
Bringing large-scale multiple genome analysis one step closer:

ScalaBLAST and beyond

Christopher S. Oehmen1, Heidi J. Sofia1, Douglas Baxter2, Ernest Szeto3, Philip

Hugenholtz4, Nikos Kyrpides5, Victor Markowitz3, Tjerk P. Straatsma1

1Computational Sciences and Mathematics Division, Pacific Northwest National
Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999, Richland, WA USA
2William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest
National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999, Richland, WA USA
3Biological Data Management and Technology Center, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, USA
4Microbial Ecology Program, Department of Energy Joint Genome Institute, 2800
Mitchell Drive, Walnut Creek, USA
5Microbial Genome Analysis Program, Department of Energy Joint Genome Institute,
2800 Mitchell Drive, Walnut Creek, USA

Genome sequence comparisons of exponentially growing data sets form the foundation
for the comparative analysis tools provided by community biological data resources such
as the Integrated Microbial Genome (IMG) system at the Joint Genome Institute (JGI).
We present an example of how ScalaBLAST, a high-throughput sequence analysis
program harnesses increasingly critical high-performance computing to perform sequence
analysis which is a critical component of maintaining a state-of-the-art sequence data
repository.

The Integrated Microbial Genomes (IMG) system1 is a data management and analysis
platform for microbial genomes hosted at the JGI. IMG contains both draft and complete
JGI genomes integrated with other publicly available microbial genomes of all three
domains of life. IMG provides tools and viewers for interactive analysis of genomes,
genes and functions, individually or in a comparative context. Most of these tools are
based on pre-computed pairwise sequence similarities involving millions of genes. These
computations are becoming prohibitively time consuming with the rapid increase in the
number of newly sequenced genomes incorporated into IMG and the need to refresh
regularly the content of IMG in order to reflect changes in the annotations of existing
genomes. Thus, building IMG 2.0 (released on December 1st 2006) entailed reloading
from NCBI’s RefSeq all the genomes in the previous version of IMG (IMG 1.6, as of
September 1st, 2006) together with 1,541 new public microbial,viral and eukaryal
genomes, bringing the total of IMG genomes to 2,301. A critical part of building IMG 2.0
involved using PNNL ScalaBLAST software for computing pairwise similarities for over
2.2 million genes in under 26 hours on 1,000 processors, thus illustrating the impact that
new generation bioinformatics tools are poised to make in biology. The BLAST
algorithm2, 3 is a familiar bioinformatics application for computing sequence similarity,
and has become a workhorse in large-scale genomics projects. The rapid growth of
genome resources such as IMG cannot be sustained without more powerful tools such as
ScalaBLAST that use more effectively large scale computing resources to perform the
core BLAST calculations.

ScalaBLAST is a high performance computing algorithm designed to give high
throughput BLAST results on high-end supercomputers. Other parallel sequence
comparison applications have been developed4-6. However problems with scaling
generally prevent these applications from being used for very large searches.
ScalaBLAST7 is the first BLAST application to be both highly scaleable against the size
of the database as well as the number of computer processors on high-end hardware and
on commodity clusters. ScalaBLAST achieves high throughput by parsing a large
collection of query sequences into independent subgroups. These smaller tasks are
assigned to independent process groups. Efficient scaling is achieved by (transparently to
the user) sharing only one copy of the target database across all processors using the
Global Array toolkit 8, 9, which provides software implementation of shared memory
interface. ScalaBLAST was initially deployed on the 1,960 processor MPP2 cluster in the
Wiliam R. Wiley Environmental Molecular Sciences Laboratory at Pacific Northwest
National Laboratory, and has since been ported to a variety of linux-based clusters and
shared memory architectures, including SGI Altix, AMD opteron, and Intel Xeon-based
clusters. Future targets include IBM BlueGene, Cray, and SGI Altix XE architectures.

The importance of performing high-throughput calculations rapidly lies in the rate of
growth of sequence data. For a genome sequencing center to provide multiple-genome
comparison capabilities, it must keep pace with exponentially growing collection of
protein data, both from its own genomes, and from the public genome information as
well. As sequence data continues to grow exponentially, this challenge will only increase
with time. Solving the BLAST throughput challenge for centralized data resources like
IMG has the potential to unlock the power of emerging analysis methods which, until
recently, were limited by the availability of multiple genome comparison data. Fig. 1
illustrates how the run-time achieved by efficient scaling in ScalaBLAST enabled the
IMG all vs. all BLAST calculations to complete in roughly 1 day. Note that to keep pace
with growing IMG database, we will have to double the number of processors used in
these calculations during the upcoming year.

Grid-based solutions for improving throughput for BLAST searches has become a
popular and attractive option for some centers. The Institute for Genome Research
(http://www.tigr.org/), for instance, has implemented a grid-based BLAST tool allowing
users to submit requests to be farmed out to available computers on an on-demand basis.
Likewise open access packages like Squid10 allow users to setup their own grid-based
BLAST engines. When the goal is to enhance throughput for a large collection of users
having separate BLAST tasks, Grid-enabled approaches have great potential to improve
time-to-solution for individual users.

Another popular alternative is to use a scripting language to schedule independent
BLAST runs on a cluster. In this approach, one might submit a single job to a resource
scheduler, and when the processors are allocated for that job, attempt to spawn separate
BLAST instances on each processor, each with the same database but a separate partition
of the user’s queries.

ScalaBLAST provides a powerful alternative to grid-based approaches and multiple-
instance BLAST scripts for users with very large jobs containing thousands, millions or
more queries directed at a large database (though ScalaBLAST is still highly efficient on
small databases as well). For grid-based or parallel script users, running separate
instances of BLAST requires separate copies of the same database to be present on each
processor. For very large databases broken into multiple volumes, this forces each
processor to swap in and out each database volume repeatedly for each query rather than
loading each database piece only once, as is done in ScalaBLAST. Also, grid- or script-
based approaches often result in a large number of repeated sequential system calls to a
BLAST computational core severely limiting data reuse. By contrast, ScalaBLAST takes
advantage of the homogeneity of the tasks by only keeping a single ‘shared’ copy of the
target database in aggregate memory; and because it encapsulates the collection of tasks,
ScalaBLAST does not have to reload the database anew for each separate task. Efficient
memory management cuts down dramatically on the memory requirement of the
computing platform, and eliminates repeatedly having to pay the startup penalty for
launching separate BLAST jobs taking full advantage of the potential for data reuse.
When processing millions of sequences, this combination of features results in a
substantial improvement in time-to-solution and prevents adverse affects on other users
of multi-user systems stemming from repeated swapping, filesystem, and memory
bandwidth limitations.

The importance of efficient memory management in ScalaBLAST cannot be overstated
as typical datasets continue to grow at an exponential pace—doubling every 18 months
on average. One may be tempted to assume that since we can approach some of the larger
bioinformatics search problems today, and that since computational processing speed
doubles about every 18 months as well, we should be able to accommodate these
searches indefinitely. However, this is not at all the case for several reasons. Sequence
alignment is much more related to memory moving (pushing sequences past growing
databases) than to processing speed (ability to perform floating point arithmetic). It
typically takes hardware vendors 3 years to deliver computing systems where the memory

bandwidth has doubled over previous sytems11 —so it does not keep pace with the
growth of sequence datasets. In that same 3 year span, latency, or the lag time associated
with random memory operations, only improves by 20% 11 creating another barrier to
rapid sequence analysis unless careful attention is paid to hiding latency. Another
consideration is that the time required for all vs. all search task which is at the core of
multiple-genome bioinformatics is proportional to the square of the data size. So every
18 months, (using the same computing resources), one should expect a factor of 4 slower
time to solution. Fig. 2 illustrates the compound effect of growing databases and lagging
improvements in memory bandwidth on the computational run-time required to complete
all vs. all BLAST calculations. Scaling demand is an indicator of the number of
processors required to complete an entire all vs. all BLAST calculation in 1 day for a
given database size and memory bandwidth performance. Because of these compounding
technical issues, problems which are tractable today will soon be beyond reach unless
significant advancements in scalability and computational efficiency can be made.
Applications which do not scale efficiently on multi- processor architectures and

effectively manage memory will increasingly be plagued by disparity between
computational performance and the computational demands of bioinformatics.

Performing of BLAST calculations on an exponentially growing number of genes has
long been the computational bottleneck of multiple genome analysis. This problem will
become even more difficult to address as thousands of microbial isolate genomes become
available together with a rapidly growing number of microbial community aggregate
genomes (metagenomes)12.

The impact of high-throughput technology like ScalaBLAST is that it removes the
sequence alignment bottleneck from downstream applications which rely on the
availability of BLAST output. Emerging analysis methods which rely on large volume of
BLAST output can now be used with regularity on up-to-date multiple genome datasets.
As these analysis methods continue to mature, high-throughput sequencing becomes
increasingly valuable. ScalaBLAST helps bridge the gap between high-throughput
sequencing and advances in multi-genome analysis.

Acknowledgments

This research was supported by the Data-intensive Computing for Complex Biological
Systems project funded by the Office of Advanced Scientific Computing Research, and
under the LDRD Program at the Pacific Northwest National Laboratory, a multiprogram
national laboratory operated by Battelle for the U.S. Department of Energy under
Contract DE-AC06-76RL01830; and by the Director, Office of Science, Office of
Biological and Environmental Research, Life Sciences Division, U.S. Department of
Energy under Contract No. DE-AC02-05CH11231. This research was performed in part
using the MSCF in EMSL, a national scientific user facility sponsored by the U.S. DOE,
OBER and located at PNNL.

1. Markowitz, V. et al. The Integrated Microbial Genomes (IMG) System. Nucleic

Acids Res 34, D344-D348 (2006).
2. Altschul, S., Gish, W., Miller, W., Myers, E. & Lipman, D. Basic local alignment

search tool. J. Mol. Biol. 215, 403-410 (1990).
3. Altschul, S. et al. Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res. 25, 3389-3402 (1997).
4. Darling, A., Carey, L. & Feng, W.-C. in Proceedings of ClusterWorldSan Jose,

CA; 2003).
5. Lin, H., Ma, X., Chandramohan, P., Geist, A. & Samatova, N. in 19th

International Parallel and Distributed Processing Symposium (IPDPS) (IEEE CS
Press, Denver, CO; 2005).

6. Wang, J. & Mu, Q. Soap-HT-BLAST: high-throughput BLAST based on web
services. Bioinformatics 19, 1863-1864 (2003).

7. Oehmen, C. & Nieplocha, J. ScalaBLAST: A scalable implementation of BLAST
for High Performance Data-Intensive Bioinformatics Analysis. IEEE Trans.

Parallel. Dist. Sys. in press (2006).

8. Nieplocha, J., Harrison, R. & Littlefield, R. Global Arrays: A nonuniform
memory access programming model for high-performance computers. J.

Supercomputing 10, 197-220 (1996).
9. Nieplocha, J., Krishnan, M., Palmer, B., Tipparaju, V. & Zhang, Y. in ACM

SIGMicro Computing Frontiers2005).
10. Carvalho, P., Gloria, R., de Miranda, A. & Degrave, W. Squid - a simple

bioinformatics grid. BMC Bioinformatics 6, 197 (2005).
11. Patterson, D. Latency lags bandwidth: Recognizing the chronic imbalance

between bandwidth and latency, and how to cope with it. Comm. ACM. 47, 71-75
(2004).

12. Markowitz, V. et al. An experimental metagenome data management and analysis
system. Bioinformatics 22, e359-367 (2006).

Figure 1. Keeping pace with growing data. ScalaBLAST runs using 1000 processors
have enabled all vs. all BLAST runs to be done on 1.6 million and 2.2 million proteins
for IMG 1.6 and 2.0 releases, respectively, each in roughly 1 day or less. To maintain
IMG updates at a comparable run time, ScalaBLAST will have to be run on 2000
processors, which is within its capacity.

Figure 2. Demand for parallel BLAST. Starting from the approximate current size of
IMG at 2 million proteins and assuming a doubling time of 18 months, computing time
needed to perform an all vs. all calculation grows exponentially even though compute
power increases with time. Scaling demand is calculated as the number of processors
required to perform an all vs. all BLAST run within 24 hours at the expected memory
bandwidth capacity available at the time of the run. ScalaBLAST scales to thousands of

processors, but increased scaling demand will require running on tens of thousands of
processors within 2 years. Callouts indicate anticipated database size over time.

