM-4 super-

conducting magnetic cryostat, capable of reaching fields up to 6T. The sample is cooled

through a helium exchange gas introduced by a needle valve connected to the helium bath

surrounding the superconducting magnet. The ability to separate the magnet bath from

the sample space with the needle valve allows us to cool the sample with a magnetic field

applied. Two temperature sensors mounted using indium foil were used to measure the tem-

perature at the helium evaporator at the bottom of the sample chamber and on the copper

sample mount. The SM-4 can theoretically reach temperatures of ∼ 1.2 K by pumping on

the exchange gas. Heating by the laser pulse raises the sample temperature significantly

higher than this, making running the cryostat at such low temperatures impractical. During

experiments, the cryostat was run with the exchange gas at slightly higher than atmospheric

pressure, with a minimum temperature of ∼ 4 K.

For DC-MOKE measurements and for TR-MOKE measurements where variation

of the magnetic field was not required, the majority of the data was taken using a RC110

Cryo Industries cold-finger cryostat, with occasional use of a Janis ST-300MS cold-finger

cryostat. In both cryostats, indium foil was used to increase thermal contact between the

cold-finger and the copper sample mount. The Cryo Industries cryostat was equipped with

temperature sensors on the cold-finger and on the sample mount, while the Janis system

has only one sensor on the sample mount. Both systems consistently reached minimum

temperatures of ∼ 4 K.

In all cryostats, the samples were mounted to a copper block with Apiezon N-type

grease.
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4.6 Optical Bleaching Effects

The signal out of the detector depends on both the rotation of the polarization and

the amount of light reflected off of the sample. Optical bleaching refers to time-dependent

changes in the polarization as a result of changes in the electron distribution in response

to the pump pulse. The signal from this effect mixes with the signal from time-dependent

changes in the polarization due to changes in the magnetization, obscuring the measurement

of the magnetic response [51].

The balanced detector measures the rotation by taking a subtraction of two ini-

tially perpendicular polarizations. Referring back to equation 4.7, the quantity measured

by the detector is S = 2Re[εxyε
∗
xx]. The change in the signal induced by the pump pulse is

then

ΔS = 2Re[(Δεxy)ε∗xx + εxy(Δε∗xx)]. (4.20)

The first term in the sum represents the change in polarization, and the second represents

the optical bleaching effect. The term εxy gives the rotation due to the equilibrium mag-

netization. Optical bleaching is effectively a change in reflectivity that changes the amount

of DC Kerr signal measured, giving an effective time-dependent polarization.

By making time-resolved measurements of the magneto-optical Kerr effect, ellip-

ticity, and intensity of the reflection we can make inferences about the relative changes in

εxx and εxy. In metallic systems, the dynamics of the change in reflectivity occur on a

time scale of about 1 ps, and are due to the electron absorption of the laser energy and

subsequent decay. In these systems, the signal on time-scales longer than 1 ps represent an

accurate measure of the magnetization dynamics.

4.7 Exciting FMR in an Optical Experiment

Since Beaurepaire’s first measurement, several schemes have been used to excite

magnetic precession in time-resolved optical experiments. The most direct method is to

apply a perturbing magnetic field. This has been accomplished on a picosecond time-scale

through the use of photoconducting switches [34, 1], where the pump pulse opens a biased

switch and generates a time-dependent current that results in a perturbing magnetic field.

The method relevant to exciting magnetization precession in SRO is a change

in the magnetic anisotropy of the system in response to laser heating [93]. This all-optical

excitation technique requires no circuitry, and the rise time is limited by the effective heating

time of the system, which is typically less than the rise time of a current-driven magnetic
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perturbation. Magnetic precession in thin films can be driven by the shape anisotropy,

which changes in response to a thermally induced reduction in the magnetization. In SRO

films, we utilize the intrinsic anisotropy rotation described in chapter 2.

4.8 Laser Excitations of the Magnetic System

The magnetic precession is generated by a change in anisotropy in response to

heating of the sample by the laser pulse, so understanding the picosecond dynamics of the

system requires that we understand the way the sample is heated on a picosecond time-

scale. The laser pulse only deposits energy directly into the electrons through direct (k = 0)

dipole transitions and this energy is then spread to the lattice and spins through scattering

processes. In the three temperature model, the electrons, spins, and lattice are considered

as three separate thermal baths, where the bath energies are treated as effective equilibrium

temperatures after the initial scattering processes [70].

The laser excites a small number of electrons with an energy of 1.5 eV, which is

orders of magnitude above the thermal energy. The equilibrium concept of temperature is

therefore not applicable to the early stages of laser excitation [52]. In metallic systems, there

are a large number of available states around the Fermi energy, leading to a fast decay of the

excited electrons. Electron-electron scattering between laser-excited electrons and thermal

electrons creates a large number of “hot” electrons. This scattering redistributes the electron

energy without changing the average energy of the electron bath, and the electrons are then

considered to be in equilibrium at an elevated temperature Te. Once a large number of a

excited electrons is created in the system, energy transfer between electrons and phonons

becomes more efficient, and the lattice temperature will subsequently come into equilibrium

with the electron temperature. The timescale for electron thermalization is typically on the

order of 100s of fs, and the electron-phonon equilibration time is < 1 ps [89, 51].

4.8.1 Ultrafast Demagnetization

In TR-MOKE measurements, an immediate reduction in the magnetization has

been observed in response to the pump-pulse, suggesting spin-flip scattering in the initial

decay of electrons [5, 50]. Due to the short time-scales on which the ultrafast demagneti-

zation occurs, measurement of the demagnetization is complicated in time-resolved optical

measurements by optical bleaching effects described in section 4.6. Regardless of the diffi-

culty in the measurement, the general consensus is that part of this signal is magnetic in
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origin [50].

In the presence of spin orbit coupling, the spin up and spin down states are no

longer good quantum states, and spin scattering can occur during the decay of excited

electrons. The good quantum states are linear combinations of the spin up and spin down

states, and spins are scattered in the electron decay due to this spin-state mixing [100, 19].

This initial spin randomization is referred to as ultrafast demagnetization, and leads to an

initial higher spin effective temperature Ts.

This initial demagnetization has been shown to be dominated by avoided crossings

in the band structure in Co thin films [78]. This process is thought to be the same as the

process that enhances the electron-spin resonance line-width in Al. In many metals, the

temperature dependence of the spin-relaxation time is the same, with the exception being

metals with avoided crossings [24, 67]. Elliott-Yafet scattering is enhanced at points in the

band structure where the conduction and valence bands are nearly degenerate, making the

spin-scattering significantly faster [25].

4.9 Three Temperature Model

On time-scales longer than the electron-relaxation time, the perturbation is due

to thermal effects, and is generally treated within the three-temperature model [101]. The

coulomb interaction is responsible for the coupling between the electrons and the lattice, so

in metallic systems, the temperature exchange between those two systems is generally faster

than the temperature exchange between the spin system and the electron system, which

comes about through spin-orbit coupling. Temperature exchange between the spin and the

phonon system is usually described by spin-wave interactions with phonons. Experiments

have shown evidence of magnon-phonon coupling in SRO, but in general this coupling term

is thought to be weak [41].

The equations for heat flow between the three reservoirs are given by the following

equations, with the term S(z, t) representing the source term describing the energy input

into the electron system [92, 101]:
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Ce(Te)
∂Te

∂t
=

∂

∂z

[
κe(Te)

∂Te

∂z

]
− GeL(Te − TL) − Ges(Te − Ts) + S(z, t)

Cs(Ts)
∂Ts

∂t
=

∂

∂z

[
κs(Ts)

∂Ts

∂z

]
− GsL(Ts − TL)− Ges(Ts − Te) (4.21)

CL(TL)
∂TL

∂t
=

∂

∂z

[
κL(TL)

∂TL

∂z

]
− GsL(TL − Ts) − GeL(Te − TL).

Here, the z-direction is defined as the direction perpendicular to the sample plane. The

heat capacity of the different reservoirs are represented by the variable C, G represents

the coupling between reservoirs, and κ represents the heat diffusion into the sample. The

subscripts s, e, and L refer to the spins, electrons, and lattice, respectively. In-plane diffusion

can be included in the model by adding terms of the form, ∂
r∂r

(
rκ∂T

∂r

)
, but inplane flows

can be neglected for thin film geometry. In metals, the Wiedemann-Franz law suggests that

the heat diffusion is dominated by electrons, i.e. κe 
 κs, κL.

4.10 Specific Heat Contributions in Metals

The specific heats appearing in equations (4.21) are all temperature dependent.

In non-magnetic metals, the electron specific heat dominates at low temperature, and the

phonon contribution dominates at higher temperature. The magnetic contribution depends

on the spin stiffness, and in ferromagnets with high transition temperatures, is small com-

pared to the lattice specific heat.

The temperature dependence of the Fermi distribution function determines the

temperature dependence of the electron specific heat in the free-electron model. The effect

of thermal excitations on the electron distribution function is to smear out the distribution

on an energy scale of kBT around the Fermi level. Roughly, the number of electrons

thermally excited by the fermi level is given by g(εF )kBT , where g(εF ) is the density of

states at the Fermi energy [3]. The energy density is then g(εF )(kBT )2, which gives a

specific heat that is linear in temperature.

The lattice specific heat is dependent on the on the energy spectrum of the phonon

normal modes, and the full temperature dependence is difficult to calculate. In the low

temperature limit, the lattice specific heat can be calculated by considering only the linear

contribution from the acoustic phonon modes. The low-temperature specific heat, with only

the electron and phonon contributions, is given by the equation:
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C =
π2

2

(
kBT

εF

)
nkB + BT 3. (4.22)

The linear term is the electron contribution, and the cubic term is the phonon contribution.

Early reports suggest that the low-temperature specific heat of crystalline SrRuO3 fits the

form of (4.22), with a cross-over from electron to lattice specific heat occurring around 3K

[2]. Later reports [14], as well as calculations of the specific heat based on our time-resolved

measurements, indicate that above 10K, the magnon specific heat is dominant.

4.10.1 Magnetic Specific Heat

The magnetic Hamiltonian in an isotropic system can be written in terms of an

exchange energy, J, as:

H = −
∑
i�=j

Jijh̄
2Si · Sj. (4.23)

In magnetic systems, spins have strong short-range interactions encouraging paral-

lel alignment from exchange coupling, and the ground state energy is the fully-aligned spin

state. The elementary excitations above the ground state are spin-flips away from this fully

aligned configuration. In the lowest-lying excited states, the spin-flip is shared over several

spin sites, so that the gain in exchange interaction energy between each nearest-neighbor is

small. The lowest excited state is therefore a linear combination of spin states, with a total

of one reversed spin. These excited states are spin waves; the lowest energy excitations are

quantized spin waves known as magnons.

At low temperatures the magnon spectrum is dominated by long-wavelength ex-

citations, and the spin-waves can be defined through an approximate dispersion relation:

h̄ω = γk2, (4.24)

where γ is the spin-wave stiffness.

At low temperature, the number of excitations is assumed to be small, and mul-

tiple magnon excitations can be treated as a superposition of single magnon excitations.

By treating the magnons as a system of harmonic oscillators, the distribution of magnon

energies can then be treated with Bose-Einstein statistics. The energy of the magnon sys-

tem can then be calculated by integrating over the density of states and the Bose-Einstein

distribution function:
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U =
∫ ∞

0

ε(k)D(k)η(k)dk

=
∫ ∞

0
ε(k)η(k)

(4πk2)
(2π)3

dk

=
∫ ∞

0

h̄ω

eh̄ω/kBT − 1

[
1

4π2ω

(
h̄ω

γ

)3/2
]

dω

U =
1.783
4π2

γ−3/2(kBT )5/2. (4.25)

The internal energy, and therefore the specific heat, depends on the spin stiffness

as C ∝ γ−3/2. In transition metal ferromagnets such as Fe and Co, the spin stiffness is

on the order of hundreds of meV-Å2, which is large enough that the magnon specific heat

contribution is negligible. The spin stiffness in SrRuO3 is somewhat smaller than in these

elemental magnets, as suggested by a lower transition temperature of around 150 K.

The above calculation of the magnetic contribution to the internal energy assumes

an isotropic system, whereas SRO is marked by a large magneto-optic anisotropy. In the

Ising model, the effect of this anisotropy is to add a term to the Hamiltonian, such that,

with D representing the anisotropy, the Hamiltonian reads:

H = −
∑
i�=j

Jij h̄
2Si · Sj + Dh̄2(Si

z)
2. (4.26)

The anisotropy changes the spin-wave dispersion relation to h̄ω = γk2+Δε, where

Δε = Dh̄2/2. This creates a gap in the magnon density of states. Adjusting the equation

for the magnetic internal energy to account for the anisotropy, equation 4.25 now reads:

U =
∫ ∞

Δε

h̄ω

eh̄ω/kBT − 1

[√
ω − Δε/h̄

4π2

(
h̄

γ

)3/2
]

dω.

In SRO, for an anisotropy field of ≈ 6T, the spin-wave gap corresponds to a temperature

of about 12K.

We can calculate the deviation of the internal energy from the low-temperature

limit by using a more complicated spin-wave dispersion relation, and keeping the harmonic

oscillator approximation. Pesz and Munn calculated the density of states for rectangular and

tetragonal lattices in the tight-binding model, considering only nearest-neighbor interactions

[80]. A plot of the internal energy calculated by numerical integration is shown in figure

4.5. For moderate anisotropies, the tight-binding density of states deviates from the low-

temperature limit (D(ω)dω ∝ √
ωdω) at a temperature determined only by the spin stiffness
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Figure 4.5: Calculated internal energy using the tight-binding model density of states

- changing the spin-stiffness in this calculation simply renormalizes the temperature axis.

The deviation of the internal energy from T 5/2 occurs at a temperature roughly two orders

of magnitude below the exchange energy.
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Chapter 5

Thermal Modeling of SRO

Dynamics

The time-resolved change in Kerr angle of a 200 nm SRO thin film in response to

a pump pulse is shown in figure 5.1 and can be separated into two temperature regimes.

In the high temperature regime (90K < T < 150K), the magnitude of the signal increases

near TC , and shows a slow rise time that also slows near TC . As the sample is cooled

below 90K, the signal again increases in magnitude, and damped oscillations with a period

of 4 ps become clearly resolved at low temperatures. While the change in Kerr angle is

measured as a positive value, these signals actually represent a reduction in the out-of-

plane magnetization.

5.1 The Thermal Model and SRO

As will be discussed in chapter 6, the TR-MOKE signal oscillates in response a

change in the anisotropy direction in response to laser heating. On time-scales longer than

the electron-relaxation time, the perturbation is due to thermal effects and is generally

treated within the three-temperature model [101]. As shown in figure 5.1, on the time-scale

of the data the TR-MOKE time-traces are approximately constant after t ≈ 15 ps at all

temperatures. On a time-scale of t > 15 ps, the sample is in a quasi-equilibrium state, and

the sample is slowly cooling by transferring heat to the substrate.

A plot of the quasi-equilibrium changes in the Kerr rotation is shown in figure 5.2.

Since the magnetization dynamics are triggered by a thermal change in the anisotropy field,
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Figure 5.1: Change in Kerr rotation as a function of time delay following pulsed photoexci-
tation on a 200 nm SRO/STO film. Left Panel: Temperature range 5K < T < 80K. Right
panel: Temperature range 100K < T < 150K.

Figure 5.2: Change in Kerr rotation at t = 25 ps as a function of temperature. Different line
colors correspond to different pump fluences. The inset shows the Kerr angle as a function
of temperature
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Figure 5.3: 1/(ΔT ), where ΔT is the calculated change in temperature, plotted for difference
pump fluences. The black lines are fits to T 3/2

this long-lived change in the Kerr angle is given roughly by

ΔM = ΔT (dM/dT ) = (Φ/C(T ))(dM/dT ), (5.1)

where Φ is the pump pulse energy, and C(T ) is the specific heat. The increase in the

amplitude of the time-dependent Kerr signal at low temperature is a result of the decreas-

ing specific heat, while the peak near TC is caused by the increase in the slope of the

magnetization temperature dependence near the transition.

We can measure the temperature increase in response to the pump pulse by com-

paring the change in TR-MOKE signal with the temperature dependence of the DC-MOKE

signal. A plot of the DC-MOKE signal is shown as an inset to figure 5.2; the measured

magnitude of the Kerr angle is consistent with previous reports [47]. The reciprocal of the

measured change in temperature using this method for low pump powers is plotted in figure

5.3.

The energy deposited by the pump pulse is equal to the change in the internal

energy of the sample, and for a pump power Φ, this is determined by an integration over

the specific heat:
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Figure 5.4: Left panel: Calculated TF vs. pump pulse intensity for different values of the
equilibrium sample temperature. Right panel: Data shifted to lie on a common curve.

∫ Φ

0
dΦ =

∫ Tf

T0

C(T )dT (5.2)

= U(Tf)− U(T0). (5.3)

For low pump powers, the change in temperature can be treated in the linear approximation

(C(T )dT = dΦ), and the functional form of the specific heat can be measured through

the temperature dependence of the sample response at low laser power. The 1/ΔT data

plotted in figure 5.3 show a T 3/2 temperature dependence up to ∼80K, indicating that below

this temperature, the specific heat is dominated by magnons. We attribute the deviation

from a T 3/2 temperature dependence at 80K to the deviation from the low-temperature

approximation of ε1/2 for the magnon density of states.

Higher pump intensities can be analyzed by using the full expression for the final

temperature in terms of the internal energy:

TF = U−1(U(T0) + Φ). (5.4)

The effect of changing the sample temperature, T0, for a signal vs. intensity scan is to shift

the T vs. U−1 function along the x-axis by an amount U(T0). Each TF vs. intensity curve

can be shifted along the intensity axis to lie along a common line that represents the full

TF vs. intensity curve, and the shifting amount along the x-axis should be consistent with
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U(T0). This shifting scheme is diagrammed in figure 5.4. At lower sample temperatures

(T ≤ 35K), data points from high laser intensities deviate from the common T vs. Φ line

because the laser pulses induce enough heating of the sample that the temperature sensor

on the cryostat mount no longer accurately reflects the equilibrium sample temperature.

This DC heating becomes negligible at high temperatures due to the increased specific heat

of the system.

The results of the shifting procedure are shown in figure 5.5. The data indicate

a T 5/2 temperature dependence up to about 80K, consistent with the T 3/2 temperature

dependence in figure 5.3. The right panel shows the calculated internal energy plotted

verses T 5/2 for samples of different thicknesses. The results of this more careful analysis

supports the conclusion that the internal energy is dominated by magnons over a wide range

of temperature. As expressed in equation (4.25), the slope of this line (m) is then directly

related to the spin stiffness, as

γ =
[
1.783
4π2

L

m

]3/2

, (5.5)

where L represents the effective diffusion length of energy into the sample.

5.1.1 Normalization of Laser Pulse Energy

We can calculate the functional form of the internal energy of the sample by

knowing only the pump-pulse power, but to calculate the spin stiffness, we need to calibrate

the density of the energy deposited in the sample. The time-resolved response is thermal

in nature, but since the specific heat is generally a function of temperature, the thermal

response will be nonlinear in the laser power. This leads to corrections due to the spatial

profile of the deposited energy, φ(r, z), and due to the time-dependent nature of the pump

laser power. The energy distribution in the sample plane (φ(r)) can be measured, and the

distribution in time is straight-forward to calculate. The depth profile of the energy (φ(z))

is time-dependent, and determined by the penetration depth and the diffusion of the laser

energy into the sample. As a result, figure 5.5 is plotted as function of pump fluence, and not

the deposited energy density. The normalizations needed to account for the in-plane spatial

profile and time-dependence of the pump are discussed below. The diffusion is discussed in

detail in section 5.2.
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Figure 5.5: Left panel: Log-Log plot of the calculated internal energy vs. temperature for
a 200nm SRO sample. Low temperature data fits at T 5/2 temperature dependence. Right
panel: Calculated internal energy for 10nm, 50nm, and 200nm thick samples, plotted vs.
kBT 5/2
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In-plane Spatial Profile

The temperature rise under the laser spot is non-uniform, due to the Gaussian

profile of the pulse in the sample plane. The spatial profile in the sample plane is:

φ(q) = φq,pe
−r2/(2σ2). (5.6)

We measure the spatial width of the laser pulse by using a razor blade on a

translation stage with a micrometer, and also by measuring the amount of power transmitted

through pinholes of various sizes. The diameter of the pump pulse is measured as 2σ ≈ 50

μm. The energy density of the pulse is given by φq,p, where q corresponds to the probe

intensity, p to the pump.

The measured final magnetization is given by an integral of the final magnetization

profile over the probe laser profile:

MF =
∫ R

0

2πrφqf(r)M(U−1(φpf(r) + U(T0)))dr. (5.7)

The integral is taken up to a radius R, which is a cut-off determined by an iris placed in

between the sample and the detector. To evaluate the integral, we introduce a function G,

such that dG(φ)
dφ = M(U−1(φ)), and a change of variables y = φpf(r):

MF =
2πσ2φq

φp

∫ φp

φpf(R)
M(U−1(y + U(T0)))dy

=
2πσ2φq

φp
[G(φp + U(T0))− G(φpf(R) + U(T0))] . (5.8)

The data is normalized by the the probe power, which is given by:

Φq =
∫ R

0
2πrφqf(r)dr

= 2πσ2φq(1 − f(R)). (5.9)

Dividing equation 5.8 by equation 5.9 gives:

MF =
1

φp(1− f(R))
[G(φ0 + U(T0))− G(φp − φp(1− f(R)) + U(T0))]

=
1

Γφp
[G(φp + U(T0)) − G(φp − Γφp + U(T0))] . (5.10)
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where Γ = 1 − f(R) is a measure of the fractional probe power passed through the iris. In

the limit of R → 0, Γ → 0, and equation 5.10 reduces to a derivative, giving:

MF = M(U−1(φp + U(T0))). (5.11)

For small enough R, the measurement is insensitive to the radial energy profile of the pulse

when normalized by the probe intensity. This derivative approximation is valid in the regime

given by:

Γ � U(T0) + φp

φp
. (5.12)

During experiments, the iris is closed such that the probe power is reduced to

approximately 20 percent of the maximum (Γ = 0.2), which corresponds to R = 0.67σ. For

this value of Γ, the derivative approximation is roughly valid when the pump pulse energy

density is less than the internal energy of the sample at the equilibrium temperature.

Normalization of Lockin Response

The nonlinearity in the magnetic response leads to an adjustment factor of the

signal value due to the time-dependence of the pump intensity. The chopped laser intensity

has a functional form cos2(ωt), but the non-linearity of the magnetic response alters the

measured Kerr-angle time-dependence. The lockin reads the signal at a frequency of 2ω,

as described in section 4.2, so if we define x = ωt, the response measured on the lockin is

given by:

ΘK =
1
2π

∫ 2π

0
cos(2x) U−1 [φ(x) + U(T0)] dx (5.13)

φ(x) = φp cos2(x).

To get the correction due to the nonlinearity in the temperature response to the

laser, we assume a temperature dependence of the internal energy U(T ) = αT β. This gives

U−1(φ(x) + U(T0)) =
1

α1/β
(φ(x) + U(T0))1/β

= (
U(T0)

α
)1/β(

φ(x)
U(T0)

+ 1)1/β

≈ (
U(T0)

α
)1/β(1 +

1
β

φ(x)
U(T0)

). (5.14)
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Figure 5.6: (a) Semi-log plot of 500 ps TR-MOKE signals for samples of various thickness.
(b) Log of short time (t < 25 ps) TR-MOKE signal plotted against t1/2, indicating stretched
exponential behavior. (c) Decay times plotted verses sample thickness. (d) Decay times
verses temperature for 200 nm (black, left axis) and 50 nm (red, right axis) films.

On the last line, we again assume that φ(x) � U(T0), and keep only the linear term in the

expansion. The first term in the expansion is constant in time, and doesn’t contribute to

the lockin reading. The lockin reading for the second term is:

ΘK =
(U (T0))(1−1/β)

2π

∫ 2π

0
cos(2x) (

1
β

cos2(x))dx. (5.15)

This result differs from the pure cos2(x) lockin value by a factor of 1/β. For the case when

magnons dominate the internal energy, β = 5/2.

5.2 Heat Transfer Into the Substrate

In order to study the diffusion of heat into the sample and the transfer of heat from

the sample to the substrate, we studied a series of sample thicknesses on a time-scale of 500

ps. The one-dimensional diffusion in terms of the specific heat C and thermal conductivity
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κ is given by [13]:
1
C

∂T

∂t
= − ∂

∂z

(
κ

∂T

∂z

)
. (5.16)

Here z is the represents the distance from the sample surface. This equation is general for

a position dependent κ. If κ is position independent, an analytical solution for an initial

temperature distribution of a delta-function at t = 0 and z = 0 can be written as:

T (z, t) =
1√

4πDt
e−

z2

4Dt , (5.17)

where D = κ/C is the thermal diffusivity. This expression can be generalized for different

initial conditions by convolving the initial temperature distribution T0(z, t = 0), with the

delta function solution given by equation (5.17). Solutions of this type should obey the

boundary condition that no heat is transferred out of the sample at the sample surface,

represented mathematically by ∂T/∂z|z=0 = 0. This condition can be satisfied by treating

the problem as symmetric about z = 0. Generalized solutions of equation (5.17) have an

asymptotic time-dependence of T ∝ t−1/2.

Time-traces for TR-MOKE signal are shown on two different time-scales in figure

5.6, and there is no indication of a t−1/2 time-dependence. A semi-log plot of TR-MOKE

on a scale t < 500 ps is shown in figure 5.6a, showing an exponential decay that becomes

faster with decreasing sample thickness. A plot of the decay times is shown in figure 5.6c,

and shows a linear dependence of the decay time on the sample thickness (τ ∝ L). A plot

of the TR-MOKE signal on a shorter time-scale is shown in figure 5.6b. This short-time

data indicates a stretched exponential, with a functional form of exp[(−t/τ)1/2].

A stretched exponential indicates a distribution of decay rates, such that the func-

tional form of the decay is given by [6, 77]:

I(t) = e−(t/τ0)
β

=
∫ ∞

0
H(k)e−ktdk, (5.18)

where k represents the decay rate, and H(k) is the distribution. The analytical form of

H(k) with β = 1/2 is given by:

H(k) =
τ0

2
√

π(kτ0)3/2
exp(− 1

4kτ0
). (5.19)

This type of decay has been observed in glass-like and disordered systems, and calculations

on heat-transport in gold nano-particles have predicted stretched-exponential decays of the

nano-particle temperature when cooling to a surrounding fluid [77, 38].

The exponential decays on longer time-scales, combined with the linear dependence

of the decay times on the sample thickness, suggest a more straight-forward interpretation
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of heat flow limited by a thermal boundary resistance between the SRO film and STO

substrate [12, 91]. The thermal boundary resistance is a result of phonon reflection at the

interface, and two theories exist to explain this reflection: the acoustic mismatch model

and the diffuse mismatch model. The acoustic mismatch model is valid for cases with the

phonon wavelength is longer than the atomic spacing; the phonons are treated as waves and

reflect in response to differences in the phonon impedance on either side of the interface.

This situation is effectively the phonon analogue to optical reflection and transmission. The

diffuse mismatch model assumes complete scattering of the phonons at the interface. The

transmission of phonons across the interface is determined by Fermi’s golden rule, and the

boundary resistance occurs due to a mismatch in the phonon density of states on either side

of the interface.

If the temperature decay is limited by thermal boundary resistance, and the inter-

nal energy is dominated by phonons, the decay time is roughly independent of temperature.

The amount of energy carried out by transmitted phonons and the total energy of the

phonons in the film both scale the same way with temperature. The temperature depen-

dence of the decay times of the TR-MOKE data, shown in figure 5.6d, seems consistent

with this picture. However, as discussed in section 5.1, the thermal energy in SRO is dom-

inated by magnons. The energy of the phonons that carry the heat out therefore has a

different temperature dependence than the energy of the system as a whole, and a stronger

dependence on temperature is expected in the decay times.

It has been suggested that there is an effective boundary resistance due to non-

equilibrium between different temperature baths in a region near the film/substrate interface

[60, 39]. The non-equilibrium region is a result of different boundary conditions for the

different baths. Neither the electrons or the magnons can diffuse into the substrate, giving

the condition that the slope of the temperature must vanish at the interface (∂T/∂z|z=L =

0). In the absence of a phonon-reflection type boundary resistance, the requirement for

phonons at the substrate is that the heat flows on either side of the boundary must be

consistent (κf∂Tf/∂z|z=L = κs∂Ts/∂z|z=L). This leads to a region of non-equilibrium,

characterized by a length scale δ given by:

δ =
√

κp

G
, (5.20)

where κP is the phonon thermal conductivity, and G is the coupling coefficient between

electrons and phonons. This expression assumes that the electron thermal conductivity is

much higher than that of the phonons. The thermal conductance across this region is given
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by κp/δ. This leads to an effective thermal boundary resistance, with a decay time given

by:

τ =
CL

Gδ
=

CL√
κpG

. (5.21)

The temperature dependence of this decay depends on the temperature depen-

dences of G, κp, and C. The relevant specific heat is that of the magnons, and at low

temperatures, the T -dependence of C (∼ T 3/2) and κp (∼ T 3) roughly cancel.

5.3 Finite-Difference Modeling

We attempt to describe the time-dependence of the SRO temperature by using

a Dufort-Frankel finite difference scheme to model the heat flows described in the three

temperature model expressed in equation (4.21) [20]. The three-temperature model implic-

itly assumes that the heat transfer is diffusive, which is a questionable assumption for film

thicknesses on the order of 10 nm. For thicker films, this model does provide insight into the

dependence of the time-evolution of the film temperature on various thermal parameters.

To mathematically model a thermal boundary resistance in equation (5.16) or in

the phonon transport equation in (4.21), a term δ(z = L) 1
RS

(Tf −Ts) is added to the right-

hand side, where RS is the thermal boundary resistance, Ts and Tf are the temperatures

of the film and substrate at the interface, and δ is the Dirac delta function. In the finite-

difference scheme, this results in a modification of the phonon boundary condition at z = L.

The finite-difference equation for the phonon heat flow from equation (4.21) is

given by:

Cp
Tp(j + 1, k)− Tp(j − 1, k)

2Δt
= κp

[
Tp(j, k + 1) − Tp(j + 1, k)

(Δz)2

]

−κp

[
Tp(j − 1, k)− Tp(j, k − 1)

(Δz)2

]

+Gsp [Ts(j + 1, k)− Tp(j + 1, k)]

+Gep [Te(j + 1, k)− Tp(j + 1, k)] . (5.22)

Here j is the time index, and k is the space index. There is an equation like this for

each of the three thermal baths, and the temperature of each bath is advanced in time by

solving the three algabraic equations for Ts(j +1, k), Te(j +1, k), and Tp(j +1, k). To make

the calculation more efficient, while still retaining detail of the temperature profile at the

interface and modeling a substrate orders of magnitude thicker than the film, the spatial
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step (Δz) was small near the interface, and increased deep into the substrate. Changes in

Δz were accounted for by using a non-symmetric derivative method [31].

Given that SRO is metallic and the specific heat is magnon-dominated, the fol-

lowing assumptions about the parameters were used in the modeling (see section 4.9):

κe 
 κp; κs = 0

Cs 
 Cp 
 Ce

Gep 
 Ges 
 Gsp. (5.23)

The results of these simulations indicated that due to the relatively large spin specific heat,

and the high electron thermal conductivity, the electrons and spins could be treated as one

fluid. Simulations also showed decay times with the functional dependencies predicted by

equation (5.21), but exponential decays were only seen when the phonon thermal conduc-

tivity was higher than that of the phonon in the film. Based on room-temperature thermal

conductivity data, this assumption is not entirely unreasonable [96].
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Chapter 6

TR-MOKE on SRO -

Magnetization Dynamics

6.0.1 Critical Slowing Down

At temperatures above 80K, the data show dynamics consistant with those re-

ported earlier [70]. The signal magnitude peaks around 120K, and as stated previously by

Ogasawara, shows slow dynamics consistent with critical slowing down near the transition

temperature. The peak in magnitude is consistent within a thermal model interpretation

as the change in magnetism with temperature becomes steeper near the transition temper-

ature.

The slow dynamics near the transition can be explained using dynamic scaling

theory [42, 17]. Materials near a second-order ferromagnetic phase transition exhibit a

scaling behavior; the statistical representation used to describe a system of individual spins

can also be used to describe a system of blocks of spins, with the appropriate rescaling of the

effective spin-spin coupling. As a result of this type of rescaling, relevant parameters near

the transition temperature exhibit power-law behavior. The correlation length describes the

length over which the system is ordered and diverges as the system approaches the transition

temperature. The correlation length is related to the transition temperature through the

critical exponent ν:

ξ = (1 − T/TC)−ν . (6.1)

Dynamic scaling theory links the correlation length to the relaxation time by τ = ξz =

(1 − T/TC)−νz [90], which implies that the relaxation time, with the correlation length,



56

diverges at the transition temperature. The slow-time scales seen in the magnetization

dynamics measurements can be interpreted as a divergence of the relaxation time of the

system from an ordered state into a disordered state.

6.1 Magnetic Precession - Fourier Analysis

To analyze the oscillatory component of the data at low temperature, we take

the Fourier transform (FT) of the numerical derivative of the time traces. The purpose of

taking the derivative is to reduce windowing effects when calculating the discrete Fourier

transform. The computer sums the FT from t = 0 to the maximum time delay, tmax, in

effect interpolating the signal to zero everywhere outside of the measured time window:

f(ω) =
tmax∑
t=0

e−iωtf(t)Δt. (6.2)

In general, the decay of the time-traces is significantly slower than the time window

captured by the Clark motion. This gives a large mean-value over the time trace, and results

in a ringing of frequency 1/tmax on the FT. The decay of the time traces being slow, the

derivative is nearly zero at t = tmax, and interpolation of the derivative to zero beyond the

time window does not result in ringing of the FT. As a result of the derivative, the analyzed

function in frequency space is therefore iωf(ω). The resonant response is associated with

the real part of the FT, so the relevant quantity is the imaginary part of the transform after

the derivative Im [iωf(ω)] = ωRe [f(ω)].

To give cleaner transforms, we apply a Savitzky-Golay smoothing function to the

time-traces before calculating the derivative. Applying a smoothing filter is essentially

equivalent to increasing the time constant of the lockin during data collection, smoothing

the high-frequency noise while reducing time resolution. The Savitzky-Golay filter performs

a point-by-point polynomial regression analysis to generate the smoothed function [82]. This

filter is desirable over a simple moving-average in that it preserves causality; the filtered

point at a time tn depends only on times t < tn. The derivatives and FTs for the data

in figure 5.1 up to 90K is shown in figure 6.1. A well-defined resonance peak is evident,

becoming less well-defined at the sample is heated.

To confirm that the low-temperature oscillations are magnetic in origin, as opposed

to another photoinduced periodic phenomenon such as strain waves, we measured TRMOKE

dynamics in magnetic fields up to 6T. Figure 6.2 shows the time traces and associated

Fourier transforms for the photoinduced dynamics in various fields. The frequency of the



57

Figure 6.1: Left Panel: Numerical derivatives of TR-MOKE time traces. Right Panel:
Fourier transforms of derivatives.

resonance peak increases with magnetic field as expected for ferromagnetic resonance. The

inset in the right panel of the figure shows ΩFMR as a function of applied magnetic field.

The solid line through the data points corresponds to an anisotropy field |hA| = 7.2 T (for

g = 2) and easy axis direction equal to 30◦ from the film normal at 5K, consistent with

previous determinations of hA based on equilibrium magnetization measurements [44, 62].

The origin of these oscillations is consistent with a sudden change in the direction

of the easy axis in response to the pump pulse. The change in easy axis is due to the

temperature-dependent change in the magneto-crystalline anisotropy axis and is caused

by rapid laser-pulse induced heating [44]. From the thermal analysis in chapter 5, the

perturbation in hA that we observe is consistent with a small rotation (on the order of

1◦). Before photoexcitation, M is oriented parallel to the magnetic anisotropy hA. In

the resulting non-equilibrium state, M and hA are no longer parallel, generating a torque

that induces M to precess at the FMR frequency. In the presence of Gilbert damping, M

spirals towards the new hA, resulting in the damped oscillations of Mz that appear in the

TRMOKE signal.
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Figure 6.2: Left panel: Change in Kerr rotation as a function of time delay following pulsed
photoexcitation at T=5 K, for several values of applied magnetic field ranging up to 6 Tesla.
Right panel: Fourier transforms of signals shown in left panel. Inset: FMR frequency vs.
applied field. The fitted line is consistent with a g factor of 2.
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6.2 Components of Magnetic Response

The TR-MOKE data and Fourier transform show more complicated structures

than a simple resonant response expected from the LLG equation. In addition to the

resonance peak in the Fourier transforms, the data in figures 6.1 and 6.2 show a negative

peak at low frequency, and the derivatives of the time-traces show clear features of non-

oscillatory behavior for times shorter than a picosecond. Although the spectra in figure

6.2 are clearly associated with a resonant response, the negative peak in the FT line-

shapes is not consistent with a pure resonant response which gives a positive-definite Fourier

transform. This negative peak is always present in the data, and is not the result of errors

in assigning the zero-time of the time trace, which determines the phase of the FT.

In order to determine the physical processes that lead to these features of the FT

line-shapes, we calculate the line-shapes while tuning the variables of the magnetic response

- the sample temperature, external magnetic field, and the laser intensity. The features of

interest are the resonant peak (RP) centered at ν ≈ 220 GHz, the low-frequency negative

peak (NP) at ν ≈ 40 GHz, and the wide, high-frequency peak (HFP) at ν ≈ 500 GHz.

The FTs as a function of temperature are plotted in the right panel of figure 6.1, and the

magnitudes of the different peaks vs. temperature are plotted in the left panel of figure

6.3. The amplitude of NP and RP both change dramatically with temperature, as does the

frequency at the peaks. As shown in figure 6.3, the changes in the magnitudes of these two

peaks show a similar dependence on temperature. The temperature dependence of the size

of the HFP is much weaker.

The right panel of figure 6.3 shows the dependence of the FT line-shapes on pump

intensity. The magnitude of the line-shapes are normalized by the pump intensity. The

HFP appears constant with laser intensity on this plot, indicating a linear dependence of

the HFP on intensity. The other two peaks both shift lower in frequency with decreasing

pump intensity, while the magnitude of the RP shows a sub-linear response to laser intensity,

as indicated by an increase of the normalized value.

The temperature and intensity dependence of the Fourier line shapes suggest that

the NP and RP are part of the same phenomenon, while the HFP has a different origin.

Additionally, the magnetic field data plotted in figure 6.2 suggests that the RP is magnetic

in origin. Hence the NP and the RP both appear to be the result of precessional dynamics.

The properties of the HFP are consistent with a photoinduced change in reflectivity due to

band-filling, described in section 4.6.
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Figure 6.3: Left panel: Magnitudes of Fourier peaks as a function of temperature. Right
panel: FT line-shapes normalized by pump intensity for several values of pump intensity at
5 K.

6.3 Modeling with linear response theory

To describe the magnetic response, the time-dependent magnetization is modeled

using linear response theory:

ΔMi (t) =
∫ ∞

0
χij (τ)Δhj

A (t − τ) dτ. (6.3)

In this equation, χij is the susceptibility and Δhj
A is the change in anisotropy direction. By

Fourier transforming the magnetic response, the convolution between χ and ΔhA becomes

a simple product of the individual Fourier transforms. Since the anisotropy direction is

rotation as a function of temperature, we take a coordinate system such that χij represents

the transverse susceptibility.

In the simple LLG case, ΔhA is a step function at t = 0, and the functional form

of the response is determined by the susceptibility, χ(ω) given by[33, 65]:

χ(ω) =
χ(0)

ω − ω0 + iαω0
. (6.4)

This function is peaked about the resonant frequency ω0, with a peak width given by the

damping parameter α. As discussed in the previous section, the resonance peak and low-
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frequency negative peak are part of the same effect, so a simple peaked function described

by equation (6.4) is insufficient to describe the dynamics.

6.3.1 The Overshoot Model

The TRMOKE signal is described well by modeling the anisotropy direction as

time-dependent after t=0, instead of assuming a simple step function. We model the time-

dependence of the anisotropy direction, Δh(t), as a step function plus a decaying expo-

nential, such that the anisotropy direction ’overshoots’ the higher-temperature equilibrium

direction. The time-dependence of the anisotropy direction is given by:

Δh(t) = Θ(t)(φ0 + φ1e
−t/τD). (6.5)

We consider the laser heating to be nearly instantaneous, and model the onset of the change

in anisotropy with a step function at t=0, given by Θ(t). In further analysis we will ignore

this function and implicitly assume a time-domain of t > 0. The direction of the easy axis

at t=0 is given by the value φ0 + φ1. The easy axis then asymptotically approaches the

value φ0 with a decay time given by τD. The magnitude of the step function φ0 represents

the size of the equilibrium change in anisotropy, and the value φ1 represents the amount by

which the anisotropy direction overshoots the equilibrium.

The Fourier transform of (6.5) is

φ(ω) =
φ0

iω
+

φ1

1/τ − iω
, (6.6)

. and the total response is then given by:

φ(ω) =
χ(0)φ0

iω
(

1
ω − ω0 + iαω

)(1 +
φ1

φ0

iωτ

1 − iωτ
). (6.7)

Fits to the data using this model in the time domain are shown in the left panel

of figure 6.4. The green line represents a response calculated using the LLG equation with

a step-function change in anisotropy. Including the overshooting anisotropy dynamics has

clearly improved the fit to the data. The blue line represents the difference between the

data and the fit. With the exception of this short pulse near t=0, the response is now well

described by the LLG equation with an overshooting anisotropy.

In the frequency domain, the allowance of an overshoot in the anisotropy also

clearly resolves the line-shape into two components, with the resonant peak and sign change

at low frequency both part of the magnetic response. The Fourier transform of the fast pulse
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Figure 6.4: Left panel: Fit to the overshoot model in the time domain. The black line
represents the data at 40K, and the red line is the fit. The blue line is the difference
between the two. The green line represents a plot of the LLG equation with appropriate
frequency and damping, with the amplitude set by the magnitude of the data at t = 20 ps.
Right panel: Fit and data in the frequency domain

in the time-domain accurately describes the high-frequency shoulder seen in the frequency

domain.

6.3.2 Longitudinal Changes in Magnetization

The TR-MOKE signals and Fourier line-shapes contain contributions from optical

effects, as well as longitudinal and transverse changes in the magnetization in response to

a laser pulse. In the previous section we used a time-dependent hA to model deviations of

the data from a resonant response line-shape described by equation (6.4), while a seemingly

simpler explanation for these deviations would be the addition of a longitudinal change in

M . However, the interpretation of the data in this description gives unphysical results for

the laser induced change in the magnitude of M .

The longitudinal and transverse contributions to changes in the z-component of

M are additive:

δMz = δ(Mcos(φ))

= (δM)cos(φ) + M(δcos(φ)).
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The longitudinal response, δM , accounts for ultrafast demagnetization effects as well as

thermal demagnetization effects. We can model the longitudinal change with a similar

function to the one we used to model the overshooting anisotropy:

ΔM(t) = ΔMNe−t/τ + ΔMT . (6.8)

Here ΔMT + ΔMN , represents the change in magnitude of M due to ultrafast demag-

netization, and the size of the thermal demagnetization is given by ΔMT . The magnetic

thermalization time is represented by τ .

The transverse response described by the LLG equation will lead to an additional

thermal change in the z-projection of M . The line-shape of the LLG response is governed

by the precession frequency ω0 and the damping parameter, α. These parameters set the

relative size of the oscillations to the final equilibrium value of Mz. The line-shape is then

scaled by (δcos(φ)).

A plot of the LLG response with a frequency and damping parameter that match

the data is plotted as a green line in figure 6.4. Here, the line-shape has been scaled to match

the final equilibrium value of the data. For this amplitude of the LLG response, the size

of the oscillations are too small to describe the data. The amplitude of the LLG response

would therefore have to increase to fit the oscillations, also increasing the LLG contribution

to the final equilibrium value of Mz to value higher than that of the data. To describe

the data by including a longitudinal change in M would then require that ΔMT < 0,

meaning the magnitude of M would have to increase in response to the thermal heating.

This is an unphysical result, and therefore a model with a simple sum of transverse and

longitudinal components cannot accurately describe the magnetization dynamics underlying

the TRMOKE signal.

6.4 Parameters of the Dynamics

By including overshoot dynamics in Δh(t), we are able to distinguish stimulus

from response in the observed TRMOKE signals. From the LLG equation, we can extract

the two parameters that describe the response: the ferromagnetic resonant frequency, ν0,

and the damping parameter, α; and the two parameters that describe the stimulus: the

relative size of the overshoot, φ1/φ0 and the overshoot decay time, τD.

The temperature dependence of the stimulus and response parameters is plotted

in figure 6.5. The temperature dependence of the FMR frequency is very weak, with ΩFMR
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Figure 6.5: Temperature dependence of (a) FMR frequency (triangles) and damping param-
eter (circles), (b) overshoot decay time, (c) ratio of overshoot amplitude to step-response
amplitude (φ1/φ0), and (d) σxy (adapted from [64])

deviating from 250 GHz by only about 5 % over the temperature range in which oscillations

are resolved. The Gilbert damping parameter α is of order unity at all temperatures, a

value that is approximately a factor 102 larger than found in transition metal ferromagnets.

Over the same temperature range the decay of the easy axis overshoot varies from about

2 to 4 ps. The dynamical processes that characterize the response all occur in strongly

overlapping time scales; the period and damping time of the FMR, and the decay time of

the hA overshoot, are each in the 2-5 ps range.

6.4.1 Link to the Anomalous Hall Effect

While ΩFMR is essentially independent of temperature, the parameters α, φ1/φ0

and τ exhibit structure in their temperature dependence near 40 K. This structure is remi-

niscent of the temperature dependence of the anomalous Hall coefficient σxy that has been

observed in thin films of SRO [48, 27, 64]. For comparison, figure 6.5d reproduces σxy(T )

reported in Ref. [64]. Not only does the low-temperature structure of the parameters look

similar to that of σxy, but the temperature at which σxy changes signs, T ∼ 110K, is the

same as the temperature at which the TRMOKE signal crosses over from a decreasing decay

to a rise at short times, expressed by the zero-crossing of φ1/φ0. The similarity between

the temperature-dependence of AHE and parameters related to FMR suggests a possible
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correlation between the two types of response functions.

Recently Nagaosa and Onoda [73] have discussed the possibility of a connection be-

tween collective spin dynamics at zero wave-vector (FMR) and the off-diagonal conductivity

(AHE). At a basic level, both effects are nonzero only in the presence of both SO coupling

and time-reversal breaking. A more quantitative connection is suggested by comparison of

the Kubo formulas for the two corresponding functions. The off-diagonal conductivity from

section 2.2.2 can be rewritten in the form [74],

σxy(ω) = i
∑

m,n,k

Jx
mn(k)Jy

nm(k)fmn(k)
εmn(k) [εmn(k)− ω − iγ]

, (6.9)

where J i
mn(k) is current matrix element between quasiparticle states with band indices

n, m and wave-vector k. The functions εmn(k) and fmn(k) are the energy and occupation

difference, respectively, between such states.

FMR is related to the dynamic magnetic susceptibility, which can be calculated

within the Kubo formalism by calculating the expectation value of the spin operator instead

of the current operator and using a vector potential A that is appropriate for a magnetic

field instead of an electric field [56]:

χij(ω) =
∑

m,n,k

Si
mn(k)Sj

nm(k)fmn(k)
εmn(k) − ω − iγ

, (6.10)

where Si
mn is the matrix element of the spin operator. Again, the indices represent the band

index, and not the spin index, since in the presence of spin-orbit coupling, spin is not a good

quantum number. This denominator of this expression is only linear in the band energy

difference, as opposed to quadratic for the case of the susceptibility calculation, equation

(6.9). The mathematical reason for the extra factor of 1/εmn in the calculation of σxy is the

inclusion of an extra factor of the vector potential in the current operator for the calculation

of 〈J〉 that isn’t present in the calculation of 〈S〉 [61].

In general, σxy(ω) and χxy(ω) are unrelated, as they involve current and spin

matrix elements respectively. However, it has been proposed that in several ferromagnets,

including SRO, the k -space sums in equations (6.9) and (6.10) are dominated by a small

number of band-crossings near the Fermi surface [27, 95]. If the matrix elements Si
mn and

J i
mn vary sufficiently smoothly with k, then σxy(ω) and χij(ω) may both show features

determined by the position of the chemical potential relative to the energy at which the

bands cross.
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Figure 6.6: Left: Damping parameter as a function of sample thickness. Right: Fourier
transforms of 5, 10, and 50 nm samples.

Furthermore, as shown in equation (6.4), the Gilbert damping is related to the

zero-frequency limit of χij(ω):

α =
ΩFMR

χij(0)
∂

∂ω
lim
ω→0

Im χij(ω). (6.11)

With the anomalous hall conductivity equal to σxy(ω = 0), the band-crossing picture sug-

gests a possible correlation between α(T ) and σxy(T ).

6.5 Magnetic Dynamics and Sample Thickness

The magnetization dynamics of samples with different film thicknesses indicate an

increase in damping for thinner samples. Figure 6.6 shows the FT line-shapes for the thin

samples (L < 50 nm), and the damping parameter for all thicknesses is plotted in right

right panel of the figure.

While there is some inconsistency in the properties of samples grown in different

batches, the trends seen in this data do not seem to correspond with the time of growth.

The 50 nm and 200 nm were grown first, followed by the 10 nm and 124 nm samples. All

of these were grown by pulsed laser deposition. The 5 nm was grown by molecular beam

epitaxy. Additionally, shifts in the center frequency can occur if the samples are differently

positioned relative to the permanent magnet. Again, this shift in damping parameter is

uncorrelated with sample position.

The shift in damping is consistent with a non-uniformly strained sample. As the
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Figure 6.7: Left: TR-MOKE signal at t = 25 ps on SRO single crystal for different pump
attenuations. Right: Representative TR-MOKE time-traces recorder with ND = 1.04.

sample gets thinner, the TR-MOKE measurement probes the magnetization closer to the

SRO/STO interface, and therefore probes more highly-strained SRO. This increase strain

near creates slight changes in damping in the SRO layers within some proximity to the

interface. The data suggests that the SRO film is relaxed around 125 nm.

The FT line-shapes show no evidence of standing spin-waves at any thickness.

Standing spin-waves require a non-uniform excitation of the sample, and the data indi-

cates that through relatively fast thermal diffusion, the sample is excited roughly uniformly

throughout the depth of the film.

6.6 Magnetic Dynamics of a Single Crystal

In addition to thin film SRO on STO substrates, we studied an SRO single crystal

grown by a flux-growth method. The crystal was approximately 1 mm square, with multiple

flat, reflective facets, and was mounted with grease to the sample holder. A plot of the long-

lived Kerr signal for different pump pulse attenuations is shown in the left panel of figure

6.7 (intensity = I0×10−ND), with representative high-temperature TR-MOKE data shown

in the right panel. At low intensity, the long-lived signal shows the same temperature

dependence near TC as seen in thin films. At higher pump intensities, the peak that we

associate with the magnetic transition shifts down to T ∼ 50 K. At low temperatures, the

size of the Kerr signal does not show the strong temperature dependence seen in the thin
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Figure 6.8: FT line shapes for a 50 nm SRO film (black), and a 50 nm SRO film with a 10
nm BFO overlayer (red).

films, and no oscillations are observed on the TR-MOKE signal. The large shift in the effect

at TC with the increase in pump intensity indicates a large amount of laser-heating, either

due to the large size and low thermal conductivity of the crystal, or poor thermal contact

between the crystal and the sample mount.

6.7 SRO/Oxide Bilayers

There is interest in SRO from a materials engineering view-point due to the close

lattice-matching between SRO and other oxides. This makes it a strong candidate for the

study of interfacial magnetic interaction between oxide layers. To this end, we’ve studied

magnetization dynamics on antiferromagnetic BiFeO3/SRO bilayers.

BiFeO3 (BFO) has attracted attention as a room-temperature multiferroic, which

is antiferromagnetic with a Neél temperature of 643 K and ferroelectric with a transition

temperature of 1103 K, with a possibility of coupling between the antiferromagnetism and

electric polarization [81, 94]. The metallic SRO layer allows for compensation of the BFO

ferroelectricity, reducing the number of possible ferroelectric domains - the dipole aligns

itself with the positive end oriented toward the SRO.

The BFO layer has either four or two ferroelectric domains, depending on the

growth. The sample-plane projections of the ferroelectric vectors in these domains are

along the 45◦ directions relative to the sides of the 5 mm by 5mm square sample, and we

measure the BFO films to be birefringent along these 45◦ axes. When MOKE data is taken
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with the light polarization parallel with the side of the sample (45◦ to the birefringence

axes), we see the signal shift from polarization rotation to a change in ellipticity. This shift

in the phase of the signal depends on the BFO layer thickness. To reduce the effects of the

birefringence, MOKE data is taken with laser polarization at 45◦ relative to the sample,

along one of the birefringence axes.

The antiferromagnetic ordering direction is thought to lie in the plane perpendic-

ular to the ferroelectric vector, with possible canting of the antiferromagnetism creating a

small magnetic moment due to a Dzyaloshinskii-Moriya interaction [22]. In principle the

presence of two ferroelectric domains could cause an ordering of the antiferromagnetic along

the line of intersection between the two perpendicular planes, creating a favored magnetic

direction in the BFO.

Unfortunately, no evidence of coupling has yet to be seen in the SRO magnetization

dynamics due the BFO magnetization. Figure 6.7 shows the FT line-shapes for an SRO

sample and for a BFO/SRO bilayer sample. The data exhibit a slight difference in the

high-frequency response but minimal difference in line-shape associated with the magnetic

precession.

More promising results have been seen in continuing work being carried out by

Colleen Kantner in the study of superconducting YBa2C3O7/SRO bilayers. In samples

with YBa2C3O7 (YBCO) layers in which the oxygen content has been altered such that

the film is non-superconducting at all temperatures, no change in dynamics is seen. Bilayer

systems with a superconducting YBCO film show a reduction in the size of the quasi-

equilibrium change in the magnetization when the sample is cooled through the YBCO

superconducting transition temperature, indicating a change in the SRO magnetization

due to the superconducting state.
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Chapter 7

Summary

This thesis has focused on the ultrafast optical measurement and analysis of mag-

netization dynamics in SRO thin films. In spite of the large amount of research that has

been done on this material, our results are the first characterization of the ferromagnetic

resonance, as ultrafast optics allow us to measure the magnetic resonance at a frequency

beyond what can be measured from a standard FMR experiment.

The analysis of the TR-MOKE signal can be divided cleanly between two different

time regimes. At times longer than 20 ps, the precessional dynamics have damped out, and

the different thermal baths can be regarded as being at thermal equilibrium. For time-scales

shorter than 20 ps, the signal is dominated by the motion of the magnetization vector in

response to the laser-induced reorientation of the easy axis.

If the long-time signal represents a thermal equilibrium state in the sample, the

energy deposited by the pump pulse is converted into thermal energy, giving a well-defined

relationship between the pump energy and rise in temperature. We explore this relation-

ship by varying the pump power and tuning the substrate temperature, and we find the

relationship to be consistent with an interpretation of thermal excitation. Analysis of the

induced change in temperature provides evidence of a magnon-dominated thermal energy

at higher temperatures than in elemental ferromagnets. This result suggests relatively weak

spin-exchange coupling and is consistent with the low magnetic transition temperature mea-

sured in SRO.

The transport of the deposited laser energy out of the film is limited by the

film/substrate interface. The electrons and magnons are confined to the film, and only

the phonons can carry thermal energy across the interface. Phonon reflection and scat-

tering are commonly proposed descriptions for thermal boundary resistance, however the
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temperature dependence of the thermal decay times suggest that this description is not

accurate for SRO/STO films. For a phonon mismatch boundary resistance the decay time

should have a strong T-dependence due to differences in the T-depedence of thermally oc-

cupied states for magnons, which dominate the sample thermal energy, and phonons, which

transfer the energy to the substrate.

Additional boundary resistance exists due to non-equilibrium between the phonons

and electron/magnon fluid at the interface, that occurs as a result of different boundary

conditions for the fluids at the interface. This effective resistance is distinguishable from

a phonon mismatch resistance only by the finite region over which the phonon tempera-

ture drop occurs, and has not been observed experimentally. The weak T-dependence of

the thermal decay times is consistent with a model in which the effective resistance from

phonon/electron non-equilibrium is limiting heat transfer into the substrate.

On shorter time-scales, the magnetization dynamics are well described by the

LLG equation, combined with a time-dependent change in the anisotropy direction after

laser excitation. The shape of the TR-MOKE signal is not consistent with a simple LLG

response or an LLG response combined with a longitudinal change in the magnetization.

From modeling of the magnetic dynamics, we are able to extract the parameters that

describe both the precession of the magnetization as well as the easy axis motion. The size

of the easy-axis overshoot shows a similar temperature dependence to that observed in the

anomalous Hall conductivity. We propose that this similarity is a result of near-degeneracy

points in the band structure that dominate both the anomalous Hall conductivity and the

magnetic susceptibility.
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