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Genome sequence comparisons of exponentially growing data sets form the foundation 
for the comparative analysis tools provided by community biological data resources such 
as the Integrated Microbial Genome (IMG) system at the Joint Genome Institute (JGI). 
We present an example of how ScalaBLAST, a high-throughput sequence analysis 
program harnesses increasingly critical high-performance computing to perform sequence 
analysis which is a critical component of maintaining a state-of-the-art sequence data 
repository. 
 
The Integrated Microbial Genomes (IMG) system1 is a data management and analysis 
platform for microbial genomes hosted at the JGI. IMG contains both draft and complete 
JGI genomes integrated with other publicly available microbial genomes of all three 
domains of life. IMG provides tools and viewers for interactive analysis of genomes, 
genes and functions, individually or in a comparative context. Most of these tools are 
based on pre-computed pairwise sequence similarities involving millions of genes. These 
computations are becoming prohibitively time consuming with the rapid increase in the 
number of newly sequenced genomes incorporated into IMG and the need to refresh 
regularly the content of IMG in order to reflect changes in the annotations of existing 
genomes. Thus, building IMG 2.0 (released on December 1st 2006) entailed reloading 
from NCBI’s RefSeq all the genomes in the previous version of IMG (IMG 1.6, as of 
September 1st, 2006) together with 1,541 new public microbial,viral and eukaryal 
genomes, bringing the total of IMG genomes to 2,301. A critical part of building IMG 2.0 
involved using PNNL ScalaBLAST software for computing pairwise similarities for over 
2.2 million genes in under 26 hours on 1,000 processors, thus illustrating the impact that 
new generation bioinformatics tools are poised to make in biology. The BLAST 
algorithm2, 3 is a familiar bioinformatics application for computing sequence similarity, 
and has become a workhorse in large-scale genomics projects. The rapid growth of 
genome resources such as IMG cannot be sustained without more powerful tools such as 
ScalaBLAST that use more effectively large scale computing resources to perform the 
core BLAST calculations. 



 
ScalaBLAST is a high performance computing algorithm designed to give high 
throughput BLAST results on high-end supercomputers. Other parallel sequence 
comparison applications have been developed4-6. However problems with scaling 
generally prevent these applications from being used for very large searches. 
ScalaBLAST7 is the first BLAST application to be both highly scaleable against the size 
of the database as well as the number of computer processors on high-end hardware and 
on commodity clusters. ScalaBLAST achieves high throughput by parsing a large 
collection of query sequences into independent subgroups. These smaller tasks are 
assigned to independent process groups. Efficient scaling is achieved by (transparently to 
the user) sharing only one copy of the target database across all processors using the 
Global Array toolkit 8, 9, which provides software implementation of shared memory 
interface. ScalaBLAST was initially deployed on the 1,960 processor MPP2 cluster in the 
Wiliam R. Wiley Environmental Molecular Sciences Laboratory at Pacific Northwest 
National Laboratory, and has since been ported to a variety of linux-based clusters and 
shared memory architectures, including SGI Altix, AMD opteron, and Intel Xeon-based 
clusters. Future targets include IBM BlueGene, Cray, and SGI Altix XE architectures. 
 
The importance of performing high-throughput calculations rapidly lies in the rate of 
growth of sequence data. For a genome sequencing center to provide multiple-genome 
comparison capabilities, it must keep pace with exponentially growing collection of 
protein data, both from its own genomes, and from the public genome information as 
well. As sequence data continues to grow exponentially, this challenge will only increase 
with time. Solving the BLAST throughput challenge for centralized data resources like 
IMG has the potential to unlock the power of emerging analysis methods which, until 
recently, were limited by the availability of multiple genome comparison data. Fig. 1 
illustrates how the run-time achieved by efficient scaling in ScalaBLAST enabled the 
IMG all vs. all BLAST calculations to complete in roughly 1 day. Note that to keep pace 
with growing IMG database, we will have to double the number of processors used in 
these calculations during the upcoming year. 
 
Grid-based solutions for improving throughput for BLAST searches has become a 
popular and attractive option for some centers. The Institute for Genome Research 
(http://www.tigr.org/), for instance, has implemented a grid-based BLAST tool allowing 
users to submit requests to be farmed out to available computers on an on-demand basis. 
Likewise open access packages like Squid10 allow users to setup their own grid-based 
BLAST engines. When the goal is to enhance throughput for a large collection of users 
having separate BLAST tasks, Grid-enabled approaches have great potential to improve 
time-to-solution for individual users.  
 
Another popular alternative is to use a scripting language to schedule independent 
BLAST runs on a cluster. In this approach, one might submit a single job to a resource 
scheduler, and when the processors are allocated for that job, attempt to spawn separate 
BLAST instances on each processor, each with the same database but a separate partition 
of the user’s queries.  
 



ScalaBLAST provides a powerful alternative to grid-based approaches and multiple-
instance BLAST scripts for users with very large jobs containing thousands, millions or 
more queries directed at a large database (though ScalaBLAST is still highly efficient on 
small databases as well). For grid-based or parallel script users, running separate 
instances of BLAST requires separate copies of the same database to be present on each 
processor. For very large databases broken into multiple volumes, this forces each 
processor to swap in and out each database volume repeatedly for each query rather than 
loading each database piece only once, as is done in ScalaBLAST. Also, grid- or script-
based approaches often result in a large number of repeated sequential system calls to a 
BLAST computational core severely limiting data reuse. By contrast, ScalaBLAST takes 
advantage of the homogeneity of the tasks by only keeping a single ‘shared’ copy of the 
target database in aggregate memory; and because it encapsulates the collection of tasks, 
ScalaBLAST does not have to reload the database anew for each separate task. Efficient 
memory management cuts down dramatically on the memory requirement of the 
computing platform, and eliminates repeatedly having to pay the startup penalty for 
launching separate BLAST jobs taking full advantage of the potential for data reuse. 
When processing millions of sequences, this combination of features results in a 
substantial improvement in time-to-solution and prevents adverse affects on other users 
of multi-user systems stemming from repeated swapping, filesystem, and memory 
bandwidth limitations. 
 
The importance of efficient memory management in ScalaBLAST cannot be overstated 
as typical datasets continue to grow at an exponential pace—doubling every 18 months 
on average. One may be tempted to assume that since we can approach some of the larger 
bioinformatics search problems today, and that since computational processing speed 
doubles about every 18 months as well, we should be able to accommodate these 
searches indefinitely. However, this is not at all the case for several reasons. Sequence 
alignment is much more related to memory moving (pushing sequences past growing 
databases) than to processing speed (ability to perform floating point arithmetic). It 
typically takes hardware vendors 3 years to deliver computing systems where the memory 

bandwidth has doubled over previous sytems11 —so it does not keep pace with the 
growth of sequence datasets. In that same 3 year span, latency, or the lag time associated 
with random memory operations, only improves by 20% 11 creating another barrier to 
rapid sequence analysis unless careful attention is paid to hiding latency. Another 
consideration is that the time required for all vs. all search task which is at the core of 
multiple-genome bioinformatics is proportional to the square of the data size. So every 
18 months, (using the same computing resources), one should expect a factor of 4 slower 
time to solution. Fig. 2 illustrates the compound effect of growing databases and lagging 
improvements in memory bandwidth on the computational run-time required to complete 
all vs. all BLAST calculations. Scaling demand is an indicator of the number of 
processors required to complete an entire all vs. all BLAST calculation in 1 day for a 
given database size and memory bandwidth performance. Because of these compounding 
technical issues, problems which are tractable today will soon be beyond reach unless 
significant advancements in scalability and computational efficiency can be made. 
Applications which do not scale efficiently on multi- processor architectures and 



effectively manage memory will increasingly be plagued by disparity between 
computational performance and the computational demands of bioinformatics.  
 
Performing of BLAST calculations on an exponentially growing number of genes has 
long been the computational bottleneck of multiple genome analysis. This problem will 
become even more difficult to address as thousands of microbial isolate genomes become 
available together with a rapidly growing number of microbial community aggregate 
genomes (metagenomes)12.  
 
The impact of high-throughput technology like ScalaBLAST is that it removes the 
sequence alignment bottleneck from downstream applications which rely on the 
availability of BLAST output. Emerging analysis methods which rely on large volume of 
BLAST output can now be used with regularity on up-to-date multiple genome datasets. 
As these analysis methods continue to mature, high-throughput sequencing becomes 
increasingly valuable. ScalaBLAST helps bridge the gap between high-throughput 
sequencing and advances in multi-genome analysis. 
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Figure 1. Keeping pace with growing data. ScalaBLAST runs using 1000 processors 
have enabled all vs. all BLAST runs to be done on 1.6 million and 2.2 million proteins 
for IMG 1.6 and 2.0 releases, respectively, each in roughly 1 day or less. To maintain 
IMG updates at a comparable run time, ScalaBLAST will have to be run on 2000 
processors, which is within its capacity. 
 
 

 
Figure 2. Demand for parallel BLAST. Starting from the approximate current size of 
IMG at 2 million proteins and assuming a doubling time of 18 months, computing time 
needed to perform an all vs. all calculation grows exponentially even though compute 
power increases with time. Scaling demand is calculated as the number of processors 
required to perform an all vs. all BLAST run within 24 hours at the expected memory 
bandwidth capacity available at the time of the run. ScalaBLAST scales to thousands of 



processors, but increased scaling demand will require running on tens of thousands of 
processors within 2 years. Callouts indicate anticipated database size over time. 
 
 
 


