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I. INTRODUCTION

Relativistic hydrodynamics has wide applications in
a variety of physical phenomena, ranging from the
largest scales such as in cosmology and astrophysics[1]
to the smallest scales such as in the relativistic nuclear
collisions[2, 3]. For an introduction on the general for-
malism, see e.g. [4–7].

Recently there has been a remarkably successful ap-
plication of Relativistic Ideal Hydrodynamics (RIHD) to
the description of the space-time evolution of the hot
dense QCD matter created in the Relativistic Heavy Ion
Collider (RHIC) experiments. In the collisions of two
relativistically moving heavy nuclei, a lot of energy is
deposited in a small volume which soon creates an equi-
librated system of high energy density with special ini-
tial geometry: extremely thin in the beam direction ẑ
while in the transverse plane x̂ − ŷ it is of the size of
the nuclei. The space-time evolution at RHIC is charac-
terized by fast longitudinal expansion (longitudinal flow)
and strong transverse expansion (radial and elliptic flow).
In non-central collisions the created matter on the trans-
verse plane x̂− ŷ is initially anisotropic: such initial spa-
tial anisotropy leads to different pressure gradients and
thus different accelerations of the flow along different az-
imuthal directions. The resulting anisotropic transverse
flow velocity eventually translates into the anisotropic
azimuthal distribution of the final particle yield which is
represented by the experimental observable called elliptic
flow v2 — one of the milestone measurements at RHIC
[8]. The RIHD model calculations[9–11] (and more re-
cently its extension to include viscous corrections[12]),
performed with realistic initial conditions and Equation
of State (E.o.S) for RHIC, are able to reproduce the ellip-
tic flow data at low-to-intermediate transverse momenta
for almost all particle species and for various centralities,
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beam energies and colliding nuclei. These achievements
of RIHD have been the basis for the RHIC discovery that
the matter being created is a strongly-coupled nearly-
perfect fluid[13–16] with extremely short mean free path.
It has been suggested [17–21] that the microscopic origin
could be due to the strong scattering via Lorentz force
between the electric and magnetic degrees of freedom co-
existing in the created matter, with the magnetic ones
ultimately connected with the mechanism of QCD de-
confinement transition.

The great success of RIHD at RHIC has also inspired
considerable interest in the formal aspects of relativis-
tic hydrodynamics, particularly in analytical solutions of
the RIHD equations with an emphasis on possible appli-
cation to RHIC, see e.g. [22–29]. The idea to use ex-
act simple RIHD solutions to describe the multi-particle
production in high energy collisions dated back to Lan-
dau and Khalatnikov [30]. An important solution came
from Hwa and Bjorken’s works[31, 32], i.e. the rapid-
ity boost invariant (1+1)D solution which is widely used
to describe the longitudinal expansion at RHIC. Many
of the above mentioned recent works [23–26] concentrate
on finding (1+1)D solutions that give an alternative de-
scription of the longitudinal expansion and a more real-
istic (non-boost-invariant) multiplicity distribution over
rapidity.

Despite the progress in solving RIHD in (1+1)D, it is
quite difficult to solve them in higher dimensions. To
develop methods and find solutions in a realistic (1+3)D
setting with potential application for RHIC remains an
attracting but demanding task. In this work, we will
develop a new method to find solutions in (1+3)D with
both longitudinal and transverse flows. In Section III,
we will show how the method can reduce the hydrody-
namics equations to a single constraint equation for the
transverse velocity field only. Using the derived equation,
we will find all solutions with power-law dependence on
proper time and transverse radius in Section IV. The
physical relevance of our results to RHIC and possible
generalizations will be discussed in Section V. We will
also include a brief introduction of RIHD in Section II
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and an illustration of the method in (1+1)D in the Ap-
pendices B and C.

II. REVIEW OF RELATIVISTIC IDEAL
HYDRODYNAMICS IN (1+3)D

The hydrodynamics equations in general are simply
the conservation laws for energy and momenta, i.e.

T mn
; n = 0 , (1)

with m, n running over 3 + 1 space-time indices. Fol-
lowing usual convention (in e.g. [4, 5]), the subscript
“; n” denotes the covariant derivative Dn while a sub-
script “, n” is for ordinary derivative ∂n. Below we will
introduce curved coordinates in order to simplify the hy-
drodynamics equations. Therefore, we use the general
form for the hydrodynamics equations which involves co-
variant derivatives, see e.g. [4, 5]. Throughout this paper
we discuss only hydrodynamics without any conserved
charge, leaving the situation with conserved currents for
further investigation.

For relativistic ideal hydrodynamics, the stress tensor
is given by

T mn = (ε + p) umun − p gmn , (2)

with ε, p the energy density and pressure defined in the
flowing matter’s local rest frame (L.R.F) which by defi-
nition are Lorentz scalars. The flow field um(x) is con-
strained by um · um = 1. In the usual (t, ~x) coordinates

one can express um(x) as γ(1, ~v) with γ = 1/
√

1 − ~v2 and
~v = d~x/dt.

We further need to specify an equation of state (E.o.S)
relating the energy density ε and the pressure p of the
underlying fluid. Here we employ a simple, linear E.o.S,
which is typically used in analytic studies of RIHD [23–
26, 31, 32]:

p = ν(ε + p) . (3)

The above means ε = 1−ν
ν p implying a speed of sound

cs =
√

∂p
∂ε =

√

ν
1−ν , and, in order to assure cs ≤ 1, we

require 0 < ν ≤ 1/2. We note that a solution obtained
with the above E.o.S (3) remains valid in the presence
of a nonzero bag constant B: in such case, the R.H.S. of
Eq.(3) i.e. ε + p remains unchanged with p → p−B and
ε → ε + B, and thus Eq.(3) is modified only by adding a
constant to its L.H.S.

The hydrodynamics equations together with the E.o.S
thus form a complete set of 5 equations for the 5 field
variables: ε(x), p(x) and the three independent compo-
nents of um(x).

A. Hydro Equations in Curved Coordinates

When formulating hydrodynamics for application to
e.g. the relativistic heavy ion collisions, it is often useful

to use alternative coordinate systems which are curved.
For our purpose of studying the (1+3)D solutions with
longitudinal and transverse flow, we will use a coordinate
system of (τ, η, ρ, φ): i.e. the proper time, the spatial
(longitudinal) rapidity, the transverse radius and the az-
imuthal angle. They are related to the usual (t, x, y, z)
in the following way:

τ =
√

t2 − z2 , η =
1

2
ln

t + z

t − z
,

ρ =
√

x2 + y2 , φ =
1

2i
ln

x + y · i
x − y · i , (4)

and inversely

t = τ cosh η , z = τ sinh η ,

x = ρ cosφ , y = ρ sin φ . (5)

The velocity field um in these coordinates is related to
uµ = γ(1, ~v) in flat coordinates (t, ~x) via

uτ = γ(cosh η − vz sinh η) , uη =
γ

τ
(vz cosh η − sinh η) ,

uρ = γ(vx cosφ + vy sin φ) , uφ =
γ

ρ
(vy cosφ − vx sin φ).

(6)

The metric tensor associated with the (τ, η, ρ, φ) coor-
dinates is

gmn = Diag(1,−τ2,−1,−ρ2) ,

gmn = Diag(1,− 1

τ2
,−1,− 1

ρ2
) . (7)

For the covariant derivatives we will need the Affine
connections Γj

mn = gjkΓkmn = gjk 1
2 (gkm , n + gkn , m −

gmn , k). In our case, the non-vanishing connections are:

Γτ
ηη = τ , Γη

ητ = Γη
τη =

1

τ
,

Γρ
φφ = −ρ , Γφ

ρφ = Γφ
φρ =

1

ρ
. (8)

We also give the explicit form of covariant derivatives in
the present coordinates for an arbitrary contra-variant-
vector Ak (i.e. with upper indices k = τ, η, ρ, φ) :

Ak
; τ = Ak

, τ + Γk
τ iA

i = Ak
, τ +

1

τ
δk
η Aη ,

Ak
; η = Ak

, η + Γk
η iA

i = Ak
, η + τ δk

τ Aη +
1

τ
δk
η Aτ ,

Ak
; ρ = Ak

, ρ + Γk
ρ iA

i = Ak
, ρ +

1

ρ
δk
φ Aφ ,

Ak
; φ = Ak

, φ + Γk
φ iA

i = Ak
, φ − ρ δk

ρ Aφ +
1

ρ
δk
φ Aρ .

(9)

Inserting the above Eqs.(2,6,7) into the general hydrody-
namics equations (1) and making use of Eq.(8,9), one
obtains the hydrodynamics equations explicitly in the
curved coordinates (τ, η, ρ, φ).
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B. Some Known Simple Exact Solutions

We now recall some known simple exact solutions that
are pertinent for our approach.

One of the most famous examples is the so-called Hwa-
Bjorken solution [31, 32] which is essentially the Hubble
expansion in (1+1)D. The pressure and velocity fields of
this solution are given by

pBj. =
constant

τ1/(1−ν)
,

uBj. = (1, 0, 0, 0) . (10)

It is more transparent to look at the components of ~v in
flat coordinates, which are simply vz = tanh η = z

t , vx =
vy = 0.

A generalization of the Hwa-Bjorken solution to radial
Hubble flow in (1+3)D is straightforward. The pressure
and velocity fields are

pHu. =
constant

(τ2 − ρ2)
3

2(1−ν)

,

uHu. = γ(
1

cosh η
, 0,

ρ

τ
, 0) ,

γ =
cosh η

√

1− (ρ/τ)2 cosh2 η
.

(11)

with the domain of validity being ρ < τ . In flat co-
ordinates the velocity fields are given in simple form:
~v = ~x/t = (x/t, y/t, z/t).

Further generalization of the spherically symmetric
Hubble flow to arbitrary (1+d)D has been done in [23].
An ellipsoidally expanding hydrodynamical solution has
also been discussed (see the first paper in [22]). There
have also been study of adding radial flow to a longitu-
dinal Bjorken profile, see e.g. [33].

III. THE NEW REDUCTION METHOD

In this section, we use a new reduction method to
find solutions for (1+3)D RIHD equations. The general
idea is to first embed known solutions in lower dimen-
sions which automatically solve 2 out of the total of 4-
component hydrodynamics equations, and then reduce
the remaining 2 equations into a single equation for the
velocity field only. As usual, one starts with a certain
ansatz for the flow velocity field: in our case we will
use an ansatz with built-in longitudinal and transverse
radial flow, aiming at possible application for RHIC. It
would be even more interesting to include transverse el-

liptic flow which requires a suitable curved coordinates
(like certain hyperbolic coordinates) other than the one
used here. However generally in those cases, more Affine
connections are non-vanishing, which makes the reduc-
tion method discussed below much more involved: we
will leave this for future investigation.

A. Including Longitudinal and Transverse Flow

We first embed the boost-invariant longitudinal flow as
many numerical hydrodynamics calculations do, which is
a suitable approach for RHIC related phenomenology. To
do that, we simply set vz = z/t = tanh η, i.e. uη = 0.

Next we include the transverse radial flow which is
isotropic in the transverse plane. Radial flow is substan-
tial and important at RHIC. To do so, we introduce the
radial flow field vρ and set the flat-coordinate transverse
flow fields to be vx = vρ cosφ and vy = vρ sin φ, which
implies for the curved coordinates uρ = γvρ and uφ = 0
with the latter meaning an axially symmetric velocity
field. We note that this ansatz goes beyond a simple
change to cylindrical coordinates, since we require that
uφ = 0 which considerably simplifies the hydrodynamics
equations.

To summarize, in order to describe a situation with
both longitudinal flow and transverse radial flow we have
made the following ansatz for the flow fields um in the
coordinates (τ, η, ρ, φ):

um = γ̄ ( 1, 0, v̄ρ, 0) , (12)

v̄ρ ≡ vρ cosh η , γ̄ ≡ 1/
√

1 − v̄2
ρ .

Note that we need to require v̄ρ ≤ 1.

B. The Equation for Transverse Velocity

With the flow fields given in (12), we can now explicitly
express the stress tensor components. The non-vanishing
ones are given below:

T ττ = γ̄2(ε + p) − p = (
γ̄2

ν
− 1)p , (13)

T ρρ = γ̄2v̄2
ρ(ε + p) + p = (

γ̄2v̄2
ρ

ν
+ 1)p , (14)

T τρ = γ̄2v̄ρ(ε + p) =
γ̄2v̄ρ

ν
p , (15)

T ηη =
p

τ2
, T φφ =

p

ρ2
. (16)

For the second equalities in each of the first three lines
we have used the E.o.S (3) to substitute ε + p by p/ν.

With the above expressions and using (8)(9), the hy-
drodynamics equations (1) then become

T τλ
;λ = T ττ

,τ +
T ττ

τ
+

p

τ
+ T τρ

,ρ +
T τρ

ρ
= 0,(17)

T ηλ
; λ =

1

τ2
p , η = 0 , (18)

T ρλ
;λ = T ρρ

,ρ +
T ρρ

ρ
− p

ρ
+ T τρ

,τ +
T τρ

τ
= 0, (19)

T φλ
;λ =

1

ρ2
p,φ = 0 . (20)
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The two equations involving derivatives over η and φ are
trivially solved by setting p(x) = p(τ, ρ) (and the same
for energy density ε(τ, ρ) due to the E.o.S) and accord-
ingly v̄ρ(x) = v̄ρ(τ, ρ). We note, that the simple form
of Eqs.(18,20), are a direct consequence of the vanishing
components uη = uφ = 0 in the flow field ansatz, Eq.(12).

Finally we introduce a combined field variable K de-
fined as

K ≡ T ττ + p

(ρτ)
=

γ̄2p

νρτ
→ p =

νρτ

γ̄2
K . (21)

We then substitute the pressure p in the equations (17)
and (19) and obtain two equations for the fields K and
v̄ρ, which can be expressed as

Da · K, τ + Db · K, ρ = D1 · K , (22)

Db · K, τ + Dc · K, ρ = D2 · K . (23)

The coefficients Da, Db, Dc, D1, D2 are given by:

Da = (1 − ν) + νv̄2
ρ ,

Db = v̄ρ ,

Dc = ν + (1 − ν)v̄2
ρ ,

D1 = −2νv̄ρv̄ρ , τ − ν(1 − v̄2
ρ)/τ − v̄ρ , ρ ,

D2 = −2(1− ν)v̄ρv̄ρ , ρ + ν(1 − v̄2
ρ)/ρ − v̄ρ , τ .

(24)

From (22)(23) we obtain

K , τ

K = (ln K) , τ =
DcD1 − DbD2

DaDc − D2
b

≡ F [τ, ρ] ,

K , ρ

K = (ln K) , ρ =
DaD2 − DbD1

DaDc − D2
b

≡ G[τ, ρ] .

(25)

with the functions F ,G given by

F [v̄ρ(τ, ρ)] =
1

ν(1 − ν)(1 − v̄2
ρ)2

×
{

[(1 − ν)v̄2
ρ − ν]v̄ρ , ρ +

[(1 − 2ν2) + 2ν(ν − 1)v̄2
ρ ]v̄ρv̄ρ , τ

−ν[1 − v̄2
ρ ][ν + (1 − ν)v̄2

ρ ]/τ − νv̄ρ[1 − v̄2
ρ]/ρ

}

,(26)

G[v̄ρ(τ, ρ)] =
1

ν(1 − ν)(1 − v̄2
ρ)2

×
{

[(νv̄2
ρ + (ν − 1)]v̄ρ , τ +

[(−1 + 4ν − 2ν2) + 2ν(ν − 1)v̄2
ρ]v̄ρv̄ρ , ρ

+νv̄ρ[1 − v̄2
ρ]/τ + ν[1 − v̄2

ρ][(1 − ν) + νv̄2
ρ ]/ρ

}

.(27)

In (25), the function ln K depends (via v̄ρ) on two
variables τ and ρ, and we have two equations for the two

first order derivatives ∂ ln K
∂τ and ∂ ln K

∂τ . For ln K as a
single function of two variables τ, ρ, the two equations can
be consistent only if the following constraint on second

order derivatives are satisfied ∂2LnK
∂τ∂ρ = ∂2LnK

∂ρ∂τ , i.e.

∂

∂ρ
F [v̄ρ(τ, ρ)] − ∂

∂τ
G[v̄ρ(τ, ρ)] = 0 . (28)

Thus we only need to solve the above single equation
for the velocity field v̄ρ(τ, ρ). Since F ,G already involve
the first derivatives of v̄ρ , τ and v̄ρ , ρ, the reduced ve-
locity equation 28 is a second-order partial differential
equation for the velocity field. As a minor caveat, the
method applies to the case/region in which ln K is at
least second-order differentiable. This reduction method
can be demonstrated in the more explicit case of (1+1)D
hydrodynamics, see Appendices B and C.

Given the above constraints, we can then solve from
(25) the matter field S directly

K = K0 · e
[

∫

τ

τ0
dτ ′F [τ ′,ρ]+

∫

ρ

ρ0
dρ′G[τ,ρ′]

]

, (29)

with K0 being the value at arbitrary reference point
τ0 , ρ0.

Finally let us summarize our approach: after including
into the flow field ansatz the physically desired longitu-
dinal and transverse flows, we have reduced the hydro-
dynamic equations into a single equation (28) involving
ONLY the transverse velocity field v̄ρ, and any solution
to this equation automatically leads to the pressure field
which together with the velocity field forms a solution to
the original hydrodynamics equations:

p = constant × ρτ

κγ̄2
× e

[

∫

τ dτ ′F [τ ′,ρ]+
∫

ρ dρ′G[τ,ρ′]
]

. (30)

C. Examination of the Method

We now examine the correctness of the reduced equa-
tion (28) and the solution (30), using the two known sim-
ple analytic solutions (10) and (11) as both of them are
certain special cases of our embedding with longitudinal
and transverse radial flows.

For the 1-D Bjorken expansion, we have v̄ρ Bj. = 0
which leads to

FBj. =
ν

ν − 1

1

τ
, GBj. =

1

ρ
. (31)

One can easily verify that the above FBj.,GBj. satisfy
the reduced equation (28). Furthermore by inserting
FBj.,GBj. into the solution (30) one finds exactly the
pressure in (10).

For the 3-D Hubble expansion, we have v̄ρ Hu. = ρ/τ
which leads to

FHu. =
3

τ
+

ν − 5/2

1 − ν

2τ

τ2 − ρ2
,

GHu. =
1

ρ
+

ν − 5/2

1 − ν

−2ρ

τ2 − ρ2
. (32)
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Again it can be easily shown that the above FHu.,GHu.

satisfy the reduced equation (28). Furthermore by insert-
ing FHu.,GHu. into the solution (30) one finds exactly the
pressure in (11).

IV. APPLICATION OF THE METHOD

As an example for an application of the embedding-
reduction method in the previous section, we show how
to find all possible solutions with the following ansatz for
the radial velocity field:

v̄ρ = A · τB · ρC , (33)

with A, B, C arbitrary real numbers. We note that the
two known exact solutions we mentioned are special cases
of the above form: the 1-D Bjorken expansion corre-
sponds to A = 0 while the 3-D Hubble expansion cor-
responds to A = 1, B = −1, C = 1. The velocity field
(33), when put into (26)(27), gives the following

F [τ, ρ] =
1 − 2B

τ
− B + (1 − 4B)ν + 2Bν2

ν(1 − ν)
· 1

τ [1 − v̄2
ρ]

−C + (1 − C)ν

ν(1 − ν)
· v̄ρ

ρ[1 − v̄2
ρ]

+
B(1 − 2ν)

ν(1 − ν)
· 1

τ [1 − v̄2
ρ]2

+
C(1 − 2ν)

ν(1 − ν)
· v̄ρ

ρ[1 − v̄2
ρ]2

, (34)

G[τ, ρ] =
−2C − ν/(1 − ν)

ρ
− 2Cν2 − ν − C

ν(1 − ν)
· 1

ρ[1 − v̄2
ρ ]

−B − 1

1 − ν
· v̄ρ

τ [1 − v̄2
ρ]

+
C(2ν − 1)

ν(1 − ν)
· 1

ρ[1 − v̄2
ρ ]2

+
B(2ν − 1)

ν(1 − ν)
· v̄ρ

τ [1 − v̄2
ρ ]2

. (35)

We have used v̄ρ , ρ = v̄ρ ·C/ρ and v̄ρ , τ = v̄ρ ·B/τ . As a
check of the above result, one can verify that by setting
A = 0 they reduce to (31) while by setting A = 1, B =
−1, C = 1 they reduce to (32), as they should.

By inserting (34)(35) into equation (28), one obtains a
rather complicated constraint equation for the constants
A, B, C. However after a lengthy calculations, all pos-
sible combinations of A, B, C solving the equation can
actually be exhausted. Leaving the detailed (and techni-
cal) derivations to the Appendix A, we only list the final
results here:

• Solution-I: A = 0 with 0 < ν ≤ 1
2 and |z| < t

(1-D Bjorken) — see (10);

• Solution-II: A = 1, B = −1, C = 1 with

0 < ν ≤ 1
2 and

√

x2 + y2 + z2 < t (3-D Hubble)
— see (11);

• Solution-III: A = 1, B = 1, C = −1 with 0 < ν ≤
1
2 , |z| < t and

√

x2 + y2 + z2 > t — the solutions
are

vx =
x

t
· t2 − z2

x2 + y2
, vy =

y

t
· t2 − z2

x2 + y2
, vz =

z

t

p =
constant

(τρ)1/(1−ν)(ρ2 − τ2)(1−3ν)/(2ν−2ν2)
; (36)

• Solution-IV: A = 1, B = 1/3, C = −1/3 with

ν = 1/4, |z| < t and
√

x2 + y2 + z2 > t — the
solutions are

vx =
x

t
·
( t2 − z2

x2 + y2

)2/3
, vy =

y

t
·
( t2 − z2

x2 + y2

)2/3
, vz =

z

t

p = constant × (ρ2/3 − τ2/3)2/3

(ρτ)4/3
; (37)

• Solution-V: A = −1, B = −1, C = 1 with ν = 1/2

and
√

x2 + y2 + z2 < t — the solutions are

vx =
−x

t
, vy =

−y

t
, vz =

z

t

p = constant × (τ2 − ρ2) . (38)

It can be verified that these solutions obtained by the
method introduced here are indeed solutions of the origi-
nal hydrodynamics equations (1). One should notice the
different applicable kinematic regions in each of the above
solutions which comes from the constraint that the flow
velocity shall be less than the speed of light. For a de-
tailed discussion about solutions in different regions with
respect to kinematic light cone, see e.g. the Appendices
of [23].

We notice that all the solutions (except the trivial
Solution-I with A = 0) satisfy two features (1) B = −C
and (2) |A| = 1. The first feature may be due to di-
mensional reasons. The second feature, |A| = 1, may be
heuristically understood in the following way. We first
consider the case B = −C < 0, i.e. v̄ρ = A(ρ/τ)C

with C > 0: in this case the solution exists in the re-
gion ρ < τ · |A|−1/C , and in particular ρ = 0 for τ = 0.
Thus for any τ > 0, the flow front which travels with the
speed of light, |v̄ρ| = 1, is located at ρ = τ and hence,
|A| = 1. Next we consider the case B = −C > 0, i.e.
v̄ρ = A(τ/ρ)B with B > 0: in this case the solution ex-

ists in the region ρ > τ ·A1/B with A > 0, separated from
an empty region by the boundary at ρ = τ ·A1/B . At this
boundary, the flow velocity approaches the speed of light
v̄ρ → 1 which enforces the matter density to drop to zero
in order to avoid an infinite T mn (due to the γ-factor in
Eq.(2)). We imagine that at time τ = 0 the matter fills
the whole space and then starts to flow outward, thus the
boundary also moves outward from the origin with the
speed of light v̄ρ = 1. This again implies the boundary
should lie at ρ = τ requiring A = 1.

The above example of the proposed embedding-
reduction method demonstrates the advantage of ana-
lytical solutions. Not only could we find some solutions
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of the specific type (33) but we actually were able to ex-

haust all solutions of this type. This also implies that
for parametrization of flow velocity field, like e.g. in the
blast wave model for RHIC fireball, there are only very
limited choices for the flow profile ansatz.

V. SUMMARY AND DISCUSSION

In summary, a general framework for the analytical
treatment of RIHD equations has been developed. The
method features a separation of longitudinal and trans-
verse expansions, as inspired by RHIC phenomenology.
After the separation, the longitudinal and transverse ra-
dial flows are embedded utilizing lower-dimensional solu-
tions. The remaining equations are found to be reducible
to a single constraint equation for transverse radial flow
velocity field only, which can be solved completely for a
certain ansatz for the velocity field. All solutions with
power-law dependence on proper time and transverse ra-
dius have been found.

We now discuss various possible extensions of the
present approach.

Nontrivial longitudinal embedding: In the current work
the longitudinal flow is embedded with the Hwa-Bjorken
solution. It would be very interesting to try embedding
the newly found (1+1)D solutions in e.g.[23–26] with
more realistic longitudinal expansion for RHIC which
would be useful for studying elliptic flow in the for-
ward/backward rapidity and their correlation[34].

Solutions with non-power-law transverse expansion: It
would also be interesting to a test more nontrivial ansatz
for the embedded transverse flow. For example we know
from numerical calculations of radial flow [35] in central
collisions at RHIC that the radial velocity field may be
parameterized as vρ ≈ f(τ)r/τ with f(τ → 0) → 0 and
f(τ >> 1) → 1. Such parametrization can be cast into
the derived velocity equation (28) to find possible solu-
tions.

Small deformation and elliptic flow: The analytic
treatment of transverse elliptic flow is difficult. One ap-
proximate method may be to introduce a parametrically
small deformation of the matter field (with a certain ec-
centricity parameter ε2) on top of an exact solution with
transverse radial flow and using linearized hydrodynam-
ics equations to investigate possible universal relations
between the finally developed velocity field anisotropy v2

and the initial ε2 [36].
Transverse elliptic flow embedding: Another possibil-

ity to seek exact solutions with transverse elliptic flow
is to use instead of (ρ, φ) certain hyperbolic coordinates
which by definition incorporate elliptic anisotropy, see
Appendix of [37] for an example of such curved coordi-
nates which may be used to develop a similar embedding-
reduction procedure describing transverse elliptic flow.
Another possibility will be combining certain conformal
transformations with hydrodynamics equations to de-
grade the elliptic geometry back to a spherical one.

2D Hubble embedding: In all the previously discussed,
we have chosen to embed (1+1)D Hubble flow for the
(t, z) → (τ, η) part, due to an emphasis on RHIC evolu-
tion. Theoretically, one can also embed a (1+2)D Hubble
flow for the (t, x, y) → (t, ρ, φ) → (τρ, ηρ, φ) part, and can
eventually reduce the equations to a velocity equation
with two variables (τρ, z) in exactly the same manner as
before.
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Appendix A

In this Appendix we give the detailed derivations lead-
ing to the solutions in Section IV with the transverse
velocity ansatz (33).

We first evaluate the derivatives ∂F
∂ρ and ∂G

∂τ with F ,G
given in (34)(35). Again we will make use of v̄ρ , ρ =
v̄ρ ·C/ρ and v̄ρ , τ = v̄ρ ·B/τ for the velocity ansatz (33).

The result for ∂F
∂ρ is

∂F
∂ρ

=
v̄ρ

ν(1 − ν)ρ2τ2(1 − v̄2
ρ)3

×
{

f1ρτ v̄ρ(1 − v̄2
ρ)

+f2τ
2
[

(1 + C)v̄2
ρ + (C − 1)

]

(1 − v̄2
ρ)

+f3τρv̄ρ + f4τ
2
[

(3C + 1)v̄2
ρ + (C − 1)

]

}

=
v̄ρ

ν(1 − ν)ρ2τ2(1 − v̄2
ρ)3

×
{

[−f2(C + 1)] τ2v̄4
ρ

+ [−f1] ρτ v̄3
ρ + [2f2 + f4(3C + 1)] τ2v̄2

ρ

+ [f1 + f3] ρτ v̄ρ + [(f2 + f4)(C − 1)] τ2

}

,(A1)

with coefficients f1,2,3,4 given by

f1 = −[B + (1 − 4B)ν + 2Bν2] × (2C) ,

f2 = −[C + (1 − C)ν] ,

f3 = B × (4C) × (1 − 2ν) ,

f4 = C × (1 − 2ν) . (A2)
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The result for ∂G
∂τ is

∂G
∂τ

=
v̄ρ

ν(1 − ν)ρ2τ2(1 − v̄2
ρ)3

×
{

g1ρτ v̄ρ(1 − v̄2
ρ)

+g2ρ
2
[

(1 + B)v̄2
ρ + (B − 1)

]

(1 − v̄2
ρ)

+g3τρv̄ρ + g4ρ
2
[

(3B + 1)v̄2
ρ + (B − 1)

]

}

=
v̄ρ

ν(1 − ν)ρ2τ2(1 − v̄2
ρ)3

×
{

[−g2(B + 1)] ρ2v̄4
ρ

+ [−g1] ρτ v̄3
ρ + [2g2 + g4(3B + 1)] ρ2v̄2

ρ

+ [g1 + g3] ρτ v̄ρ + [(g2 + g4)(B − 1)] ρ2

}

, (A3)

with coefficients g1,2,3,4 given by

g1 = −[−C − ν + 2Cν2] × (2B) ,

g2 = −[(B − 1)ν] ,

g3 = (4B) × C × (2ν − 1) ,

g4 = B × (2ν − 1) . (A4)

Now combining the results into (28) we obtain the fol-
lowing (with v̄ρ = AτBρC substituted in)

∂F
∂ρ

− ∂G
∂τ

=
v̄ρ

ν(1 − ν)ρ2τ2(1 − v̄2
ρ)3

× I[τ, ρ] = 0 ,

with I[τ, ρ] = [−f2(C + 1)A4]τ4B+2ρ4C

+[g2(B + 1)A4]τ4Bρ4C+2

+[(g1 − f1)A
3]τ3B+1ρ3C+1

+[(2f2 + f4(3C + 1))A2]τ2B+2ρ2C

+[(−2g2 − g4(3B + 1))A2]τ2Bρ2C+2

+[(f1 + f3 − g1 − g3)A]τB+1ρC+1

+[(f2 + f4)(C − 1)]τ2

+[−(g2 + g4)(B − 1)]ρ2 . (A5)

Clearly the solutions are

v̄ρ = 0 , (A6)

or

I[τ, ρ] = 0 . (A7)

The former solution is just the Hwa-Bjorken one. Any
solution with non-vanishing transverse velocity then has
to satisfy the latter condition Eq.(A7), which we now
focus on. Again one can test the correctness of the above
equation by using the 3D Hubble (A = 1, B = −1, C = 1)
solution.

In the Eq.(A7), terms with various powers of τ, ρ (and
only power terms) appear in I[τ, ρ]: to make all of them,
either mutually cancel (among terms with exactly the
same τ, ρ powers) or vanish by respective coefficients, to
eventually zero is quite nontrivial. A thorough sorting of
the sequences of τ, ρ powers can exhaust all possibilities
to satisfy the algebraic equation (A5).

To see how this actually works, we give one concrete
example. Let’s consider the case when B > 0 and C 6= 0:
this implies that for the exponents of τ we have 4B +
2 > 4B > 2B, 4B + 2 > 3B + 1 > B + 1, 4B + 2 >
2B + 2 > 2B, 2B + 2 > 2 and 2B + 2 > B + 1. So the
term [−f2(C + 1)A4]τ4B+2ρ4C in Eq.(A5) can NOT be
cancelled by any other one and has to vanish by itself:
this leads to

f2(C + 1)A4 = 0 , (A8)

which in turn gives three possibilities f2 = 0 or C = −1
or A = 0. In this example we follow C = −1 (other
choices lead to other solutions). With C = −1 we notice
again that the term [−(g2 + g4)(B − 1)]ρ2 can NOT by
cancelled by any other remaining terms and thus shall
vanish by itself: this leads to

−(g2 + g4)(B − 1) = 0 , (A9)

which again has two possibilities B = 1 or g2 + g4 = 0.
Now we choose to follow B = 1: with this choice the
remaining terms are significantly simplified and finally
lead to two equations about the coefficients:

2g2A
4 + (g1 − f1)A

3 + 2(f2 − f4)A
2 = 0 ,

−2(g2 + 2g4)A
2 + (f1 + f3 − g1 − g3)A

−2(f2 + f4) = 0 .(A10)

It can then be verified that the only solution is A = 1 for
arbitrary ν.

Of course there are many but finite number of combi-
nations that one can follow to check one by one. Note
not all possibilities appearing initially can finally lead to
a solution: there are only four variables A, B, C, ν and in
most cases it turns out contradiction occurs at the end
which means no solution. After a tedious examination
we have found all possible solutions as listed in Section
IV, and there is no more solution of the power law ansatz
type as in (33).

Appendix B

In this Appendix we use (1+1)D ideal relativistic hy-
drodynamics to demonstrate the reduction method in a
more explicit manner. The hydrodynamics equations are
(in (t,z) coordinates)

[∂t + v∂z]ε

ε + p
= −∂zv − γ2

v [∂t + v∂z ](
v2

2
) , (B1)

γ2
v [∂t + v∂z ]v = − ∂zp

ε + p
− v∂tp

ε + p
. (B2)

In the above v is the spatial velocity dz/dt and γv ≡
1/

√
1 − v2. The energy density ε and pressure p shall be

related by the E.o.S, which we use in a slightly different
way. We introduce the enthalpy density w = ε + p and
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the speed of sound cs ≡
√

∂p/∂ε (which can be deduced
from E.o.S), and use the following relations

dε =
1

1 + c2
s

dw , dp =
c2
s

1 + c2
s

dw (B3)

to re-write the hydrodynamics equations into:

∂t[ln(w)] + v ∂z[ln(w)] = − γ2
v

1 − ξ
[∂xv + v ∂tv] ,(B4)

v ∂t[ln(w)] + ∂z[ln(w)] = −γ2
v

ξ
[v ∂xv + ∂tv] , (B5)

with ξ ≡ c2
s/(1 + c2

s). From these two equations we can
obtain ∂t[ln(w)] and ∂z [ln(w)]:

∂t[ln(w)] = X [v, ∂tv, ∂zv] = X [t, z]

=
−γ4

v

ξ(1 − ξ)

{

[

ξ − (1 − ξ)v2
]

∂zv +
[

2ξ − 1
]

v ∂tv

}

,

(B6)

∂z[ln(w)] = Y [v, ∂tv, ∂zv] = Y [t, z]

=
−γ4

v

ξ(1 − ξ)

{

[

(1 − ξ) − ξv2
]

∂tv +
[

1 − 2ξ
]

v ∂zv

}

.

(B7)

The necessary and sufficient conditions for the above set
of equations to be soluble is the following:

∂zX [t, z] − ∂tY [t, z] = 0 . (B8)

Thus we have reduced the original hydrodynamics equa-
tions into a single but second order differential equation
for the velocity field v(t, z) only. With the above satis-
fied, the matter field is given by

w(t, z) = w0 · e
∫

t

t0
dt′X [t′,z]+

∫

z

z0
dz′Y[t,z′]

, (B9)

with w0 its value at arbitrary reference point (t0, z0).
In the case of a linear E.o.S as the one in (3), the speed

of sound cs and thus ξ are constants independent of ε or
p, and we can further simplify the reduced equation (B8)
for velocity field into the following:

[(1 − ξ) − ξv2](1 − v2)(∂2
t v)

+[(2 − 3ξ) − ξv2](2v)(∂tv)2

−[ξ − (1 − ξ)v2](1 − v2)(∂2
zv)

−[(3ξ − 1) + (ξ − 1)v2](2v)(∂zv)2

+2(1 − 2ξ)(1 − v2)v(∂t∂zv)

+2(1 − 2ξ)(1 + 3v2)(∂tv)(∂zv) = 0 . (B10)

A similar scheme can be carried out for curved coor-
dinates like (τ, η) in a straightforward way. We no-
tice a similar implementation using light-cone variables
z± = t ± z in [24].

We emphasize that while the above procedure seems
somewhat trivial in (1+1)D, its realization is much more
nontrivial and involved in (1+3)D. We also point out that

the reduced equation (B8) for the velocity field (or the
simplified one in case of linear E.o.S) has to be satisfied
by all solutions to the (1+1)D hydrodynamics equations.
In Appendix C we give a nontrivial and involved exam-
ple from the recently found Nagy-Csörgő-Csanád (NCC)
solutions[23] (which also include (1+1)D Hwa-Bjroken as
a special case) to show the correctness and usefulness of
the derived velocity equation.

Appendix C

In this Appendix we show that the NCC family of ana-
lytic solutions in [23] for 1-D ideal hydrodynamics equa-
tions with a linear E.o.S can also be deduced by subject-
ing their velocity field ansatz to the reduced equations
(B10) we derived. With the resulting velocity field we
also show the matter field of NCC solutions is indeed
given by (B9).

The velocity field ansatz of NCC solutions is the fol-
lowing (for inside-light-cone region, i.e. |z| < |t|):

v = tanh[λη] =
(t + z)λ − (t − z)λ

(t + z)λ + (t − z)λ
, η =

1

2
ln[

t + z

t − z
] ,

(C1)
with λ some constant. With the above, we obtain the
following relations for the derivatives:

∂tv = λ(1 − v2)∂tη , ∂zv = λ(1 − v2)∂zη ,

∂2
t v = λ(1 − v2)[(∂2

t η) − 2λv(∂tη)2] ,

∂2
zv = λ(1 − v2)[(∂2

zη) − 2λv(∂zη)2] ,

∂t∂zv = λ(1 − v2)[(∂t∂zη) − 2λv(∂tη)(∂zη)] .(C2)

Substituting the above derivatives into our velocity equa-
tion (B10), we obtain the following:

0 = λ(1 − v2)2 ×
{

[(1 − ξ) − ξv2](∂2
t η) + [−ξ + (1 − ξ)v2](∂2

zη)

+2(1 − 2ξ)v(∂t∂zη) + 2(1− 2ξ)λ(1 + v2)(∂tη)(∂zη)

+2(1 − 2ξ)λv[(∂tη)2 + (∂zη)2]

}

. (C3)

After evaluating the derivatives of η in the above, we
obtain:

2λ(1 − v2)2

(t2 − z2)2
·(1−2ξ)·(1−λ)·[(tz)v2−(t2+z2)v+(tz)] = 0 .

(C4)
We find three classes of solutions:

• ξ = 1/2 with arbitrary λ;

• λ = 1 with arbitrary ξ (which is nothing but the
Hwa-Bjorken solution);
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• [(tz)v2 − (t2 + z2)v + (tz)] = 0 which yields only
one causal solution in the forward light-cone with
v = z/t, but this is just the λ = 1 solution.

These cover the (1+1)D NCC solutions found in [23].
Note their parameter κ from E.o.S ε = κp is related to
our E.o.S parameter ξ ≡ c2

s/(1 + c2
s) by κ = (1 − ξ)/ξ.

It should be mentioned that the last Appendix of [23]
gives the general solution of the (1+1)D relativistic hy-
drodynamical solutions for ξ = 1/2 with arbitrary initial
conditions in the forward light-cone, and it also gives var-
ious spherically symmetric solutions in arbitrary number
of spatial dimensions: these aspects are not discussed in
the present paper.

Next we examine the matter field corresponding to the
velocity field solutions:

• for ξ = 1/2 case: we have X = (−λ)[2t/(t2 − z2)]

and Y = (−λ)[−2z/(t2 − z2)], which via our

equation (B9) gives w = w0

[ t20−z2
0

t2−z2

]λ
;

• for λ = 1 case: we have v = z/t and thus
X = −1

2(ξ−1) [2t/(t2 − z2)] and Y = −1
2(ξ−1) [−2z/(t2 −

z2)], which via our equation (B9) gives w =

w0

[ t20−z2
0

t2−z2

]1/(2−2ξ)
.

The two cases can be combined into a single form:

w = w0 ×
[ t20 − z2

0

t2 − z2

]
λ

2(1−ξ) . (C5)

which is the same as obtained in [23].
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