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A stochastic model of anomalous diffusion was developed in which transport occurs by random motion of 
Brownian particles, described by distribution functions of random displacements with heavy (power-law) tails. 
One variant of an effective algorithm for random function generation with a power-law asymptotic and arbitrary 
factor of asymmetry is proposed that is based on the Gnedenko–Levy limit theorem and makes it possible to 
reproduce all known Levy α-stable fractal processes. A two-dimensional stochastic random walk algorithm has 
been developed that approximates anomalous diffusion with streamline-dependent and space-dependent 
parameters. The motivation for introducing such a type of dispersion model is the observed fact that tracers in 
natural aquifers spread at different super-Fickian rates in different directions. For this and other important cases, 
stochastic random walk models are the only known way to solve the so-called multiscaling fractional order 
diffusion equation with space-dependent parameters. Some comparisons of model results and field experiments 
are presented. 
 
 

Dispersion in naturally fractured and 
porous aquifers is highly complex due to 
strongly varying velocity fields. Discussions of 
different modern approaches to transport in 
such media can be found in Sahimi (1995), 
National Research Council (1996, 2001), 
Faybishenko et al. (2000), and Neuman 
and Di Federico (2003).  

Due to spatial fluctuations of seepage 
velocity in nonuniform media, solute transport 
is accompanied by dispersion, giving rise to 
expansion of a contaminant plume. Under 
certain conditions, when the seepage velocity 
correlation length is finite, dispersion has a 
classical Fickian character, and the spatial 
scale of the solute plume (R) will increase with 
time (t) as R ~ t1/2. In many experimental 
studies, however, the tracer plume was found 
to grow in the direction of flow at a super-
Fickian rate as R ~ t1/α, with α < 2 (Glimm and 
Sharp, 1991; Uchaikin and Gusarov, 1997; 
Isichenko, 1992; Bouchard, 1995; Bouchard 
and Georges, 1990; Klafter et al., 1996; 
Shlesinger et al., 1982, 1993; Zhang et al., 
2006a; Matheron and de Marsily, 1980; 
Lenormand and Wang, 1995; Bolshov et al., 
2008).  

Another, more complicated behavior of 
tracer plumes was analyzed in a review by 
Neuman and Di Federico (2003). They pointed 
out that plume behavior is not predicted by the 

classical Fick’s law at comparably early times; 
both longitudinal and transverse dispersivities 
increase with travel time (or with travel 
distance). At later times (or large distance), a 
quasi-Fickian regime is established.  

Two macrodispersion natural gradient tracer 
tests have been performed in real geologic media 
with strong heterogeneities, at a site on Cape 
Cod, Massachusetts (LeBlanc et al., 1991) and 
the macrodispersion experiment (MADE) at the 
Columbus Air Force Base in Mississippi 
(Adams and Gelhar, 1992; Boggs et al., 1993). 
Plume growth in these experiments in the 
longitudinal direction was considerably faster 
than expected from the classical Fickian law R ~ 
t1/α, with 1/α = γ ~ 0.8 for the MADE (Adams 
and Gelhar, 1992; Boggs et al., 1993) and γ ~ 
0.6 at Cape Cod (LeBlanc et al., 1991). The 
second macrodispersion experiment, MADE-2 
(Boggs et al., 1993), revealed that the 
concentration profile is very skewed in the 
direction of the average flow, indicating 
streamline-dependent anomalous diffusion with 
heavy tails.  

A possible approach to anomalous diffusion 
modeling is provided by the one-dimensional 
advection–diffusion equation with so-called 
fractional derivatives (Benson et al., 2001; 
Saichev and Zaslavsky, 1997; Montroll and 
Weiss, 1965; Shlesinger et al., 1982; Schumer et 
al., 2001; Benson, 1998; Samko et al.

, 
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1987; Goloviznin et al., 2002a,b, 2003, 2005b; Mainardi,1997). 

A variety of numerical methods have been developed recently 

for modeling superdiff usion with the one-dimensional fractional-

order advection–diff usion equation (FADE) (Liu et al., 2004; 

Meerschaert and Tadjeran, 2004, 2006; Zhang et al., 2005; 

Yuste and Acedo, 2003; Lynch et al., 2003; Deng et al., 2004; 

Oldham and Spanier, 1974). Th e one-dimensional FADE with 

fractional-order space derivatives has a fundamental solution that 

has Levy α-stable density. A governing equation for particles that 

undergo Levy motion rather than classical Brownian motion read-

ily describes skewed and heavy-tailed solute concentration profi les 

as observed in macrodispersion experiments such as the MADE. 

Moreover, the one-dimensional FADE model is compatible with 

observations of solute behavior in the laboratory and in fi eld tests 

at Cape Cod (Benson et al., 2000, 2001).

Multidimensional solute dispersion modeling using the frac-

tional diff usion equation with diff usion parameter asymmetry 

encounters diffi  culties. Methods for directly solving the multidi-

mensional FADE (Benson et al., 2006; Meerschaert et al., 2001) 

require the scaling exponent 1/α = γ to be the same in diff erent 

directions. Th ere is no physical reason for this restriction, which 

is just a mathematical artifact of the modeling approach. In fact, 

the scaling exponent usually varies with direction, as suggested 

by observations in the MADE fi eld experiment (see below). Th e 

rate of solute spreading may be faster in the direction of mean 

fl ow and slower in the transverse direction. Moreover, diff erent 

asymmetric factors and space-dependent parameters should be 

expected and taken into account.

Difficulties in generalizing FADE to multidimensional 

transport have stimulated the development of random walk 

methods in recent years (Goloviznin et al., 2005b; Benson et 

al., 2006; Zhang et al., 2006a,b). Th e computational effi  ciency 

and fl exibility of random walk methods overcomes a number 

of existing diffi  culties in the formulation and solution of such 

problems in the multidimensional case. Th e purpose of this study 

was to develop a stochastic random walk model that reduces to 

the multidimensional FADE model in the special case of isotro-

pic, space-independent parameters. We extended the stochastic 

model to the multidimensional case with spatial anisotropy, and 

compared model results with fi eld experiments. Th e treatment 

presented here was mainly focused on saturated fl ow systems; 

an extension to variably saturated conditions is possible but will 

not be pursued here.

Approximate Algorithm for Random Variable 
Genera  on of α-stable Fractal Levy Distribu  on

Th e foundation for developing multidimensional stochas-

tic random walk models is an eff ective algorithm for random 

function generation with power-law asymptotics and an arbi-

trary factor of asymmetry. Generation of stable distributions of 

random variables with heavy tails is hampered by a lack of analyti-

cal expressions for the distribution function and its inverse. Only 

Gaussian, Cauchy, and Levy distributions constitute exceptions 

and can be represented analytically (Uchaikin and Zolotarev, 

1999; Saichev and Zaslavsky, 1997; Kanter, 1975).

An approach to solving this problem was fi rst proposed in 

Kanter (1975) for distributions with α < 1 and subsequently 

generalized to any α (Chambers et al., 1976). Generators of 

such type (Kanter, 1975; Chambers et al., 1976) are termed 

“exact” algorithms. Despite the existence of “exact” algorithms 

to simulate stable random variables, other approximate methods 

are often used in practice because they turn out to be more effi  -

cient than exact ones. Th e so-called “approximation generators” 

are based on the use of the generalized Gnedenko–Levy limit 

theorem (Uchaikin and Zolotarev, 1999; Chambers et al., 1976; 

Mantegna, 1994). Such a generator for symmetric distributions 

was described in Mantegna (1994). For arbitrary asymmetric 

distributions, such an approximate generator was developed 

in Zhang et al. (2006a,b) for random walk approximation of 

fractional-order multiscaling multidimensional anomalous dif-

fusion. Th e algorithm is based on the use of the generalized limit 

theorem (Uchaikin and Zolotarev, 1999; Chambers et al., 1976; 

Mantegna, 1994) and involves taking the sum of independent, 

identically distributed, Pareto random variables. Th e research-

ers (Zhang et al., 2006a,b) found that the approximate method 

converged faster to the α-stable variables than an algorithm based 

on method (Janicki and Weron, 1994), but one parameter (the 

cutoff  of Pareto density from constant to the power-law form) 

signifi cantly aff ected the rate of convergence.

We developed a method to generate α-stable random vari-

ables on the basis of the generalized limit theorem as well. Our 

method is more reliable than the Pareto method, however, since 

it does not require choosing a cutoff  parameter.

Consider a one-dimensional distribution function F that 

may represent a solute concentration distribution as may arise 

from dispersion in a heterogeneous medium. Th e distribution 

of sums of independent random variables Xi is said to belong 

to the domain of attraction of F if there exist some normalizing 

constants an,bn such that the distribution of

( )1 2 ... n n nX X X a b+ + + −  [1]

converges to F as n → ∞. It is rather interesting that all so-called 

stable distributions, and only these, can be obtained as such limits. 

Distributions of such type are also known as Levy fl ight distribu-

tions or α-stable fractal Levy distributions.

Th e generalized limit theorem (Feller, 1971) asserts that for 

any n random variables X1, X2, …, Xn with the same power-law 

dependence for the tails, the domain of attraction is an α-stable 

fractal Levy distribution with heavy power-law tails if 0 < α < 2. 

We propose a new generator for random variables for arbitrary 

values of the parameter α that is given by 

( )1/

1
1 signi i

i

X A z
y α

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜⎝ ⎠
 [2]

where yi and zi are random variables uniformly distributed in the 

interval (0,1), A > 0 is an arbitrary numerical constant, and

( )sign 1iz =−  [3a]

if z > β1,

( )sign 1iz =  [3b]

if zi ≤ β1, where β1 is an arbitrary numerical constant in the 

interval (0,1).

It is not diffi  cult to see that the distribution functions for 0 

< α ≤ 2 and x → ∞ are

2



www.vadosezonejournal.org · Vol. 7, No. 4, November 2008 1163

( )
( )

( ) ( )1 11 1
A

F x A x
x A

α
α −α

α− = −β −β
+

?  [4a]

( )
( ) 1 11 1

A
F x A x

x A

α
α −α

α= − β −β
+

?  [4b]

Probability densities are defi ned by the relations

( )
( )

( )11 1
A

p x
x A

α

α+− = α −β
+

 [5a]

( )
( ) 11

A
p x

x A

α

α+= αβ
+

 [5b]

Th us, the random variables Xi have “heavy” (power-law) tails, and 

the domain of attraction is an α-stable fractal Levy distribution 

for 0 < α < 2. Moreover, for β1 = 0.5 we obtain a symmetric 

distribution, while for β1 = 0 or β1 = 1 the distributions are fully 

asymmetric.

In accordance with the generalized limit theorem, normal-

izing constants are determined by

( )

1/

1 1/E

n

n i

a n

b X n

α

− α

=

=
 [6]

( ) ( )1E 1 2
1

i

A
X = − β

−α
 [7]

for 1 < α ≤ 2, when the expectation value E(Xi) exists and center-

ing is required, and as

1/

0

n

n

a n

b

α=

=
 [8]

for 0 < α <1 when E(Xi) does not exist. Th e α-stable Levy distri-

butions with heavy tails can be asymmetric relative to zero; the 

asymmetry factor is given by

( )
( ) ( )1

1
lim

1x

F x

F x F x→∞

−
β =

− + −
 [9]

or

( )
( ) ( )11 lim

1x

F x

F x F x→∞

−
−β =

− + −
 [10]

Equations [1–8] provide a means to construct a generator of stable 

random variables as the sum of a “suffi  ciently” large number of 

Xi. Th e approach given above is one of several possible algorithms 

that were explored and tested for generating random variables 

with heavy tails for the entire range of parameters α and β1.

Rate of Convergence of Stable Random 
Variables Generator

Th e algorithm set forth above was implemented numerically. 

Th e rate of convergence of the distribution of random variable sums 

to stable distributions as a function of n was investigated for various 

values of the parameters α and β1, including the cases for which 

analytical expressions for the probability density exist. Analytical 

expressions for the probability density of stable distributions are 

presently known only for two values of the parameter α. For α = 1 

we have the symmetric Cauchy distribution (Feller, 1971):

( )
2 2

1 t
p x

t x
=

π +
 [11]

and for α = 0.5 the asymmetric Levy distribution (Feller, 

1971):

( )
2

3/2

1
exp

2 2

t t
p x

xx

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜π ⎝ ⎠
 [12]

Th e number of Xi or the set length n in Eq. [1] will be denoted 

as “njump” in the subsequent discussion and illustrative fi gures. 

Th e number of diff erent stable random variables used for the 

construction of probability densities is denoted as nj.

It was found that for 0 < α < 1 the generator converges rap-

idly for all values of β1. For greater asymmetry, however, a larger 

data set is required for convergence. If 0 < α ≤ 0.5, then a set 

length n = njump = 10 is suffi  cient even for practically fully asym-

metric cases (β1 = 0.1). Further increase of the set length does not 

lead to any noticeable variation in probability density for the set 

(see Fig. 1). At large distances, the distribution has a power-law 

form (Fig. 2). In the range 0.5 < α < 1, the required set length 

increases n = njump = 50 is acceptable for the fully asymmetric 

case, β1 = 1 (Fig. 3). Comparison of numerical results obtained 

from the approximate stable random variables generator with the 

F . 1. Probability density p(x) for sums of random numbers 
generated from Eq. [2], demonstra  ng convergence to a stable 
distribu  on. Parameters are constants A = 0.5 and β1 = 0.1, and the 
inverse exponent of  me α = 0.2. The number of par  cles is nj = 
200,000; njump is the set length.

F . 2. Probability density p(x) for sums of random numbers gen-
erated from Eq. [2] on a log–log scale for −x > 1, demonstra  ng 
approximate power-law behavior. Parameters are constants A = 0.5 
and β1 = 0.1, and the inverse exponent of  me α = 0.2. The number 
of par  cles is nj = 200,000; njump is the set length.
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Cauchy (Eq. [11]) and Levy (Eq. [12]) analytical distributions 

shows good agreement (Fig. 4 and 5).

As α increases in the range 1 < α < 2, the rate of convergence 

decreases. It was found that, similar to the case 0 < α < 1, for 

greater asymmetry a larger set length is required for convergence. 

For the asymmetrical case with α = 1.5 and β1 = 1, the required 

set length is njump = 100, while for the symmetrical case njump 

= 30 to 50 is suffi  cient (see Fig. 6). For the α = 1.9 asymmetrical 

case, the acceptable set length was found to be njump = 200. 

Th us, the new random variable generator proposed here is appli-

cable for the entire range of α and β. Th e rate of convergence is 

higher for lower α.

Stochas  c One-Dimensional Nonsta  onary 
Model of Solute Dispersion with Heavy Tails
We now compute the migration of a large number of solute 

particles that, at every time step, experience random displacements 

drawn from a stable Levy distribution. Th e stochastic equation for 

particle coordinates in the random walk process is given by

1 1/n n
i i ix x t+ α= +Δ ξ  [13]

where xi
n is the coordinate of the ith particle at the nth moment of 

time, ξi is a random variable that is obtained from the suggested 

algorithm Eq. [1–8] for generation of stable random variables, Δt is 
the time step, and α is the parameter of the power-law distribution.

Equation [13] provides the particle displacement during one 

time step. In the case of α-stable distributions of ξi, the distri-

bution of particle displacements for arbitrary time t does not 

depend on the time step. It further follows that the spatial scale 

of the particle distribution changes with time as x ∼ t1/α. In other 

words, the motion is self-similar (fractal), and the self-similarity 

coordinate has the form x/t1/α. Figure 7 compares modeling 

F . 3. Probability density p(x) for sums of random numbers 
generated from Eq. [2], demonstra  ng convergence to a stable 
distribu  on. Parameters are constants A = 0.7 and β1 = 1, and the 
inverse exponent of  me α = 0.5. The number of par  cles is nj = 
200,000; njump is the set length.

F . 4. Comparison of numerical results obtained from Eq. [1–8] 
with the analy  cal formula Eq. [11]. Parameters are constants A = 
0.5 and β1 = 0.5, and the inverse exponent of  me α = 1 (symmet-
ric Cauchy distribu  on). The number of par  cles is nj = 200,000; 
the set length is njump = 200.

F . 5. Comparison of numerical results obtained from Eq. [1–8] 
with the analy  cal formula Eq. [12]. Parameters are constants A = 
0.7 and β1 = 1, and the inverse exponent of  me α = 0.5 (asymmet-
ric Levy distribu  on). The number of par  cles is nj = 200,000; the 
set length is njump = 50.

F . 6. Convergence of random numbers to stable distribu  on. 
Parameters are constants A = 0.5 and β1 = 0.5, and the inverse 
exponent of  me α = 1.5. The number of par  cles is nj = 200,000; 
njump is the set length.

F . 7. Solute concentra  on (probability density [p(x)] of par  cle 
loca  ons) obtained from a stochas  c (numerical) model and from 
an analy  cal solu  on (Cauchy distribu  on) at diff erent points of 
 me t. The inverse exponent of  me α = 1 and constant β1 = 0.5.
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results from Eq. [13] with the known analytical solution for α 

= 1 (symmetrical Cauchy distribution) at diff erent times. Th e 

agreement is good.

Figure 8 presents an asymmetrical distribution for parameters 

α = 0.5, β1 = 0.1 at time t = 0.1, with time step size Δt = 0.001, 

and with n = njump = 1, 10, and 30 taken as approximations of 

stable random variables ξi. As was mentioned above, it is not nec-

essary to attain a very good approximation of the stable random 

variable at each time step. Th e greater the time step, the more 

accurate the approximation should be. As the time step is reduced, 

the sum of displacements will have a distribution that tends to 

the exact stable Levy distribution. After 100 time steps, results 

are virtually independent of set length. Hence, for the solution of 

practical problems, it is not necessary to use the ideal approxima-

tion of strongly stable distributions at every time step.

Th e particle displacement algorithm presented here can be 

used to model solute transport at fi eld sites. An approach was 

developed to estimate the parameters A, α, and β from obser-

vations (Goloviznin et al., 2005a). The inverse problem of 

identifi cation of stochastic model parameters from actual mea-

surements can be solved by means of neural networks. Neural 

networks with diff erent architecture have been considered and 

recommendations have been developed based on practical mea-

surements and numerical solutions of the forward problem 

(Goloviznin et al., 2005a).

Two- and Three-Dimensional Stochas  c 
Random Walk Models

Generalization of the one-dimensional anomalous diff usion 

model presented above to the multidimensional case is straight-

forward: assuming that particle motions along diff erent directions 

are independent, we obtain the equation system for the three-

dimensional case:

11 1/
1
n n

i ix x t+ α= +Δ ξ  [14a]

21 1/n n
i i iy y t+ α= +Δ η  [14b]

31/1n n
i i iz z t α+ = +Δ μ  [14c]

where ξi, ηi, and μi are α-stable, one-dimensional random 

variables with heavy tails. Th ese variables will, in general, have 

diff erent distribution parameters α and β1.

Two versions of two-dimensional stochastic random walk 

models were developed. Th e fi rst version uses Eq. [14a] and 

[14b], while the second version assumes radial symmetry and 

is defi ned by 

1 1/ cosn n
i i i ix x t+ α= +Δ ξ θ  [15a]

1 1/ sinn n
i i i iy y t+ α= +Δ ξ θ  [15b]

where ξi are random variables with stable distribution and θi is 

a random variable that is independent of the time step and is 

uniformly distributed in the interval [0,π].

To achieve smooth concentration distributions with a rela-

tively small number of test particles, we interpreted each particle 

as representing a cubic volume with uniformly distributed density. 

Th e contribution of each particle to solute concentration in a 

given computational grid cell is considered proportional to the 

share of its cubic volume within the cell. Th e volume associated 

with a solute “particle” can vary from one to two grid cells.

Analytical solutions for concentration distributions at diff er-

ent times are shown in Fig. 9 and 10 for the case α1 = 0.5, β1 = 0 

F . 8. Asymmetrical distribu  on of solute concentra  ons at  me 
t = 0.1 for the inverse exponent of  me α = 0.5, constant β = 0.1, 
and  me step Δt = 0.001. Curves are shown for sets with diff erent 
lengths (njump).

F . 9. Analy  cal solu  on of solute concentra  ons at  me t = 1.

F . 10. Analy  cal solu  on of solute concentra  ons at  me t = 2.
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(x axis), and α2 = 1, β1 = 0.5 (y axis). Figures 11 and 12 show 

concentration distributions calculated at diff erent times from the 

stochastic model (Eq. [14]) with parameters A = 0.63, njump = 50, 

nj = 700,000, and Δt = 0.1. Agreement of the stochastic model 

with the known analytical Cauchy and Levy solutions is good.

On Sta  s  cal Proper  es of Fractal Levy Flights

It is of interest to consider moments of lower orders for 

the two- and three-dimensional models developed, including 

moments of “fractional order” γ that are defi ned as

0
2 ( ) dx c x x x

∞γ γ= ∫  [16]

where γ < α. It will be seen that certain moments of fractional 

order exist and can, in principle, be computed.

Let us note that for classical diff usion in one dimension, the 

mathematical expectation

2

0

/22 2
/2 /2

0

/2

1
2 exp d

2 2

2 / 2 exp d
2 2 2

const

x
x x x

t t

x x x
t

t t t

t

+∞γ γ

γ
+∞γ γ

γ

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜π ⎝ ⎠

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟= π −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

=

∫

∫  

[17]

for any γ.

As already noted, the concentration distribution is self-

similar, i.e., it depends only on the similarity variable x/t1/α (in 

ordinary diff usion, the similarity variable is x/t1/2).

In general, there are no analytical expressions for the prob-

ability density of Levy fl ights except for the two cases noted above. 

Based on the self-similarity of probability density, however, for 

one-dimensional problems the time dependence of distribution 

moments can be established. From the normalizing condition

( )+∞ α − α
−∞

= → =∫ 1/ 1/d 1C p x t x C t  [18]

it follows that the normalizing constant is proportional to 

t−1/α. Th en

1/
1/0

/
1/ 1/ 1/0

/

2 d

2 d

const

x
x t x p x

t

x x x
t p

t t t

t

+∞γ − α γ
α

γ+∞γ α
α α α

γ α

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

=

∫

∫  [19]

This relation holds only for those values of γ for which the 

improper integral converges at γ < α. As already shown, for clas-

sical diff usion, 〈xγ〉 ∼ tγ/2, and 〈xγ〉1/γ ∼ t1/2. For anomalous 

diff usion with Levy fl ights,

( )
1/ 1/    ,0 2x t

γγ α γ <α <α <?  [20]

For example, if α > 1, we obtain 〈x〉 ∼ t1/α.
It follows from Eq. [20] that the expectation value 〈xγ〉 for 

anomalous diff usion increases with time more rapidly than for 

classical diff usion. Let us consider the results of numerical simu-

lation of two-dimensional anomalous diff usion (model type Eq. 

[14a –14b]) and try to approximate the expectation value 〈r0.1〉10 

= [〈(x2 + y2)0.05〉]10 by the function of time tpw const, where pw 

is an unknown index. Figure 13 presents the results of approxi-

mation pw on the basis of the linear regression method for the 

two-dimensional model given by Eq. [14a–14b] (β1 = 0.5, dif-

ferent α). Th e solid line depicts the theoretical curve pw = 1/α, 

while square markers show numerical results. Th ese relations can 

be readily extended to three dimensions.

Comparison of Stochas  c Model 
and Frac  onal Diff usion Model

Results for the one- and two-dimensional stochastic trans-

port problem were compared with calculations made on the 

basis of the FADE. Specifi cally, we used a discretized version of 

the Riemann–Liouville fractional diff usion model with higher 

order accuracy (see the Appendix) for comparison with the one-

dimensional stochastic model. Computations were performed 

with equal steps in time and space. For the one-dimensional case, 

concentration profi les from the stochastic model and the frac-

tional derivative model virtually coincide [β1 = (1 + β)/2]). Even 

for fully asymmetrical distributions (β1 = 0 or β = 1), at α = 1.5 

a generator set of length 10 is quite suffi  cient (Fig. 14).

Figures 15 and 16 show the results for the symmetric FADE 

in two dimensions, while Fig. 17 and 18 present results for the 

F . 11. Stochas  c random walk model of solute concentra  ons at 
 me t = 1.

F . 12. Stochas  c random walk model of solute concentra  ons at 
 me t = 2.
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corresponding stochastic model with njump = 50 and nj = 50,000. 

Results for the two-dimensional stochastic model (Eq. [14]) 

practically coincide with the FADE for streamline uniform and 

space-independent parameters (Goloviznin et al., 2005b).

Comparison of Two-Dimensional Stochas  c 
Model Results and Field Experiment

We present the results of fi tting the two-dimensional random 

walk model to solute concentration data of large-scale fi eld experi-

ments at the MADE site.

Detailed studies were performed for the MADE-1 and 

MADE-2 experiments to characterize the spatial variability of 

the aquifer and the spreading of the conservative tracer plume 

(Adams and Gelhar, 1992; Boggs et al., 1992, 1993). Th ese stud-

ies documented the dramatically non-Gaussian behavior and 

anomalous spreading of the plume (Adams and Gelhar, 1992; 

Boggs et al., 1992, 1993).

The aquifer at the MADE site resides in a sand–gravel 

mixture containing clays and alluvial deposits. It is extremely 

heterogeneous, with a large spread of local permeability values.

Th e experiments injected about 10 m3 of water that simulta-

neously contained diff erent tracers, including conservative tracers 

such as bromide and tritium (tritiated water). Observations lasted 

from 15 to 20 months in diff erent experiments. Dispersion of 

a passive contaminant (bromide and tritium) is in fact two 

dimensional (in the horizontal direction) with small-scale verti-

cal spreading.

At the MADE site, the separation of the peak and mean 

position was evident, especially at later times.

Th e comparison of MADE-2 data and model results for the 

concentration peak and the center of mass distances from the 

source is shown in Fig. 19 (the center of mass of the tracer plume 

position is defi ned as Xc(t) = [∫c(x,t)xdx]/[∫c(x,t)dx], where c(x,t) 
is the relative concentration and x is the coordinate along the 

mean fl ow).

F . 13. Dependence of the index pw on the 
inverse exponent of  me α: theore  cal (solid line) 
and computa  onal results for the two-dimensional 
model, Eq. [14a–14b] (symbols).

F . 14. Comparison of solute concentra  on pro-
fi les obtained with the frac  onal diff usion model 
based on Riemann–Liouville (R-L) with results 
from a stochas  c model (stokh) at diff erent  mes 
t. The length of the set for the stochas  c model is 
njump = 10.
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F . 15. Concentra  on distribu  on from the stochas  c model, with 
the inverse exponent of  me α = 1.5 at  me t = 0.5.

F . 16. Concentra  on distribu  on from the frac  onal diff usion 
model, with the inverse exponent of  me α = 1.5 at  me t = 0.5.

F . 17. Concentra  on distribu  on from the stochas  c model, with 
the inverse exponent of  me α = 1.5 at  me t = 0.5.

F . 18. Concentra  on distribu  on from the frac  onal diff usion 
model, with the inverse exponent of  me α = 1.5 at  me t = 0.5.

F . 19. The second macrodispersion experiment 
(MADE-2) and two-dimensional stochas  c model 
results. Concentra  on peak (maximum) and center 
of mass (mean) posi  ons at diff erent  mes. Solid 
lines are two-dimensional stochas  c model fi t, sym-
bols are the data of observa  ons.
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Th e mean drift velocity was chosen as 0.22 m d−1 according 

to estimations given in Adams and Gelhar (1992) and Boggs et 

al. (1992, 1993). Th e index in the power law of time dependence 

of plume size is γ = 1/α1 ∼ 0.9 for the longitudinal direction 

(along the plume) and γ2 = 1/α2 ∼ 0.6 for the transverse direc-

tion; the asymmetry factor is β1 = 1 (strongly asymmetric) for the 

longitudinal direction and β1 = 0.5 (symmetric) for the transverse 

direction; the diff usivity value is A = 0.03 for both directions.

Figure 20 shows the maximal values of concentration in the 

tracer plume at diff erent times (MADE-1). Open squares cor-

respond to measured concentrations averaged across the vertical 

direction. Open circles are the observed absolute maximal values 

of the tracer concentration in the plume. Solid circles are the 

same, calculated using the two-dimensional random walk model. 

Th e best correspondence with experimental data was obtained for 

α1 = 1.1 and γ1 = 1/α1 ∼ 0.9 for the longitudinal direction and 

α2 = 1.8 and γ2 = 1/α2 ∼ 0.6 for the transverse direction.

It can be seen from the fi gures that the observed and model 

data corresponding to the vertical averaged concentration are 

close and have the same slope.

Conclusions
A model based on the one-dimensional FADE was compat-

ible with observations of solute plume behavior in macroscale 

fi eld tests. Th is model describes skewed and heavy-tailed solute 

concentration profi les, in general agreement with fi eld and labora-

tory observations in some highly heterogeneous geologic media. 

Th is model, however, is limited to one space dimension.

Multidimensional solute dispersion modeling using FADE 

with asymmetry and streamline- and space-dependent param-

eters encounters a number of diffi  culties. Th is has motivated the 

development of random walk methods in recent years as a mul-

tidimensional extension of the FADE model. Th e computational 

effi  ciency and fl exibility of random walk methods overcomes a 

number of existing diffi  culties in the formulation and solution 

of solute transport problems in the multidimensional case. We 

developed a novel stochastic random walk model based on an 

eff ective algorithm for random numbers with a power-law asymp-

totic and arbitrary factor of asymmetry. Th e generator belongs 

to the class of so-called approximation generators that are based 

on the Gnedenko–Levy central limit theorem. One-, two-, and 

three-dimensional stochastic models of solute spreading were 

developed on the basis of this generator.

Solutions of the one-dimensional and symmetric two-dimen-

sional stochastic problems were compared with calculations made 

on the basis of FADE models. It was shown that concentrations 

obtained with the stochastic model agree well with solutions of 

the fractional diff usion equation (when such solution may be 

found). Moreover it was shown that the new model is in reason-

able agreement with experimental data on solute transport in 

highly heterogeneous media.

Appendix

Finite Diff erence Approxima  on for the Anomalous Diff usion 
Equa  on with Riemann–Liouville Frac  onal Deriva  ves

Th e one-dimensional diff usion equation in which the second 

order of diff erentiation with respect to space is replaced with 

the fractional derivative takes the following form (Benson et 

al., 2001; Benson, 1998; Samko et al., 1987; Goloviznin et al., 

2002a,b, 2003):

( )
( )

( )

( ) ( )
( )

, ,
D , , 1 2

1 1
1 1 , 1 1

2 2

x

x

c x t uc x t
D c x t

t x

D
x x

α

α α
α

αα

∂ ∂
= + ≤α≤

∂ ∂
∂ ∂

= +β + −β − ≤β≤
∂ ∂ −

  

[A1]

where the function c(x,t) characterizes solute concentration, Dx
α 

is the operator of fractional order α for diff erentiation with 

respect to x, D > 0 is a constant of dimension LαT−1 (generalized 

diff usivity), β is a “skewness” coeffi  cient, and x and t are spatial 

and temporal variables, respectively. For α → 2, the fractional 

derivative operator approaches the diff erential operator of the 

second order that corresponds to ordinary diff usion with expo-

nential decay of solute concentrations at infi nity.

Th ere exist several alternative approaches for defi ning deriv-

atives of fractional order (Benson et al., 2001; Benson, 1998; 

Samko et al., 1987; Goloviznin et al., 2002a,b, 2003; Liu et al., 

2004; Meerschaert and Tadjeran, 2004; Zhang et al., 2005; Yuste 

and Acedo, 2003; Lynch et al., 2003; Deng et al., 2004). Most 

commonly used are a generalization of the diff erentiation opera-

tor in the Fourier space, the Grünwald–Letnikov defi nition, and 

the Riemann–Liouville defi nition.

Th e Fourier method is rather accurate, but is applicable only 

for periodic boundary conditions. Th e Grünwald–Letnikov dif-

ference scheme does not provide suffi  cient accuracy for values of 

the fractional parameter α close to 1 (Goloviznin et al., 2002a,b). 

An increase in the number of nodes (refi nement of grid spacing 

h) partially solves the problem, but may lead to an unacceptable 

increase in computational work.

For finite difference solution, we prefer the Riemann–

Liouville definition, which includes an integral that can be 

numerically computed with any specifi ed accuracy. To obtain 

a second-order accurate spatial approximation, fractional fl ows 

referred to the centers of computational grids should be approxi-

mated to the third order by the method of trapezoids.

F . 20. The fi rst macrodispersion experiment (MADE-1) and two-
dimensional stochas  c model results. Open squares correspond to 
measured concentra  ons averaged across the ver  cal direc  on. 
Open circles are the observed absolute maximal values of tracer 
concentra  on in the plume. Solid circles are the same calculated 
using a two-dimensional random walk model.
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Let us represent the fractional diff usion equation in fi nite 

diff erence form and consider fl ow +αFi+1/2
n. In accordance with 

the Riemann–Liouville defi nition, after writing the integral as a 

sum of integrals on segments bounded by computational grid 

nodes, we obtain

( )
( )

( )

( )
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1 d d
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=

⎡
⎢
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⎤
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− ⎥⎦

∑ ∫

∫

 [A2]

Flow −αFi+1/2
n can be written in a similar way. To obtain a sec-

ond-order accurate method of approximation with respect to h, it 

is suffi  cient to represent the function C(x) in the form of continu-

ous piecewise-linear functions βkx + γk, where x ∈ [xk, xk+1], βk 

= (Ck+1 − Ck)/h, and γk = Ck − βkxk. With this, the integration in 

Eq. [A2] can be performed analytically.

Figure A1 presents concentration profi les obtained with 

diff erent numerical methods. For small values of the parameter 

α, a solution obtained with the diff erence scheme of the fi rst 

order of spatial approximation (fi nite-diff erence method based 

on Grünwald–Letnikov) shows considerable diff erences from the 

more accurate Fourier method. Th e profi le computed from the 

method of spline approximation to the Riemann–Liouville defi ni-

tion virtually coincides with the Fourier method.
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