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ABSTRACT

If the cosmic dark matter consists of weakly-interacting massive parti-
cles, these particles should be produced in reactions at the next generation
of high-energy accelerators. Measurements at these accelerators can then
be used to determine the microscopic properties of the dark matter. From
this, we can predict the cosmic density, the annihilation cross sections, and
the cross sections relevant to direct detection. In this paper, we present
studies in supersymmetry models with neutralino dark matter that give
quantitative estimates of the accuracy that can be expected. We show that
these are well matched to the requirements of anticipated astrophysical
observations of dark matter. The capabilities of the proposed Interna-
tional Linear Collider (ILC) are expected to play a particularly important
role in this study.
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1 Introduction

It is now well established that roughly 20% of the energy density of the universe
consists of neutral weakly interacting non-baryonic matter, ‘dark matter’ [1,2,3]. The
picture of structure formation by the growth of fluctuations in weakly interacting
matter explains the elements of structure in the universe from the fluctuations in
the cosmic microwave background down almost to the scale of galaxies. However,
many mysteries remain. From the viewpoint of particle physics, we have no idea
what dark matter is made of. The possibilities range in mass from axions (mass 10−5

eV) to primordial black holes (mass 10−5M⊙). From the viewpoint of astrophysics,
it is still controversial how dark matter is distributed in galaxies and even whether
the picture of weakly interacting dark matter adequately explains the structure of
galaxies. Furthermore, a much larger range of masses is allowed, bounded only by
the quantum limit (10−22 eV) for bosons [4] and the discreteness limit (103 M⊙) above
which galactic globular clusters would be disrupted by the dark matter “particles”
[5].

To improve this situation, we need more experimental measurements. Unfortu-
nately, precisely because dark matter is weakly interacting and elusive, any single new
piece of data has multiple interpretations. If we improve the upper limit on the direct
detection of dark matter, does this mean that the microscopic cross section is small
or that our detector is located in a trough of the galactic dark matter distribution? If
we see a signal of dark matter annihilation at the center of the galaxy, does this mea-
sure the annihilation cross section, or does it measure the clustering of dark matter
associated with the galaxy’s formation? If we observe a massive weakly-interacting
elementary particle in a high-energy physics experiment, can we demonstrate that this
particle is a constituent of dark matter? For any single question, there are no defi-
nite answers. It is only by carrying out a program of experiments that include both
particle physics and astrophysics measurements and marshalling all of the resulting
information that we could reach definite conclusions.

It is our belief that the role that particle physics measurements will play in this
program has been underestimated in the literature. Much of the particle astrophysics
literature on dark matter particle detection is written as if we should not expect
strong constraints from particle physics on the microscopic cross sections. This leaves
a confusing situation, in which one needs to determine the basic properties of dark
matter in the face of large uncertainties in its galactic distribution, or vice versa.
To make matters worse, many of these discussions use models of dark matter with
an artificially small number of parameters, precisely to limit the possible modes of
variation in the microscopic properties of dark matter.

We see good reason to be more optimistic. Among the many possible models of
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dark matter, we believe that there are strong reasons to concentrate on the particular
class of models in which the dark matter particle is a massive neutral particle with
a mass of the order of 100 GeV. We will refer to the particles in this special class
of models as WIMPs. We will define the class more precisely in Section 2. In this
class of models, the WIMP should be discovered in high-energy physics experiments
just a few years from now at the CERN Large Hadron Collider (LHC). Over the next
ten years, the LHC experiments and experiments at the planned International Linear
Collider (ILC) will make precision measurements that will constrain the properties of
the WIMP. This in turn will lead to very precise determinations of the microscopic
cross sections that enter the dark matter abundance and detection rates.

In the best situation, these experiments could apply to the study of dark matter
the strategy used in more familiar areas of astrophysics. When we study stars and
the visible components of galaxies and clusters, every measurement is determined by
a convolution of microscopic cross sections with astrophysical densities. We go into
the laboratory to measure atomic and nuclear transition rates and then apply this
information to learn the species and conditions in the object we are observing. We
might hope that the LHC and ILC experiments on dark matter would provide the
basic data for this type of analysis of experiments that observe galactic dark matter.

Our main goal in this paper is to demonstrate that this objective can be achieved.
To show this, we need to realistically evaluate the power of the LHC and ILC exper-
iments to determine the cross sections of direct astrophysical interest. Dark matter
particles are invisible to high-energy physics experiments, and so such determinations
are necessarily indirect. On the other hand, the large number of specific and precise
measurements that can be expected will allow us to determine the model of which
the WIMP is a part. We will show that this information indeed constrains the elu-
sive WIMP cross sections, and we will estimate the accuracy with which those cross
sections can be predicted from the LHC and ILC data.

One might describe the actual calculations in our analysis as merely a simple
exercise in error propagation. This description is correct, except that the exercise
is not simple. The WIMP cross sections have a complicated dependence on the
underlying spectrum parameters, and many of those parameters cannot realistically
be measured in high-energy physics experiments. We address these problems by
using as our starting point the results of detailed high-energy physics simulations and
applying to these results a statistical method that is robust with respect to incomplete
information. We believe that the results that we are presenting will be of interest
to high-energy physicists who are planning experiments at future accelerators and as
well as to astrophysicists looking into the future of dark matter detection experiments.

Dark matter measurements also have the potential to feed information back to
particle physics. Today, the very existence of dark matter is the strongest piece of
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evidence for physics beyond the Standard Model. The cosmic density of dark matter
is already quite well known. This density has been determined to 6% accuracy by the
cosmological data, especially by the WMAP measurement of the cosmic microwave
background (CMB) [6]. Later in this decade, the Planck satellite should improve this
determination to the 0.5% level [7]. If it should become attractive to assume that a
WIMP observed at the LHC accounts for all of the dark matter, these measurements
can be used to give precision determinations of some particle physics parameters.
Over time, this assumption could be tested with higher-precision high-energy physics
experiments. In some cases, measurements of direct signals of astrophysical dark
matter could also provide interesting constraints on particle physics. We will give
some illustrations of this interplay between astrophysical and microscopic constraints
in the context of our examples.

Here is an outline of our analysis: In Section 2, we will specify the WIMP class of
dark matter models, and we will review the set of WIMP properties that should be
determined by microscopic experiments. To perform specific calculations of the ability
of LHC and ILC to determine these cross sections, we will study in detail the case of
supersymmetry models in which the dark matter particle is the lightest neutralino.
In Section 3, we will review the various physical mechanisms that can be responsible
for setting the dark matter relic density in these models, and we will choose four
benchmark models for detailed study. We will also explain how we evaluate the model
uncertainty in the predictions from the collider measurements, using an exploration
of the parameter space by Markov Chain Monte Carlo techniques. In Sections 4-7,
we present the results of our Monte Carlo study for each of the benchmark points.
In Section 8, we will present some general observations on the determination of dark
matter annihilation cross sections. Finally, in Section 9, we review the results of our
study and present the general conclusions that we draw from them.

Our calculations make heavy use of the ISAJET [8] and DarkSUSY computer
programs [9] to evaluate the neutralino dark matter properties from the underlying
supersymmetry parameters. We thank the authors for making these useful tools
available.

The determination of the cosmic dark matter density from collider data has also
been studied recently by Allanach, Belanger, Boudjema, and Pukhov [10] and by
Nojiri, Polesello, and Tovey [11]. We will compare our strategies and results in
Sections 3 and 4. A first version of this analysis has been presented in [12]; this
work supersedes the results presented in that paper.
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2 Preliminaries

Before beginning our study of specific WIMP models of dark matter, we would
like to review some general aspects of dark matter and its observation. In this section,
we will define what we mean by the WIMP scenario, give an overview of how WIMPs
can be studied at high-energy colliders, and review the set of cross sections needed
to analyze WIMP detection. All of the material in this section is review, intended to
introduce the questions that we will answer in the specific model analyses of Section
4–7.

2.1 Why the WIMP model of dark matter deserves special attention

Among the particle physics candidates for dark matter, many share a set of com-
mon properties. They are heavy, neutral, weakly-interacting particles with interac-
tion cross sections nevertheless large enough that they were in thermal equilibrium
for some period in the early universe. It is these particles that we refer to collectively
as WIMPs.

The assumption of thermal equilibrium allows a precise prediction of the cosmic
density of the WIMP. We must of course also assume that standard cosmology can
be extrapolated back to this era. Given these assumptions, it is straightforward to
integrate the Boltzmann equation for the WIMP density through the time at which
the WIMP drops out of equilibrium. The resulting density is the ‘relic density’ of the
WIMP. To 10% accuracy, the ratio of this relic density to the closure density is given
by the formula [13]

Ωχh2 =
s0

ρc/h2

(
45

πg∗

)1/2
xf

mPl

1

〈σv〉 (1)

where s0 is the current entropy density of the universe, ρc is the critical density, h is
the (scaled) Hubble constant, g∗ is the number of relativistic degrees of freedom at the
time that the dark matter particle goes out of thermal equilibrium, mPl is the Planck
mass, xf ≈ 25, and 〈σv〉 is the thermal average of the dark matter pair annihilation
cross section times the relative velocity. Most of these quantities are numbers with
large exponents. However, combining them and equating the result to ΩN ∼ 0.2 [1],
we obtain

〈σv〉 ∼ 0.9 pb (2)

Interpreting this in terms of a mass, using 〈σv〉 = πα2/8m2, we find m ∼ 100 GeV.

This argument gives only the order of magnitude of the dark matter particle mass.
Still, it is remarkable that the estimate points to a mass scale where we expect for
other reasons to find new physics beyond the Standard Model of particle physics.
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Our current understanding of the weak interaction is that this arises from a gauge
theory of the group SU(2) × U(1) that is spontaneously broken at the hundred-GeV
energy scale. An astronomer might note this as a remarkable coincidence. A particle
theorist would go further. There are many possible, and competing, models of weak
interaction symmetry breaking. In any of these models, it is possible to add a discrete
symmetry that makes the lightest newly introduced particle stable. Generically, this
particle is heavy and neutral and meets the definition of a WIMP that we have given
above. In many cases, the discrete symmetry in question is actually required for
the consistency of the theory or arises naturally from its geometry. For example, in
models with supersymmetry, imposing a discrete symmetry called R-parity is the most
straightforward way to eliminate dangerous baryon-number violating interactions.
Thus, as particle theorists, we are almost justified in saying that the problem of
electroweak symmetry breaking predicts the existence of WIMP dark matter. This
statement also has a striking experimental implication, which we will discuss in the
next section.

The fact that models of electroweak symmetry breaking predict WIMP dark mat-
ter was recognized very early for the important illustrative example of supersymmetry.
Dark matter was discussed as a consequence of the theory in some of the earliest pa-
pers on supersymmetry phenomenology [14,15,16,17,18]. However, it is important to
realize that the logic of this connection is not special to supersymmetry; it is com-
pletely general. This has been emphasized recently by the introduction of dark matter
candidates associated with extra-dimensional and little Higgs models of electroweak
symmetry breaking [19,20,21,22,23].

If WIMP dark matter is preferred by theory, it is also preferred by experiment, or
at least, by experimenters. Almost every technique that has been discussed for the
detection of dark matter requires that the dark matter is composed of heavy neutral
particles with weak-interaction cross sections. There are a few counterexamples to
this statement; axion dark matter is searched for by a technique special to that
particle [24], and axion and gravitino warm dark matter are searched for in low-
energy gamma rays [25]. But the direct and indirect detection experiments that we
will discuss later in this section, which are considered generic search methods, assume
that the dark matter particle is a WIMP.

The arguments we have given do not rule out additional dark matter particles in
other mass regions. It might well be true that WIMPs exist as a consequence of our
models of weak interaction symmetry breaking, but that they make up only a small
part of the dark matter. The only way to find this out is to carry out the experiments
that define the properties of the WIMPs, predict their relic density and detection
cross sections, and find discrepancies with astrophysical observation. Either way, we
must continue to the steps described in the following sections.
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2.2 WIMPs at high-energy colliders

There is a further assumption that, when added to the properties of a WIMP just
listed, has dramatic implications. Models of electroweak symmetry breaking typically
contain new heavy particles with QCD color. These appear as partners of the quarks
to provide new physics associated with the generation of the large top quark mass. In
supersymmetry and in many other models, electroweak symmetry breaking arises as
a result of radiative corrections due to these particles, enhanced by the large coupling
of the Higgs boson to the top quark. Thus, we would like to add to the structure
of WIMP models the assumption that there exists a new particle that carries the
conserved discrete symmetry and couples to QCD. This particle should have a mass
of the same order of magnitude as the WIMP, below 1000 GeV.

Any particle with these properties will be pair-produced at the CERN Large
Hadron Collider (LHC) with a cross section of tens of pb. The particle will decay
to quark or gluon jets and a WIMP that exits a particle physics detector unseen.
Thus, any model satisfying these assumptions predicts that the LHC experiments
will observe events with many hadronic jets and an imbalance of measured momen-
tum. These ‘missing energy’ events are well-known to be a signature of models of
supersymmetry. In fact, they should be seen in any model (subject to the assumption
just given) that contains a WIMP dark matter candidate.

The rate of such missing energy events depends strongly on the mass of the colored
particle that is produced and only weakly on other properties of the model. So it is
reasonable to estimate the discovery potential of the LHC by looking at the predictions
for the special case of supersymmetry. In Fig. 1, we show the estimates of the ATLAS
collaboration for the discovery of missing energy events at various levels of the LHC
integrated luminosity [26]. For the purpose of this discussion, it suffices to follow the
contours of mass for the squarks and gluinos that are the primary colored particles
produced. According to the figure, if either the squark or the gluino has a mass below
1000 GeV, the missing energy events can be discovered with an integrated luminosity
of 100 pb−1, about 1% of the LHC first-year design luminosity. Thus, we will know
very early in the LHC program that the LHC is producing a WIMP candidate. This
will open the way to detailed studies of the role of this WIMP in astrophysics.

2.3 Qualitative determination of WIMP parameters

For reasons that we will detail in the next section, it is very important after the
discovery of the WIMP to identify it qualitatively, that is, to single out what theory
gives rise to this particle and what its basic interactions are. This next step may turn
out to be very difficult at the LHC.

6



Figure 1: Contours in a parameter space of supersymmetry models for the discovery of the
missing energy plus jets signature of new physics by the ATLAS experiment at the LHC.
The three sets of contours correspond to levels of integrated luminosity at the LHC (in
fb−1), contours of constant squark mass, and contours of constant gluino mass. From [26].
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Figure 2: Four scenarios for decay chains observed at LHC. Each exhibits jets, hard lep-
tons, and missing energy. Distinguishing between these cases by detailed study of energy
distributions may not be possible with LHC alone.

The reason for this is just the converse of the argument that the characteristic
signature of the WIMP is observed missing momentum. At a proton collider such as
the LHC, reactions that produce heavy particles are initiated by quarks and gluons
inside the proton. We do not know a priori how much of the momentum of the
proton each initial particle carries. Since we do not observe the final-state WIMPs,
we also cannot learn the energies and momenta of the produced particles from the
final state. If we cannot find the rest frame of the massive particles, it is very difficult
to determine the spins of these particles or to specifically identify their decay modes.

As a concrete illustration of this argument, consider the four models of the decay
of a colored primary particle shown in Fig. 2. Examples (a) and (b) are drawn
from models of supersymmetry in which the WIMP is the supersymmetric partner
of the photon or neutrino. Examples (c) and (d) are drawn from models of extra
dimensions in which the WIMP is, similarly, a higher-dimensional excitation of a
photon or a neutrino. The observed particles in all four decays are the same; the
subtle differences in their momentum distributions are obscured by the uncertainty
in reconstructing the frame of the primary colored particle. It is possible to make use
of more model-dependent features. In the recent papers [27,28,29] specific features of
the models have been identified that can distinguish the cases of supersymmetry and
extra dimensions. Still, it is likely that, from the LHC experiments alone we will be
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Figure 3: Threshold behavior of pair production cross sections for spin 1/2 (KK muon) and
spin 0 (smuon) counterpart to the Standard Model muon. These distributions are easily
distinguished by an e+e− collider.

left with several competing possibilities for the qualitative identity of the WIMP.

Fortunately, another tool is likely to be available to particle physicists. At an
electron-positron collider, the pair production process e+e− → XX is gives an ex-
quisite diagnostic of the quantum numbers of a massive particle X. As long as only
the diagrams with annihilation through γ and Z are relevant, the angular distribu-
tion and threshold shape of the reaction are characteristic for each spin, and the
normalization of the cross section directly determines the SU(2) × U(1) quantum
numbers. These tests can be applied to any particles with electric or weak charge
whose pair-production thresholds lie in the range of the collider. In Figure 3, we
show one example of such a test for models (a) and (c) of Fig 2, by plotting the
threshold behavior of the pair-production cross sections for the supersymmetry or
extra-dimensional muon partner that appears at the last stage of the decay process.
This single measurement would already pin down the spin and quantum numbers of
the particle and bring us a long way toward the qualitative identification of the model.
Particle physicists are now designing an electron-positron collider, the International
Linear Collider (ILC), which will reach 500 GeV in the center of mass in its initial
stage and will be upgradable in energy to about 1000 GeV.

The discussion of this and the previous section highlights the contrasting strengths
of the LHC and the ILC, and of the technologies of proton and electron colliders. The
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LHC can more easily reach high energies and offers very large cross sections for specific
states of a model of new physics. The ILC typically reaches fewer states in the new
particle spectrum, but it gives extremely incisive measurements of the properties of
the particles that are available to it. Also, as we will see, these particles are typically
the ones on which the dark matter density depends most strongly. Both LHC and
ILC can make precision measurements, but the measurements at the ILC typically
have a more direct interpretation in terms of particle masses and couplings. In our
discussion in Section 4–7, we will see many examples in which the greater energy
reach of the LHC contrasts with the greater specificity of the measurements from the
ILC.

2.4 Quantitative determination of WIMP parameters

For the purpose of understanding dark matter, what we actually want from an
understanding of the WIMP in particle physics is the ability to predict the WIMP’s
relic density and detection cross sections. Given that the WIMP is not observable in
the high-energy physics experiments, it is not so obvious how to make these predic-
tions, or, even, that the predictions can be made. The only strategy available to us
is to understand the underlying particle physics model well enough to fix the interac-
tions of the WIMP. To do this, we must determine its couplings and the masses and
properties of the observable particles to which it couples.

As a matter of principle, this is a very difficult undertaking. The one advantage
that we have is that the cross sections of the WIMP that are the most important in
astrophysics involve very low energies. The relic density is determined by the WIMP
annihilation cross section at temperatures such that T/mχ ∼ 1/25, corresponding
to nonrelativistic motion [13]. When we observe the WIMP through its annihilation
processes, the annihilation energy is very close to threshold. In direct detection of
WIMPs, or in the capture of WIMPs into the earth or the sun, the WIMPs are
moving with a velocity v/c ∼ 10−3. Though we will see some exceptions to this,
it is typical that the most important diagrams for computing these cross sections
involve the lightest particles in the model. If we can characterize these particles and
measure their properties with precision, we can reach the goal of making microscopic
predictions of the WIMP properties.

We do not know a way to give a general proof of this claim, but we can illustrate
its validity through studies of models. In Section 3, we will explain in detail how we
will test this claim for supersymmetry models with neutralino dark matter.
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2.5 Astrophysical dark matter measurements: relic density

In the next three sections, we will review the astrophysical measurements that
will require cross sections and other particle properties that might be determined by
particle physics measurements. The first of these is the most basic property of dark
matter, its cosmic mass density.

The mass density of dark matter is already known today to impressive accuracy,
and this accuracy is expected to improve significantly before the end of the decade.
The analysis of fluctuations in the cosmic microwave background (CMB)—in partic-
ular, the measurement of the acoustic peaks that reflect oscillations in the plasma
that filled the universe at temperatures just below 1 eV—allow determinations of the
density of baryonic and non-baryonic matter. The current value of the dark matter
density, dominated by the data from the WMAP experiment [6], is [1]

Ωχh2 = 0.111 ± 0.006 (3)

This is already a determination to 6% accuracy. In 2007, we expect the launch of the
Planck satellite, which will give an even more precise measurement of the properties
of the CMB. From this experiment, we can expect an improvement in the accuracy
of Ωχh2 to 0.4% [7].

It will be very difficult for microscopic predictions of the WIMP density to match
this level of precision. But we will see that, in the specific models that we will consider,
it is possible to give a microscopic prediction of the WIMP density to an accuracy
of 20% or better. Thus, it will be a quite nontrivial test to compare the microscopic
prediction to the density determined from the CMB.

A discrepancy between the microscopic and CMB values could arise for many rea-
sons. The WIMP could provide only a portion of the dark matter, with other portions
arising from different types of particles. The WIMP could decay to a lighter and even
more weakly interacting particle, a ‘superWIMP’ [30]. In this case, experiments on
astrophysical WIMP detection should see nothing, but particle physics experiments
might find evidence for the WIMP instability both from the new particle spectrum
and from direct observation of the decay [31,32,33,34]. The density of WIMPs could
be diluted between the temperature of WIMP decoupling (T ∼ GeV) and the temper-
ature of primordial nucleosynthesis by some mechanism of entropy production, due to
a phase transition or late particle decay. On the other side, the WIMP density could
mainly be generated out of equilibrium, during reheating to TeV temperatures or from
the decay of heavy particles to WIMPs. In supersymmetry models, this scenario has
been studied in models of anomaly-mediated supersymmetry breaking [35,36]. These
models contain large annihilation cross sections and so predict large astrophysical
signals of WIMP annihilation.
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In the study of primordial nucleosynthesis, both late entropy production and non-
thermal processes have been considered, along with more exotic effects from new
physics. But, in fact, the predictions of primordial nucleosynthesis are in remarkable
agreement with the predictions based on standard cosmology combined with detailed
laboratory measurements of low-energy nuclear cross sections [37]. This gives us con-
fidence that our cosmological model is correct back to times of the order of 1 minute
after the Big Bang. From this experience, we conclude that it is possible also that the
measured and predicted WIMP density might turn out to be in excellent agreement,
verifying standard cosmology back to times of 10−9 seconds.

If the CMB and microscopic determinations of the WIMP density within their
individual accuracies, it will be tempting to impose the more stringent astrophysical
constraint on the particle physics model. At present, we do not know the particle
physics model, and imposing the constraint (3) does not seem to exclude any qual-
itative possibilities, though it does narrow the parameter space if a given model is
assumed. After the particle physics model is known, the stringent constraint on the
dark matter density from Planck can have more interesting consequences. In Sec-
tions 4.6, 5.5, 6.5, and 7.5, we will give specific examples of how a precise value of
the dark matter density can be combined with LHC data to predict parameters of
the supersymmetry spectrum that are difficult to measure at the LHC.

2.6 Astrophysical dark matter measurements: direct detection

If the microscopic cross sections measured at colliders agree with the CMB mea-
surements of the dark matter density, a crucial uncertainty remains, alluded to in the
previous section. Does the dark matter candidate in addition have a lifetime longer
than the age of the universe, or is the consistency merely a coincidence? A complete
picture of dark matter requires that the candidate particle be observed as the major
constituent of our galaxy. This can be accomplished by direct or indirect detection,
discussed in this section and the next.

Direct detection of WIMPs in sensitive low-background experiments involves the
cross sections for WIMP scattering from nucleons near threshold. The expressions
for these cross sections naturally divide into spin-dependent and spin-independent
isoscalar and isovector contributions. The spin-independent isoscalar term is en-
hanced in WIMP-nucleus cross sections by factors of A2, so we will emphasize the
prediction of this contribution. The predictions for direct detection cross sections in
supersymmetry models are typically displayed on scatter plots that cover five orders
of magnitude [2]. As we will see, data from the LHC and the ILC can significantly
narrow this range.

The technologies for direct detection of WIMPs and experimental limits have
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recently been reviewed by Gaitskell[38]. The strongest current limits, from the CDMS
[39], CRESST [40], EDELWEISS [41], and ZEPLIN [42] experiments, give an upper
bound to the cross section of a 100 GeV WIMP at about σ(χp) < 2 × 10−7 pb.
The DAMA experiment [43] reported the observation of annual modulation in a low-
background NaI detector of a size consistent with a WIMP with σ(χp) ∼ 5×10−6 pb,
but unfortunately the experiments listed previously contradict this interpretation [44].
For the purposes of this paper, we will choose reference models of WIMP dark matter
with σ(χp) < 10−7 pb.

Later in the paper, we will present analyses in which WIMP direct detection rates
are combined with LHC and ILC results. In these analyses, we will use the predicted
counting rates from the proposed SuperCDMS experiment [45]. This particular ex-
periment is chosen simply as a concrete illustration of our methods. Alternative
technologies, for example, large noble gas detectors [46,47], promise higher counting
rates and might well improve on these results.

Predictions for the rate in direct detection experiments rely on the assumption
that the average density of dark mater in the halo of the galaxy can be used to
estimate the flux of dark matter that impinges on a detector on the earth. This
density is uncertain, but, in addition, we do not expect the density of dark matter
to be constant over the halo. In models of cold dark matter, the galaxy is assembled
from smaller clusters of dark matter. The initial situation is inhomogeneous, and
these inhomogeneities are not expected to be smoothed out in the time since the
galaxy was formed.

The local halo density is inferred by fitting to models of the galactic halo. These
models are constrained by a variety of observations, including the rotational speed at
the solar circle and other locations, the total projected mass density (estimated by
considering the motion of stars perpendicular to the galactic disk), peak to trough
variations in the rotation curve (‘flatness constraint’), and microlensing. Gates, Gyuk,
and Turner [48] have collected these constraints and estimated the local halo density
to lie between 4 × 10−25 g/cm−3 and 13 × 10−25 g/cm−3. Limits on the density of
MACHO microlensing objects imply that at least 80% of this is cold dark matter.
The velocity of the WIMPs would be close to the galactic rotation velocity, 230 ± 20
km/sec [49]. The effects of varying the model of the WIMP halo are illustrated in a
recent paper of the Torino group that shows this variation in terms of the region of
the mχ vs. σ plane consistent with the DAMA result [50].

These constraints rely on the assumption that the dark matter has a smooth
distribution in the galactic halo. However, the general conclusion from high resolution
N-body simulations is that the dark matter distribution is highly irregular. Using a
hierarchical clustering model of galactic structure, Stiff, Widrow, and Frieman have
argued that the solar neighborhood might be expected to be located within a clump of
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dark matter with only slightly higher local density but a velocity distribution peaked
at a relatively large value [51]. Other authors have argued for larger density variation
in the galactic distribution of dark matter. Sikivie and Ipser [52] have proposed that
spherical infall of dark matter on to developing galaxies will tend to accumulate along
singular surfaces or caustics, leading to very large local fluctuations. An even more
extreme model was recently put forward by Diemand, Moore, and Stadel [53], who
argued that WIMPs are likely to appear in clusters of mass comparable to the mass
of the earth and densities roughly 103 larger than the average density of the disk. In
addition to these models that rely on the general features of galaxy formation, the
local geography of our region of the galaxy might affect the dark matter density. For
example, Freese, Gondolo and Newberg have proposed that the Sagittarius stream
should add up to 23% to the local dark matter density, with a characteristic annual
modulation [54]. These models illustrate not only that there is a large uncertainty in
the value of the local dark matter flux at the earth but also that the understanding
of this value relative to the overall average density of dark matter is an interesting
astrophysical question.

If we view these questions as uncertainties, we must say that direct detection
experiments cannot by themselves put constraints on the microscopic scattering cross
sections of WIMPs. On the other hand, if we could obtain the microscopic cross
sections from particle physics, the event rate in direct detection experiments would
directly measure the local flux of WIMP dark matter. If direct detection experiments
failed to detect dark matter, it would be even more important to have the microscopic
cross section in order to establish strong upper bounds on the local WIMP density.

There is another source of uncertainty in this program that also needs to be
addressed [55]. When the dark matter direct detection cross section is calculated
from particle physics models, even if the parameters of these models are assumed
to be precisely known, there is an uncertainty in the prediction of the cross section
that can be as large as a factor of 4 coming from a poorly understood effect of low-
energy QCD. In many WIMP models, including the SUSY models that we will take
as reference points in this study, σ(χp) is dominated by t-channel Higgs exchange.
The coupling of the Higgs boson to the proton receives its dominant contributions
from two sources, the coupling of the Higgs to gluons through a heavy quark loop
and the direct coupling of the Higgs to strange quarks [56]. That means that this
coupling depends on the parameter

fTs =
〈p|msss |p〉
〈p|HQCD |p〉 , (4)

that is, the fraction of the mass of the proton that arises from the mass of the non-
valence strange quarks in the proton wavefunction. In 1987, Kaplan and Nelson
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argued that this quantity is larger and more uncertain than previously thought [57],

fTs = 0.36 ± 0.14 (5)

In the intervening twenty years, there has been essentially no progress in improving
our knowledge of this quantity. Several recent papers have highlighted the uncertainty
in fTs as a major uncertainty in WIMP directly detection cross sections [58,59].
Indeed, for a heavy SUSY Higgs boson in a model with a large value of the parameter
tan β, the Higgs-proton coupling is given quite accurately by

λHpp =
mp

250 GeV

[
2

27
+

25

27
fTs

]
tan β + · · · (6)

so that σ(χp) is almost proportional to f 2
Ts. This can produce an uncertainty in the

direct detection cross section of a factor of 4 or even larger [58].

How could we resolve this problem? We consider it unlikely that an improvement
of the data on which the estimate (5) is based will improve the error. However, it
should eventually be possible to compute fTs in lattice gauge theory. Because fTs is
a non-valence quantity, this is beyond the current state of the art. For example, the
current result from the UKQCD collaboration is fTs = −0.20 ± 0.23 [60]. However,
the valence pion nucleon sigma term is already under control; a recent analysis gives
σπN = (49 ± 3) MeV [61]. For the non-valence case, the problem seems mainly one
of obtaining computer power to generate high statistics, and this should increase
dramatically over the next ten years [62].

For the analyses of this paper, we will ignore uncertainties in the calculation of
direct detection cross sections that are not associated with variation of the parameters
of the new physics model. This means that we will ignore the uncertainty in fTs,
corresponding to the assumption that lattice calculations will eventually solve this
problem. Other sources of theoretical error seem to be under control at the 10%
level. We will assume that fTs = 0.14, the default value in the DarkSUSY code [9],
so in any event we will underestimate the experimental counting rates.

Parenthetically, we would like to call attention to an aspect of direct detection
experiments that is very important but is not often emphasized. It is very likely that
direct detection experiments will see evidence of WIMPs in the same time frame,
before the end of the decade, that the LHC observes missing energy events. In this
case, it will be essential to compare the mass of the WIMP observed in each setting.
In supersymmetry models, as we will discuss in Sections 4-7, the kinematics of events
with squark production and decay can determine the mass of the WIMP to about
10% accuracy. We believe that this type of analysis will give the WIMP mass to
similar accuracy in typical models of the general class discussed in Section 2.2.
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Direct detection experiments can determine the mass of the WIMP by measuring
the recoil energy ER. This varies with the mass of the WIMP, with a resonance where
the WIMP mass equals the target mass. Roughly, one expects

〈ER〉 ≈
2v2mT

(1 + mT /mχ)2
, (7)

where mT is the target mass and v is the WIMP velocity, with corrections depending
on the precise target material and the properties of the detector [63]. Assuming
the standard velocity distribution in smooth halo models, with the 10% uncertainty
quoted above, an experiment with a Xenon or Germanium target that detects 100
signal events for a WIMP of mass mχ = 100 GeV can expect to measure the mass of
this particle to 20–25%. A discrepancy between the value of the WIMP mass observed
in direct detection and that found at the LHC could signal a nonstandard velocity
distribution. At a later stage, this could be checked by comparing the detection rate,
which is proportional to the flux of WIMPs, to the cross section determined from
high-energy collider data.

In Fig. 4, we show a comparison of the determination expected for the WIMP
mass from the LHC data and from the analysis of data from the SuperCDMS de-
tector [45,64] for one of the supersymmetry models that we introduce in Section 3.2.
The contours are based on a sample of 27 events and so are statistically limited. Still,
it is clear that a nontrivial comparison of WIMP masses between accelerator and
astrophysical experiments will be possible.

More powerful strategies for measuring the WIMP mass from direct detection
data have been proposed by Primack, Seckel, and Sadoulet [66] and by Bourjaily and
Kane [67]. However, this would require a sample of direct detection events about 100
times larger than those in the illustrative examples we will present here.

Finally, we comment on the possibility that WIMPs measured at colliders make
up only a fraction of the dark matter. In this case, the annihilation cross sections
tend to be larger than the expected 1 pb, and also the direct detection cross sections
tend to be large. In fact, these effects broadly speaking cancel: a WIMP making
up 10% of the cosmic dark matter tends to have cross sections 10 times as large as
expected, thus the direct detection rate is roughly independent of the inferred relic
density [68].

2.7 Astrophysical dark matter measurements: WIMP annihilation

WIMP annihilation could potentially be observed through gamma ray, positron,
antiproton, antideuteron, and neutrino signals. Of these, the observations through
gamma rays is the simplest and most robust. There are already claims that an excess
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Figure 4: Projected significance contours (1, 2, 3, 4σ) in the plane of WIMP mass versus cross
section for an observation of dark matter by the SuperCDMS experiment (25 kg target, two
year dataset) [45,65], compared to the determination of these parameters from data from
the LHC. The projections are done using the model LCC3, to be defined in Section 3.2.

of gamma rays from the galactic center gives evidence for WIMP dark matter [69].
We will examine how this study will be aided by collider physics determinations of
the WIMP annihilation cross section.

The flux of gamma rays observed on earth from WIMP annihilation is given by
the formula

Eγ
dΦγ

dEγdΩ
=

1

2
(σχχv) · Eγ

σχχ

dσχχ

dEγ

· 1

4πm2
χ

·
∫

dz ρ2(z) , (8)

where σχχ/2 is the annihilation cross section near threshold, (which typically behaves
as 1/v), z is a coordinate along the line of sight, and ρ is the WIMP mass density.
The factors of 1/2 are appropriate assuming that the dark matter particles are self-
conjugate; we will later apply this equation to the neutralino WIMP in SUSY models.
The first three factors come from microscopic physics; the final factor is a question
of astrophysics. The density integral is commonly written

∫
dzρ2(z) = r0ρ

2
0J(Ω) , (9)

where r0 = 8.5 kpc is the distance to the center of the galaxy and ρ0 = 0.3 GeV cm−3

(5.34 × 10−25 g/cm3) is a reference value of the local density of dark matter. The
quantity J(Ω) is then dimensionless.
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It is likely that the microscopic quantities that appear in (8) could be estimated to
an accuracy of 20% even in the early stages of the study of WIMPs in particle physics
experiments. The mass mχ will be determined to better than 10% accuracy from the
kinematics of missing energy events at the LHC. We will show in Section 8.1 that
the second factor in (8), the shape of the gamma-ray spectrum, is almost completely
independent of the specific annihilation process and can be obtained accurately from
particle physics simulations. For the first factor, the total annihilation cross section,
it is tempting to insert the value (2) from the relic density. This is sometimes, but
not always, a good approximation, depending on the qualitative properties of the
supersymmetry spectrum. We will discuss the systematics of this quantity in Section
8.1. In many physics scenarios, all three quantities will be known well enough already
from the LHC data to quantitatively interpret gamma ray observations.

It is very important that the particle physics factors in (8) can be determined from
microscopic measurements, because the last factor raises major questions about the
structure of the dark matter halo of the galaxy. Let us first discuss the dark matter
profile at the galactic center. A typical profile of the smoothed dark matter halo is
written

ρ(r) = ρ0(r/r0)
γ

(
1 + (r0/a)α

1 + (r/a)α

)(β−γ)/α

, (10)

where α, β, γ are parameters and the scale size a should be about 20 kpc. Navarro,
Frenk, and White (NFW) have argued that that numerical simulations of galaxy
formation by cold dark matter suggest the profile (α, β, γ) = (1, 3, 1) [70]. In the
explicit examples that we will present in Section 4.4, we will assume the NFW profile
as a canonical choice. However, other groups have drawn different conclusions from
the simulation data. Moore et al. have argued for a much steeper profile at the galactic
center: (α, β, γ) = (1.5, 3, 1.5) [71]. For this profile, the integral over ρ2(z) formally
diverges at the galactic center [72]. Wechsler and collaborators have argued that
the halos found in a given simulation can actually have different shapes depending on
their history, roughly covering the range between the NFW and Moore profiles [73,74].
We should note that the simulations that we are discussing include only dark matter,
and that the addition of a dissipative component could also alter the profile. The
variation in (8) near the galactic center for the NFW and Moore profiles, and for an
isothermal profile with (α, β, γ) = (2, 2, 0), is shown in Fig. 5. We present both the
profile functions themselves and the value of J(Ω) averaged over a disk of varying
solid angle centered on the galactic center. The predictions for 〈J(Ω)〉 span six orders
of magnitude between models. Further, these estimates are all smooth profiles, and
we have already seen that the distribution of dark matter might be clumpy. Such
small-scale structure would enhance indirect detection rates by the ratio

B =
〈
ρ2
〉

/ 〈ρ〉2 , (11)
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Figure 5: (a) Suggested profiles of the dark matter mass density near the galactic center
[70,71]. (b) Corresponding values of 〈J〉 at the galactic center, as a function of the angular
resolution indicated as a circle size in sr.
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sometimes called the ‘boost factor’. The final conclusion from all of these consider-
ations is that indirect dark matter detection rates depend on distributions that are
highly uncertain and touch on major questions of astrophysics. It would be inter-
esting to extract these distributions from the experiments, or even to obtain upper
limits on them. For this, we need to know the microscopic cross sections from particle
physics.

This conclusion applies also to other possible sources of gamma rays from WIMP
annihilation. For gamma rays from the centers of local group and other nearby
galaxies, the considerations are very similar to those for the galactic center [75].
Simulations of galaxy formation with cold dark matter predict many more dwarf
companions of the Milky Way than are actually observed. Probably, many of these
have been tidally disrupted or absorbed. However, it is likely that some of these
unobserved dwarf galaxy are actually present as pure dark matter halos from which
the baryonic gas has been blown out [76]. The GLAST telescope, with its π angular
coverage for gamma rays, has the ability to search for these objects. Even upper
limits are interesting, but their interpretation will depend critically on knowledge of
the microscopic factors in (8).

The expectations for observation of positrons, neutrinos, antiprotons and an-
tideuterons from WIMP annihilation depend on more specific details of the physics
model. We will discuss the subject of positron signals further in Section 8.2. For the
other cases, the analysis of the interplay between collider physics data and indirect
detection signals is more complex and its analysis is beyond the scope of this pa-
per. We should note, however, that the four reference models that we will introduce
in Section 3.2 are consistent with all current constraints from indirect detection of
WIMPs.

2.8 Summary: steps toward an understanding of WIMP dark matter

The program of experiments that we have described in this section has the poten-
tial to give us a complete understanding of the nature of WIMP dark matter. The
steps are the following:

1. Discover missing-energy events at a collider and estimate the mass of the WIMP.

2. Observe dark matter particles in direct detection experiments and determine
whether their mass is the same as that observed in collider experiments.

3. Determine the qualitative physics model that leads to missing-energy events

4. Determine the parameters of this model that predict the relic density.
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5. Determine the parameters of this model that predict the direct and indirect
detection cross sections

6. Measure products of cross sections and densities from astrophysical observations
to reconstruct the density distribution of dark matter.

If dark matter is composed of a single type of WIMP, this program of measurements
should reveal what this particle is and how it is distributed in the galaxy. If the
composition of dark matter is more complex, we will only learn that by carrying
out this program and finding that it does not sum to a complete picture. Hopefully,
further evidence from the microscopic theory will suggest other necessary ingredients.

The main goal of the remainder of this paper is to show that the experiments
foreseen for the LHC and ILC will be able to predict the microscopic dark matter
cross sections with sufficient accuracy that we can carry out this program. In the
next section, we will describe our strategy for addressing this question.

3 Models of neutralino dark matter

As we have already noted in Section 2.3, the annihilation and detection cross
sections needed to interpret observations of WIMP dark matter cannot be measured
directly in high-energy physics experiments. To predict these cross sections, we must
interpret experimental data on the spectra and parameters of the underlying physics
model. To do this, we must understand, at a qualitative level, what the correct
model is. We must then convert measurements of the spectrum of new particles into
constraints on the underlying model parameters. Some care should be taken in the
choice of the model. If we work in too restrictive a model context, this procedure will
artificially restrict the solutions, and we will claim an unjustified small accuracy for
our predictions. Thus, to evaluate how accurately collider data will predict the dark
matter cross section, we need to work within a model that, under overall restrictions
from spin and quantum number measurements, has a large parameter space and
allows a wide variety of physical effects to come into play.

Among models of physics beyond the Standard Model, the only one in which dark
matter properties have been studied over such a large parameter space is supersym-
metry [77]. The Minimal Supersymmetric Standard Model (MSSM) introduces a very
large number of new parameters and allows many physically distinct possibilities for
the mass spectrum of new particles. Thus, our strategy for evaluating the implications
of collider data for dark matter cross sections will be to study a set of MSSM pa-
rameter points which illustrate the variety of physics scenario that this general model
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Figure 6: Four neutralino annihilation reactions that are important in different regions of
the MSSM parameter space: (a) annihilation to leptons, (b) annihilation to W+W−, (c)
coannihilation with τ̃ , (d) annihilation through the A0 resonance.

can contain. In each case, we will systematically scan the parameter space of the
MSSM for models that are consistent with the expected collider measurements. We
hope that the insights obtained from this study will lead us to conclusions of broader
applicability about the power to high-energy physics measurements to restrict the
properties of dark matter.

3.1 Mechanisms of neutralino annihilation

From here on, then, we restrict our attention to models with supersymmetry in
which the role of the WIMP χ is taken by the lightest ‘neutralino’—a mixture of
the superpartners of γ and Z (‘gauginos’) and the superpartners of the neutral Higgs
bosons (‘Higgsinos’). Depending on the spectrum and couplings of the superpartners,
several different reactions can dominate the process of neutralino pair annihilation.
Some of the most important possibilities are illustrated in Fig. 6.

The simplest possibility (Fig. 6(a)) is that neutralinos annihilate to Standard
Model fermions by exchanging their scalar superpartners. Sleptons are typically
lighter than squarks, so the dominant reactions are χχ → ℓ+ℓ−. It turns out, however,
that this reaction is less important than one might expect over most of the supersym-
metry parameter space. Because neutralinos are Majorana particles, they annihilate
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in the S-wave only in a configuration of total spin 0. However, light fermions are natu-
rally produced in a spin-1 configuration, and the spin-0 state is helicity-suppressed by
a factor (mℓ/mχ)2. The dominant annihilation is then in the P-wave. Since the relic
density is determined at a temperature for which the neutralinos are nonrelativistic,
the annihilation cross section is suppressed and the prediction for the relic density is,
typically, too large. To obtain values for the relic density that agree with the WMAP
determination, we need light sleptons, with masses below 200 GeV.

Neutralinos can also annihilate to Standard Model vector bosons. A pure U(1)
gaugino (‘bino’) cannot annihilate to W+W− or Z0Z0. However, these annihilation
channels open up if the gaugino contains an admixture of SU(2) gaugino (‘wino’) or
Higgsino content (Fig. 6(b)). The annihilation cross sections to vector bosons are
large, so only a relatively small mixing is needed.

The annihilation to third-generation fermions can be enhanced by a resonance
close to threshold. In particular, if mass of the CP odd Higgs boson A0 is close to
2mχ, the resonance produced by this particle can enhance the S-wave amplitude for
neutralino annihilation to bb and τ+τ− (Fig. 6(d)).

If other superparticles are close in mass to the neutralino, these particles can
have significant densities when the neutralinos decouple, and their annihilation cross
sections can also contribute to the determination of the relic density through a coan-
nihilation process. If the sleptons are only slightly heavier than the neutralino, the
reactions ℓ̃χ → γℓ and ℓ̃ℓ̃ → ℓℓ can proceed in the S-wave and dominate the annihila-
tion (Fig. 6(c)). Coannihilation with W+ partners (‘charginos’) and with top squarks
can also be important in some regions of the MSSM parameter space.

A common feature of all four mechanisms is that the annihilation cross section
depends strongly both on the masses of the lightest supersymmetric particles and
on the mixing angles that relate the original gaugino and Higgsino states to the
neutralino mass eigenstates. Both sets of parameters must be fixed in order to obtain
a precise prediction for the relic density.

A supersymmetry model that produces a relic density of neutralinos in the range
required by the WMAP data should implement one of these mechanisms. To the
extent that the operation of the mechanism requires special conditions on the super-
symmetry spectrum, the neutralino relic density will depend more sensitively on the
spectrum parameters than we might at first have estimated. We will see the effects
of this observation in our model studies.
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3.2 Choice of benchmark models

We would now like to choose four specific supersymmetry models that illustrate
the four mechanisms described in the previous section.

Let us first discuss the parameters of the MSSM. The most general formulation of
the MSSM has 108 parameters beyond those of the Standard Model. However, many
of these parameters violate CP or induce flavor-changing neutral current processes
and are thus tightly constrained. If we include only interactions that conserve CP
and flavor, we find the following set of parameters:

• gaugino and Higgsino masses: m1, m2, m3, µ

• slepton masses: m2(Li), m2(ei), i = 1, 2, 3

• squark masses: m2(Qi), m2(ui), m2(di), i = 1, 2, 3

• Higgs potential terms: mA, tan β

• A terms: Aτ , Ab, At

a total of 24 new physics parameters.

Most papers on neutralino dark matter adopt additional, ad hoc, assumptions to
reduce this parameter list to a smaller set. Most typically, they assume unification
of the various mass terms at the grand unification scale. This assumption, called
‘mSUGRA’ or ‘cMSSM’, reduces the parameter set to four, plus a choice of sign: m0,
m1/2, A0, tan β, sign(µ). The restricted parameter space of mSUGRA is very inter-
esting to illustrate the various possibilities for neutralino dark matter. In particular,
this subspace contains examples of all four mechanisms that we have presented in the
previous section [80,81,82].

This makes it very convenient to choose parameter points from the mSUGRA
subspace. In Table 1, we list the four parameter sets that define the supersymmetry
models that we will study in detail [83]. The spectra for these points, and for the
more general supersymmetry parameter points that we will study, are computed with
ISAJET 7.69 [8]. Results for the relic density and for neutralino detection cross sec-
tions are computed with DarkSUSY-4.1 [9]. We have checked that Micromegas 1.3 [84]
gives similar results for the relic density.

The four points listed in Table 1 illustrate the four scenarios described in the
previous section. Point LCC1 is identical to the point SPS1a [85] whose collider
phenomenology is studied in some detail in [86]. This point has light sleptons, with
neutralino annihilation dominated by roughly equal annihilation cross sections to
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Point m0 m 1

2

tan β A0 sign mu mt reference Ωχh2

LCC1 100 250 10 −100 + 175 [86] 0.192
LCC2 3280 300 10 0 + 175 [87] 0.109
LCC3 213 360 40 0 + 175 [88] 0.101
LCC4 380 420 53 0 + 178 [90] 0.114
SPS1a′ 70 250 10 −300 + 175 [91] 0.115

Table 1: mSUGRA parameter sets for four illustrative models of neutralino dark matter.
Masses are given in GeV. The table also lists the value of Ωχh2. The references given are
the primary references for simulation studies of the accuracy of spectrum measurements at
colliders. The point SPS1a′ has a phenomenology similar to that of LCC1 but gives a more
correct value of the relic density.

e+e−, µ+µ−, and τ+τ−. The sleptons are not quite light enough; the spectrum
achieves a relic density Ωh2 = 0.19, almost doubly the WMAP value. Point LCC2 is
chosen as a point with substantial gaugino-Higgsino mixing at which the neutralino
annihilation is dominated by annihilation to W+W−, Z0Z0, and Z0h0. Point LCC3
is chosen in the region where coannihilation with the τ̃ plays an important role. Point
LCC4 is chosen in a region where the A0 resonance makes an important contribution
to the neutralino annihilation cross section.

The four points are intentionally chosen so that the lightest particles of the super-
symmetry spectrum can be observed at the ILC at its initial center of mass energy of
500 GeV. This is also the most probable region of the parameter space, since in this
region the dynamics of supersymmetry can generate electroweak symmetry breaking
without extensive fine-tuning of parameters [92].

It will be important to us to have well-justified estimates for the accuracy with
which high-energy physics experiments can measure the supersymmetry spectrum
parameter at these points. For these reason, we have chosen to analyze points in the
MSSM parameter space at which simulations have been carried out to estimate the
ability of colliders to measure parameters of the supersymmetry spectrum [93]. For
the point LCC1 or SPS1a, an extensive set of simulation studies for both LHC and
ILC is described in [86]. These studies assume a luminosity sample of 300 fb−1 and
LHC and 500 fb−1 for ILC. They include realistic modeling of particle detection and
Standard Model backgrounds. For the other LCC points, similarly detailed studies
have been performed only for the ILC [95]. However, as we will see, the conclusions
of [86] and other LHC studies such as those reported in [96] can be used to estimate
the LHC capabilities at these points. The point LCC2 has been studied for the ILC
by Alexander, et al., in [87]. The point LCC3 has been studied by Khotilovich, et al.,
in [88,89]. The analysis of this point requires a precision measurement of the τ̃ mass,
and the question of how well that can be done has also been studied at related point
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by Bambade, et al. in [97]. The point LCC4 has been studied in the ILC environment
in [90].

The reader will note that the point LCC1 gives a value of Ωχh2 outside the range
preferred by the current data. We are not troubled by this, except to note that the
appropriate figure of merit is the relative accuracy, rather than the absolute accuracy,
with which Ωχh2 can be determined. Other authors, however, have been concerned
about this and have extrapolated the simulation results obtained at LCC1 (SPS1a) to
a nearby point SPS1a′ which, because it pushes into the stau coannihilation region,
predicts a relic density Ωχh2 = 0.115 [91]. In this paper, we have done our main
analysis at the original point in order to cleanly separate examples in which different
physics determines the relic density. However, Nojiri, Polesello, and Tovey [11] have
performed a detailed analysis of the LHC prediction of the relic density at SPS1a′,
and so, for comparison, we will also present the corresponding results for this point
in our framework.

The four points are chosen within the limited subspace of mSUGRA models. How-
ever, when we interpret measurements from the colliders, we will not want to assume
that the true supersymmetry model lives in this subspace. There is no compelling
physics argument for the mSUGRA assumptions. More importantly, the restriction
to a four-parameter model induces correlations between parameters of the supersym-
metry spectrum, for example, tan β, µ, and the top squark mass, that should properly
be considered independent. Some interesting studies have been performed in which
the capability of the LHC to predict Ωχh2 has been assessed by scanning over the
parameter space of mSUGRA [98,99]. However, we believe that that this restriction
makes the conclusions excessively optimistic.

Instead, it is our strategy to study the implications of measurements at the LHC
and the ILC by comparing to models over the full 24-dimensional parameter space of
the MSSM described at the beginning of this section. The MSSM is also a restricted
subspace of the space of all, completely general, supersymmetry models. However, as
we will see, the large number of parameters of the MSSM allows a very wide range of
scenarios to appear, with sufficient independence of parameters that measurements
specific to the particles involved are needed to constraint the important physical ef-
fects. We believe that the exploration of this space is a reasonable way to estimate
the capabilities of colliders to extract model-independent conclusions within the over-
all category of supersymmetry models. Many of the dependences of the neutralino
relic density on individual MSSM parameters are displayed in [10], even though the
conclusions are stated within the mSUGRA framework. Theoretical errors in the relic
density calculation, which we do not consider in this paper, are also highlighted there.
These errors become relevant when the relic density is determined to the 1% level.
The dependence of the relic density on individual MSSM parameters at several of
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the reference points is also studied in [100]. Nojiri, Polesello and Tovey have recently
redone the study [98] in the context of the full MSSM [11]. These results can be
compared directly to ours, and we will do that in Section 4.3.

We conclude this section with a more technical explanation of our use of the
MSSM parameters. First, there is ambiguity in how one would assign values to
the 24 MSSM parameters from the output of ISAJET. We do this as follows: We
first run ISAJET with the parameters in Table 1, and we run DarkSUSY at each
point using roption=’isasu’ to use the running Yukawa couplings from ISAJET.
From this, we extract the various running parameters evaluated at the mass scale
Q = (m(t̃1)m(t̃2))1/2, which ISAJET uses as the mass scale of supersymmetry. These
include the top, bottom and tau masses (MTQ, MBQ, MLQ), the Higgs vacuum
expectation values (VUQ2+VDQ2)1/2, the strong coupling constant GSS(3), and the
Yukawa couplings GSS(4,5,6). We set the ISAJET parameter NSTEP0 = 10000 to
improve the accuracy of the RG integration, especially in the focus point region.
The 24 MSSM parameters listed above are extracted at the SUSY scale, with the
exception of mA which we take as the physical mass, tan β which we take as the input
value, and m3 which we take as the physical gluino mass. We now run the benchmark
model again using a low energy treatment in DarkSUSY. The spectrum is calculated
according to the ISAJET function ssmass, from which we extract the neutralino,
chargino, sfermion, and Higgs masses and mixings. Then DarkSUSY computes the
relic density and other quantities. This is the benchmark point that we use. This
procedure defines the benchmark point, yielding the reference spectra and the values
of Ωχh2 listed in Table 1.

We note that, because we recompute the spectrum from the low-energy parameters
as just defined, our spectrum calculation differs from that of the implementation of
mSUGRA in ISAJET. Thus, we find results for the mass spectrum that differ slightly
from those obtained by inserting the original mSUGRA parameters into ISAJET. For
example, using ISAJET 7.69 directly with the parameters of LCC3 in the Table 1 gives
a mass splitting m(τ̃1)−m(χ̃0

1) = 12 GeV, while we find a splitting of 10.8 GeV. This
shift, less than 1% in the τ̃ mass, makes a significant difference in the neutralino relic
density. However, we calculate the neutralino relic density from the spectrum defined
by the low-energy parameters, and that calculation is correct, for that spectrum, to
the percent level.

To describe a point in the more general parameter space of the MSSM, we com-
pute the spectrum from ISAJET with ssmass using the new values of the 24 MSSM
parameters, taking MTQ, MBQ, MLQ, the Higgs VEV, and the strong coupling con-
stant GSS(3) to be fixed at the benchmark value. We take the Yukawa couplings
GSS(4,5,6) scaled by tan β from the benchmark values. For example, for LCC3 we
take GSS(4) to be the benchmark value times ((1 + tan2 β)/(1 + (40)2))1/2. With
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these choices, we describe the MSSM with low energy parameters in such a way that
a point in our parameter space gives a close match to the input mSUGRA model.

3.3 Scanning of parameter space

We have now reduced the prediction of the properties of WIMPs to the following
problem: Given a parameter space of n coordinates x, and given a set of measurements
mi, each with standard deviation σi, what is the expectation for the prediction for
additional observable quantities Oj that depend on the parameters x? In Bayesian
statistics, the probability distribution of x is given by the likelihood function

dnx  L(x) = dnx
∏

i

exp

[
−(Mi(x) − mi)

2

2σ2
i

]
. (12)

We have made the assumption of a flat a priori distribution of the values of x, and we
have assumed that the distribution of measurement errors is Gaussian. The prediction
for Oj(x) is then given by the expectation value of this function of x in the measure
(12). More generally, we can consider the distribution of the values of Oj(x) induced
by this distribution of the parameters x. In the next few sections, we will use this
method to present the distributions of the WIMP relic densities and cross sections
that follow from the constraints imposed by supersymmetry spectrum measurements.

A simple way to generate the distributions (12) is to choose points x randomly
in the parameter space and assign each one the indicated weight. However, if some
of our measurements are very precise, the Gaussian distributions in (12) will be
very steep and important points will be selected only rarely. A much more ef-
fective method for sampling points is the Markov Chain Monte Carlo (MCMC)
method [101,102,103,104,105]. From an initial starting configuration x0, we gener-
ate a sequence of points xI by the following algorithm: Choose a nearby point x′. If
 L(x′) ≥  L(xI), let xI+1 = x′. If  L(x′) <  L(xI), set xI+1 either to x′ or to xI , choosing
x′ with probability  L(x′)/ L(xI). This process satisfies detailed balance and therefore
should equilibrate to an ensemble of points in which each point appears with the
relative weight  L(x).

There are many possible ways to choose the distribution of initial conditions,
step sizes, and criteria for convergence in the MCMC algorithm. In our use of this
algorithm, we have chosen a reference point X∗ to be one of the LCC points, we
have set the central values of measurements mi in the likelihood function to be the
values Mi(X∗) predicted at this point, and we have taken the initial point of the chain
to be the reference point: x0 = X∗. In choosing step sizes, we have attempted to
measure the size of the distribution of points {xI} and to readjust the step size so
that it is comparable to this size in each dimension. For each reference point, we have
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generated 25 independent chains, with 160,000 points xI per chain, for a total of 4
million points.

We have tested our method by performing MCMC scans in which the step size
has been preset (to 1 GeV for the masses of color singlet particles and to 10 GeV for
the masses of colored particles), and by performing flat scans of the parameter space
in the vicinity of the reference points. The distributions near the reference points
are similar in the three methods. The final errors estimated by the MCMC method
are larger, but we are convinced that this is due to the fact that the MCMC scans
explore the parameter space more deeply.

The full details of our MCMC algorithm are presented in Appendix A. It is easy
to obtain apparently excellent but incorrect results with MCMC when the chains do
not come to equilibrium. In Appendix A, we describe direct tests and cross-checks
that have convinced us that our MCMC chains have correctly converged to the true
likelihood distribution.

3.4 Parameters and constraints

Now that we have described the general idea of MCMC scanning, we would like to
present the explicit manner in which we have applied this algorithm to the scanning
of the MSSM parameter space. We need to specify how the variables x with flat a
priori distributions are related to the MSSM parameters. If the likelihood function
(12) does not constrain a particular parameter, the MCMC chain will run to infinity
in that direction. Thus, it is also necessary to constrain the range of the parameters,
at least within some broad limits. We will now explain the choices that we have made.

For most of the 24 MSSM parameters, we have taken x to be the logarithm of the
corresponding parameter. Thus, for example, we have taken each MSSM soft mass
parameter to have the a priori distribution dm/m. The parameters Aτ , Ab, At, and
µ, and m1 can take either sign, so a pure logarithmic distribution is inappropriate for
these cases. We have taken instead the formula A = M sinh(x), with M = 50 GeV.
This corresponds to an a priori distribution dA/

√
A2 + M2. When the results of the

MCMC cluster in a small region, these results are almost independent of the prior
distribution. This is true for our scans when the fractional error is less than about
30%.

Given a set of MSSM parameters, we have used ISAJET 7.69 to compute the
supersymmetry spectrum and mixing angles, in the manner that we have described
at the end of Section 3.2. The ISAJET computation includes finite one-loop radiative
corrections, assuming the MSSM parameters to be renormalized parameters at the
scale Q defined in that discussion. When we have required cross sections for super-
symmetric particle production, we have computed these from the ISAJET output
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parameters using the tree level formulae.

For slepton masses and color-singlet gaugino masses, we have imposed a lower
bound m > 100 GeV; for squark and gluino masses, we have imposed m > 250 GeV,
except that m(t̃) > 150 GeV. These lower limits were almost always irrelevant, since
measurements at the LHC and ILC would provide stronger lower bounds. However, we
also needed to provide upper bounds to the parameter space; to do this, we restricted
all mass parameters to be less than 5 TeV in absolute value. We also imposed the
following restrictions: For the parameter tan β: 2 < tan β < 100; for the chargino
mass: m(χ+

1 ) > 125 GeV, assuming that an excess of trilepton events is not observed
at the Tevatron. For the A parameters, we have used

A2
t + µ2 < 7.5(m2(t̃1) + m2(t̃2)) , (13)

as an approximate criterion to forbid charge- and color-breaking vacuum states [106].
We imposed no additional bounds on Ab and Aτ since the top constraint is the most
stringent. As we explained in Section 3.2, we set terms in the soft masses and the A
terms that are off-diagonal in flavor equal to zero; this corresponds to the assumption
of ‘minimal flavor violation’. We did not implement the constraint from b → sγ,
since the predictions for b → sγ depend on flavor-mixing parameters that we are not
including in our analysis. In our examples, however, the collider measurements of the
supersymmetry spectrum exclude the region in which a large deviation in b → sγ is
expected in models with minimal flavor violation.

In the results presented in the body of this paper, we further restrict the range
of µ, m1, and m2 to positive values. It is possible to choose m2 to be positive by
convention, but then m1 and µ can in principle have either sign. It is usually very
difficult to determine these signs from the LHC data. This is a special case of a
more general problem, that spectrum constraints from the LHC often allow a number
of interpretations in terms of the underlying supersymmetry parameters, related by
discrete interchange operations. These ‘discrete ambiguities’ have been highlighted
in [107,108]. We will see many examples of such ambiguities in the simulation results
that we will present below, and we have studied in detail that our simulations count
the multiple solutions correctly. By studying scans in which m1 and µ can take values
of either sign, we have concluded that allowing negative signs makes little difference to
the results that we will show for the LHC, and that the ILC can typically distinguish
the solution with positive signs. We will discuss this issue in more detail is Appendix
B.

At the LHC, cross sections depend mainly on particle masses and so are useful
only as cross-checks on the mass determinations. However, the electroweak cross
sections at the ILC are often sensitive to mixing angles and provide additional in-
formation about the spectrum parameters. We have therefore included in our sets
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of measurements a number of ILC cross sections. The simulation studies for LCC1,
LCC2, and LCC3 include estimates of the error that would be obtained on the total
cross sections for some of the interesting reactions at these points.

The ILC will have polarized electron beams and probably also polarized positron
beams. The cross sections have strong polarization-dependence. With this in mind,
we have considered separately the cross sections for two different initial beam con-
figurations: left-handed electron beam polarization with right-handed positron beam
polarization and right-handed electron beam polarization with left-handed positron
beam polarization, assuming polarizations of 80% for the electron beam and 60% for
the positron beam. (Almost identical results are obtained with 95% electron polariza-
tion and zero positron polarization.) For certain processes, especially, e+e− → χ+

1 χ−

1 ,
there is additional information in the forward-backward asymmetry. In these cases,
we have divided the statistics between forward production (cos θ > 0) and backward
production (cos θ < 0) and assigned errors to the two cross sections accordingly.

We have computed cross sections ignoring beamstrahlung and initial state ra-
diation, and, for the cases with forward-backward asymmetries, ignoring possible
problems in determining cos θ from the decay final states. Where the error ∆σ was
not available from simulation studies, we took the estimated error on the total cross
section for a given polarization setting to be

∆σ/σ = 1/(0.02 × 250 fb−1 × σ)1/2 , (14)

that is, the purely statistical error assuming 2% acceptance and a data sample of 250
fb−1 per polarization state. This estimate is typically conservative with respect to
the results of the simulation studies.

3.5 Importance sampling

It is often useful to apply new constraints on a sample set after the calculation is
complete. This amounts to adding new terms to the likelihood function L. While the
points in the Markov chain are distributed properly according to the original likelihood
function, it is possible to re-weight them so that they are distributed according to a
new likelihood function L′. This procedure is called importance sampling. If the two
likelihood functions are very different, the reweighted chains will have poor statistics,
so care must be taken. The basic procedure is very simple. Rather than counting
each point in the chain once in computing statistics, count it L′/L times. Points that
are highly unlikely according to L′ are thus counted with a very small weight.

We use importance sampling to apply astrophysical constraints to our datasets.
We have considered constraining the relic density to agree with the dark matter
density as measured from the CMB, and constraining the direction cross section to
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that corresponding to a direct detection signal and the assumption of a canonical
smooth halo model.

For the relic density, we take the reweighting factor to be

L′

L = exp

(
−(Ωh2 − Ωh2

CMB)2

2σ2

)
, (15)

with a maximum value of unity. In the examples of the following sections, we have
used a 3% constraint on relic density, corresponding to the design sensitivity of
WMAP. This illustrates the effect of relic density constraints without having too
harsh an effect on the statistical significance of the results.

When we impose constraints from direct detection, we are trying to extract in-
formation about the supersymmetry particle masses. For this, we must convert the
observed number of events nev into a cross section. To do that, we must divide by
the effective luminosity assumed in the analysis. In the analyses of the SuperCDMS
experiment described in Section 4.5, the effective integrated luminosities for the four
benchmark models are LDD = 3.80 zb−1, 3.60 zb−1, 3.12 zb−1, 2.79 zb−1, respectively.
It is appropriate to take different values for the four LCC points because the detection
efficiency depends on the mass of the WIMP.

We use this information as follows to compute the new likelihood function: The
expected number of events is τ = σLDD. We assume that the detection is a Poisson
process and thus

L′(nev|τ) ∝ e−ττnev . (16)

We use Bayes’ theorem to derive

L′(τ |nev) ∝ e−ττnevP (τ), (17)

where here P (τ) is the prior on τ , which we assume to be constant. The reweighting
factor can thus be taken as

L′

L = enev−τ
(

τ

nev

)nev

, (18)

which again has a maximum value of unity.

4 Benchmark point LCC1

In this and the next few sections, we describe the predictions for the properties of
the neutralino WIMP that would follow from collider measurements for the four LCC
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Figure 7: Particle spectrum for point LCC1. The lightest neutralino is predominantly bino,
the second lightest neutralino and light chargino are predominantly wino, while the heaviest
two neutralinos and heavy chargino are predominantly Higgsino.

reference points. We will present the qualitative features of the analysis at each point
and display relevant projections of the MCMC data. Our final quantitative results
for the predictions of Ωχh2 and other WIMP properties are collected in Tables 11 and
12 in Section 9.

We begin with the point LCC1. The supersymmetry spectrum at this point is
shown in Fig. 7. The model contains light sleptons, with masses just above the mass
of the lightest neutralino. The most important annihilation reactions for determining
the relic density are those with t-channel slepton exchange. To predict the relic
density, we will need to make accurate measurements of the masses of the sleptons,
including the τ̃ .

Many other effects must be controlled to obtain the cross sections relevant to
WIMP detection. The direct detection cross section is dominated by H0 boson ex-
change, and the annihilation cross section at zero energy, which enters the rates for
gamma ray and positron observations, is dominated by annihilation to bb.
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At the same time that we are gathering data to evaluate the dominant contribu-
tions to the WIMP cross sections, we must also gather data to prove that possible
competing mechanisms from Fig. 6 are truly subdominant. In particular, we should
use the data to show that neutralino annihilation does not take place close to an A0

resonance, and that the wino and Higgsino content of the lightest neutralino is small
enough that annihilation to vector bosons is not an important process. We will see
that all of these factors can be controlled from the prospective collider data for the
point LCC1.

4.1 Spectroscopy measurements

The basic data for determining the properties of the neutralino WIMP come from
collider measurements of the SUSY spectroscopy. The measurements we assume are
summarized in Tables 2 and 3. We will present similar tables for each of the four
reference models. In general, we fix the central values for each observable to be equal
to the prediction from the underlying model and fix the error (1 standard deviation)
in accordance with the results of a detailed simulation study of the ability of the LHC
and ILC detectors to measured the relevant SUSY masses, mass differences, or cross
sections. In Sections 4.1, 5.1, 6.1, and 7.1, we will briefly summarize the important
experimental issues. However, for full details, the reader should go to the original
source. For the data in Tables 2 and 3, the error estimates come from the studies
reported in [86].

The point LCC1 is special in that it allows a large number of SUSY spectrum
parameters to be determined at the LHC from kinematic constraints. From Fig. 7,
we can see that the lighter sleptons have masses between the masses of the χ̃0

2 and
the χ̃0

1. In this case, the decays of the χ̃0
2 will be dominated by 2-body decays to

ℓ̃ℓ, followed by the 2-body decays ℓ̃ → χ̃0
1ℓ. The kinematic endpoints of the lepton

spectra in these decays are simple functions of the SUSY particle masses. The system
is overconstrained, so it is possible to solve for the masses of the slepton and the two
lightest neutralinos [109]. The values of the heavier superparticle masses can be built
up from this information. Through this technique, the mass of the WIMP can be
determined to about 5% accuracy, and the mass differences of the lighter neutralinos
and sleptons can be measured to a few GeV.

The squarks that are partners of left-handed quarks have large decay branching
fractions to χ̃0

2, so these mass differences can also be determined quite well. The
partners of right-handed quarks can be studied using the direct decay to χ̃0

1. A
similar analysis allows one to identify the right- and left-handed selectron and smuon
states [86]. For stau, one mass eigenstate is seen, and this is a mixture of τ̃L and
τ̃R. The branching ratio of χ̃0

2 to τ̃ is enhanced with respect to that to ẽ, µ̃ by the
amplitude for the wino component of χ̃0

2 to decay to the τ̃L component of τ̃1. Thus, the
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mass/mass splitting LCC1 Value LHC ILC 500 ILC 1000
m(χ̃0

1) 95.5 ± 4.8 0.05
m(χ̃0

2) − m(χ̃0
1) 86.1 ± 1.2 0.07

m(χ̃0
3) − m(χ̃0

1) 261.2 ± @a 4.0
m(χ̃0

4) − m(χ̃0
1) 280.1 ± 2.2a 2.2

m(χ̃+
1 ) 181.7 ± - 0.55

m(χ̃+
2 ) 374.7 ± - - 3.0

m(ẽR) 143.1 ± - 0.05
m(ẽR) − m(χ̃0

1) 47.6 ± 1.0 0.2
m(µ̃R) − m(χ̃0

1) 47.5 ± 1.0 0.2
m(τ̃1) − m(χ̃0

1) 38.6 ± 5.0 0.3
BR(χ̃0

2 → ẽe)/BR(χ̃0
2 → τ̃ τ) 0.077 ± 0.008

m(ẽL) − m(χ̃0
1) 109.1 ± 1.2 0.2

m(µ̃L) − m(χ̃0
1) 109.1 ± 1.2 1.0

m(τ̃2) − m(χ̃0
1) 112.3 ± - 1.1

m(ν̃e) 186.2 ± - 1.2
m(h) 113.68 ± 0.25 0.05
m(A) 394.4 ± * (> 240) 1.5

m(ũR), m(d̃R) 548. ± 19.0 16.0
m(s̃R), m(c̃R) 548. ± 19.0 16.0

m(ũL), m(d̃L) 564., 570. ± 17.4 9.8
m(s̃L), m(c̃L) 570., 564. ± 17.4 9.8

m(b̃1) 514. ± 7.5 5.7

m(b̃2) 539. ± 7.9 6.2
m(t̃1) 401. ± (> 270) - 2.0
m(g̃) 611. ± 8.0 6.5

Table 2: Superparticle masses and their estimated errors or lower limits for the parameter
point LCC1. Lower limits are indicated in parentheses. The ILC columns contain the
measurements added or improved by the ILC at that energy. The symbol ‘-’ denotes that
the measurement is not yet available. The symbol ‘*’ denotes the formula: mA > 200 GeV,
or tan β < 7.0(mA/200.0). The notation ‘@a’ indicates that the mass measurement marked
with a superscript a could equally well be ascribed to this particle. All values are quoted
in GeV.
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cross section LCC1 Value (fb) ILC 500 ILC 1000
σ(e+e− → χ̃+

1 χ̃−

1 ) LR 431.5 (0.758) ± 1.1%∗

RL 13.1 (0.711) ± 3.5%∗

σ(e+e− → χ̃0
1χ̃

0
2) LR 172.2 ± 2.1%∗

RL 20.6 ± 7.5%∗

σ(e+e− → χ̃0
2χ̃

0
2) LR 189.9 ± 2.0%∗

RL 5.3 ± 10.2%∗

σ(e+e− → τ̃+
1 τ̃−

1 ) LR 45.6 ± 7%
RL 142.1 ± 4%

σ(e+e− → ẽ+
Rẽ−R) LR 57.3 (0.696) ± 6%

RL 879.9 (0.960) ± 1.5%

σ(e+e− → t̃1t̃1) LR 9.8 ± 15%
RL 11.1 ± 14%

Table 3: SUSY cross sections and estimated errors for the parameter point LCC1. The ILC
columns indicate the center of mass energy of the measurement. All cross sections assume
polarized beams. LR denotes left-handed e− polarization and right-handed e+ polarization;
RL denotes the reverse. Cross section values are quoted in fb; the error are expressed as a
percentage of the value. For chargino and selectron production cross sections, the forward
fraction is listed in parentheses. The errors labeled by ∗ are taken from the study [86]; the
others are estimated using (14).

measurement of this branching ratio gives information on the stau mixing angle [11].

In the study [86], it was not possible to identify the top squark at the LHC.
However, this particle would have been visible through its decay t̃1 → W+bχ̃0

1 if
the decay to tχ̃0

1 were kinematically forbidden. We therefore place a limit m(t̃1) >
mt + m(χ̃0

1).

The light Higgs boson in the model has a mass of 114 GeV and properties very
similar to those of the Standard Model Higgs boson. It can be observed at the LHC
in its decay to γγ. This particle plays a relatively small role in the properties of the
WIMP. However, the heavy Higgs boson A0 can have a more important effect, since it
potentially gives a resonant enhancement of the annihilation cross section. It is very
significant, then, that the LHC can constrain the properties of the A0 boson. If the
A0 is sufficiently light or if tan β is sufficiently large, the A0 can be discovered at the
LHC in its decays to τ+τ− or (in a slightly smaller region) to µ+µ−. At LCC1, the
A0 boson cannot be discovered at the LHC, but the failure to observe this particle
constrains the region in which the A0 boson plays a role in the WIMP properties.

At the ILC, we expect very precise mass measurements for all particles that can
be pair-produced at the machine’s center of mass energy. Measurements of particle
masses can come from kinematic fitting of pair-production reactions and from ded-
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icated threshold energy scans [86]. In Table 2, mass measurements from kinematic
fitting are given as mass differences from the lightest neutralino, and mass measure-
ments from threshold determinations are indicated as absolute mass measurements.
Because the masses of the light charginos and neutralinos enter the expressions for
endpoints of kinematic distributions at the LHC, the determination of squark and
gluino masses are improved by the ILC data even though these particles are not
observed directly at the ILC. This effect is reflected in Table 2.

The extension of the ILC to center of mass energies of 1000 GeV allows us to
observe several particles that were not accessible at the first stage of 500 GeV. These
include the top squark and the second chargino. A particularly important addition
is that of the H0 and A0 bosons, since the process e+e− → H0A0 becomes kinemat-
ically accessible above 900 GeV. We estimate the accuracy of the H0 and A0 mass
determinations from the results of the study [90]. This sharpened knowledge of the
masses of A0 and H0 will have an important effect on the determination of several of
the WIMP properties.

4.2 Relic density

Now we can put the constraints shown in Tables 2 and 3 into the machinery
described in Section 3.2 to provide predictions of WIMP dark matter properties. We
begin with the WIMP relic density, as computed from the spectrum using DarkSUSY
4.1. To see what the various data sets predict for this quantity, we generate the three
likelihood distributions corresponding to the three sets of constraints in the Tables,
including the cross section for the two ILC points. In Fig. 8, we show the projections of
these three likelihood distributions onto the coordinate representing the relic density
Ωχh2. The LHC data already gives a quantitative prediction for this density, with an
accuracy of about 7%. The data from the 500 GeV ILC sharpens this distribution
to 2% accuracy, though the distribution has a long tail toward lower values. The
extension of the ILC to 1000 GeV further sharpens the prediction to about 0.25%
accuracy, comparable to the accuracy expected from the Planck CMB measurement.
Comparison of two such accurate values of the dark matter relic density would provide
a striking test of the WIMP model, as we have noted already in Section 2.5.

One might have suspected that the large number of constraints from the LHC
would already produce a very precise value of the relic density. However, it is clear
from the spread of the LHC predictions in Fig. 8 that some information is missing.
The scatter plots in Fig. 9(a,b) show one of the effects that contributes. Though the
mass differences of the supersymmetry particles are well fixed, the overall scale of
masses is somewhat uncertain. This translates into the dominant uncertainty in the
prediction of the relic density.
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Figure 8: Relic density measurement for point LCC1. Histograms in this and all following
figures give the probability distribution dP/dx of the quantity on the x-axis, given the three
different sets of accelerator constraints. Where the x axis is plotted logarithmically, the
probability plotted is actually dP/d log10 x. All histograms integrate to unity. Results for
the LHC make use of the assumption that the underlying physics model is supersymmetry.
This might not be clear from the LHC data alone.

The tail in the Ωχh2 distribution from the 500 GeV ILC is also a surprise. Its
explanation is given in Fig. 9(c), which shows the correlation between Ωχh2 and the
mass of the A0 boson in this likelihood function. The s-channel process involving
the A0 boson actually makes a small contribution to the annihilation cross section
at LCC1, and this must be fixed to determine the cross section to a level below 1%.
When we learn the mass of the A0 at the 1000 GeV ILC, this uncertainty in the
prediction of Ωχh2 is removed.

4.3 Relic density at SPS1a′

Nojiri, Polesello, and Tovey (NPT) [11] have also estimated the capability of
the LHC data to predict the neutralino relic density. Their analysis was done at a
point quite similar, but not identical to, LCC1. By adjusting the parameters of our
simulation, we can make a direct comparison of our results to those of NPT. In this
section, we will describe our analysis of the point considered in [11] and show that
our results are in good agreement. Since NPT used a different method to arrive at
their estimate, this comparison provides a nontrivial check of the two methods.
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Figure 9: Scatter plots for point LCC1. (a) Inferred mass parameters m1 and µ are shown
to be well correlated in LHC data, with an uncertain overall scale. This reflects the fact
that mass differences are measured more precisely than absolute masses. (b) The overall
scale has a strong correlation with relic density. (c) For ILC-500, the mass of the A0 boson
is still unknown. For low values, there is a mild resonant enhancement to the neutralino
annihilation cross section, and a corresponding reduction in relic density.
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The value of Ωχh2 at LCC1 is about a factor of 2 too large to be consistent with
the CMB result [1]. It has been suggested that one could remedy this problem by
moving the mass of the τ̃1 from 134 GeV at LCC1 to 108 GeV, pushing the model
into the stau coannihilation region. The new point is called SPS1a′ [91]. The shift of
the τ̃1 mass adds contributions to the annihilation cross section for supersymmetry
and therefore decreases the relic density. The neutralino physics at this point is
intermediate between that at LCC1 and LCC3. Because coannihilation is important,
the point has increased sensitivity to the value of the τ̃1 mass, though this sensitivity
is not as extreme as we will see in Section 6 in our discussion of LCC3.

According to [91], the table of measurement errors at SPS1a′ should be the same
as that of LCC1 (Tables 2 and 3), even though the expected values are somewhat
different. We have therefore carried out MCMC scans for SPS1a′ using the same con-
straints as for SPS1a (LCC1), only modifying the reference values of supersymmetry
masses and cross sections. The results of that scan for the relic density are shown in
Fig. 10.

The analysis of NPT ran as follows: In the stau coannihilation region, the neu-
tralino relic density is mainly sensitive to 7 of the 24 MSSM parameters, the four
parameters of the neutralino mass matrix m1, m2, µ, and tan β and the three pa-
rameters of the stau mass matrix, which we can represent as the combinations m(τ̃1),
m(τ̃2), θτ . The LHC data is expected to give relatively precise values for five quan-
tities sensitive to these parameters, three neutralino masses, the mass of the τ̃1, and
the ratio of branching ratios BR(χ̃0

2 → eẽ)/BR(χ̃0
2 → τ τ̃1). At the true point, the

gaugino-Higgsino and stau mixing angles are relatively small, so the actual depen-
dence of the relic density on the mixing angles (and thus on tan β) is relatively weak.
The dependence on m(τ̃2) is also weak. So it makes sense in this case to solve for
the five parameters m1, m2, µ, m(τ̃1), and θτ from the measurements, propagate the
measurement errors through to an error on the prediction of Ωχh2, and then add an
estimate of the additional uncertainty from variation of tan β and m(τ̃2). In solving
for the five parameters, NPT chose the preferred solution and did not take account
of the possibility of multiple solutions.

The final error on the relic density turned out to be dominated by the uncertainty
in the mass of of the τ̃1. This is tied to the error in measuring the endpoint of the
dilepton mass spectrum in the decay χ̃0

2 → τ+τ−χ̃0
1. For the case of tau leptons, the

endpoint is not a sharp feature and it has not been understood in detail how well this
point can be measured. For the purpose of their analysis, Polesello and Tovey, who
are two of the experts on such measurements in the ATLAS collaboration, estimated
that the error would be below 5 GeV and expressed the hope that it could be brought
down to 1 GeV. This is considerably more aggressive than the uncertainty presented
in [86], which we have assumed in our study.
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In Fig. 11, we show the histograms of Ωχh2 from the LHC constraints for our
scan with parameters based on [86] and imposing the stronger constraints that the
ττ endpoint can be measured to 5 GeV or to 1 GeV. From the figure, it is clear that
NPT are correct that this is the dominant source of error. The standard deviations
for the three histograms correspond to

σ(Ωh2)/Ωh2 = 18.6%, 14.4%, 11.7% (19)

with the last two cases to be compared to the results of NPT,

σ(Ωh2)/Ωh2 = 19.% , 10.5% (20)

Their results correspond to a scan over 5 parameters, while our results scan over
the full set of 24 MSSM parameters. We thus verify that the analysis of NPT does
capture the strongest dependences of Ωh2 on the MSSM parameters, and also that
our method for estimating the uncertainty in Ωχh2 does agree with a more direct
method in this case where Ωχh2 is strongly constrained. In Fig. 12, we show the
scatter plot of Ωχh2 vs. m(χ̃0

1) from our scan for the case of a 1 GeV measurement
of the ττ endpoint. This is, again, a scan over 24 parameters. It is interesting to
compare this to Fig. 9 of NPT, which gives the result of a 5-parameter scan.

Given the very strong constraints on the spectrum at SPS1a′, the ambiguities in
the solutions play a rather small role. in particular, the constraint on the ratio of
branching ratios of the χ̃0

2 almost completely eliminates the solution in which the
lighter τ̃ is dominantly τ̃L. Our data contains only a small influence of the region in
which the A boson provides a resonant enhancement of the neutralino annihilation.
Fig. 13 shows a scatter plot Ωχh2 vs m(A) for the SPS1a′ LHC data sample. We see
a small branch leading to low m(A) and low Ωχh2, representing the effect of an A
boson resonance near the annihilation threshold.

4.4 Annihilation cross section

In Fig. 14, we show the likelihood distribution of the neutralino pair annihilation
cross section times velocity σχχv, evaluated at threshold. As we have discussed in
Section 2.7, this cross section is needed to interpret astrophysical signals of dark
matter annihilation. We will discuss the determination of this quantity from a more
general point of view in Section 8.

At LCC1, the most important neutralino annihilation reactions are P-wave pro-
cesses whose cross section vanishes at threshold. The important contributions to the
threshold cross sections then come from annihilation to massive fermion pairs, τ+τ−

and bb, with the latter final state dominating. The most important parameters for
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Figure 10: Relic density for point SPS1a′. See Fig. 8 for description of histograms. In this
case, the ILC-1000 provides no improvement in the relic density measurement over ILC-500.

Figure 11: Relic density for point SPS1a′ at LHC. A dominant uncertainty at this point is
the mass of the stau. Results of taking the stau-neutralino mass difference to have an error
of 5 GeV are illustrated in red. Alternatively, results of taking the position of the tau-tau
edge to have an error of 5 GeV (purple) and 1 GeV (blue) are also illustrated.
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Figure 12: Scatter plot for point SPS1a′. Relic density is plotted against neutralino mass,
for points where the position of the tau-tau edge is measured to 1 GeV.

Figure 13: Scatter plot for point SPS1a′. The A0 mass is plotted against relic density,
illustrating the small allowed region where A0 resonance significantly decreases the relic
density.
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χ̃0
1χ̃

0
1 → bb are the b̃ masses; at LCC1, these masses would be determined at the LHC.

The ILC at 500 GeV determines the neutralino mixing angles, and this makes a small
improvement in the prediction. The marked improvement from the ILC at 1000 GeV
comes from the determination of the A0 mass. Note that, because of the suppression
of the P-wave channels, this annihilation cross section is about 12 fb, as opposed to
the 0.9 pb predicted by (2).

In Fig. 15, we show the likelihood distribution for the exclusive annihilation cross
sections to γγ and γZ0. These cross sections are dominated by squark loops and are
determined quite well already from LHC data. The cross sections are small, but, at
LCC1, these processes might be visible as sharp lines in the gamma ray spectrum.

In Fig. 16, we present two representative calculations that indicate how this infor-
mation might be used. We will postulate two situations in which dark matter might
be detected by gamma rays from annihilation, and we will work through the numbers
to see how accurately the absolute dark matter density can be obtained from these
observations. Because of the intrinsically small annihilation cross sections at LCC1,
the final results that we will show in this section will be rather marginal. In later
sections, we will present the same calculations for the other three reference points.
At points LCC2 and LCC4, the annihilation cross section at threshold is 50 times
larger, leading to much more optimistic expectations for dark matter detection.

First, we consider the dark matter distribution at the galactic center, assuming
the NFW distribution shown in Fig. 5. We set the boost factor B = 1. Observation
in a circle of angular area 1.5×10−4 sr (angular radius 0.4◦) gives 〈J(Ω)〉 = 7700. We
use this value to predict the rate of gamma ray emission from this source. To do this,
we use the spectrum of gammas expected for neutralino annihilation at LCC1, scaled
to the predicted total annihilation cross section. (We will describe this spectrum in
Section 8.1.) We impose a lower energy cutoff of Eγ > 3.1 GeV. Background from
energetic processes at the galactic center is a major issue in this analysis. We have
added to the counting rate the gamma ray background in the same energy region
according to the parametrization of Bergstrom, Ullio, and Buckley [110]. A five-year
observation by the GLAST gamma-ray observatory [111], in which the galactic center
is visible 20% of the time, yields an expectation of 5 signal photons over a background
of 360 background gamma ray photons. This is a S/

√
B less than 1, so we will only

be able to quote upper bounds on 〈J〉 for this model.

We can now work backwards to determine the source strength 〈J(Ω)〉 from the
observation. For the purpose of this exercise, we assign the background rate a 5%
systematic uncertainty. In pratice, it will be a challenge to obtain such a good under-
standing of the background. Gamma rays come from the galactic center from many
sources, and, in particular, from energetic processes associated with the black hole
at the center of galaxy. However, gamma rays from π0’s produced in soft hadronic
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interactions have a soft power-law energy spectrum different from that predicted for
neutralino annihilation. In addition, much of the the observed gamma radiation
seems to be associated with molecular clouds that ring the galactic center rather
than having a peak at the center itself. This observation has already been used to
improve the limits on gamma rays from the galactic center from the EGRET observa-
tory [112]. However, recent work of the HESS Collaboration, while spatially resolving
many gamma ray sources from the galactic center, also shows that this center is the
source of a power law spectrum of very high-energy gamma rays, up to 10 TeV in
energy [113]. For the purposes of the analysis in this paper, we assume that it will
be possible to measure these effects and, to the extent allowed by statistics, separate
them from the WIMP annihilation signal. This might well be possible; we will know
better in a few years [114].

For the case of LCC1, even this aggressive estimate makes the uncertainty in the
background the dominant source of error. The likelihood distribution for 〈J(Ω)〉 that
we obtain from this analysis is shown in Fig. 16(a). In this and later figures for
likelihood distributions of 〈J〉, we assume a prior distribution that is flat in log 〈J〉.
For LCC1, we do not obtain a prediction of 〈J(Ω)〉, but we do obtain a strong upper
limit that excludes otherwise viable models predicting large values of J(Ω).

In models in which the galaxy is build up from hierarchical dark matter clustering,
one should expect to find localized clumps of dark matter. We choose a typical object
from the semi-analytic simulation data of Taylor and Babul [76], a dark matter clump
with a mass of 106M⊙ and a scale radius of 500 pc, at a distance of 6 kpc, with its
internal structure described by an NFW profile. Observing in a disk of 1.5× 10−4 sr,
the object has 〈J(Ω)〉 = 2500. We impose a lower energy cutoff of Eγ > 1 GeV and
add extra-galactic background at the level measured by EGRET [115]. Assuming
a five-year observation by the GLAST observatory, in which this object would be
visible 20% of the time, we expect 4 signal photons, plus 60 photons from the extra-
galactic background. Working backwards from the observations, assuming that the
extra-galactic background is well characterized from observations in other regions of
the sky, we find the likelihood distribution of 〈J(Ω)〉 shown in Fig. 16(b). Given the
ratio of signal/background, we can only impose an upper limit on 〈J〉, but this still
has the power to exclude models with very strongly peaked dark matter clumps.

Certainly, the discovery of a localized clump of dark matter in gamma rays would
be remarkable in itself. But it would be more remarkable if we could obtain from
particle physics a calibration of the absolute scale of its dark matter density. Fig. 16(b)
shows that this is possible in principle. At the other benchmark points, which give
larger gamma ray fluxes from neutralino annihilation, we will see this idea realized
more clearly.

45



Figure 14: Annihilation cross section at threshold for point LCC1. See Fig. 8 for description
of histograms.

Figure 15: Gamma ray line annihilation cross section at threshold for point LCC1. See
Fig. 8 for description of histograms.
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Figure 16: Halo density profiles for point LCC1: (a) galactic center, (b) dark matter clump
in the galactic halo. Angle-averaged J values as measured by combining a 5-year all-sky
dataset from GLAST with accelerator measurements are shown. See Fig. 8 for description
of histograms.
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4.5 Direct detection cross section

In Fig. 17, we show the likelihood distributions of the spin-averaged neutralino-
proton cross section σχp, evaluated at threshold. We remind the reader that, in our
analysis in this section and in the corresponding analyses of the other models, we will
ignore the uncertainty in the evaluation of the σχp resulting from the uncertainty in
the low-energy QCD parameter fTs discussed in Section 2.6. The cross section σχp is
sufficiently close to the spin-independent isoscalar cross section that it can be used
to interpret signals of direct detection of dark matter in underground detectors. The
corresponding distributions for the spin-dependent part of the cross section σχn are
shown in Fig. 18.

From Fig. 17, it is clear that neither the LHC nor the ILC at 500 GeV can make a
particularly accurate prediction of this cross section. At LCC1, the direct detection
cross section is dominated by the t-channel exchange of the heavy Higgs boson H0.
In the MSSM, the mass of the H0 is very close in mass to the A0 unless both are light.
Even with the ILC data at 500 GeV, this mass is essentially unconstrained. The sharp
edge in the distributions at 10−9 pb reflects the contribution of the light Higgs h0.
Fig. 19, which displays the correlation in the LHC likelihood function between the
neutralino-proton cross section and the heavy Higgs boson mass, shows clearly that
this parameter is the essential missing piece of information It also illustrates the fact
that above about 1.5 TeV, the cross section is insensitive to the heavy Higgs mass
as the light Higgs contribution is of a comparable size. The slight improvement from
the LHC to the 500 GeV ILC reflects the determination of neutralino mixing angles,
which enter the neutralino-Higgs vertices. Indeed, when the H0 and A0 particles are
observed and measured at the 1000 GeV ILC, we obtain a prediction of the direct
detection cross section to about 20% accuracy.

As in the previous section, it is illuminating to work through an example of this
application of this cross section determination to experimental data. At the point
LCC1, dark matter events would not be seen in the CDMS II experiment, but the
signal should be discovered in the next-generation detector SuperCDMS or ‘Super-
CDMS 25kg’ [45]. This is a 26.67 kg detector on the model of CDMS, with most
of the mass in Germanium, to be located in the low-background environment of the
Sudbury mine. Estimates of the detection capabilities of SuperCDMS were com-
puted assuming 2.5 years of operation (ending in 2011) with a total exposure of close
to 16,000 kg d. Sensitivity calculations have assumed that the local halo density is
0.3 GeV cm−3, the halo circular velocity is 220 km s−1, the halo escape velocity is
650 km s−1, and that the velocity distribution is Maxwellian. The capabilities of
heavy-noble-liquid detectors of the same mass and exposure time should be similar.
Over the time scale required to realize the ILC at 1000 GeV, we might expect to see
a direct detection experiment scaled up to 1 Ton size. This would allow measurement
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of the annual flux variation and the velocity distribution of directly detected WIMPs.
For our analysis, however, we will concentrate on the implication of the total rate
measurement combined with collider data.

For the parameters that we have just described, the SuperCDMS group estimates
that they will see 16 signal events, assuming a uniform dark matter distribution in
the disk and the cross section predicted for LCC1, and negligible background [65].
Dividing the observed rate by the predicted cross section, we would obtain a direct
measurement of the flux of dark matter impinging on the detector. We should note
that this derived flux is an effective quantity. The detection efficiency for WIMPs
depends on the velocity distribution, and the simulation [65] used the efficiency calcu-
lated for the reference halo model described in the previous paragraph. In presenting
our results, we will refer to the derived quantity as Φlocal/Φ0, the local flux of WIMPs
divided by the flux in the reference model, assuming the same average detection
efficiency.

In Fig. 20, we show the likelihood distribution for the effective local flux, obtained
by combining the distribution of values of the cross section with the statistical un-
certainty of the direct detection measurement. The distribution shown ignores the
uncertainty in the direct detection cross section from our poor knowledge of low-
energy QCD parameters. But, assuming that these parameters can be determined,
we see from the figure that the combination of the data from the ILC at 1000 GeV
and count rate from WIMP direct detection would measures the local flux of dark
matter at the Earth to 28% accuracy.

4.6 Constraints from relic density and direct detection

If LCC1 is the correct theory of Nature, it is possible that, by the end of the
decade, the LHC will have observed missing energy events and a convincing signal of
dark matter from annihilation to gamma rays will also have been observed. Values of
the WIMP mass will have been obtained from the LHC and from the endpoint of the
gamma ray spectrum, and these values will have been seen to agree. Underground
direct detection experiments in the 25 kg range such as SuperCDMS may also give
the WIMP mass and flux at the Earth. Further, the Planck measurements of the
CMB will have provided a very accurate measurement of the cosmic density of dark
matter. Under these circumstances, it would be very tempting to use the Planck and
SuperCDMS measurements to constrain the parameters of supersymmetry model.

This analysis would depend on very strong assumptions whose status would still
be open. It would not be clear that the model leading to missing energy at the LHC
was in fact supersymmetry, or that the neutralino was the lightest supersymmetric
particle. It would also be unclear whether the neutralino made up 100% of the dark
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Figure 17: Spin-independent neutralino-proton direct detection cross section for point
LCC1. See Fig. 8 for description of histograms.

Figure 18: Spin-dependent neutralino-neutron direct detection cross section for point LCC1.
See Fig. 8 for description of histograms.
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Figure 19: Scatter plot of the spin-independent direct detection cross section vs. m(A) for
point LCC1. The strong dependence of the direct detection cross section on the A0 mass is
clearly seen.

Figure 20: Effective local WIMP flux Φlocal/Φ0 at the Earth for point LCC1. The results
assume the SuperCDMS measurement described in the text. See Fig. 8 for description of
histograms.
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matter, and whether unknown effects had diluted its abundance. The flux of dark
matter particles at the Earth is also uncertain, and depends on the halo model.
Nevertheless, by making these assumptions, we could draw very strong conclusions
that could later be checked by detailed particle physics measurements.

At this point, LHC data alone provide a prediction of the relic density to 7%
accuracy under the assumptions of the standard cosmology. This is already quite
precise. However, the annihilation and direct detection cross sections would not be
well determined, and information from a direct dectection experiment could be used
to improve our knowledge of the particle physics model. For example, applying a
constraint from the direct detection rate to the annihilation cross section improves
the determination of this cross section both for the LHC and the ILC-500 data sets.
As shown in Fig. 21, the central values of the distributions shift much closer to
the correct value, though, curiously, the variances of the distributions are not much
improved.

Further into the future, the ILC-500 will predict the relic density at the 1.5%
level. It is thus unlikely that CMB or other cosmological measurements of the relic
density will greatly improve the situation, though if Planck can measure relic density
to 0.5% as advertised, this would be a factor of 3 improvement. The direct detection
cross section measurement is now less skewed, with 45% errors. SuperCDMS would
give 16 events, for a 25% error on the WIMP flux times cross section. In a particular
halo model, one might hope to use this measurement, but the advantage would not
be likely to be significant.

Fundamentally, the large uncertainty in the direct detection cross section is due
to the unknown heavy Higgs mass. Applying the direct detection constraint greatly
improves the shape of the distribution of this quantity at LHC and ILC-500, where
the heavy Higgs are unobserved, as illustrated in Fig. 22.

The ILC-1000 can predict the relic density at the 0.25% level and the direct
detection cross section at the 5% level. This is the unique case under study where the
astrophysical measurements have no benefit beyond the crucial consistency checks.
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Figure 21: Annihilation cross section at threshold for point LCC1. A direct detection
constraint from 2 years of a 25 kg SuperCDMS is applied. Compared with Fig. 14, it is
clear that the direct detection constraint significantly improves the measurement of the
annihilation cross section in advance of ILC-1000. See Fig. 8 for description of histograms.
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Figure 22: LCC1 heavy Higgs mass mA, before and after a direct detection constraint is
applied. The constraint allows a crude measurement of the A0 mass in advance of the
ILC-1000, which directly produces the A0. See Fig. 8 for description of histograms.
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5 Benchmark point LCC2

In the next few sections, we will carry out the analysis that we have just described
at LCC1 for the other three reference points. The parameter set LCC1 was specially
chosen by the authors of [86] as a point at which most of particles of the supersym-
metry spectrum could be observed at the LHC and then measured precisely at the
ILC. In more generic scenarios of supersymmetry, the information available to both
colliders will be more limited.

At LCC2, for example, the squarks and sleptons are made extremely heavy, so
heavy that it is unlikely that they could be observed at the LHC. However, the model
still allows the discovery of supersymmetry at the LHC. The model contains a gluino
at 850 GeV, giving a cross section of about 10 pb for supersymmetry production at
the LHC, and charginos and neutralinos in the range 100–300 GeV. The dominant
mode of neutralino annihilation is to W+W− and Z0Z0.

Although we cannot observe the heavy supersymmetric particles, we might hope
that the lighter ones, which we can observe, contain most of the information needed
to predict the astrophysical cross sections needed to analyze dark matter detection
experiments. The main contributions to neutralino annihilation come from diagrams
in which neutralinos and charginos are exchanged. The main contribution to the
direct detection cross section comes, in this case, from exchange of the light Higgs
boson h0. Both reactions depend strongly on the gaugino-Higgsino mixing angles, and
so the measurement of these angles becomes the major issue for the interpretation of
collider measurements in terms of the underlying spectrum parameters.

5.1 Spectroscopy measurements

As we have already noted, the LHC will give a large sample of supersymmetry
events. Most of these events will involve gluino pair production, followed by gluino
decays to qqχ, where χ is a neutralino or chargino. The subsequent evolution can
be seen from the spectrum of the model, shown in Fig. 23. The mass difference of
the first and third neutralinos is less than mZ . Thus, both the second and the third
neutralino will decay to the first neutralino through a virtual Z0 that can be observed
as a lepton pair,

χ̃0
i → ℓ+ℓ−χ̃0

1 , (21)

for i = 2, 3. These processes will allow measurements of the two mass differences
to an accuracy comparable to that with which the χ̃0

2–χ̃0
1 mass difference can be

measured at LCC1. In addition, the gluino mass should be determined to about 10%
accuracy from the distribution of missing energy and visible transverse mass, and the
mass of the lightest neutralino should be determined to about 10% by more detailed
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Figure 23: Particle spectrum for point LCC2. All neutralinos and charginos are mixed.
The most bino-like neutralino is the lightest one, and the most wino-like neutralino is the
heaviest one. All scalars are above about 2 TeV.
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kinematic fitting of the these events. Unfortunately, it will be more difficult that at
LCC1 to find the charginos or the fourth neutralino, so it is likely that these spectrum
parameters are the only ones that can be determined from the LHC data.

Measurements at the ILC will map out much more of the chargino and neutralino
spectrum [87]. At a center of mass energy of 500 GeV, the ILC will study the lighter
states of this spectrum through e+e− → χ̃+

1 χ̃−

1 and e+e− → χ̃0
2χ̃

0
3. It will also make

a very accurate measurement of the mass of χ̃+
1 by determination of the threshold

for producing this particle. The e+e− production cross sections are sensitive to the
gaugino-Higgsino mixing angles and can also be used to constrain the supersymmetry
parameters. A second stage of operation at center of mass energies of 1000 GeV can
observe the reactions e+e− → χ̃0

3χ̃
0
4 and e+e− → χ̃+

2 χ̃−

2 and measure the masses of
the χ̃0

4 and χ̃+
2 .

The complete list of spectrum constraints that we expect for this point for the
LHC and for each stage of the ILC is given in Tables 4 and 5.

5.2 Relic density

We can now use these constraints on the spectrum as the basis for an exploration
of the allowed supersymmetry parameter space. The results of the three Monte Carlo
scans, projected onto the axis of the predicted WIMP relic density, are shown in
Fig. 24. The distribution from the LHC constraints is quite broad, with a standard
deviation of about 40% and also a significant secondary peak near Ωχh2 = 0. The
prediction of Ωχh2 from the ILC data a 500 GeV has an accuracy of about 14%, and
this improves to about 8% using the data from the ILC at 1000 GeV.

The main difficulty in determining the relic density from the LHC data is that the
two precision measurements of mass differences do not provide enough information
to fix the gaugino-Higgsino mixing angles. Without an accurate determination of
the mixing angles, the relatively accurate determination of the WIMP mass has little
predictive power.

However, it is also true that the LHC data can be interpreted in multiple ways in
terms of the underlying parameters. This is illustrated by making scatter plots of the
Monte Carlo data, as we show in Fig. 25. In Fig. 25(a), we show the scatter plot of
the data with LHC constraints in the plane of m1 vs. µ. The data clearly shows three
solutions, corresponding to a bino-, wino-, and Higgsino-like lightest neutralino. The
phase space for the latter two solutions is restricted by our constraint that m(χ̃+

1 )
should be greater than 125 GeV. These incorrect solutions are responsible for the
peak in the relic density likelihood function at LHC for very small values.

In Fig. 25(b), we show the correlation between Ωχh2 and m(A) at the 500 GeV
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mass/mass splitting LCC2 value LHC ILC 500 ILC 1000
m(χ̃0

1) 107.9 ± 10 1.0
m(χ̃0

2) − m(χ̃0
1) 58.5 ± 1.0 0.3

m(χ̃0
3) − m(χ̃0

1) 82.3 ± 1.0 0.2
m(χ̃0

4) − m(χ̃0
1) 186.3 ± - - 3.0

m(χ̃+
1 ) 159.7 ± - 0.55

m(χ̃+
1 ) − m(χ̃0

1) 51.8 ± - 0.25
m(χ̃+

2 ) 286.7 ± - - 1.0
m(ẽR) 3277. ± (> 350) (> 480)
m(µ̃R) 3277. ± (> 350) (> 480)
m(τ̃1) 3252. ± (> m(χ0

2)) (> 480)
m(ẽL) 3280. ± (> 350) (> 480)
m(µ̃L) 3280. ± (> 350) (> 480)
m(τ̃2) 3268. ± (> 480)
m(h) 118.68 ± 0.25 0.05
m(A) 3242. ± * (> 240) (> 480)

m(ũR), m(d̃R) 3312. ± (> 2000)
m(s̃R), m(c̃R) 3312. ± (> 1500)

m(ũL), m(d̃L) 3301. ± (> 2000)
m(s̃L), m(c̃L) 3301. ± (> 1500)

m(b̃1) 2710. ± (> 1500)

m(b̃2) 3241. ± (> 1500)
m(t̃1) 1976. ± (> 1500)
m(g̃) 850. ± 85.

Table 4: Superparticle masses and their estimated errors or limits for the parameter point
LCC2. The notation is as in Table 2.

cross section LCC2 value ILC 500 ILC 1000

σ(e+e− → χ̃+
1 χ̃−

1 ) LR 1364. (0.479) ± 1%∗

RL 145.6 (0.438) ± 4%∗

σ(e+e− → χ̃0
2χ̃

0
3) LR 127.6 ± 4%∗

RL 105.8 ± 5%∗

Table 5: SUSY cross sections and estimated errors for the parameter point LCC2. The
notation is as in Table 3. The errors labeled by ∗ are taken from the study [87].
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ILC. Although most of the distribution forms a smooth wide cloud, reflecting the
uncertainty in the mixing angles, one sees also a dense corridor at the low end of the
allowed range for m(A), leading to vanishingly small relic density. This reflects the
influence of the A0 pole. At LCC2, the true mass of the A0 boson is about 3200 GeV;
however, we must rely on data to exclude the A0 from being in a mass region in which
its pole influences the annihilation cross section.

In Fig. 26, we illustrate the power of measuring the polarized neutralino and
chargino production cross sections at the ILC. Thje cross sections depend strongly on
the gaugino-Higgsino mixing angles; thus, measurement of the cross sections allows us
to fix the values of these angles. From the figures, it is clear that there is a significant
correlation between these cross sections and the relic density. Furthermore, measuring
the cross sections removes the ambiguities in the identities of the particles.

The general form of the three curves in Fig. 24 is, we believe, closer than that
of Fig. 8 to the generic situation. The LHC, despite its ability to make precision
measurements of the supersymmetry spectrum, has little capability to predict Ωχh2.
The predictions from the ILC are about at the level of the current determination from
WMAP and will not be at the level of the determination from Planck. Nevertheless,
the ILC prediction, based only on microscopic data, is quite sufficiently accurate that
its agreement or disagreement with the relic density found by Planck would be a
striking test of the assertion that the neutralino is the sole source of WIMP dark
matter.

5.3 Annihilation cross section

In Fig. 27, we show the prediction of our likelihood analysis for the neutralino pair
annihilation cross section at threshold. Unlike the situation for LCC1, this figure is
very similar in form to the set of predictions for the relic density, with a relatively
broad distribution from the LHC constraints and progressively narrower distributions
from the two stages of the ILC. This is not so surprising. At LCC2, the dominant
annihilation processes that determine the relic density are the decays to W+W− and
Z0Z0. At low energy, these processes go mainly in the S-wave, yielding cross sections
that are similar at threshold and at the freeze-out temperature T/mχ ∼ 1/25. Thus,
since the relic density is proportional to the inverse of the annihilation cross section at
freeze-out, the likelihood distribution for the relic density should be just the reflection
of that for the annihilation cross section. And so it is.

In Fig. 28, we show the likelihood distributions for the exclusive annihilation
cross sections to γγ and Z0γ. Unlike the case of LCC1, where the loop diagrams that
produce these reactions are dominated by squark exchange, here the dominant effects
come from chargino and neutralino exchange. The cross sections thus depend on the
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Figure 24: Relic density for point LCC2. There are two overlapping very high peaks at
Ωχh2 < 0.01, with maxima at dP/dx = 122 and 165, due to the wino and Higgsino solutions
to the LHC constraints. See Fig. 8 for description of histograms.

gaugino-Higgsino mixing angles in a way similar to the relic density.

The microscopic determination of the annihilation cross section allows us to in-
terpret observations of gamma rays from dark matter annihilation and to directly
measure the density distribution 〈J(Ω)〉 for a source of dark matter. In Section 4.4,
we described some specific exercises based on the capabilities of GLAST. At LCC2,
the annihilation cross section is about 50 times larger, leading to 172 signal photons
(over 360 background) in the GLAST observation of the galactic center and 168 sig-
nal photons (over 60 background) in the GLAST observation of the reference subhalo
dark matter clump. Folding the photon statistics with the likelihood distributions
from Fig. 27, and including a 5% uncertainty in the background from the galactic
center, we find for LCC2 the predictions shown in Fig. 29 for the reconstructed val-
ues of 〈J(Ω)〉. For the large annihilation cross section characteristic of LCC2, we
obtain measurements of 〈J(Ω)〉 at the 10% level. Such measurements would be very
powerful constraints on models of dark matter clustering and galaxy formation.

5.4 Direct detection cross section

In a similar way, we can repeat the analysis of Section 4.3 for the direct detection
cross section. The likelihood distribution of the cross section values given by our
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Figure 25: Scatter plots for point LCC2. (a) m1 vs. µ distribution for LHC, illustrating
multiple solutions. Left to right, these are bino (correct), wino, and Higgsino. (b) mA vs.
Ωχh2, showing the influence of resonant annihilation.
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Figure 26: Scatter plots of the LHC data for LCC2 illustrating the effects of e+e− cross
sections in defining the relic density. The wino and Higgsino islands in Fig. 25(a) are
mapped to the lines on the left side of the figures at very low values of Ωχh2. Thus they
are removed by the e+e− cross section constraints.
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Figure 27: Annihilation cross section at threshold for point LCC2. The wino and Higgsino
solutions giving very high cross section are clearly visible. See Fig. 8 for description of
histograms.

Figure 28: Gamma ray line annihilation cross section at threshold for point LCC2. The
wino and Higgsino solutions are clear. See Fig. 8 for description of histograms.
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Figure 29: Halo density profiles for point LCC2: (a) galactic center, (b) dark matter clump
in the galactic halo. Angle-averaged J values as measured by combining a 5-year all-sky
dataset from GLAST with accelerator measurements are shown. The influence of the incor-
rect solutions is clearly seen as subsidiary peaks at low J values. See Fig. 8 for description
of histograms.
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Figure 30: Spin-independent neutralino-proton direct detection cross section for point
LCC2. The wino and Higgsino solutions have large cross sections, easily seen. See Fig. 8
for description of histograms.

Monte Carlo scans is shown in Fig. 30. At LCC2, the spin-independent neutralino-
proton cross section is dominated by t-channel exchange of the light Higgs boson h0.
The mass of this particle is expected to be measured well at the LHC in the decay
h0 → γγ. So the LHC constraints already give a reasonably precise estimate of the
direct detection cross section, although, as we see from the figure, the ambiguity in
the solution leads to additional peaks at high values of the cross section. The ILC
measurements sharpen the determination of the mixing angles and also remove the
alternative solutions. The corresponding predictions for the spin-dependent part of
the neutralino-neutron cross section are shown in Fig 31.

As in Section 4.4, we can combine our microscopic knowledge of the detection cross
section with the expected event yield from the SuperCDMS detector to estimate our
ability to directly measure the local flux of dark matter at the earth. As before, our
analysis omits the uncertainty from low-energy QCD parameters. For this case, we
expect a signal of 67 events in SuperCDMS. Folding the statistical uncertainty with
the uncertainty in the cross section, we find the determination of the effective local
halo flux shown in Fig. 32.
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Figure 31: Spin-dependent neutralino-neutron direct detection cross section for point LCC2.
See Fig. 8 for description of histograms.

Figure 32: Effective local WIMP flux at the Earth for point LCC2. The results assume
the SuperCDMS measurement described in the text. The second peak at low effective flux
is due to the high cross section wino and Higgsino solutions. See Fig. 8 for description of
histograms.
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5.5 Constraints from relic density and direct detection

LCC2 is a special case in that the identity of the lightest neutralino at LHC is
unknown, with discrete possibilities: the bino (correct), wino and Higgsino solutions
discussed previously. Both incorrect solutions are confined to regions quite far from
the central values of both relic density and direct detection cross section. Thus,
we find that either the direct detection or relic density constraint completely elim-
inates the wino and Higgsino solutions for the lightest neutralino. The elimination
of these islands has very significant effects on the measurements at LHC, including
the annihilation cross section and branching ratios. In fact, the entire structure of
the neutralino mass matrix is greatly improved. With either the direct detection or
relic density constraint removing the incorrect islands, the bino and wino fractions of
every neutralino are measured to better that 15% at the LHC.

Another unique feature of LCC2 is that the annihilation cross section at v = 0
is tightly coupled to the relic density. This is because the dominant annihilation
channels are to gauge boson pairs, and coannihilations are unimportant. The gauge
boson channels are not helicity suppressed, thus the annihilation cross section for
typical freeze-out velocities is close to the v = 0 cross section. At the LHC, any relic
density constraint first removes the incorrect solutions which have very large annihi-
lation cross sections, and further constrains the annihilation cross section within the
correct solution. The 1% constraint provides a 4% measurement of the annihilation
cross section. At either stage of the ILC, applying a relic density constraint gives a
constraint on annihilation cross section at the same level of precision. At ILC-1000,
both of these are measured at the 8% level, so even here, relic density gives a quite
powerful constraint. This tight correlation is illustrated in Fig. 33.

A third unique feature of LCC2 is that the dominant process in direct detection is
the exchange of the light Higgs boson, because the heavy Higgses are very heavy, at
3.2 TeV. Because the lightest neutralino is mixed, the cross section is quite large. If
the heavy Higgs were lighter, the cross section would be even larger. Using the direct
detection constraint thus places a lower limit of 1 TeV on the mass of the heavy Higgs
boson, which is much stronger that any direct lower limit that can be obtained from
LHC or ILC.

6 Benchmark point LCC3

In Sections 6 and 7 we turn to points illustrating special circumstances in which the
neutralino relic density depends on accidental relationships among particle masses in
the theory. At LCC1, we would obtain the correct neutralino relic density if sleptons
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Figure 33: Scatter plot of annihilation cross section against relic density for point LCC2.
Given ILC-1000 data, the two quantities are very well correlated.

exchanged in the t-channel were light enough; at LCC2, we would obtain the correct
neutralino relic density if the gaugino-Higgsino mixing angles were large enough.
These are generic constraints valid in large regions of the MSSM parameter space.
At LCC3 and LCC4, we require more specific tuning of particle masses against one
another.

The essential physics of the neutralino relic density at LCC3 is coannihilation of
the neutralino with the stau lepton. That is, the dominant annihilation reactions that
determine the relic density are τ̃χ0

1 → τγ and τ̃ τ̃ → ττ , both of which can proceed
in the S-wave. The relative density of τ̃ particles relative to neutralinos during the
annihilation process is [116]

exp

[
−m(τ̃ ) − m(χ)

T

]
≈ exp

[
−25

(
m(τ̃ ) − m(χ)

m(χ)

)]
. (22)

Thus, this mechanism works only a a narrow region of parameter space, one that
becomes increasingly constrained as the mass of the neutralino increases.

6.1 Spectroscopy measurements

The supersymmetry spectrum at the point LCC3 is shown in Fig. 34. The point
is one at which the LHC will be able to obtain a reasonably complete overview of
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Figure 34: Particle spectrum for point LCC3. The stau-neutralino mass splitting is 10.8
GeV. The lightest neutralino is predominantly bino, the second neutralino and light chargino
are predominantly wino, and the heavy neutralinos and chargino are predominantly Hig-
gsino.
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the supersymmetry spectrum. The squarks and the gluino have masses of about 800
GeV, leading to cross sections of tens of pb for supersymmetry production. Effects
enhanced by the large value of tan β move the lighter top and bottom squarks down
to about 600 GeV. The H0 and A0 bosons can be observed in their decay to τ+τ−.

Unfortunately, we expect that the very precise spectrum measurements that would
be available at LCC1 and LCC2 will not be possible here. The dominant decay
mode of the χ̃0

2 is χ̃0
2 → τ̃1τ , with decays also by χ̃0

2 → h0χ̃0
1 (3%) and χ̃0

2 → Z0χ̃0
1

(1%). The right-handed ẽ and µ̃ are lighter than the χ̃0
2, so that the decay chains

χ̃0
2 → ℓℓ̃ → ℓ+ℓ−χ̃0

1 are kinematically allowed. However, for the case of ẽR and µ̃R,
the branching fractions of χ̃0

2 to these channels are only 4× 10−4, giving too small an
event sample to be useful. The decay chain involving τ̃1 is difficult to study because
the mass gap between the τ̃1 and the χ̃0

1 is only 10 GeV. This small mass gap is chosen
precisely so that the coannihilation channels will dominate in the computation of the
relic density. In the study [117], it is shown that the the soft taus from this decay
can be observed at the LHC and used to estimated the mass gap. What is directly
observed is the endpoint of the τ+τ− mass spectrum, and this could be measured to
an accuracy of ±5 GeV [118]. In our analysis, we have assumed that the mass of
the χ̃0

1 can be obtained to 10% accuracy and the mass of the χ̃0
2 to 15% accuracy by

general kinematic fitting of supersymmetry events, and that the masses of the ẽR and
µ̃R can be found to 20% accuracy using slepton pair production.

At the ILC, the studies [88,97] have shown that it is possible to observe the stau
decay to tau and to measure the mass splitting. The study [88] obtains an error on the
mass splitting of about 1 GeV from kinematic fitting of the e+e− → τ̃+τ̃− events. The
study [97] obtains an error of about 0.5 GeV on the stau mass from a scan of the τ̃+τ̃−

threshold. This must be combined with a precision measurement of the neutralino
mass, which can be obtained from the analysis of the reaction e+e− → χ̃0

1χ̃
0
2. The

value of the cross section for e+e− → τ̃+τ̃− events measures the stau mixing angle.

However, this is the extent of the information that can be found at this point at the
500 GeV ILC. To fix the gaugino-Higgsino mixing angles and tan β, more information
is needed. These additional constraints can be provided by the 1000 GeV ILC, from
two sources. First, the remaining states of the chargino and neutralino system can
be discovered and studied in the reactions e+e− → χ̃0

3χ̃
0
4 and e+e− → χ̃+

1 χ̃−

2 . Second,
because the mass of the A0 Higgs boson at LCC3 is 428 GeV, this particle can be
observed in the process e+e− → H0A0. The mass of the A0 can be important for
the detection cross sections, as we have seen, but also the total width of the A0

is interesting as a way to measure tan β. We have estimated the error on the ΓA

following [90] and used this as a constraint.

The complete list of spectrum constraints that we expect for this point for the
LHC and for each stage of the ILC is given in Tables 6 and 7.
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mass/mass splitting LCC3 value LHC ILC 500 ILC 1000
m(χ̃0

1) 142.6 ± 14. 0.1
m(χ̃0

2) 274.2 ± 41.
m(χ̃0

2) − m(χ̃0
1) 131.5 ± - 0.5

m(χ̃0
3) − m(χ̃0

1) 320.2 ± - - 2.0
m(χ̃0

4) − m(χ̃0
1) 335.4 ± - - 2.0

m(χ̃+
1 ) 274.5 ± - - 0.7

m(χ̃+
2 ) 478.2 ± - - 2.0

m(ẽR) 254.9 ± 50.a - 1.0
m(µ̃R) 254.7 ± 50.b

m(ẽR) − m(χ̃0
1) 112.3 ± - - 0.2

m(µ̃R) − m(χ̃0
1) 112.1 ± - - 0.2

m(τ̃1) 153.4 ± - 0.5
m(τ̃1) − m(χ̃0

1) 10.8 ± - 1.0
m(ẽL) 328.9 ± @a

m(µ̃L) 329.1 ± @b

m(ẽL) − m(χ̃1
0) 186.3 ± - - 1.0

m(µ̃L) − m(χ̃1
0) 186.5 ± - - 1.0

m(τ̃2) − m(χ̃1
0) 191.3 ± - - 3.0

m(h) 116.58 ± 0.25 0.05
m(A) 429.5 ± 1.5 * 0.8
Γ(A) 9.1 ± 1.0

m(ũR), m(d̃R) 780., 778. ± 78.
m(s̃R), m(c̃R) 778., 780. ± 78.

m(ũL), m(d̃L) 805., 809. ± 121.
m(s̃L), m(c̃L) 809., 805. ± 121.

m(b̃1) 690. ± 35.

m(b̃2) 743. ± 74.
m(t̃1) 603. ± (> 315)
m(g̃) 856. ± 171.

Table 6: Superparticle masses and their estimated errors or limits for the parameter point
LCC3. The notation is as in Table 2. The LHC measurements of slepton masses apply to
the lighter of ẽR, ẽL and the lighter of µ̃R, µ̃L. The symbol ‘*’ indicates that, because the
A0 can be seen at LHC, tan β > 7(mA/200).
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cross section LCC3 value ILC 500 ILC 1000
minimal set
σ(e+e− → χ̃0

1χ̃
0
2) LR 34.4 ± 8%∗

RL 2.1 ± -
σ(e+e− → τ̃+

1 τ̃−

1 ) LR 45.6 ± 100%∗

RL 103.4 ± 4%∗

σ(e+e− → χ̃+
1 χ̃−

1 ) LR 212.3 (0.808) ± 3%
RL 6.3 (0.774) ± -

σ(e+e− → χ̃0
2χ̃

0
2) LR 88.7 ± 5%

RL 2.5 ± -
σ(e+e− → ẽ+

R ẽ−R) LR 19.5 (0.735) ± 10%
RL 350.5 (0.971) ± 3%

Table 7: SUSY cross sections and estimated errors for the parameter point LCC3. The
notation is as in Table 3. The symbol (-) denotes that the cross section is less than 10 fb
or is otherwise not measurable. The errors labeled by ∗ are taken from the study [88,89];
the others are estimated using (14).

6.2 Relic density

We can use these constraints on the spectrum as the basis for an exploration
of the allowed supersymmetry parameter space. The results from the three Monte
Carlo scans, projected onto the axis of the predicted WIMP relic density, are shown
in Fig. 35. Because the LHC data is not sensitive to the stau-neutralino mass differ-
ence, that set of constraints leads to essentially no information about the relic density,
yielding a distribution that stretches well to the right of the region plotted. The infor-
mation from the 500 GeV ILC can only check that we are in the stau coannihilation
region, predicting the relic density only within a factor of two. However, when the
information from the 1000 GeV ILC is added, with strong constraints on the mixing
angles and on tan β, the relic density is predicted to about 18%, an error three times
as large as the current WMAP determination.

Though this is not the main issue for the LHC, the scan data does show quite
clearly the presence of continuous ambiguities in the interpretation of the spectrum
data in terms of underlying parameters. In Fig. 36, we show the correlation of the
parameters m1 and µ. The plot shows three regions, two horizontal and one vertical,
corresponding to models in which the lightest neutralino is mainly bino, wino, and
Higgsino, respectively.

The dependence of the coannihilation cross sections on parameters that are not
fixed at the 500 GeV ILC is illustrated by the scatter plot shown in Fig. 37. This
plot shows the correlation between Ωχh2, tan β, and ΓA. The relic density is mainly
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Figure 35: Relic density measurement for point LCC3. The wino peak at very small relic
density is clear. See Fig. 8 for description of histograms.

determined by annihilations of the stau. This plot makes clear how the measurement
of ΓA, which fixes tan β to about ±2, has such an important effect. At the ILC-1000,
there remains a weak correlation between the stau-neutralino mass splitting and relic
density, illustrated in Fig. 38.

6.3 Annihilation cross section

In Fig. 39, we show the prediction of our likelihood analysis for the neutralino
pair annihilation cross section at threshold. The dominant annihilation processes
contributing to the relic density at LCC3 are actually coannihilation reactions, and
these are not longer available, because all primordial staus have decayed long ago.
So we have a situation similar to that of LCC1, in which a subdominant annihilation
reaction for the relic density becomes the most important one for the threshold cross
section. The relevant reaction is the same one that was important at LCC1, χχ → bb,
by t-channel b̃ exchange, but also getting a contribution from the A0 s-channel reso-
nance. The relative influence of these two contributions is reflected in the sharpening
of the distribution after the A0 is determined at the 1000 GeV ILC. In the LHC distri-
bution, we again see a subsidiary peak at high values of the cross section that reflects
the possibility of solutions in which the lightest neutralino is wino- or Higgsino-like.
In Fig. 40, we show the similar evolution for the exclusive annihilation cross sections
to γγ and γZ.
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Figure 36: Scatter plot of µ vs. m1 for LHC data at point LCC3. The “F” structure
indicates the fact that the lightest neutralino is either bino or wino, while the second could
be anything.

In Fig 41, we show the result of carrying out the exercise described in Section
4.4 in which we combine collider data with the annihilation gamma ray signal that
should be found by GLAST. For the galactic center, we expect 38 signal photons,
over 360 background; for the canonical halo object, we expect 31 signal photons, over
60 background. Using these counting rates and the determination of the annihilation
cross section that we have described, we obtain the predictions for 〈J(Ω)〉 shown in
Fig. 41. The quality of the determinations is somewhat better than in the case of
LCC1, For the halo object, we already obtain a 20% measurement with this relatively
small signal.

6.4 Direct detection cross section

At LCC3, we return to the situation seen at LCC1 in which the direct detection
cross section is dominated by the t-channel exchange of the heavy Higgs boson H0.
The direct detection cross section is poorly determined by the LHC data, even though
the mass of the H0 is known. However, the progressive clarification of the supersym-
metry mixing angles and the value of tan β at the 500 GeV and 1000 GeV ILC yields
a fairly precise determination. The evolution is shown in Fig. 42. The corresponding
predictions for the spin-dependent part of the neutralino-neutron cross section are
shown in Fig 43.
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Figure 37: Scatter plots of both tan β and ΓA vs. relic density for point LCC3. There is a
significant correlation, which can be resolved at ILC-1000. In fact, the correlation between
tan β and ΓA is quite close.
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Figure 38: Scatter plot of mτ̃ −mχ0

1

for point LCC3, ILC-1000 sample. A correlation exists,
but it is not strong.

Figure 39: Annihilation cross section at threshold for point LCC3. The wino solution giving
very high cross section is clearly visible. See Fig. 8 for description of histograms.
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Figure 40: Gamma ray line annihilation cross section at threshold for point LCC3. The
wino solution for LHC data at large cross section is clearly seen. See Fig. 8 for description
of histograms.

As before, we can combine our determination of the detection cross section with
the expected event yield from the SuperCDMS detector to estimate our ability to
directly measure the local flux of dark matter at the earth. Again, our analysis omits
the uncertainty from low-energy QCD parameters. For this case, we expect a signal
of 27 events in SuperCDMS. This gives the determination of the effective local flux
of neutralinos at the Earth that is shown in Fig. 44.

6.5 Constraints from relic density and direct detection

Point LCC3 illustrates a scenario that in some sense is quite likely. The LHC will
measure some part of the low energy spectrum of supersymmetric particles, but the
mechanism for establishing relic density will be completely unknown. In this case,
coannihilations with the light stau reduce the relic density by a large amount. LHC
data give no hint of this as the stau is unobserved. Furthermore, only two neutralinos
are observed at LHC, and no chargino is observed. Thus, the composition of the
neutralinos is almost completely unknown.

Applying a relic density constraint to LHC data is a technical challenge as the
range allowed is so large. Applying even the current WMAP constraint of 6% reduces
the effective number of samples by a factor of 40. Nevertheless, we can make a general
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Figure 41: Halo density profiles for point LCC3: (a) galactic center, (b) dark matter clump
in the galactic halo. Angle-averaged J values as measured by combining a 5-year all-sky
dataset from GLAST with accelerator measurements are shown. For LHC, the wino peak
at low J is clearly visible. See Fig. 8 for description of histograms.
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Figure 42: Spin-independent neutralino-proton direct detection cross section for point
LCC3. See Fig. 8 for description of histograms.

Figure 43: Spin-dependent neutralino-neutron direct detection cross section for point LCC3.
See Fig. 8 for description of histograms.
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Figure 44: Effective local WIMP flux at the Earth for point LCC3. The results assume the
SuperCDMS measurement described in the text. See Fig. 8 for description of histograms.

statement about the composition of the lightest neutralino in that if it has too large
a wino or Higgsino fraction, the relic density will be too low. Thus, the relic density
constraint selects the pure bino solution.

The direct detection cross section is governed by the heavy Higgs boson, seen at
the LHC, and the gaugino-Higgsino mixing of the neutralino. From the cross section
measured by SuperCDMS and the LHC measurement of the H boson mass, it could
immediately be inferred that the WIMP was a fairly pure gaugino or Higgsino (Zg or
Zh > 0.94).

The ILC-500 measurements of relic density and direct detection cross section are
still quite poor. We can illustrate an interesting possibility here, that the combination
of relic density and direct detection constraints can be more powerful than either
alone. In particular, we study the distribution of tan β. As shown in Fig. 45, the
direct detection constraint alone has little effect. Applying the relic density constraint
tightens the ILC-500 measurement considerably (and in fact reduces the ILC-1000
errors from 5% to 3%). Applying the direct detection constraint does have significant
power if the relic density constraint is also applied, especially in the ILC-500 sample.

The ILC-1000 measures the direct detection cross section to 9%, more accurately
that it can be determined by SuperCDMS. But the relic density can only be mea-
sured to 18%, so there is useful information in a cosmological relic density constraint.
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However, we have not been able to identify a clear beneficiary for this information.
Somewhat surprisingly, the stau-neutralino mass splitting has only a weak correlation
with relic density, given the ILC-1000 measurements (see Fig. 38).

7 Benchmark point LCC4

The general properties of the supersymmetry spectrum at the benchmark point
LCC4 are very similar to those at LCC3. The two points differ completely, however,
in the physics that establishes the neutralino relic density. At LCC3, the stau and
neutralino were sufficiently close in mass that coannihilation dominated the annihi-
lation of supersymmetric particles in the early universe. At LCC4, the parameters of
the model are adjusted in a different way, such that the A0 boson creates a resonance
in neutralino annihilation near threshold.

The A0 resonance has the potential to increase the neutralino annihilation cross
section by three orders of magnitude. This implies that the influence of the A0

typically creates a ‘funnel’ in the parameter space. When m(A0) = 2m(χ) precisely,
the annihilation cross section is very large and the neutralino relic density is essentially
zero. As the A0 moves away from the neutralino pair threshold, the annihilation cross
section reverts to its typical small value. In two intermediate regions, one on each side
of the threshold, the effect of the resonance is just right to produce an S-wave cross
section of about 1 pb. The location of this region depends on the A0 mass but also on
the A0 width. The width of the A0 is sensitive to many parameters of the theory, and
especially to the value of tan β, which is difficult to determine independently. Thus,
as we will see, none of the properties of the neutralino are determined particularly
well at this point until the A0 is measured in e+e− annihilation. However, once that
is done, the quantities needed for the study of dark matter snap into place.

7.1 Spectroscopy measurements

The supersymmetry spectrum at the point LCC4 is shown in Fig. 46. The proper-
ties of the supersymmetry spectrum at LCC4 visible to the LHC and to the 500 GeV
ILC are very similar to those discussed for LCC3. The squarks and the gluino all lie
below 1 TeV, so these states should be seen and characterized at the LHC. The two
lightest states in the neutralino spectrum should also be visible. The parameter set
of LCC4 has a large value of tan β, making the A0 and H0 visible at the LHC in their
τ+τ− decay modes. The large value of tan β also leads to large downward shifts of
the masses of the lighter tau slepton and the bottom squark. In this case, the lighter
stau is the only slepton with mass below 350 GeV, and thus it will be difficult to see
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Figure 45: Measurements of tan β for point LCC3. Various astrophysical constraint sets are
included. The relic density constraint improves even the ILC-1000 measurement, while the
ILC-500 measurement is greatly helped by including both direct detection and relic density.
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Figure 46: Particle spectrum for point LCC4. The lightest neutralino is predominantly bino,
the second neutralino and light chargino are predominantly wino, and the heavy neutralinos
and chargino are predominantly Higgsino.
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any slepton at the LHC. The point LCC4 shares with LCC3 the property that only
the few lightest supersymmetric states will be visible at the 500 GeV stage of the
ILC.

At the 1000 GeV ILC, new features of the model can be studied in detail. The
process e+e− → H0A0 becomes accessible, leading to striking events with four b jets.
The analysis of these events has been studied in [90]. By combining the jets in pairs, it
is possible to reconstruct the mass peak of the heavy Higgs bosons. The widths of the
H0 and A0 can be measured from this mass distribution. The two peaks substantially
overlap, since the widths are about 14 GeV while the mass splitting is about 1 GeV.
Since the splitting and the width are controlled by the common MSSM parameters
tan β and m(A0), it is possible to fit for those parameters and improve the accuracy
of the A0 width determination.

This is the only place in the paper where we make strong use of the fact that
we are restricting ourselves to the MSSM rather than working in a still more general
supersymmetric model. However, in a model with a more general Higgs structure,
the masses of the H0 and A0 would typically be distinct, and the two sets of masses
and widths could be obtained separately by kinematic fitting of 4-jet events.

The higher energy running of the ILC also makes it possible to observe the gaug-
inos χ̃+

1 and χ̃0
3 and to measure their masses. This gives enough information to

determine the parameter µ and thus to fix the gaugino-Higgsino mixing angles.

The complete list of spectrum constraints that we expect for this point for the
LHC and for each stage of the ILC is given in Tables 8 and 9.

7.2 Relic density

The evaluation of the relic density at LCC4 from collider data reflects the fact that
the result depends sensitively on both the mass and width of the A0 boson. At the
LHC and the 500 GeV ILC, the qualitative features of the supersymmetry spectrum
are known, and the mass of the lightest neutralino and the A0 are both known to some
precision. However, this still leaves almost complete uncertainty as to the predicted
value of the relic density. It is only when the width of the A0 is measured that the
actual picture begins to come into focus. This evolution is shown clearly in Fig. 47.
The dependence of relic density on the A0 width is easily seen in the ILC-500 data,
illustrated in Fig. 48.

The predicted value of the relic density also depends on the gaugino-Higgsino
mixing parameters. The measurement of the mass of the χ̃0

3, in particular, allows one
to determine the µ parameter. This significantly improves the determination shown
in Fig. 47 over scans done without this information. With the full set of collider data,

84



mass/mass splitting LCC4 value LHC ILC 500 ILC 1000
m(χ̃0

1) 169.1 ± 17.0 - 1.4
m(χ̃0

2) 327.1 ± 49.
m(χ̃0

2) − m(χ̃0
1) 158.0 ± - - 1.8

m(χ̃0
3) − m(χ̃0

1) 370.6 ± - - 2.0
m(χ̃+

1 ) 327.5 ± - - 0.6
m(χ̃+

1 ) − m(χ̃0
1) 158.4 ± - - 2.0

m(χ̃+
2 ) − m(χ̃+

1 ) 225.8 ± - - 2.0
m(ẽR) − m(χ̃0

1) 243.2 ± - - 0.5
m(µ̃R) − m(χ̃0

1) 243.0 ± - - 0.5
m(τ̃1) 194.8 ± - 0.9
m(τ̃1) − m(χ̃0

1) 25.7 ± - 1.0
m(h) 117.31 ± 0.25 0.05
m(A) 419.3 ± 1.5 * - 0.8
Γ(A) 14.8 ± - - 1.2

m(ũR), m(d̃R) 944.,941. ± 94.
m(s̃R), m(c̃R) 941., 944. ± 97.

m(ũL), m(d̃L) 971., 975. ± 141.
m(s̃L), m(c̃L) 975., 971. ± 146.

m(b̃1) 795. ± 40.

m(b̃2) 862. ± 86.
m(t̃1) 716. ± (> 345)
m(g̃) 993. ± 199.

Table 8: Superparticle masses and their estimated errors or limits for the parameter point
LCC4. The notation is as in Table 6.

cross section LCC4 value ILC 500 ILC 1000
minimal set
σ(e+e− → τ̃+

1 τ̃−

1 ) LR 21.1 ± 100%
RL 54.2 ± 7%

σ(e+e− → χ̃+
1 χ̃−

1 ) LR 137.3 (0.786) ± 4%
RL 4.0 (0.760) ± -

σ(e+e− → χ̃0
1χ̃

0
2) LR 43.9 ± 7%

RL 1.8 ± -
σ(e+e− → ẽ+

R ẽ−R) LR 5.1 (0.683) ± -
RL 84.7 (0.899) ± 5%

Table 9: SUSY cross sections and estimated errors for the parameter point LCC4. The
notation is as in Table 3. The symbol (-) denotes that the cross section is less than 10 fb
or is otherwise not measurable. The errors are estimated using (14).
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Figure 47: Relic density measurement for point LCC4. The wino peak at very small relic
density is clear. See Fig. 8 for description of histograms.

we find that the relic density can be predicted to 19% accuracy.

7.3 Annihilation cross section

In Fig. 49, we show the prediction of the neutralino annihilation cross section at
threshold from collider data. Because the resonant annihilation through the A0 is
a simple S-wave process, this cross section is highly correlated with the predicted
relic density discussed in the previous section. The form of the prediction is, again,
complete ignorance until the A0 width is measured, and a sharp value thereafter. The
prediction of the exclusive annihilation cross sections to γγ and γZ follow the same
pattern; this is shown in Fig. 50.

Because the annihilation cross section at threshold is large at LCC4, the collider
data gives us a significant ability to interpret the counting rates from experiments
that measure gamma rays from neutralino annihilation. In Fig. 51, we show the
determinations of 〈J(Ω)〉 for the galactic center and the canonical halo object de-
scribed in Section 4.4. For the galactic center, we expect 128 signal photons, over
360 background; for the canonical halo object, we expect 100 signal photons, over 60
background. These signals are similar to those obtained at LCC2, and–using the very
well determined annihilation cross section provided by the data from the 1000 GeV
ILC—we obtain similarly powerful results on the clustering and halo profile of dark
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Figure 48: Scatter plot of the distance from the A0 resonance vs. relic density for point
LCC4. The quantity plotted is actually the distance in widths, with true value 5.5.

matter.

7.4 Direct detection cross section

Again at LCC4, the direct detection cross section is dominated by the exchange of
the heavy Higgs boson H0. The determination of this cross section from the data at
the three colliders is shown in Fig. 52. The evolution is, if anything, more striking than
that displayed in the previous two sections. The determination of this cross section
relies crucially on the information from the 1000 GeV ILC. The determinations of
the gaugino-Higgsino mixing angles and tan β are crucial here as elsewhere in fixing
the neutralino-Higgs couplings. The corresponding predictions for the spin-dependent
part of the neutralino-neutron cross section are shown in Fig 53; these show a similar
behavior.

As before, we can combine our determination of the detection cross section with
the expected event yield from the SuperCDMS detector to estimate our ability to
directly measure the local flux of dark matter at the earth. Again, our analysis omits
the uncertainty from low-energy QCD parameters. The direct detection cross section
is the same as at LCC3, and again we expect a signal of 27 events in SuperCDMS.
This gives the determination of the effective local flux of neutralinos at the Earth
that is shown in Fig. 54.
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Figure 49: Annihilation cross section at threshold for point LCC4. The wino solution giving
very high cross section is clearly visible. See Fig. 8 for description of histograms.

Figure 50: Gamma ray line annihilation cross section at threshold for point LCC4. Again,
the wino solution at large cross section is clear. See Fig. 8 for description of histograms.
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Figure 51: Halo density profiles for point LCC4: (a) galactic center, (b) dark matter clump
in the galactic halo. Angle-averaged J values as measured by combining a 5-year all-sky
dataset from GLAST with accelerator measurements are shown. See Fig. 8 for description
of histograms.
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Figure 52: Spin-independent neutralino-proton direct detection cross section for point
LCC4. See Fig. 8 for description of histograms.

Figure 53: Spin-dependent neutralino-neutron direct detection cross section for point LCC4.
See Fig. 8 for description of histograms.
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Figure 54: Effective local WIMP flux at the Earth for point LCC4. The results assume the
SuperCDMS measurement described in the text. See Fig. 8 for description of histograms.

7.5 Constraints from relic density and direct detection

Point LCC4 is quite similar to point LCC3, so much of the discussion of section 6.5
relevant to the LHC applies. In particular, any relic density constraint applies fixes
the neutralino to be almost pure bino. However, like LCC3, there is little hint in LHC
data of the mechanism for establishing the correct relic density, in this case resonant
annihilation through the CP-odd Higgs A.

The ILC-1000 will measure the direct detection cross section to 7.5% accuracy,
essentially perfect accuracy given astrophysical uncertainties. It measures the relic
density at the 19% level. But, as we found at LCC3, there is no clear fundamental
parameter estimate that would benefit greatly from a cosmological constraint. There
is a mild correlation between relic density and the parameter (mA − 2mχ0

1

)/ΓA (dis-
tance in widths from the A resonance), but it is not spectacular. One thing that
is greatly helped is the annihilation cross section at v = 0. Since the annihilation
is resonant, the cross section at freeze-out velocities is not much different, though
the correlation is not as tight as with LCC2. Applying a 1% relic density constraint
changes the accuracy of the annihilation cross section estimate from 20% to 5%, a
quite significant improvement.

Astrophysical constraints can provide a significant information on the annihilation
cross section. Direct detection can reduce the significance of the wino peak, while a
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relic density constraint completely removes it. We illustrate this point in Fig. 55.

8 Neutralino annihilation products

In this section, we consider in more detail the computation of indirect signals of
dark matter annihilation from observations of gamma rays and positrons that are pro-
duced in neutralino pair annihilation. We leave discussion of neutrinos, antiprotons,
and antideuterons to future work.

In the previous few sections, we presented estimates of the neutralino annihila-
tion cross section that might be obtained from collider data on the SUSY spectrum.
However, as we have remarked in Section 2.7, there is a simpler way to obtain what
would seem to be an acceptably accurate prediction. We start from a value of the
neutralino mass obtained from LHC data. If we assume that the neutralino makes up
the bulk of the dark matter, we can use the cross section (2) derived from the relic
density as an estimate of the astrophysical annihilation cross section. We assume
that the neutralinos annihilate to hadronic jets, either in direct decays to quarks or
through decays to W and Z bosons. This gives a roughly universal spectrum of ener-
gies for the annihilation products, scaling with the neutralino mass. The arguments
are robust and simple to implement. But are they correct?

8.1 Gamma ray spectra

The argument we have just given works best for the gamma ray spectra from dark
matter annihilation. We have computed the spectrum of gamma rays from neutralino
annihilation for each of our four models using results from the Monte Carlo program
PYTHIA [119] (as tabulated in DarkSUSY [9]); this code is expected to give an
excellent description of hadronic final states in the energy region of 100 GeV. In
Fig. 56, we show the gamma ray spectra computed from the model parameters at the
four LCC points. The four spectra are compared to reference spectra with the shape
of the LCC4 spectrum, scaled horizontally to the correct endpoint at Eγ = m(χ0

1),
and normalized so that the peak cross section is proportional to the total annihilation
cross section. We have taken the reference shape from LCC4 because, in this case,
the dominant annihilation reaction goes to the 2-jet final state bb. We see that the
approximation is an excellent one for all four models.

It is not surprising that the shapes of the spectra are similar for the cases of LCC1,
LCC3, and LCC4. In all four cases, the annihilation at threshold is dominated by
the process χχ → bb, with subsequent evolution of the jets into π0’s and the decay
of these to gammas. However, it is quite surprising that the spectrum for LCC2,
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Figure 55: Annihilation cross section at threshold for point LCC4, including various as-
trophysical constraints. Direct detection reduces the weight of the wino solution, and relic
density completely eliminates this possibility.
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Figure 56: Spectra of gamma rays and positrons from neutralino annihilation at threshold
for points LCC1-4. Solid curves are gammas, dashed curves are positrons, and dotted curves
show the gamma spectrum of LCC4, scaled to each endpoint and total cross section. The
scaled LCC4 spectrum is a good match in every case. The positron spectrum for LCC2
exhibits a shelf due to direct decays of gauge bosons, e.g. χχ → W+W− → e+νud.
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which is dominated by the processes χχ → W+W−, Z0Z0, yields the same spectrum.
Apparently, the gamma ray spectra from hadronic jets, whatever their origin, do have
the universal form assumed in our argument above.

In addition, the discrepancy in the normalizations is readily understood. The relic
density of WIMP dark matter is established at a small but nonzero temperature,
T/m ∼ 1/25. The cross section relevant to gamma ray detection of WIMP is that
almost precisely at threshold. In cases in which the dominant modes of annihilation
proceed in the S-wave, (2) is a reasonable approximation to the correct cross section.
We find for the neutralino annihilation cross section at threshold σv = 0.55 pb for
LCC2 and σv = 0.48 pb for LCC4. However, at LCC1, the dominant modes of
annihilation for the purpose of computing the relic density are P-wave annihilations
to ℓ+ℓ−. These cross sections are very small at threshold; the dominant process just at
threshold is the subdominant reaction χχ → bb. At the point LCC3, the relic density
is set by coannihilation processes such as τ̃−τ̃− → τ−τ−. In present astrophysical
conditions, all of the τ̃ ’s have decayed away. At both LCC1 and LCC3, bb appears
because this is the fermion-antifermion final state with the least amount of helicity
suppression. We find, for the neutralino annihilation cross section at threshold for
these points, σv = 0.012 pb for LCC1 and σv = 0.11 pb for LCC3.

If more incisive probes of WIMP annihilation are available, it might be important
to know what are the fractions of the total annihilation rate that go to the various
possible final states. In Table 10, we present the branching fractions to the most im-
portant final states for the four reference points, and the estimates of these branching
fractions that we obtain from the three sets of collider constraints.

8.2 Positron spectra

We have just shown that the gamma ray spectrum resulting from neutralino an-
nihilation is remarkably independent of the model. It is controlled almost entirely by
the total neutralino pair annihilation cross section, and, through this, is often deter-
mined if the physics of neutralino annihilation is understood even qualitatively. For
other annihilation products, however, the story can be quite different. In this section,
we will discuss the visibility of the positron signal of dark matter annihilation in our
four models. Similar considerations apply to neutrino signals. However, since in all
four of our models the neutralino mass is below 200 GeV, neutrinos from neutralino
annihilation will be produced at too low an energy to be visible above the thresholds
of cosmic-ray neutrino detectors such as ICE-CUBE.

Unlike gamma rays, which fly directly from the source to a detector on earth,
positrons execute a random walk in the galactic magnetic field, losing energy contin-
ually along the way. Thus, positrons from WIMP annihilation that are observed at
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Process LHC ILC-500 ILC-1000
LCC1:
χχ → bb 0.629 ± 46% 46% 15%

τ+τ− 0.282 ± 79% 71% 43%
W+W− 0.046 ± 65% 40% 13%
γγ 0.016 ± 54% 42% 10%
gg 0.013 ± 52% 41% 11%

LCC2:
χχ → W+W− 0.868 ± 11% 11% 1.4%

Z0Z0 0.114 ± 66% 12% 3.7%
LCC3:
χχ → bb 0.974 ± 70% 36% 1.3%

τ+τ− 0.014 ± 113% 93% 92%
LCC4:
χχ → bb 0.889 ± 70% 16% 16%

τ+τ− 0.103 ± 90% 50% 52%

Table 10: Branching ratios in neutralino pair annihilation. The last three columns give the
fractional error (σ/mean) from the MCMC scans.

the earth must originate inside the galaxy, within a few kpc. The annihilation rate
depends on ρ2(x) averaged over this volume, a quantity closely related to the local
halo density discussed in relation to direct detection, but possibly enhanced by local
clumpiness parametrized by the boost factor (11). The energy loss in propagation
favors the highest-energy positrons in the spectrum.

The propagation of positrons through the galaxy has been modeled quantitatively
in [120,121]. We have found it an interesting exercise to fold the positron spectra for
our four models with the smearing predicted by the model of [121]. The results are
shown in Fig. 57.

The signal from LCC2 is larger than the others, for several reasons. First of all,
this point has a full strength total annihilation cross section. In addition, as one can
see from Fig. 56, the positron spectrum at this point has a component with a flat
distribution extending to the kinematic endpoint. This results from the fact that
the dominant annihilation reactions at LCC2 are to W+W− and Z0Z0, that is, to
vector bosons that have direct two-body decays to positrons. The sharp feature at
the extreme right of Fig. 56(b) is transformed into the peak at the high-energy edge
of the LCC2 curve in Fig. 57.

We can compare this spectrum to the recent measurement of the cosmic-ray
positron spectrum by the HEAT experiment. The comparison is shown in Fig. 58.
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Figure 57: Spectrum of positrons for all models after galactic propagation effects are ac-
counted for. The “interstellar” spectrum is illustrated. Solar modulation is neglected.
Above a few GeV solar modulation effects are negligible.

Figure 58: Positrons observed on earth, as a fraction of electrons, for LCC2. The HEAT
data are plotted as well, indicating the possibility of an excess. The positron signal from a
smooth halo has been boosted by a factor of 185 in order to fit the data.
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The HEAT data shows an anomaly at its upper edge, with a cross section that is
roughly flat in a region in which the background is expected to be decreasing. As
the figure shows, we can fit this with the positron spectrum from LCC2. To obtain
the correct normalization, we must enhance the production over that for a smooth
distribution of dark matter with density ρ0 = 0.3 GeV cm−3 by assuming a large
boost factor B = 190.

Is this a correct way to interpret the data? We ourselves are skeptical. Neverthe-
less, if we knew from collider measurements that the WIMP mass was 100 GeV and
that we were in a region of the parameter space that favored annihilation through
χχ → W+W−, this fit to the data might be considered compelling evidence for
neutralino annihilation and for a significantly clumpy distribution of WIMPs in the
galaxy.

9 Recap: Collider determination of WIMP properties

Our analysis in this paper has presented a series of worked examples that illustrate
the interactions we might expect over the coming years between astrophysical dark
matter detection experiments and high-energy physics experiments that will measure
the spectrum of new particles in the hundred-GeV mass range. In this section, we
will assemble the results that we have obtained and give our interpretation of their
implications.

9.1 Summary of results: cross sections

In Table 11, we summarize the results of our Monte Carlo scans for the most
important WIMP parameters that are determined by collider measurements of su-
persymmetry spectroscopy: the relic density Ωχh2, the annihilation cross section at
threshold σv (in pb), and the spin-independent scattering cross section on protons
σ(χp) (in units of 10−8 pb). The results are given for each of the four benchmark
models and for each of the three sets of collider measurements discussed in Sections
4-7. The results are quoted as a percentage error, defined as the standard devia-
tion divided by the mean, computed from the statistical sample generated by our
Monte Carlo process. A large variance indicates a poor determination of the model
parameters and might also indicate the presence of multiple solutions. For the correct
interpretation, one should look at the detailed shapes of the probability distributions
shown in the figures in Sections 4-7. For reference, the mean values of the Monte
Carlo samples are listed in the last three columns of the table when these differ by
10% or more from the nominal value.
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LHC ILC-500 ILC-1000 LHC ILC-500 ILC-1000
Ωh2 (mean)

LCC1 0.192 7.2% 1.8% 0.24%
LCC2 0.109 82.% 14.% 7.6% 0.074
LCC3 0.101 167% 50.% 18.% 0.24
LCC4 0.114 405% 85.% 19.% 0.26 0.083 0.094

σv (mean)
LCC1 0.0121 165.% 54.% 11.% 0.0069
LCC2 0.547 143.% 32.% 8.7% 8.47
LCC3 0.109 154.% 178.% 10.% 24.2 0.311
LCC4 0.475 557.% 228.% 20.% 82.5 1.83 0.57

σ(χp) (mean)
LCC1 0.418 44.% 45.% 5.7% 0.20
LCC2 1.866 62.% 63.% 22.% 3.57 2.82 2.19
LCC3 0.925 184.% 146.% 8.6% 13.2 1.86
LCC4 1.046 150.% 190.% 7.5% 23.2 3.59

Table 11: Fractional errors in the determination of the most important microscopic WIMP
parameters derived from the MCMC scans: Ωh2, the predicted relic density, σv, the annihi-
lation cross section at threshold (in pb), and σ(χp), the spin-independent neutralino-proton
cross section (in units of 10−8 pb). The second column lists the values predicted by the
benchmark models. Columns 3–5 give the fractional error (σ/mean) from the MCMC scans.
Columns 6-8 give the mean value found from the MCMC data when this deviated by more
than 10% from the nominal value in column 2. As discussed in Appendix A, the quoted
errors are accurate to 10% or better, e.g. a 20% error is 20% ± 2%.

We emphasize that all of these cross section determinations are ‘model-indepen-
dent’ in the following sense: We assume that it has been shown from collider data
that the model of new physics at the hundred GeV scale is supersymmetry. We then
fit the collider data on new particles to the Minimal Supersymmetric Standard Model,
studying the model in complete generality with 24 free parameters. We have shown in
many examples given in Section 4-7 that this parametrization is sufficiently general
to allow all of the possible physical mechanisms that are expected in this general
class of models to be considered in the fitting procedure. Thus we believe that we
have justified the claim made in Section 3.2 that cross section estimates obtained from
collider data through an analysis such as ours can be used without undue qualification
to analyze astrophysical measurements.

The table shows that, for all of the quantities listed, carrying out the full program
of collider measurements that we have presented results in a clear determination of
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the microscopic cross sections that can be used to interpret astrophysical dark matter
observations. The precise quality of the determination depends on the specific sce-
nario. In scenarios in which the dominant annihilation mechanism is through simple
annihilation to leptons, we find that the accuracy of the prediction of the relic density
is at the level of a fraction of a percent, comparable to the best measurements of the
dark matter density from the cosmic microwave background expected in that era. In
scenarios in which special relations among the superparticle masses are necessary for
rapid enough annihilation, the quality of the microscopic prediction decreases and we
find an accuracy of about 20%. In all cases, the agreement of the microscopic and
astrophysical determinations within the errors would be nontrivial and would pro-
vide striking evidence that the particle identified at colliders is indeed the dominant
component of astrophysical dark matter.

We believe that the accuracies we have listed are the best ones that can be ob-
tained at the current level of our understanding of the experimental capabilities of
the next-generation colliders. That is, we could not find additional measurements
beyond the ones we have listed that would significantly improve the accuracies we
have quoted for the neutralino cross sections. We note, though, that, in the linear
collider studies, relatively little effort has gone into analyses aimed at very accurate
cross section measurements. We have seen that the ILC cross sections can be very
important in fixing the gaugino-Higgsino mixing angles and tan β, parameters that
provide a major uncertainty in the neutralino properties. If cross sections could be
measured at the ILC with errors considerably smaller than the estimate (14), the
output accuracies would improve. To do this, however, it is necessary to confront the
Standard Model backgrounds to the observations of supersymmetric particles and to
model and subtract these backgrounds with very high precision.

We have also shown that the collider data predicts the WIMP annihilation cross
section and the cross section relevant to direct detection at the 20% level or bet-
ter in all of the cases that we have considered. This is quite sufficient to use the
microscopically-determined cross sections to provide strong constraints on the distri-
bution of the observed WIMPs in the galaxy. For the case of the direct detection
cross section, this conclusion does require that the uncertainty from low-energy QCD
matrix elements, discussed in Section 2.6, can be brought under control.

9.2 Summary of result: astrophysics

In Table 12 we summarize the constraints for the three specific model problems
that we have considered in this paper, the determination by GLAST of the dark
matter density integral J ∼ ∫

dzρ2 near the galactic center, the determination by
GLAST of the value of J for a representative clump of dark matter in the halo of
the galaxy, and the determination by SuperCDMS of the local flux of dark matter at
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a location on Earth. The specific parameters assumed for the detectors and sources
were detailed in Section 4.4 and 4.5. We emphasize that we have chosen these specific
experiments as representative examples meant to illustrate the implications of the
collider measurements for the many dark matter observation experiments that will
be carried out over the next decade.

The results given in the table for determinations of the density integral 〈J〉 reflect
several factors in addition to the accuracies given in Table 11 with which the mi-
croscopic WIMP cross section will be known. They include also the statistics of the
observation, and the error from the expected uncertainty in the background. These
two factors depend in turn on the underlying physics scenario and on the value of the
relevant WIMP cross section. If the cross section is small, the statistical error will be
relatively large, and the background will be more important relative to the signal.

These contributions are reflected in our results on 〈J〉 from the galactic center
in the following way. The points LCC1 and LCC3 have suppressed annihilation
cross sections at threshold. In these cases, the background always dominates, and
we can only set upper limits on the density integral. However, the lower bounds on
the cross sections that we obtain from the collider data allow these upper limits to
significantly exclude dark matter distributions that are highly peaked at the galactic
center. For LCC2 and LCC4, the annihilation cross section is at the full strength
expected from (2), and a robust signal is expected above background. For the LHC
data set, ambiguities arising from multiple solutions still make it difficult to pin down
the value of 〈J〉. We have quoted the error on 〈J〉 obtained when we resolve this
ambiguity in favor of the correct solution by removing the subsidiary peaks in the
likelihood distributions for σv at high cross section values. The variances are still
quite large. These ambiguities are resolved by the ILC data, and for those cases we
give the fractional error on 〈J〉 computed from the full scan data. Thus, at LCC2
and at LCC4, we find that 〈J〉 is given to 30% accuracy. These accuracies should be
compared to the current astrophysical estimates of 〈J〉 at the galactic center, which
range over many orders of magnitude. A measurement of the 〈J〉 correct to the level
we have shown, or even an upper limit on 〈J〉 free of astrophysical assumptions, would
represent a major improvement in our knowledge.

For our model dark matter clump in the galactic halo, the situation is somewhat
better. The background still dominates for LCC1, but not in the other cases. For the
LHC data sets, the problem of ambiguities in the solution is still present, and again
we restrict our estimates to MCMC points in the peak corresponding to the correct
solution. But, using the ILC data, we will find quantitative measurements of 〈J〉. At
LCC2, we can achieve a 20% measurement already with the 500 GeV data. At LCC4
also, the data from the 1000 GeV stage determines 〈J〉 an accuracy of about 20%.

For the local flux of neutralino dark matter, we find a similar picture. We first
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LHC ILC-500 ILC-1000 LHC ILC-500 ILC-1000
〈J〉(gc) limits (95% CL)

LCC1 7760 < 50,000 < 34,000 < 34,000
LCC2 7760 51.% ∗ 25.% 20.%
LCC3 7760 < 16900 < 16900 < 11500
LCC4 7760 160.% ∗ 122.% 32.%

〈J〉(clump) limits (95% CL)
LCC1 2500 < 14500 < 6700 < 5700
LCC2 2500 51.% ∗ 21.% 13.%
LCC3 2500 152.% ∗ 131.% 81.%
LCC4 2500 180.% ∗ 124.% 23.%

Φlocal/Φ0 limits (95% CL)
LCC1 1. 54.% 29.% > 0.95
LCC2 1. 28.% ∗ 46.% 24.%
LCC3 1. 126.% 20.% > 0.016
LCC4 1. 115.% 20.% > 0.010

Table 12: Errors or limits for the illustrative astrophysical measurements that we have
presented in Section 4-7. The quantities considered are: 〈J〉gc, the average of the density

integral J ∼
∫

dzρ2 near the galactic center, 〈J〉clump, the average of J in a small circle
around the center of a typical clump of dark matter in the galactic halo, and Φlocal, the
effective flux of dark matter impinging on a direct detection experiment on earth, normalized
to a standard halo distribution. The output values quoted include the expected experimental
errors. More details of the assumptions involved in these analyses are given in Sections 4.4
and 4.5. The second column lists the assumed astrophysical values. Columns 3–5 give the
standard deviation of ln 〈J〉 from the MCMC scans. Columns 6-8 give 95% upper or lower
confidence limits based on the MCMC data, as appropriate. Upper limits on J assume
〈J〉 > 1 as a prior. For each situation, either an error or a limit is quoted. In the cases
labeled by ∗, the MCMC data includes multiple solutions, and we restrict our calculation
to points in the neighborhood of the correct solution. See the text for further discussion
of all of these points. As discussed in Appendix A, the quoted errors for the microscopic
quantities (annihilation cross section, direct detection cross section) are accurate to 10% or
better.
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remind the reader that our estimates ignore uncertainty from the evaluation of low-
energy QCD matrix elements. With the assumption that these matrix elements can
be determined, we draw the following conclusions: In all cases except for LCC2, the
LHC data set provides only a weak determination of the relevant WIMP cross section.
We can at best quote an upper limit on the cross section and thus a lower limit on
the local flux. For the LHC data at LCC2, we have quoted a measurement error
after removing the peak arising from the incorrect solutions. The data from the 500
GeV ILC constrains the direct detection cross sections to some extent, and for these
entries we have quoted the fractional error, which is however large in all cases. The
measurements at the 1000 GeV ILC finally fix the mass of the heavy Higgs bosons and
other spectroscopic parameters involved in the most important contributions to the
direct detection cross section. From this data, the local flux can be determined to 20-
30% accuracy for all four benchmark models. Our current knowledge of the galactic
halo constrains this flux only to a factor of 2, and even then only if we assume that
the halo has a smooth distribution both in position and in momentum space. Here
too, precise microscopic information can have a large impact.

In all three examples, what would be determined would be the density or flux
of that component of dark matter corresponding to the WIMP observed in collider
experiments. Other possible components of dark matter such as axions or very heavy
weakly-interacting particles give negligible signals in direct detection experiments and
experiments on dark matter annihilation. Thus, first of all, the direct and indirect
detection experiments would demonstrate concretely that the WIMP seen in particle
physics is present in the structure of the galaxy. At the next stage, the consistency of
the overall picture that results from these experiments could give additional insight,
beyond what is gained from analysis of the overall relic density, on the broad question
of whether the observed WIMP is the dominant component of dark matter.

9.3 LHC and astrophysical measurements

Up to this point, we have been discussing the comparison to astrophysical data
of the full set of results that we will obtain from the next-generation colliders. It
will take some time, of course, for the collider data to become available. The LHC
experiments will begin in just another year. The 500 GeV stage of ILC may begin
within ten years from now. The 1000 GeV stage of the ILC would be an upgrade
to the basic facility and would produce data, at the earliest, at the end of the next
decade. Astrophysical dark matter experiments are also spaced out in time through
the next decade. It is interesting, then, to look at the implications of colliders in
terms of this timeline and see what results can be expected at each stage. In this and
the next two sections, we will discuss some aspects of this evolution, emphasizing the
the new information that we will obtain as each collider presents its results.
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There are many possibilities for what will happen in the future. In the discussion
of the next few sections, we will assume that underlying physics model is a supersym-
metric model of dark matter similar to those we have analyzed in this paper. Then
we will be able to discuss the evolution in a very concrete way.

We begin with the situation as it might appear in 2012. In the scenarios dis-
cussed in this paper, we will by that time have the discovery of supersymmetry in
the LHC experiments and the first positive results from direct detection experiments
and searches for WIMP annihilation.

At this stage, it should already be possible to compare three observed masses
relevant to dark matter: (1) the mass of the escaping neutral particle produced at
the LHC in missing energy events, (2) the mass of the directly detected dark matter
particle obtained from the recoil energy spectrum, and (3) the mass of the annihilating
dark matter particle, obtained from the endpoint of the gamma ray spectrum. In the
best case, all three masses should be determined to better than 20% accuracy. Their
agreement will provide a nontrivial test that the particle being produced at the LHC
is indeed a dominant component of cosmic dark matter.

It will be difficult to learn more about the dark matter particle without additional
assumptions. As we have discussed in Section 2.3, it will be very difficult from the
LHC data alone to narrow the possible explanations of missing-energy events and new
particles to a single model. Nevertheless, we might proceed by assuming a particular
model (for example, supersymmetry or even a restricted model of supersymmetry)
and examining its consequences for astrophysics.

In some scenarios (for example, the benchmark points LCC1 and SPS1a′ discussed
in Section 4), we would be able to combine the assumption that the new physics is
supersymmetry with the detailed spectroscopy measurements available from the LHC
to give a quite accurate prediction of the WIMP relic density. In this situation, it is
tempting to assume that the observed WIMP is the sole component of dark matter,
fix the relic density to the value measured from the cosmic microwave background,
and make higher-precision predictions for the supersymmetry mass spectrum. In
addition, because the heavy Higgs bosons typically give the dominant contribution
to the spin-independent direct detection cross section, one can assume that the local
flux of dark matter is near its nominal value and use the direct detection rate to fix
the heavy Higgs boson mass. In both cases, the later stages of the collider physics
program on supersymmetry spectroscopy will test these predictions and thus confirm
or refute the astrophysical assumptions.

In most scenarios, however, it is not possible to derive a definite prediction for
the WIMP relic density from the LHC data even if supersymmetry is assumed to be
the underlying theory. The precise point in supersymmetry parameter space might
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not be determined uniquely from the data, or the data might not select sufficiently
precisely the special mechanism of neutralino annihilation. We have seen examples
of the first difficulty at LCC2 and of the second at LCC3 and LCC4. In these cases,
the LHC would give us only a first tantalizing glimpse of the particle physics origin
of dark matter, leaving many questions to be resolved by the ILC experiments.

We have also noted a circumstance in which qualitative information from the LHC
can be bootstrapped into quantitative information for astrophysics. The particle
physics cross section needed for the interpretation of gamma ray data must be close
to the value (2) if the observed WIMP is the dominant component of dark matter and
if the relic density of WIMPs is set primarily by WIMP annihilation in the S-wave
without coannihilation. The LHC data could point to a qualitative scenario (one
similar to LCC2, for example) in which S-wave annihilation would be expected. We
would then have a quantitative estimate of the annihilation cross section that could
be used to analyze astrophysical gamma ray spectra.

9.4 ILC at 500 GeV

In all of the scenarios we have discussed, the estimates of the neutralino properties
from the LHC would be dramatically improved when the neutralino and the other
light particles in its sector are observed in e+e− annihilation.

First of all, the measurements of e+e− annihilation cross sections and angular
distributions will give the spins and Standard Model quantum numbers of the lightest
states in the new particle sector, allowing definite identification of the model that is
giving rise to the stable WIMP. This identification is a prerequisite for any ‘model-
independent’ estimation of the WIMP cross sections.

Second, measurements in e+e− annihilation can improve the accuracy on the
WIMP mass from 5–10% at the LHC to a fraction of a percent. The value of Ωχh2

is directly correlated with the WIMP mass in all of our models, so this is crucial
information for obtaining an accurate prediction of the relic density.

Third, measurements in e+e− annihilation can identify all light partners of the
WIMP with electromagnetic or weak charge, including some (e.g., in supersymmetry,
the charginos and the staus) that are difficult to study at hadron colliders. The
masses of these particles would also be measured to a fraction of a percent.

Fourth, measurements of production cross sections in e+e− annihilation give direct
sensitivity to the mixing angles that define the mass eigenstates of the new particles.
In supersymmetry, the cross sections for chargino and neutralino pair production fix
the gaugino-Higgsino mixing angles, and the cross section for stau pair production
fix the stau mixing angles. At a linear collider, the cross sections with polarized
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beams can be measured, and the individual cross sections from left- and right-handed
polarized electrons provide complementary information. We have seen one special
case (at LCC1) where the measurement of a ratio of branching ratios at the LHC
can substitute some of this information. But the technique of extracting these angles
from polarized cross section measurements is general and much more effective.

Finally, the information from spectra and cross sections obtained in e+e− annihi-
lation allows one to resolve ambiguities that arise in imposing the constraints from
the LHC data. Here we refer both to the question of multiple solutions to the various
eigenstate mixing problems and to the question of whether special situations such as
a Higgs boson resonance or coannihilation are present. In some cases, as we have
discussed, these predictions can be sharpened by adding constraints from the relic
density or from direct detection rates.

Looking back at the tables, we see that, in almost all cases, we do not obtain
precise determinations of the basic WIMP cross sections until we have data from
e+e− experiments.

In this paper, we have intentionally chosen models in which the lightest states of
the new particle spectrum can be explored at the ILC at a center of mass energy of
500 GeV. This is our expectation, based on the idea that models of WIMPs arise
naturally from models of electroweak symmetry breaking. We will learn very soon
from the LHC whether this assumption is justified. If the spectrum of new particles
associated with the WIMP is out of reach of the 500 GeV ILC, we will still need e+e−

data to understand the dark matter problem. We will just have to wait longer to
obtain it.

9.5 ILC at 1000 GeV

Although in all of our models the ILC at 500 GeV gives a great improvement
in the information available from colliders, we always found an advantage in doing
additional e+e− experiments at higher energy. In all of the models except LCC2,
this higher-energy running was particularly important for one specific reason: The
WIMP cross sections are sensitive to the masses and couplings of the heavy Higgs
bosons, and we needed accurate values of the Higgs boson masses and the mixing
angle tan β to determine these cross section accurately. The spin-independent direct
detection cross section, in particular, is typically dominated by t-channel Higgs boson
exchange. If the heavy Higgs bosons are not seen directly, there is no strong prediction
for this cross section; once these Higgs bosons are seen, there is suddenly a precise
determination from the collider data.

In supersymmetric models, the heavy Higgs bosons are typically heavier than the
lightest superpartners. In this range of parameters, they are pair-produced in the
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process e+e− → H0A0. In our study, it was important for e+e− experiments to reach
the threshold for this process in order to complete the set of experiments needed to
predict the WIMP properties.

9.6 Conclusions

Finally, we return to the larger picture. In this paper, we have shown that the
experimental results from the hadron and e+e− colliders of the next generation can
be used to determine the basic particle physics cross sections of WIMP dark matter
particles. Using this information, we will be able to test whether particles seen at
high-energy accelerators make up cosmic dark matter. If this is so, we can apply the
cross sections determined from collider data to astrophysical dark matter experiments
and use them to study in a very general way the distribution of dark matter in the
galaxy.

We expect that the interplay between measurements from high-energy colliders
and measurements of dark matter in astrophysics will become a major theme of both
subjects in their evolution over the next ten to fifteen years. It will lead us to learn
much more about the structure of the galaxy and of the universe, and also about
the underlying structure of the elementary particles and their laws. To carry out the
full program will take persistence and it will require collaboration across the field of
physics. But if we can see the goal, we can reach it.

A Markov Chain Monte Carlo

In this appendix we detail the Markov Chain Monte Carlo technique used to
explore the D = 24 dimensional parameter space described in this paper. We then
describe tests of the Markov chains’ convergence.

A.1 Adaptive Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is simple. Consider a point ~pi in the parameter
space. From this point, a new point ~q is proposed, with probability density P (~q, ~pi).
Note that the simple algorithm requires that that the density P be symmetric in its
arguments. If the likelihood of the proposed point is larger than that at the current
point, L(~q) ≥ L(~pi), then set ~pi+1 = ~q. If the likelihood at the proposed point is lower,
set ~pi+1 = ~q with probability L(~q)/L(~pi), otherwise set ~pi+1 = ~pi. The set of points
{~pi} then converges to the correct target distribution, independent of the proposal
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density P . The difficulty in implementing this algorithm lies entirely in choosing a
proposal P which allows an efficient exploration of the target distribution.

We can use the covariance matrix to construct an efficient proposal. From a
sample set of N points ~pi, we construct the mean and covariance matrix,

~µ =
1

N

N∑

i=1

~pi, (23)

C =
1

N

N∑

i=1

(~pi − ~µ) (~pi − ~µ)T . (24)

Note that for C to be a positive definite matrix, N must be at least D+1. This matrix
is essentially the variance; it can be thought of as σ

2. If the sample set reasonably
covers the region of high likelihood, then the shape of the region, complete with
degenerate directions, etc., is encoded in C. Is is natural to use a Gaussian proposal
distribution based on the covariance matrix and scaled by an efficiency factor f . The
proposal is ~q = ~pi + ~y, where ~y is distributed as

P (~y) =
1

√
(2πf 2)D det C

exp

(
− 1

2f 2
~yTC−1~y

)
. (25)

This can be implemented by choosing a vector ~x where each element has a Gaussian
distribution with zero mean and unit variance and taking ~y = f

√
C ~x. By

√
C we

mean any matrix L such that LLT = C. It is convenient to take L to be lower
triangular: this is the Cholesky decomposition of C. It can be shown that for a
Gaussian target distribution, the most efficient step is f = 2.381/

√
D in the limit of

large D. This prefactor is fairly optimal even for D = 1 [102]. Alternatively, we can
use a Cauchy-Lorentz proposal distribution. This has the advantage of occasionally
allowing very long steps, though for a Gaussian target distribution, it is less efficient.
The Cauchy-Lorentz distribution in D dimensions is given by

P (~y) =
(2/f)D Γ

(
D+1

2

)

√
πD+1 det C

(
1 +

4

f 2
~yTC−1~y

)−(D+1)/2

. (26)

This can be implemented analogously by taking ~x to have a Cauchy-Lorentz distri-
bution with a unit full-width at half maximum as follows,

xi =
ti

2
√

i



1 + 4
i−1∑

j=1

x2
j




1/2

, i ∈ {1 . . .D}, (27)

where ti has a t-distribution with i degrees of freedom. As before, ~y = f
√

C ~x.
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The Metropolis-Hastings algorithm can be made adaptive, by updating the matrix
C. A key consequence of this is that the proposal distribution is no longer symmetric,
which must be accounted for. We chose a method that uses N ≥ D+1 Markov chains
in parallel. The covariance matrix used in the proposal is constructed from the current
point of each chain. At each step, a chain is chosen at random, and a proposal is
made for that chain. If accepted, the one chain is advanced, and now of course the
covariance matrix changes, C → C′. This means that the probability density to
return to the previous state is not the same as the probability density to arrive at
the current state from the previous state. If this is not corrected, detailed balance is
violated. As a shorthand, call the two probability densities P (C) and P (C′). Detailed
balance is restored with the following acceptance probability,

P (accept) = min

[
1,

P (C′)L(~q)

P (C)L(~pi)

]
. (28)

The step ~x′ required to return is different than the step ~x, but both are unit-Gaussian
distributed. For the Gaussian case, it is easy to see that

P (C′)

P (C)
=

√
det C

det C′
exp

[
−1

2

(
x′2 − x2

)]
, (29)

=

√
det C

det C′
exp

[
− 1

2f 2
~yT
(
C′−1 −C−1

)
~y

]
. (30)

We now need to know C′ and its inverse and determinant. Assume that the point ~pj

is the one to be updated, ~pj → ~pj + ~y, we find

~µ′ = ~µ +
1

N
~y, (31)

C′ =
1

N

N∑

i=1

[
~pi − ~µ +

(
δij −

1

N

)
~y
] [

~pi − ~µ +
(
δij −

1

N

)
~y
]T

, (32)

= C +
1

N
(~pj − ~µ) ~yT +

1

N
~y (~pj − ~µ)T +

N − 1

N2
~y ~yT . (33)

The covariance matrix has been adjusted by the addition of dyad products, and only
two of them (collecting terms in ~yT ). It is possible to invert such a matrix analytically
if the inverse of the base matrix is known.

C′ = C +
∑

i

~ai
~bT

i , (34)

λij = ~bT
i C−1~aj , (35)

C′−1 = C−1 −
∑

i,j

(1 + λ)−1
ij C−1~ai

~bT
j C−1, (36)

det C′ = det C det (1 + λ) . (37)
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There are only two dyads in our case, thus the matrix inversion in (36) is trivial. In
this way, we do not need to perform a D × D matrix inversion for each proposal.
If the proposal is accepted, we do need to recompute the Cholesky decomposition
as there is no such formula to update it. This does save time, as we typically want
acceptance probabilities around 25%. Notice here that both probability densities
P (C) and P (C′) have an implicit factor of 1/N insuring that it is in fact chain j
that is being updated. In evaluating (30), we need C−1 = L−1,TL−1. Since L is lower
triangular, its inverse multiplied by a vector is trivially obtained by back-substitution.
Then (37) is easily verified for the case of adding a single dyad. The result for an
arbitrary number of dyads follows inductively: if true for n − 1 dyads, the case of n
dyads is shown to be the Laplace expansion for the n × n determinant.

For a Cauchy-Lorentz proposal, the correction factor is quite similar. Using the
results of the previous paragraph,

x′2 − x2 = ∆x2 = − 1

f 2
(1 + λ)−1

ij ~yTC−1~ai
~bjC

−1~y, (38)

we find
P (C′)

P (C)
=

1
√

det (1 + λ)

(
1 +

4∆x2

1 + 4x2

)−(D+1)/2

. (39)

The efficiency of this adaptive proposal relies on the fact that the target distri-
bution is Gaussian. If it is non-Gaussian, which is always the case for the distri-
butions studied in this paper, the efficiency may be different. We take a stepsize
f = 2.381 ǫ/

√
D, where ǫ = 1 is most efficient in the Gaussian case. For the vari-

ous cases studied, we used efficiencies ǫ ∈ [0.15, 0.5] as required to have acceptance
probabilities that were not too small (above 5%).

A.2 Exploring the distributions

For each of the 12 cases (four LCC benchmark points, three colliders), we have
run Markov Chains as follows. Our fiducial runs have N = 25 chains in parallel, the
minimal number that gives a positive definite covariance matrix. The total number of
samples taken is 4×106, so roughly 1.6×105 per chain. Starting at the beginning, some
fraction of each chain, up to 10%, is used for “burn-in” to find the region of acceptable
likelihood. For the first half of the burn-in period, we apply a “cooling” technique
where the “temperature” is gradually lowered to the correct value. This means that
we take the likelihood function to be Lλ. We update λ = 1/T geometrically by

λi = λ
1−i/n
0 , where n is the total number of burn-in points, and we take λ0 = 0.01.

Note that the current temperature is used for both likelihoods in the acceptance
probability.
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Figure 59: Section of the Markov chain for tanβ at LCC2-LHC. The repeated brief excur-
sions to large values are clearly seen.

A.3 Thinning the chains

We do not compute relic density at every point due to the computational expense.
The chains are correlated at short distances so this is not even necessary to achieve
good statistics. We instead thin the chains by some factor, usually taken to be t = 50.
This means we construct a new chain from every 50th point of the current chain. We
only compute relic density for the points of the thinned chains. Fig. 59 shows a section
of a thinned Markov chain.

A.4 Convergence test

We apply the technique of [102] to determine whether the Markov Chains have
converged. In a given run, the N chains are concatenated (after removing the burn-in
periods) to construct one long chain of length Ntot. For each of the 24 parameters,
we normalize to unit variance and take the Fourier transform. We then fit the power
spectrum P (k) = |aj|2, where the aj are the Fourier components (with j ranging
between −Ntot/2 and Ntot/2) and k = 2πj/Ntot. If the elements of the chain are
uncorrelated at large separation, then for small k (long distance in the chain), we
expect to see a white noise spectrum, that is, a power spectrum that is approximately
constant. At short distances in the chain (large k) we expect the power spectrum
to behave like k−2, the random walk spectrum. Following [102], we require that the
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Figure 60: Fourier transform of the Markov chain for tanβ at LCC2-LHC. A constant
rolling into a power law fit [102] is shown. This illustrates the white noise (flat) spectrum
for low k indicating decorrelation at large distances in the chain and the random walk (k−2)
spectrum at short distances (large k).

Figure 61: Illustration of MCMC bridging the gap between islands in parameter space.
These are solutions for LCC2 with LHC data, as in Fig. 25. The true solution has the
largest bino fraction Zb1.
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Figure 62: Illustration of MCMC exploring very different regions of parameter space. These
regions are actually connected, as shown in Fig. 36, but allow vastly different properties for
χ0

2, as shown here.

break between these two behaviors occurs beyond j = 20. When this is true, the fit
to P (0) can be trusted, and r = P (0)/Ntot indicates the fractional error made in the
variance of the parameter. We require r < 0.01, meaning at most 10% errors made
in the error of a given parameter, based on the Markov chain.

The power spectrum test can be applied either to the full chain or the thinned
chain. The results are insensitive as long as the scales removed are in the random
walk regime. For chains of length Ntot, thinning by a factor of t has little effect unless
the turnover is beyond j = Ntot/t. We typically find j values at turnover of 20− 200,
so this is not an issue. An illustration of the power spectrum test is given in Fig. 60.

B Disconnected families of supersymmetry parameters

In this appendix we describe the conditions where multiple discrete regions of
parameter space would be consistent with collider measurements. Such ambiguities
occur for all of the benchmark points under study. The simplest alternate solutions
involve only changing the signs of µ and m1. This four-fold degeneracy is evident
in every model given only LHC data. Since these signs are relevant to the mixing
parameters of the neutralinos and charginos, it is essential to measure the mixed pair

113



production cross sections at the ILC, e.g., e+e− → χ̃0
1χ̃

0
2. There are more subtle

degeneracies as well, as we discuss in the following sections.

B.1 Benchmark point LCC1

At the LHC, three neutralinos are visible: the lightest (bino) at 95.5 GeV, the
next lightest (wino) at 181.6 GeV, and the heaviest (heavier Higgsino) at 375.6 GeV.
No chargino is seen, implying a mass > 125 GeV. Assuming that the identities of the
neutralinos are unknown at the LHC, it is possible that the values of the parameters
|µ| and m2 are exchanged. This implies that the second and third neutralinos are
Higgsinos, and the heaviest is mostly wino. This solution gives an acceptable mass
spectrum for the LHC errors. In addition, there is the four-fold degeneracy due to
the uncertain signs of µ and m1. There are thus 8 solutions for LHC data. Notice
that we can be confident that the lightest neutralino is mostly bino-like; its mass is
95 GeV, and a chargino at this mass would be visible.

The ILC-500 completely resolves the degeneracies of this model. The identities
of χ̃0

2 and χ̃+
1 as wino-like are determined by the pair production cross sections, and

the sign ambiguities are completely resolved by the χ̃0
1χ̃

0
2 production cross section:

changing the signs has a large effect on the (small) bino fraction of χ̃0
2.

At this point, the 8 islands are very well separated in parameter space. For
the LHC, we have shown the results of the correct island only. Including the other
solutions would not make a large difference, as they only affect the subdominant wino
and Higgsino admixtures in the lightest neutralino.

B.2 Benchmark point LCC2

The three lightest neutralinos are visible at the LHC, while there is only the usual
limit of 125 GeV on the lightest chargino mass. All of the neutralinos are quite
mixed in composition, thus the permutation ambiguities in m1, m2, µ are somewhat
ambiguous. As shown in Fig. 61, there are essentially three solutions for positive µ
and m1. When plotted as islands in neutralino composition, the solutions are clearly
separated. The incorrect solutions have the lightest neutralino being mostly wino-like
or Higgsino-like rather than mostly bino-like. In fact, the wino and Higgsino cases
have two peaks, not well separated, as seen in Fig. 25. There is an additional bino
solution as well (not shown), with M2 larger than 1 TeV, but its properties are similar
to the proper bino solution, except that the wino fraction is very much smaller.

The ILC-500 removes the degeneracies. The χ̃0
2χ̃

0
3 cross section identifies the

neutralinos and also their mixing angles, thus the negative µ solution at least is gone.
The ILC-1000 allows no incorrect solution.
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At this point only, the disjoint islands at positive µ and m1 are close together in
parameter space. Our LHC results show all islands with the correct signs. During the
cooling and burn-in period, Markov chains find an island at random, and remain there
for the remainder of the run. We find that burn-in is slow enough that the number
of chains that finds a solution is proportional to the likelihood of the solution. We
have verified this with a “stepping stone” technique, where the space between the
islands, normally having vanishing likelihood, is assigned a small likelihood. Markov
chains can now step away from an island, into this “sea”, and thus travel back and
forth between islands. Points in the “sea” can be removed at the end with impor-
tance sampling. We have verified the relative weights of the islands with just such a
simulation.

B.3 Benchmark points LCC3 and LCC4

Benchmark points LCC3 and LCC4 have similar structure for discrete solutions,
thus we discuss them together. Both have the two lightest neutralinos visible at
the LHC. Assuming that none have been missed between the two, the “F” structure
in the m1 vs. (m2 or µ) plot appears naturally. This is understood physically as
follows. Given the large mass splitting between the two visible neutralinos, and the
assumption that none have been missed, the lightest neutralino is either bino or wino,
and the heavier of the two visible neutralinos can be anything. As all neutralinos at
these benchmark points are heavier than 125 GeV, the non-observation of charginos
gives no additional information. The “F” structure is repeated for each of the four
sign combinations for m1 and µ. In Fig. 62 we illustrate an interesting effect of the
“F” structure, in that there are three possible solutions to the composition of the
second lightest neutralino.

For each of these points, ILC-500 data would collapse the “F” structure somewhat,
but the sign ambiguities remain. ILC-1000 is required to remove the last ambiguities,
with the neutralino and chargino pair production cross sections.

Unfortunately, the sign ambiguity in µ remains for point LCC4, even taking ILC-
1000 data into account. However, since this point has large tan β, its correction to the
muon g−2 is large, and has a sign equal to the sign of µ. The BNL measurement [122]
rules out the negative µ solution, even with a very conservative constraint allowing
the union of the 3σ regions from the e+e− and τ decay evaluations of the hadronic
vacuum polarization [123,124].

For these two points, we have only illustrated the correct signs. The “F” patterns
are too far apart in parameter space for easy exploration by single Markov chains.
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