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Brief: 

In global a multi-media model, uncertainty of model results for DDT is quantified by Monte-

Carlo Simulation and Bayesian updating is used to improve model results by including field 

data. 
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Abstract 

Present and future concentrations of DDT in the environment are calculated with the global 

multi-media model CliMoChem. Monte Carlo simulations are used to assess the importance 

of uncertainties in substance property data, emission rates, and environmental parameters for 

model results. Uncertainties in the model results, expressed as 95% confidence intervals of 

DDT concentrations in various environmental media, in different geographical locations, and 

at different points in time are typically between one and two orders of magnitude. An analysis 

of rank correlations between model inputs and predicted DDT concentrations indicates that 

emission estimates and degradation rate constants, in particular in the atmosphere, are the 

most influential model inputs. For DDT levels in the Arctic, temperature dependencies of 

substance properties are also influential parameters. A Bayesian Monte Carlo approach is 

used to update uncertain model inputs based on measurements of DDT in the field. The 

updating procedure suggests a lower value for half-life in air and a reduced range of 

uncertainty for KOW of DDT. As could be expected, the Bayesian updating yields model 

results that are closer to observations, and model uncertainties have decreased. The combined 

sensitivity analysis and Bayesian Monte Carlo approach provide new insight into important 

processes that govern the global fate and persistence of DDT in the environment.  
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Introduction 

Dichlorodiphenyltrichloroethane (DDT) is an insecticide that has been used worldwide since 

the 1940s for controlling agricultural pests and to combat vectors of insect-borne diseases, 

such as typhus or malaria. DDT is hydrophobic and resistant to biotic and abiotic degradation, 

which makes it very persistent in the environment. For this reason, DDT has been banned in 

several industrialized countries in the 1970ies, and later globally under the Stockholm 

Convention (1). However, its use continues for malaria combat purposes in certain countries, 

as discussed in (2). The global emission inventory of DDT (3-6), its partitioning properties 

(7,8), and environmental half-lives (9-12) have been investigated extensively. Yet 

considerable uncertainty remains in properties inferred from these measurements, particularly 

in the degradation and partitioning properties, owing to DDT’s highly hydrophobic behavior. 

The extent to which these knowledge gaps affect our understanding of the global fate of DDT 

may be significant. For example, Schenker et al. (2) have used past emissions and DDT 

property data to predict DDT concentrations in various matrices of the environment with a 

global contaminant fate model. In general, modeled concentrations corresponded well with 

field data, but several disagreements were identified. For example, the model overestimated 

atmospheric concentrations of DDT in the Arctic. Schenker et al. (2), indicated that the 

disagreements are likely due to uncertainties in certain model inputs, such as the octanol-

water partition coefficient (KOW) of DDT. Pontolillo and Eganhouse (13) showed that KOW 

values of DDT vary by more than three orders of magnitude among different studies. 

 When model predictions differ from measurements, researchers often attribute these 

differences to uncertainties in model inputs, as was the case for Schenker et al. (2). However, 

without a detailed and systematic uncertainty analysis, it is not clear that the attribution is 

correct. Model developers are making progress on this front, with several recent papers 

reporting on efforts to assess the relative contribution of different model inputs to uncertainty 

in model results (14-20). However, most of these studies are limited to a local scale or rely on 

analytical uncertainty calculations (21) to reduce the calculation time of the uncertainty 

assessment. MacLeod et al. (17) suggest the use of more general Monte Carlo methods (22) 

when chemical-specific fate, exposure, and/or risk assessments are performed. These methods 

make possible the assessment of uncertainties in non-linear systems and of model inputs with 

complex and sometimes correlated uncertainty distributions. In addition to the insight into 

model behavior gained by Monte Carlo techniques, a systematic comparison of model results 

with field data can improve estimates of uncertain model inputs and provide valuable insight 
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into the performance of environmental fate models. Our review of the current literature 

reveals that Monte-Carlo type uncertainty assessments and techniques to update model inputs 

based on field data are not frequently applied to environmental fate models. Furthermore, 

model updating methods have, to our knowledge, not been used to reduce model result 

uncertainties and divergence between model results and field data in a global environmental 

fate model. 

In this paper, we apply Monte Carlo uncertainty assessment methods to the DDT case 

study presented by Schenker et al. (2). We calculate the influence of uncertainties in different 

types of model inputs (substance properties, emission rates, model parameters of the 

CliMoChem model (23,24)) on time-dependent model results. Rank correlations (RC) 

between model inputs and outputs are used to identify important processes governing the 

behavior of DDT in the environment. Using field data, we apply a quantitative method to 

update model inputs and model results derived from the inputs. Uncertainties in the updated 

model results decrease strongly, and predicted DDT concentrations are closer to field data. 

The updated model inputs, in particular substance properties, are presented along with 

possible explanations for differences between original and updated values. However, the 

present study can only partially assess the uncertainties that are associated with environmental 

fate modeling of a chemical such as DDT. We have, for instance, not taken into account 

model or scenario uncertainties (25,26). 

Methods 

The CliMoChem Model 

The CliMoChem model (23,27) has been used to calculate the behavior of chemicals in the 

environment. CliMoChem is a global, zonally averaged, temporally resolved (level IV) 

environmental fate model with a temporal resolution of three months. For the present 

calculations, we use the same version of the model as in an earlier study on DDT (2), with 30 

latitudinally homogenous zones from the North to the South Pole. Monthly averages of air 

temperature and vegetation types present in the different zones are taken from refs. (28,29). 

The model calculates diffusive and advective exchange processes between environmental 

compartments (atmosphere, ocean water, vegetation, vegetation-covered soil, and bare soil) 

such as rain, runoff, or evaporation, and transport in air or ocean water across the latitudinal 

zones of the model. DDT is emitted into the different zones of the model as a function of time 

according to the historic emission scenario presented in ref. (2), see also Figure S1 in the 

Supporting Information. For the time after 2005, we assumed that emissions continue at a rate 
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of approximately 15,000 t per year, according to the base scenario presented earlier (2). 

Model results are predictions of DDT concentrations in different media for each zone of the 

CliMoChem model between 1945 and 2035. 

Monte Carlo Simulations 

Monte Carlo Simulation is a technique that is used to construct a distribution of model 

outcomes for complex, non-linear systems with a large number of uncertain and sometimes 

correlated inputs (22,30-32). First, model input datasets are randomly generated from the 

domain of possible input values according to the selected uncertainty distributions. Then, in a 

large set of model runs, model outputs are calculated for each of the model input datasets. 

From each of these model runs, the output is stored for analysis. Correlations between the 

model outcome and model input values used in a Monte Carlo Simulation can be used to 

identify important parameters, assumptions and processes in the model. In the application that 

follows, we use the CrystalBall software (33) to perform 5,000 model runs. To ensure that the 

number of runs was sufficient, we performed the updating in two different sets of 2,500 runs, 

and verified that the differences between the results of these two sets of 2,500 runs each and 

the complete set of 5,000 runs were small. Furthermore, Figure S6 in the Supporting 

Information displays that about 1,200 runs out of the 5,000 contribute to the updated results 

with posterior probabilities above 0.02% (which is the prior probability, see below). The 

cumulative weight of these 1,200 runs is about 90%. In other words, a relatively large part of 

the Monte Carlo runs have contributed to the updated model results.  

 We have tracked 90 model outputs in the uncertainty analysis: concentrations in air, 

ocean-water, and vegetation-covered soil in the Arctic, the temperate, and the tropical regions 

(nine outputs), every ten years from 1945 to 2035 (10 times).  

Prior Uncertainty Distributions 

We describe parameter uncertainty using probability distributions for 47 model inputs, 

including substance properties (degradation rate constants, partition coefficients, and their 

temperature dependencies), emission rates, and model parameters. The Supporting 

Information (Table S2) gives detailed information on all model inputs, their probability 

distributions, and the methods used to estimate them. We have selected log-normal 

distributions for parameters that were bound between 0 and infinity (such as degradation rate 

constants, activation energies, and partition coefficients), normal distributions for parameters 

that were bound between +/- infinity (such as energies of phase change for partition 

coefficients), and triangular distributions for parameters that are bound between two given 

values. Uncertainty of DDT emissions was characterized by two scaling factors for past and 
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future emissions (which have higher uncertainties). Both scaling factors were assigned log-

normal distributions around the geometric mean of one. For the release pathways of DDT, we 

have assumed a triangular distribution for emissions into soil of 80% to 100%, with a most 

likely value of emissions to soil of 90%, as in ref. (2). We did not account for uncertainty of 

the location and time where DDT emissions occurred, because the model outputs are 

relatively insensitive to these variables (34). Furthermore, we did not attribute uncertainty 

distributions to some model parameters, in particular the temperature in the model, and the 

zonal distribution of OH radical concentrations. Establishing reliable uncertainty distributions 

for these parameters would have been very challenging. Therefore, uncertainties related to 

these model parameters have to be considered part of the model uncertainty (25,26) that we 

have not considered in the present study. 

The CliMoChem model also uses a number of environmental parameters that are 

uncertain (e. g. particle deposition velocity, organic matter content of a given soil type, eddy 

diffusion in air, etc.) for which we have estimated uncertainty distributions based on previous 

assessments (15,17,18,35). The Supporting Information (Table S2) provides further details 

about the magnitude and uncertainty distributions of these parameters. We have assumed that 

none of the model inputs are correlated, as asserted in previous studies (14-18,36). 

Using Rank Correlations for Sensitivity Analysis 

The rank correlation between a model input and model outcome from a Monte Carlo 

Simulation can be useful for identifying model sensitivities. CrystalBall calculates the 

Spearman Rank Correlation Coefficient (37) of model inputs and outputs, which was used for 

the present calculations. A positive rank correlation coefficient for a model input indicates 

that an increase in the value of that input generally leads to an increase of a model output, 

whereas negative rank correlations indicate the opposite. The magnitude of the absolute value 

of a rank correlation for a particular input indicates the importance of that input to the model 

outcome. In addition to providing insight into importance of specific model inputs, the rank 

correlations can highlight important processes in the model. For example, emissions have 

high rank correlation coefficients for concentrations in the Arctic in the 1960s, but much less 

so after 2000, when rank correlation coefficients for degradation rate constants increase. This 

can be explained by the fact that emission rates are important for Arctic concentrations as 

long as DDT is emitted in the temperate zone, close to the Arctic. When emissions shift 

towards the tropics, the transport mechanism into the Arctic becomes less efficient, and the 

decrease of Arctic concentrations is driven by the degradation of DDT stocks inside the 
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Arctic. It is also important to note that model sensitivity to specific inputs can change over 

time.  

Bayesian Monte Carlo Approach 

Bayesian updating can be seen as a complex way of calibrating a model. In a simple model 

calibration, a given single model input is typically adjusted in a way that a given model output 

matches a field measurement. Bayesian updating techniques do more than this, and adjust 

several model inputs to many different field measurements simultaneously, and take into 

account uncertainty of field measurements, to avoid over-fitting. 

Different Bayesian updating techniques have been described in the literature 

(22,38,39). Each of these updating techniques has its advantages and disadvantages. Markov 

chain Monte Carlo (MCMC) or Gibbs sampling both provide sophisticated approaches to 

updating at the same time the environmental fate model and the statistical error model, e.g. 

the likelihood function. We have selected Bayes Monte Carlo, BMC (40,41) for the present 

situation, because its implementation into the existing model framework was simple and 

straightforward.  

In the BMC approach, a posterior probability (p’k) is calculated by assessing the level 

of agreement between each Monte Carlo run k and the field observations (O). The likelihood 

function, p(O|Yk), is the probability of observing O given the model prediction Yk, and p(Yk) is 

the prior probability of model run k, it is equal to 1/U with U being the total number of Monte 

Carlo runs: 
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where σε is the standard deviation of the measurement errors in O. 

The posterior mean of all model inputs and outputs (V’) can be calculated from the 

posterior probability of each model run (p’k) and the prior value Vk of the corresponding 

model input or output value of model run k: 

∑
=

⋅=
U

k
kk VpV

1
''

  (eq. 4) 

The standard deviation of each of the model inputs and outputs can be found with: 

( )∑
=

−⋅=
U

k
kkV VVp

1

2'''σ
  (eq. 5)

  

To respect the constraint that our probability function (equation 3 above) holds true for 

normally-distributed measurement errors only, measurements in the environment were 

converted into log-values and the standard deviations of the log-values were estimated. The 

concentrations from the model were also converted into log-values and used for the updating. 

Equally, when calculating updated model inputs, we compiled log-values for the log-normally 

distributed model inputs.
 Measurement Data Used for Bayesian Monte Carlo Assessment 

For the BMC assessment, we used the DDT measurements reported in ref. (2), (Figure 2 

therein). These concentrations of DDT in air, ocean water, and soils of the Arctic, the 

temperate, and the tropical regions are based on underlying individual measurement studies. 

We calculated ranges of environmental concentrations and associated measurement errors (σε 

in equation 3) from the variation in the data between studies. Because measurements in 

temperate and tropical ocean water and Arctic soils are based on a single measurement each, 

the ranges of environmental concentrations and associated measurement errors could not be 

calculated. As a result, these media were excluded from the BMC assessment.  

Results and Discussion 

Uncertainties of Model Results Prior to Bayesian Updating 

Figure 1 shows the predicted temporal evolution of DDT concentrations in Arctic air (left, in 

pg/m3) and tropical soil (right, in ng/g) before Bayesian updating. DDT concentrations 

increase until 1965 and start decreasing afterwards. The slope of the decreasing concentration 

is greater in Arctic air than in the tropical soils. We attribute this to a longer half-life in soil as 

compared to air and to the fact that DDT emissions continue in tropical regions.  

Vertical bars in Figure 1 show the two-sided 95% confidence intervals. The 

confidence intervals are larger for Arctic air than for tropical soils. We show later that this is 
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because of the uncertainties that are associated with temperature-dependent substance 

properties. In the Arctic, ambient temperatures are much lower than temperatures in the 

laboratory settings where substance properties are determined. Therefore, substance properties 

for the Arctic have to be calculated from the measured values, using measured or estimated 

temperature dependencies. These calculations result in additional uncertainties for the Arctic 

as compared to tropical regions, because laboratory conditions under which substance 

properties are measured are typically closer to tropical temperatures. Furthermore, the 

uncertainty ranges increase after 2005 because uncertainties of future emissions are higher 

than uncertainties of past emissions. Plots of all concentrations as a function of time with 

associated uncertainties for all media in all regions are given in the Supporting Information 

(Figure S2). 

 

Sensitivity Analysis 

Figure 2 (left) displays the sum of squares of the rank correlation coefficients in temperate 

soils for five groups of model inputs: degradation half-lives (4 inputs), partition coefficients 

(2 inputs), temperature dependencies of half-lives and partition coefficients (6 inputs), 

emissions (3 inputs), and environmental parameters (32 inputs). For emission-related model 

inputs, the rank correlation, and thus the model sensitivity, decreases over time as emissions 

shift away from the temperate zones. In contrast, sensitivity of the model to the degradation 

rate constants and temperature dependencies increase when transport of newly emitted DDT 

Figure 1: Prior model outputs (Monte Carlo runs without Bayesian updating) depicting the evolution of 

DDT concentrations in Arctic atmosphere (left) and tropical soils (right). Error bars represent the 95% 

confidence intervals of the prior model outputs. 
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into the temperate zone and degradation of stocks from previous emissions become dominant 

processes. In the Supporting Information, rank correlations of the five groups of model inputs 

with concentrations in all media and in all geographical regions over time are given. Figures 

S2 and S3 show that temperature dependence is much more important for concentrations in 

the Arctic than in temperate regions, and is almost negligible in the tropics.  

Figure 2 (right) presents the temporal evolution of the highest rank correlations (RC) between 

model inputs and concentrations in the tropical atmosphere. Until 2005, the atmospheric 

degradation rate constant (k’air) is the most influential model input (RC = −0.94); it influences 

long-range transport from temperate regions into the tropics, and also the residence time of 

DDT in tropical air. The model is also sensitive to logKOW (RC = −0.18), which is used to 

estimate partitioning into soil and particles in air and ocean water. Also the scaling factor for 

past emissions (Spast) has a high importance (RC = 0.17, until 2005). After 2005, the 

importance of Spast decreases, and the importance of the scaling factor for future emissions 

(Sfuture) increases correspondingly (RC = 0.54). Because the future emissions occur in the 

tropics, the rank correlation of Sfuture to concentrations in tropical air is considerably higher 

than that of Spast, because no transport intervenes between the emissions and the modeled 

concentrations in the tropics. As a consequence, the importance of the atmospheric 

degradation rate constant (k’air) also decreases slightly after 2005 (RC = −0.78). 

Figure 2: Sum of squares of rank correlation coefficients for five groups of model inputs to concentration

in temperate soil (left); rank correlations of the model inputs with the highest rank correlations to

concentrations in the tropical atmosphere (right) over time . 
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 Plots of the model inputs with the highest rank correlations to concentrations in all 

media and geographical regions are given in the Supporting Information (Figure S4). In all of 

these plots the future emissions become one of the most important contributors to model 

outcome uncertainty after 2005, even for the Arctic. The rank correlation of the scaling factor 

for future emissions (Sfuture) for concentrations in air (in all climatic zones) increases sharply 

in 2005 and remains constant from 2015 to 2035. This shows that DDT concentrations in air 

are strongly influenced by future emissions immediately after their occurrence. A similar 

behavior can be observed for oceans, although the increase in the rank correlation between the 

scaling factor for future emissions and concentrations in oceans is not as sharp as for 

concentrations in air. Finally, the rank correlation between the scaling factor of future 

emissions and concentrations in soils continues to increase until the end of the simulation 

period. This indicates that past emissions influence concentrations in soil for much longer 

than concentrations in air and ocean water. In accordance, the rank correlation between past 

emission (Spast) and concentrations in soils continues to decrease for several years after past 

emissions have ceased. 

Bayesian Updating of the Most Important Model Inputs 

Table 1 shows prior and posterior statistics for some of the most influential model inputs. 

Half-lives in soils (ksoil) and ocean water (kwater) remain fairly unchanged, indicating that 

literature data on degradation half-lives is well suited to reproduce measured DDT 

concentrations in the environment. The scaling factor for past emissions (Spast), the ratio of 

emissions into soil (Rsoil), and the logKAW also do not change appreciably from prior to 

posterior values, even though the sensitivity analysis indicated they are important to the 

model. This again implies that the distribution of values taken from the literature is 

appropriate for this type of environmental fate calculation.  

The posterior DDT degradation rate constant in the atmosphere (k’air) is approximately 

three times faster than previously assumed (2). Quantitative Structure Property Relationship 

(QSPR) data from the AOPWin software (42) indicates that DDT reacts quickly with OH 

radicals in the gas phase (even faster than the posterior estimate), but to establish the prior 

value of the atmospheric degradation rate constant, data from AOPWin was combined with 

measurements derived from smog chambers studies (9,10), which suggest longer half-lives for 

DDT in the gas phase. Because in the model the concentration of DDE in air relative to that of 

DDT was lower than in the field data, we considered in ref. (2) that the atmospheric 

degradation rate constant for DDE might have to be reduced relative to that of DDT. 

However, the Bayesian updating suggests that the degradation rate constant of DDT might 
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have to be increased, and the value initially given for DDE (also from AOPWin) might be 

appropriate. 

The median of the posterior logKOW of DDT is 0.2 log units higher than the prior 

median, which was estimated from a large number of direct but highly variable 

measurements. Pontolillo and Eganhouse (13) collected values of logKOW between 3 and 7. 

However, based on additional knowledge from DDT field data, we find posterior uncertainty 

to be significantly tighter with the 95% interquantile range only about +/– 0.85 log units. 

Accordingly, logKOW values below 5.16 do not seem to be well suited to describe DDT field 

data with the CliMoChem model. This might indicate that the lower part of the range of 

logKOW values found by Pontolillo and Eganhouse is attributed to experimental difficulties 

measuring logKOW for highly lipophilic chemicals.  

Finally, temperature dependencies of all properties (Easoil for degradation rate 

constants in soil, ∆UAW and ∆UOW for logKAW and logKOW, respectively) have been increased 

by the Bayesian updating. Temperature dependencies are fairly uncertain so that it is possible 

that they were all underestimated. However, this could also indicate that the latitudinal 

temperature profile in the CliMoChem model, as used in ref. (2), should be steeper. In other 

words, real temperatures in the Arctic could be below the current values assumed in the 

model. The increase in the temperature dependencies of substance properties corresponds to 

decreasing the temperature in the Arctic by 2–3 °C. Another point might be that some 

processes in the environment take place at temperatures that are below the monthly averages 

that we use in our model (e. g. degradation in air might take place in the high atmosphere with 

temperatures significantly below the ones at the earth’s surface). 

 
Table 1: Most important model inputs before (columns “prior”) and after adjustment with the BMC 

approach (columns “posterior”).  

 Prior posterior 
 2.5% 50% 97.5% 2.5% 50% 97.5% 

Spast (–) 0.77 1 1.29 0.76 0.99 1.26 
Rsoil (–) 0.82 0.9 0.98 0.82 0.9 0.97 
ksoil (d–1) 2.32×10–4 6.77×10–4 1.97×10–3 2.63×10–4 5.83×10–4 1.13×10–3 
kwater (d–1) 4.66×10–4 1.35×10–3 3.95×10–3 5.00×10–4 1.69×10–3 4.29×10–3 
k’air (cm3/d/molecule) 5.17×10–9 8.98×10–8 1.55×10–6 2.67×10–8 2.64×10–7 6.30×10–7 
logKAW (–) –3.55 –3.35 –3.15 –3.56 –3.36 –3.14 
logKOW (–) 5.16 6.01 6.86 5.34 6.21 7.03 
Easoil (kJ/mol) 13.6 30.0 66.2 15.5 35.8 74.4 
∆UAW (kJ/mol) 33.4 72.6 112 35.4 74.4 112 
∆UOW (kJ/mol) –54.2 –15.3 23.9 –58.3 –20.0 19.4 
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Comparison of Model Results with Field Data 

In the comparison of model results with DDT field data in ref. (2), several disagreements were 

highlighted, and possible reasons for the disagreement discussed. Under the new evidence 

gained from the sensitivity analysis and the Bayesian Monte Carlo assessment, it is useful to 

reconsider these points. The model results presented in ref. (2) showed atmospheric 

concentrations in the Arctic that were about one order of magnitude above measurements. The 

increased degradation rate constant in air reduces DDT concentrations in the atmosphere, yet 

this applies to all regions. The increased temperature dependence of the air-water partition 

coefficient that is suggested by the BMC approach leads to a more efficient scavenging of 

DDT by rain from the atmosphere and, thus, reduces DDT concentrations (and travel 

distances) in the atmosphere, in particular in the Arctic. Model results from ref. (2) further 

showed that DDT concentrations in ocean-water were constant along latitudinal zones, or 

even increasing towards the poles, whereas field data showed a decreasing trend towards the 

poles (although this trend is based on very few measurements). The zonal distribution of DDT 

in ocean water is not expected to be significantly modified by the BMC approach, because the 

measurement data in oceans is subject to high uncertainties and does therefore not contribute 

to the updating notably. The effects of the BMC approach on model results are discussed in 

more detail in the following. 

Figure 3 shows the cumulative distribution functions of measurements, prior model 

results, and posterior model results (after the BMC approach) in 1995. As examples, we show 

concentrations in Arctic air and temperate soils. As could be expected, the posterior values for 

model inputs from the BMC approach result in model predictions that are closer to the 

measurements than are the initial Monte Carlo simulation results in both cases. Notably, in 

Arctic air, the DDT concentration predicted by the model (the median of the results from the 

BMC approach) is within a factor of three of the median of the measurement data, as 

compared to about one order of magnitude difference prior to the Bayesian updating. 

Similarly, in temperate soils, the median of the BMC model results lies between the median of 

the original model results and the measurement data. However, improved model fit was not 

consistently observed across all regions and phases. In the temperate atmosphere, the 

posterior model output shifted away from the measurements (see Figure S5 in the Supporting 

Information). This is likely because the reduction in the deviations between measurements 

and model results in other compartments were quantitatively more important in the overall 

updating process. 
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The graphs with the temporal evolution of DDT (Figure 1) can be redrawn with the 

results from the BMC approach (Supporting Information, Figure S2). Uncertainty ranges in 

the model results decrease due to the additional information that has been gained from the 

measurement data. Furthermore, concentrations in soils (in particular in the temperate region 

and the Arctic) seem to decrease more slowly than originally predicted. The reason for this 

can be found in the increased temperature dependencies of partition properties and half-life in 

soil. This suggests that DDT might be more persistent in the Arctic and temperate soils than 

initially predicted. 

The Bayesian Monte-Carlo simulations and the sensitivity analysis have increased the 

understanding of the processes that govern the global fate and persistence of DDT. Substance 

properties of DDT and emission data have been identified as the most important sources of 

uncertainty. The Bayesian updating provides insight on how to select and restrict model 

inputs. For example, the scaling factor for past emissions has not been markedly modified by 

the updating, indicating that the information we used probably represents the amount of DDT 

emitted relatively well. This is important because there is only little information available on 

DDT emissions (only two different studies were used to construct the emission scenario 

presented in ref. (2)). Furthermore, the Bayesian updating suggests that uncertainties in the 

KOW of DDT might be lower than previous estimates. In the case of the atmospheric 

degradation rate constant, additional information has been gained that might help to select the 

optimal degradation rate constant among different suggestions from measurement or QSPR 

data. When the environmental fate of other substances is modeled in the future, we suggest 

that Bayesian updating techniques be used in order to take advantage of all available 

Figure 3: Cumulative Distribution Functions (CDFs) for measurements, prior-, and posterior-model 

results in Arctic atmosphere (left) and temperate soil (right) in 1995. The y-axis shows the probability 

that the corresponding results (measurements or model data) are below or equal to a given value on the 

x-axis. 
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observations to reduce uncertainties. Updating methods, such as the Bayesian Monte-Carlo 

method that was employed here, reduce differences between model results and field data. We 

hope that the present manuscript contributes to an increased awareness of uncertainty, and 

illustrates that better predictions and subsequent policy-decisions may be taken when 

uncertainties are explicitly considered in future modeling studies.  
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