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We count the number of bound states of BPS black holes on local Calabi-Yau three-

folds involving a Riemann surface of genus g. We show that the corresponding gauge theory

on the brane reduces to a q-deformed Yang-Mills theory on the Riemann surface. Following

the recent connection between the black hole entropy and the topological string partition

function, we find that for a large black hole charge N , up to corrections of O(e−N ), ZBH

is given as a sum of a square of chiral blocks, each of which corresponds to a specific

D-brane amplitude. The leading chiral block, the vacuum block, corresponds to the closed

topological string amplitudes. The sub-leading chiral blocks involve topological string

amplitudes with D-brane insertions at (2g − 2) points on the Riemann surface analogous

to the Ω points in the large N 2d Yang-Mills theory. The finite N amplitude provides a

non-perturbative definition of topological strings in these backgrounds. This also leads to

a novel non-perturbative formulation of c = 1 non-critical string at the self-dual radius.
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1. Introduction

Counting of 4-dimensional BPS black hole microstates arising upon compactifications

of type II superstrings on Calabi-Yau 3-folds has been recently connected to topological

string amplitudes in a highly non-trivial way [1]. In particular it has been argued that

for a large black hole charge N and to all order in 1/N expansion, the mixed ensemble

partition function ZBH of BPS black holes is related to topological string amplitudes Ztop:

ZBH = |Ztop|2. (1.1)

In fact the proposal in [1] goes further and uses the above relation as defining what one

means by the non-perturbative topological string amplitude, including O(e−N ) corrections.

One main obstacle in checking this relation is that both sides are difficult (at present

impossible) to compute for compact Calabi-Yau manifolds. However, the logic of [1] can

be adapted to non-compact Calabi-Yau manifolds and the counting of BPS states in these

geometries. In that context one could hope to check this statement.

A first case where this was actually done [2] was in the case of a local Calabi-Yau

involving the sum of two line bundles over a torus T 2. In that case, not only it was shown

that (1.1) is correct to all orders in the 1/N expansion, but that, at finite N , the notion of

a holomorphic Ztop ceases to make sense due to O(e−N ) effects. In fact counting of BPS

bound states in that case reduces to computing the partition function of the 2d Yang-Mills

theory on T 2, whose large N expansion has the above chiral decomposition valid only to

all orders in the 1/N expansion, as was demonstrated in [3].

The aim of this paper is to extend the computation in [2] to the case of a Calabi-Yau

manifold where T 2 is replaced by an arbitrary genus g Riemann surface. Once again we

find that the topological gauge theory on the brane reduces to 2d Yang-Mills theory on the

Riemann surface, with one additional subtlety: the Yang-Mills theory is q-deformed ! We

then ask if the relation (1.1) holds in this case. Luckily the topological string amplitude

for this geometry has been computed very recently [4], and so the right hand side of (1.1)

is also known. In checking this relation we find an interesting new subtlety: We find that

the relation (1.1) to all orders in the 1/N expansion is modified in this case to

ZBH =

∫ |2g−2|∏

i=1

dUi |Ztop(U1, ..., U|2g−2|)|2, (1.2)
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where Ztop(U1, ..., U|2g−2|) is the topological string amplitude with |2g − 2| stacks of D-

branes inserted, and Ui corresponds to the holonomy of the gauge field turned on in the

i-th stack of D-branes. The leading piece of this expansion is the closed string amplitude.

To extract this piece, the integral over the unitary group in the above can be performed

and the relation can be recast as

ZBH =
∑

R1,...,R|2g−2|

|Ztop
R1,...,R|2g−2|

|2,

where

Ztop(U1, ..., U|2g−2|) =
∑

R1,...,R|2g−2|

Ztop
R1,...,R|2g−2|

TrR1
U1 · · ·TrR|2g−2|

U|2g−2|,

and R1, ..., R|2g−2| are representations of SU(∞) and TrRi
Ui (i = 1, ..., |2g − 2|) are their

characters. The closed string amplitude is the vacuum chiral block given by Ri = 0.

The organization of this paper is as follows: In section 2 we review perturbative

results for topological strings on a Calabi-Yau with a local geometry involving a Riemann

surface. We also present a short alternative derivation of the main result. In section 3 we

study the gauge theory living on a BPS brane in this geometry and compute its partition

function. In particular we show that the relevant field theory on the brane gets mapped

to the q-deformed 2d Yang-Mills theory on the Riemann surface. In section 4 we use this

result to count the BPS black hole degeneracy in this geometry. In section 5 we take the

limit of large black hole charges and relate our result to the expected topological string

amplitudes reviewed in section 2, in accordance with [1]. In section 6 we discuss the limit

of small area for a local P1 geometry (the resolved conifold). This is related by the mirror

symmetry to the deformed conifold and thus to the c = 1 non-critical bosonic string at

the self-dual radius. There we find that the non-perturbative formulation involves chiral

blocks which represent a condensation of a coherent state of tachyons which emits tachyons

at all frequencies. In appendices A - D we collect some identities needed in the paper.

2. Perturbative Topological String Theory

In a recent work [4] topological A-model string theory amplitudes

X = L1 ⊕ L2 → Σ,
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were computed to all orders of perturbation theory in terms of a certain topological quan-

tum field theory on the Riemann surface Σ. The total space X is Calabi-Yau when the

Chern class of the normal bundle to Σ cancels the canonical class, i.e.

deg(L1) + deg(L2) = −χ(Σ).

For example, when Σ is a closed Riemann surface of genus g, we can take (deg(L1), deg(L2)) =

(p+ 2g − 2,−p) for any integer p.

In [4] a Riemann surface Σ is viewed as obtained by gluing of more basic building

blocks: pants (P), annuli (A) and caps (C). The whole Calabi-Yau X arises in this way

from gluing simpler 3-folds which are rank 2 holomorphic bundles over Riemann surfaces

with boundaries. Note that under gluing, the Euler characters of the base curves add, but

moreover, the Chern classes of the normal bundles add.

Consider a Calabi-Yau X involving a Riemann surface Σg,h of genus g with h punc-

tures or equivalently h semi-infinite cylinders. The holomorphic maps from a worldsheet

to X are necessarily holomorphic maps to Σg,h. To get non-trivial such maps of finite area,

we must add Lagrangian D-branes which circle the punctures (and that are 2-dimensional

in the fiber direction) and consider holomorphic maps with boundaries on the D-branes.

In this way, we can view cutting and pasting of the base Riemann surfaces and the cor-

responding Calabi-Yau’s as either adding or cancelling off D-branes. The operations of

gluing manifolds lead to composition of topological A-model amplitudes that satisfy all

axioms of a two dimensional topological quantum field theory [4]. In the course of this

paper, we will explain from the physical standpoint what the TQFT of [4] is. As we will

see, it is related to the large N limit of the q-deformed Yang-Mills theory (qYM) on Σ.

By computing the open topological A-model amplitudes on a few Calabi-Yau man-

ifolds, [4] get all others by gluing. The basic building blocks in [4] which we will need

are the “Calabi-Yau caps” denoted by C(−1,0) and C(0,−1) carrying the first Chern classes

(−1, 0) and (0,−1) respectively and the pant P (0,1) with (0, 1) (see figure 1).

The cap amplitude C(−1,0) is given by

Ztop(C(−1,0)) =
∑

R

dq(R) q−kR/4 TrRU.

Above,

U = P ei
∮

A
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is the holonomy of the gauge field on the D-branes around the circle where D-brane meets

Σ. We take the number of D-branes to be infinite, so R labels a representation of SU(∞).

The parameter q is related to the string coupling constant gs by

q = e−gs .

The coefficient dq(R) is the quantum dimension of the symmetric group representation

corresponding to the Young-Tableaux of R, defined by:

dq(R) =
∏

∈R

1

[h( )]q
,

where the product runs over all the boxes in the Young tableaux of R and h is the hook-

length of the corresponding box. The q-analogue [x]q of x appearing in the formula is

defined by

[x]q = qx/2 − q−x/2.

The exponent kR is given by

kR = 2
∑

∈R

(i( ) − j( )),

where i, j( ) label the location of the box in the tableaux. Note that dq(R)qk(R)/4 is the

same as the topological vertex amplitude CR,0,0 [5] with all but one representation set to

be trivial1:

dq(R)qk(R)/4 = CR,0,0 = WR0.

This is a consistency check, since in this case we are considering the A-model corresponding

to stack of D-branes on Calabi-Yau X = C3. This theory is considered in [5] and shown

to compute CR,0,0.

Similarly, using the technology of [4], we can compute the Calabi-Yau “pant” P (1,0)

(see fig. 1). This now carries 3 sets of representations corresponding to three stacks of

D-branes at the 3 semi-infinite tubes with holonomies Ui, i = 1, 2, 3:

Ztop(P (1,0)) =
∑

R

1

dq(R)
qkR/4 TrRU1 TrRU2 TrRU3.

1 Our conventions differ here from [5] by q → q−1.
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(−1,0)

(1,0)

Fig.1 The Riemann surfaces corresponding to the cap amplitude C(−1,0) of the first

Chern class (−1, 0) and pant P (1,0) with (1, 0).

These, together with the C(0,−1) cap and P (0,1) pant,

Ztop(C(0,−1)) =
∑

R

dq(R) qkR/4 TrRU,

Ztop(P (0,1)) =
∑

R

1

dq(R)
q−kR/4 TrRU1 TrRU2 TrRU3,

suffice to compute any Calabi-Yau amplitude with or without D-branes by

sewing.

Sewing ΣL and ΣR over their common boundary we get ΣL∪R. For this,

the orientations of the corresponding boundary circles must be opposite. The

operation of reversing the orientation of the boundary acts on the holonomy by

U → U−1, and the corresponding path integrals are sewed together by

Ztop(ΣL∪R) =

∫
dU Ztop(ΣL)(U) Ztop(ΣR)(U−1). (2.1)

In the representation basis

Ztop(Σ)(U) =
∑

R

Ztop
R (Σ) TrR(U),

because of the orthogonality of characters

∫
dU TrR1

U TrR2
U−1 = δR1R2

, (2.2)

the sewing in (2.1) corresponds to identifying the left and the right representa-

tion R and summing over R,

Ztop(ΣL∪R) =
∑

P

Ztop(ΣL)P Ztop(ΣR)P .
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Note that, because the pant and the annulus are all diagonal in represen-

tations, the complex structure moduli of the Riemann surface one builds by

cutting and pasting do not enter in the resulting topological string amplitudes.

This is as it should be, since these correspond to the complex structure moduli

of Calabi-Yau, and perturbative A-model topological string amplitudes better

not depend on them.

For example, consider the A-model amplitude corresponding to a Calabi-

Yau manifold fibered over a genus g Riemann surface and bundle with the first

Chern class (2g − 2 + p,−p). A quick counting shows that we need (2g − 2)

pants to get a closed genus g Riemann surface, by thinking of it as composed

of a necklace of (g− 1) handle adding operators. We can take (2g− 2) pants of

type P (1,0), and to get the bundle right, insert between them p annuli A(1,−1)

obtained by contracting C(0,−1) and P (1,0). This gives

Ztop(Σg) =
∑

R

(
1

dq(R)

)2g−2

q(p+g−1)kR/2e−t|R|. (2.3)

Note that in the above formula for Ztop, dq(R) is the N → ∞ limit of the

quantum dimension dimq(R) of U(N) representation with the same Young-

tableaux. This is suggestive of the relation with Chern-Simons theory, which

we will discuss in section 5.

This answer captures all the non-trivial contributions to perturbative topo-

logical string amplitudes, but does not include contributions from constant

maps. As is well known, these modify the amplitude by

Ztop(q, t) → Z0(q, t) Z
top(q, t), (2.4)

Z0(q, t) = M(q)χ(X)/2 exp

(
a
t3

6g2
s

+ b
t

24

)
, (2.5)

where M(q) =
∏∞

n=1(1 − qn)−n is the McMahon function, χ(X) is the Euler

characteristic, a is the triple intersection of the Kähler class, and b is related to

c2 of the Calabi-Yau X . In the non-compact model under discussion these are

a little ambiguous, but we will find that the black hole counting agrees with the

above if we take

χ(X) = 2 − 2g, a = − 1

p(p+ 2g − 2)
, b =

p+ 2g − 2

p
,
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which we will adopt as our definition of perturbative topological string ampli-

tude in this geometry. For simplicity of notation we will drop Z0(q, t) from the

expressions below, but they should be included when comparing with the black

hole prediction.

As another example, consider again a genus g Riemann surface, but with h

punctures. This corresponds to insertion of h additional pant diagrams. Choos-

ing (h − r) to be of type P (1,0) and r of type P (0,1) we get a new Calabi-Yau

manifold with fibers of degrees

(deg(L1), deg(L2)) = (2g − 2 + h+ p′,−p′),

where p′ = p− r and the topological string amplitude corresponding to it is

Ztop(Σg,h) =
∑

R

( 1

dq(R)

)2g−2+h

q
deg(L1)−deg(L2)

4 kR e−|R|t TrRU1 · · ·TrRUh.

2.1. D-branes in the Fiber

So far we have considered Lagrangian D-branes wrapping 1-cycles on Σ,

i.e. D-branes of topology S1 × C with the S1 corresponding to a 1-cycle on Σ

and C is the 2-dimensional subspace in the fiber. There is another class of D-

branes which will be relevant for us – these are Lagrangian D-branes wrapping

1-cycles in the fiber.

P
.

γ

Fig.2 The figure depicts a D-bane wrapping Lagrangian cycle γ in fiber over a point P

on the Riemann surface. Note that the D-brane need not touch the Riemann surface,

rather there is a modulus corresponding to its position in the fiber.
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Consider as before X = L1 ⊕ L2 → Σ for a fixed Riemann surface Σ. Pick

a point P on Σ, and let the D-brane lie in the fiber above this point. Let z be a

local coordinate centered at P . If (u1, u2) are coordinates on the fiber L1 ⊕ L2

over P , then (z, u1, u2) parameterizes a local C3 patch on X . In this patch

there are Lagrangian D-branes of topology C × S1 where the S1 corresponds

to |u1|2 = const, for example. These are in fact the same D-branes considered

in [5], and combining the results of [4] with that of [5], we can also obtain

topological string amplitudes corresponding to them. The prescription is as

follows.

We cut Σ into two pieces, a cap CP containing P and Σ−CP . Correspond-

ingly, cut X into two pieces, one corresponding to C3 that fibers over CP , the

other to the fibration over Σ − CP . We have

Z(Σ) =
∑

R

Z(CP )RZ(Σ − CP )R.

Now, adding a D-brane in fiber over P on Σ, will replace Z(CP )R by

∑

Q

Ztop(CP )RQ TrQV,

where V is the holonomy on this D-brane around the fiber S1. Moreover, this

should have a local effect that can be understood purely in the C3 patch we

have cut out, and be independent of the rest of X . But, all the amplitudes

with D-branes on C3 were computed in [5]. Adding a D-brane in the fiber must

correspond, up to framing, to the topological vertex with one of the partitions

trivial, i.e,

Ztop(CP )RQ = WRQ,

where WRQ(q) is the N → ∞ limit of the S-matrix of WZW- model and Chern-

Simons theory

WRQ(q) = lim
N→∞

q
N(|R|+|Q|)

2
SRQ(q,N)

S00(q,N)
, q = e−gs .

For example, the amplitude on a genus g Riemann surface with h marked points

and D-branes in the fiber over them is

Ztop(Σg,h) =
∑

R

WRR1
. . .WR,Rh

W 2g−2+h
R,0

q
deg(L1)−deg(L2)

4 kR TrR1
V1 · · ·TrRh

Vh, (2.6)
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where we used the fact that WR,0 = dRq
kR
4 . Note that D-branes need not be

touching the Riemann surface, but they can be displaced some distance in the

fiber. The modulus corresponding to where the D-brane is enters replacing

TrRV → e−s|R| TrRV,

where s is an arbitrary complex parameter. In this case it would correspond to

the area of the disk that attaches the D-brane to the Riemann surface.

2.2. An Alternative Derivation

In this subsection we give a short alternative derivation of the topological

string amplitudes in these backgrounds, analogous to the derivation of 2d Yang-

Mills on a Riemann surface [6]. The idea is that by gluing rules all we need to

determine are the cap, the annulus and the pant diagrams. The cap and the

annulus diagram have been derived before [5](as this is part of the standard

topological vertex construction). For the pant diagram we would first argue

that Ztop(P )R1,R2,R3
is zero unless all three representations are the same. As

already noted the fact that the amplitudes of the A-model do not depend on the

complex structure of the Riemann surface implies that Ztop(P )R1,R2,R3
vanishes

unless all three representations have the same number of boxes. We can also

argue that, more strongly, all three representations have to be the same for the

vertex not to vanish. From the quantum foam picture [7] this is obvious because

we cannot blow up the three different legs of the pant differently. We can only

blow up all of the pant the same way, and this implies all representations are

the same. Another way to show this, without using the quantum foam picture,

is to consider a D-brane in the fiber above a point on the pant near one of the

boundaries and study how the amplitude gets modified. Let us take the fiber

D-brane representation to be Q.

First let us consider the topological amplitude for the annulus with repre-

sentations R1, R2 on the annulus and Q in the fiber Ztop(A)R1,R2,Q. It is easy

to see why this is zero unless R1 = R2. If this were not to be the case, there

should be a particular ‘time’ along the annulus (viewed as a cylinder) where the

representation changes. The only way this can be is at the time corresponding

to where the image of the D-brane is located. However we can move the image

9



of the fiber D-brane on the annulus without changing the amplitude because

this is just a complex structure deformation. We thus see that there is no point

where R1 can change to a different representation R2. Therefore R1 = R2. Now

by putting a cap on one end we obtain

Ztop(C)RZ
top(A)R,R,Q = WQR

where the right side is obtained by noting that the new geometry is exactly

what one has in the topological vertex. Thus we find, using Ztop(C)R = W0R,

Ztop(A)R1,R2,Q = δR1,R2

WQR1

W0R1

.

Armed with this result let us now consider the amplitude for the pant with

three representations Ri, i = 1, 2, 3 together with the fiber representation Q,

Ztop(P )R1,R2,R3,Q. Again we exploit the crucial point that moving the projec-

tion of the fiber D-brane on the pant is a change in complex structure and does

not affect the A-model amplitudes. Moving the fiber brane towards the i-th

boundary and using the gluing rule and the above result for the annulus we see

that

Ztop(P )R1,R2,R3,Q =
WQRi

W0Ri

Ztop(P )R1,R2,R3

In other words, putting the fiber D-brane in representation Q multiplies the

amplitude by WQRi
/W0Ri

if we are near the i-th boundary of the pant. How-

ever, we can also move the fiber D-brane to the other boundaries of the pant

without changing the amplitude. Thus WQRi
/W0Ri

should be the same for

all i, and arbitrary Q which implies that the Ri are all equal. Thus all we

have to find then is the representation dependence of the Ztop(P )R,R,R. But

this is easy, because gluing the cap should give the annulus, which implies

Ztop(C)RZ
top(P )R,R,R = 1 and leads to Ztop(C)R,R,R = 1/Ztop(C)R = 1/W0R.

Here we have suppressed the framing dependence of the vertex which can be

easily restored.
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3. Black Hole and Calabi-Yau L1 ⊕ L2 → Σg.

In this section we consider IIA string theory compactified on Calabi-Yau

manifold X ,

X = L1 ⊕ L2 → Σg,

of the type studied in the previous section in the context of the topological

string theory. We will take Σg to be a genus g Riemann surface, and

deg(L1) = p+ 2g − 2, deg(L2) = −p.

We are interested in counting bound states of D4, D2 and D0 branes, where

the D4-branes wrap

C4 = L2 → Σg,

and D2 branes wrap Σg. We fix the number of D4 branes to be N and would

like to count the ensemble of bound states on it. This can be done by studying

the field theory on the brane and introducing certain interactions on it, which

correspond to turning on chemical potentials for D2 and D0 branes.

The relevant quantum field theory has been studied in [2]. The case of

interest in [2] was Σ = T 2 where the N = 4 topologically twisted gauge theory

on C4 was reduced to 2d Yang-Mills gauge theory on T 2. The construction in

[2] goes through for any genus Riemann surface, and we find that the theory

reduces to a gauge theory on Σ, with one subtlety: The measure on field space in

this reduction leads to a q-deformed 2d Yang-Mills theory on Σ. This measure

does not affect the T 2 case studied in [2] and affects the partition function only

for g 6= 1. We will therefore briefly review the construction in [2] and take into

account the non-trivial measure factor for g 6= 1.

The world-volume gauge theory on the N D4-branes is the N = 4 topo-

logical U(N) YM on C4. Turning on chemical potentials for D0 brane and D2

brane correspond to introducing the observables

S4d =
1

2gs

∫

C4

trF ∧ F +
θ

gs

∫

C4

trF ∧K. (3.1)

where K is the unit volume form of Σ. The parameters gs and θ are related to

the chemical potentials φ0 and φ1 for D0 and D2 branes respectively as

ϕ0 =
4π2

gs
, ϕ1 =

2πθ

gs
. (3.2)
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The topological theory is invariant under turning on a certain massive

deformation which simplifies the theory. By using further deformation which

correspond to a U(1) rotation on the fiber,2 the theory localizes to modes which

are invariant under the U(1) and effectively reduces the theory to a gauge theory

on Σ. Let z and u be coordinates on C4 corresponding to the Riemann surface

and the fiber respectively, and let

Φ(z) =

∫

S1
z,|u|=∞

A. (3.3)

Here S1
z,|u|=∞ is the circle at infinity in the fiber over the point z on Σ and A

is the gauge field on the world-volume of the D4-branes, so the field Φ param-

eterizes the holonomy of the gauge field at infinity.

In reducing (3.1) to 2d theory we should take into account two impor-

tant effects. First, as shown in [2], the non-triviality of the fibration L2 → Σ

generates the following term in the effective 2d action:

δS = − p

2gs

∫

Σ

trΦ2, (3.4)

where −p corresponds to the degree of L2. The action becomes the action of

U(N) 2d YM theory

S =
1

gs

∫

Σ

trΦ ∧ F +
θ

gs

∫

Σ

trΦ ∧K − p

2gs

∫

Σ

trΦ2. (3.5)

There is however an important subtlety: the field Φ comes from the holon-

omy of the gauge field at infinity, so it is periodic. More precisely, it is not Φ

but eiΦ which is a good variable. This does not affect the action, but it does

affect the measure of the path integral. As a consequence, our theory is a cer-

tain deformation of 2d YM, which can be naturally interpreted as a q-deformed

version of the Yang-Mills theory as we shall see below. In the following we will

provide two complementary ways to understand this theory. The first relies

on localization and computes the path integral directly. The second uses an

operatorial approach, where we cut Σ into pieces on which we can solve the

theory.

2 As discussed in [8] such equivariant deformations do not affect N = 4 Yang-Mills amplitudes,

due to the high supersymmetry.
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3.1. The q-Deformed 2d YM Theory I

In this section we use topological invariance and localization to compute the

path integral directly. We will begin by considering the ordinary 2d YM, and

then show how this gets modified in our case. We call our theory a q-deformed

2d YM, for the reason which will soon be apparent3 .

Underlying the physical 2d YM theory at finite p and θ is a topological YM

theory [6] which is in fact the version of the 2d YM theory arising naturally for

us in the reduction of N = 4 topologically twisted Yang-Mills theory on C4. To

solve the 2d YM theory it is convenient to use this topological formulation, as

was done in [6] and [11] in two different approaches. We will briefly review both

approaches below, only emphasizing how the change in measure for Φ affects

the result. We first follow the approach in [11] and in the following subsection

that of [6].

This topological YM theory has a BRST multiplet (A,ψ, φ) with the path

integral ∫
DADφDψ exp

[
− 1

gs

∫

Σ

tr (φF + ψ ∧ ψ)

]

and transformation laws
δA = ǫ ψ,

δψ = ǫ Dφ,

δφ = 0.

(3.6)

The field ψ is an anti-commuting, Lie-algebra valued one form on Σ. Since it is

appears quadratically in the action, it is usually neglected. The transformation

laws imply that path-integral localizes on configurations with φ covariantly

constant Dφ = 0, where φ and A can be simultaneously diagonalized. We will

use this to find an Abelianization of the 2d YM, and then of our deformation

of it. This has been done in [11], and we will sketch the main steps.

Write

φ = φiTi + φαTα, A = AiTi +AαTα,

3 After completing this paper we became aware that q-deformed YM theory was studied pre-

viously in [9], [10].
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where Ti are Cartan sub-algebra generators and Tα correspond to roots. We go

to the gauge where φ is diagonal by setting φα to zero. This gives Abelian 2d

YM with an additional coupling to off-diagonal modes of A:

δS0 =

∫

Σ

∑

α

α(φ)AαA−α.

Moreover, to fix the gauge properly, we must also take care of the path integral

measure. This is done by introducing a pair of ghosts (cα, c̄α) with coupling

δS1 =

∫

Σ

∑

α

α(φ)c̄−αcα.

Integrating over the c’s and the A’s gives a ratio of one-loop determinants

of a complex scalar of fermionic statistics and commuting one-form which is

hermitian. The non-zero modes cancel between them [11], and the zero modes

give:
∆(φ)2b0(Σ)

∆(φ)b1(Σ)
= ∆(φ)χ(Σ),

where

∆(φ) =
∏

1≤i<j≤N

(φi − φj). (3.7)

Note that for g > 1 this appears singular at places where ∆H(φ) vanishes. When

∆(φ) vanishes the gauge group becomes non-Abelian, so we have integrated

out a massless field, and the singularity is a consequence of it. In fact [11] the

singular points give no contribution to the path integral. By giving a bare mass

term to Aα we can regularize the path integral
∑

α>0 µAαA−α it is easy to see

that the problematic points give a vanishing contribution for any non-zero value

of µ, and by continuity for µ zero as well.

It is now simple to turn p and θ back on, to the physical theory, viewing

it as inserting a Q-closed (but not exact) observable to the path integral of the

topological theory. Now, exactly the same discussion would go through in our

case where φ is compact, however we have to make sure that the terms we add

in δS respect this. The easiest way to do this is by the method of images, more

precisely by adding an infinite sequence of multiplets (c~n, c̄~n), which couple to

~φ+ 2π~n. The effect of this is to replace ∆(φ) by

∆H(φ) =
∏

1≤i<j≤N

2 sin

(
φi − φj

2

)
. (3.8)
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To summarize, we end up with an Abelian gauge theory:

ZqY M (Σ) =
1

N !

∫ ′∏

i

dφi

[
∆H(φ)

]χ(Σ)

exp

[∫

Σ

p

2gs

∑

i

φ2
i −

θ

gs

∑

i

φi −
1

gs

∑

i

Fiφi

]

,

where
∫ ′∏

i dφi denotes the path integral with points with ∆H(φ) = 0 omitted.

The 1
N !

factor corresponds to dividing by the volume of the Weyl group, as a

discrete permutation symmetry inherited from U(N). The normalization of the

path integral has ambiguities coming in part from the choice of regularization.

As explained in [6], for the theory at hand, which is essentially topological

or more precisely invariant under area preserving diffeomorphisms of Σ, the

different regularizations differ by additions of terms of the form

a

∫

Σ

R + b

∫

Σ

K = aχ(Σ) + b, (3.9)

to the action. For us, the constants a and b will be fixed by the black hole

physics. In the following, we will not worry about the normalizations until the

end of the subsection.

Note that above coincides, at p = 0 = θ with the partition function of

Chern-Simons theory on S1 × Σ derived in [11] by a different, but related

method. At more general values of p, this should correspond to the Chern-

Simons theory4 on S1 bundle over Σ with the first Chern class −p. It should

be clear why the Chern-Simons theory appears: The non-compact four-cycle

C4 wrapped by the D4 branes has this as a boundary. The action (3.1) should

be viewed as providing a definition of the Chern-Simons theory for non-integer

values of k in gs = 2π/(k +N), taking gs to be in principle arbitrary. We will

discuss the relation of the D4 brane theory onX to the topological string theory

on X in section 5.

We can in fact give a completely explicit expression for the above path

integral. Integrating over the gauge fields reduces [11] to a sum over nontrivial

U(1)N bundles on Σ. These are classified by their first Chern classes,

Fi = 2πriK, ri ∈ Z.

4 This theory has been recently studied in [12] with a different motivation.
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Summing over all flux configurations, we find that integral over φi gets contri-

bution from

φi = igsni, ni ∈ Z,

so that partition function is given by5

ZqY M (Σ) =
1

N !

∑

ni∈Z

′




∏

1≤i<j≤N

[ni − nj ]q




2−2g

q
p
2 C2(~n)eiθC1(~n), (3.10)

where
q = e−gs ,

C2(~n) =

N∑

i=1

n2
i , C1(~n) =

N∑

i=1

ni,

and [x]q is the q-analogue of x defined as usual by [x]q = q
x
2 − q−

x
2 . We must

recall that points where ∆H(φ) = 0 are omitted from the path integral, and

correspondingly we omit terms in the sum where ni = nj . We used
∑′

ni∈Z to

denote this modified sum.

In fact, we can rewrite the above as a sum over representations R of U(N).

By using the Weyl invariance to restrict the fundamental Weyl chamber, n1 >

n2 > · · · > nN ≥ 0, and then letting ni = Ri where Ri’s label the lengths of

rows of R. Finally it is convenient to shift the Ri by ρi = 1
2(N − 2i + 1), i.e.

we shift by the Weyl vector.6 Then, C1,2 become the corresponding Casimir’s

of U(N)

C2(R) = kR +N |R|, kR :=

N∑

i=1

Ri(Ri − 2i+ 1),

C1(R) = |R|, |R| :=
N∑

i=1

Ri,

and the partition sum is expressed as

ZqY M (Σ) =
∑

R

S2−2g
0R q

p
2 C2(R)eiθC1(R),

5 Note that the sign of theta is not meaningful, the theories at θ and −θ are equivalent.
6 More precisely, this is valid only when N is odd, otherwise we shift nj = Rj + N

2
− j and

also introduce a shift of θ angle.
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where S0R = S00 dimq(R) and the quantum dimension of representation R is

given by

dimq(R) =
∏

1≤i<j≤N

[Ri −Rj + j − i]q
[j − i]q

(3.11)

(note that S00 is the denominator in the above expression). The reader should

note here that we have deliberately distinguished the representations R of

SU(N) from representations R of U(N) here. This somewhat technical point

will be of crucial importance in section 5 where we consider the large N limit

of the q-deformed YM theory.

One can recognize in the above the building blocks of the U(N) Chern-

Simons theory:

dimq(R) = SR0/S00,

where SRQ correspond to entries of the S-matrix of U(N)k WZW model, albeit

at non-integer value of level k. In fact k here is a pure imaginary number. In

particular we do not have any truncation of the representations, which is usually

associated to integer k.

We finish this subsection by giving the normalized q-deformed YM partition

function. As we mentioned above, the normalization is ambiguous due terms of

the form (3.9), but fixed for us by black hole physics to be discussed in section

5 to be7

ZqY M (Σ) = α(gs, θ)
∑

R

S2−2g
0R q

p
2 C2(R)eiθC1(R), (3.12)

where

α(gs, θ) = q
ρ2(p+2g−2)

2p e
Nθ2

2pgs q(2−2g)(ρ2+ N
24 ). (3.13)

3.2. The q-Deformed 2d YM Theory II

We now give an operatorial approach for computing the partition function

whose advantage is that it will make a similarity to the topological theory of

section 2 apparent. We will follow closely the approach of [6]: we first solve the

theory on a sphere with three holes, and then get the rest by sewing.

To begin with note that, just as in the case of ordinary 2d YM, Φ and

A are canonically conjugate variables. In quantizing the theory on a cylinder,

7 See (5.9)-(5.14) in section 5.
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we can take as basis of the Hilbert space to be gauge invariant functions of A.

These are given by χR(U) = TrRU where

U = P exp i

∮
A.

On these Φ(x) acts as Φ(x) = gs
∂

∂A(x) or

Φa(x) χR(U) = i χR(TaU),

where Ta are generators of the lie algebra Φ(x) =
∑

a Φa(x)Ta. Recall that,

since we are studying a U(N) gauge theory, U is unitary and R labels repre-

sentation of U(N).

We will first solve the theory in the topological limit, obtained by setting

p = 0 and then study the consequences of turning on p. For simplicity, we will

also turn off the theta angle and restore it back later.

Consider the path integral on a pant P i.e. a sphere with three punctures

with holonomies Ui, i = 1, 2, 3 around them. This is of the form

Z(P )(U1, U2, U3) =
∑

R1,R2,R3

Z(P )R1,R2,R3
TrR1

U1 TrR2
U2 TrR3

U3.

We will now follow [6] to argue that Z(P )R1,R2,R3
vanishes unless R1 = R2 =

R3 = R. Inserting an arbitrary operator O(Φ(x)) at any one of the punctures

picks out the corresponding Casimir of the representation at that puncture.

Using the invariance of the observable on the point of insertion, we can move

the operator O(Φ) to any other puncture.

By similar argument, the path integral on an annulus A of length T is given

by

Z(A)(U1, U2) =
∑

R

TrRU1 TrRU2.

As annulus amplitude is the propagator, we would usually have representation

R weighted by e−H(R)T , where H is the Hamiltonian and T is the length of the

propagator. However H vanishes in the topological theory: at p = 0 = θ.

Finally, consider the path integral on a cap C

Z(C)(U) =
∑

R

Z(C)R TrRU.
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First, note that the cap and the pant amplitudes are not independent. Gluing

the cap C to the pant P we must recover the annulus amplitude:

∫
dUZ(C)(U−1) Z(P )(U,U1, U2) = Z(A)(U1, U2).

This implies

Z(C)R =
1

Z(P )R
,

where we used a U(N) analogue of the SU(N) orthogonality relation (2.2)

∫
dU TrRU TrQU

−1 = δR,Q.

Now we come to the main point of the discussion, which is the computation of

the cap amplitude of the deformed 2d YM.

To begin with, recall what happens in ordinary the 2d YM. Computing

a path integral with fixed holonomy U on the boundary simply gives a delta

function on the holonomy δ(U − 1) =
∑

R dim(R) TrR(U), so that

Z2dYM(U)(C) =
∑

R

dim(R) TrR U.

Now, we could have also computed this in the basis where we fix Φ(x) on

the boundary and not U . Since Φ(x) and A are canonically conjugate, this is

related to the above by a simple Fourier transform,

Z2dYM(C)(Φ) =

∫
DU e

1
gs

∮
∂C

TrΦA
Z2dYM(C)(U),

where the path integral is taken on the boundary of the disk. We will show in

the appendix A that the integral is simply given by

Z2dYM(C)(φ) =
∏

1≤i<j≤N

(φj − φi) = ∆(φ), (3.14)

where φi (i = 1, . . .N) are eigenvalues of Φ. Note that ∆(φ) is the same function

(3.7) we met in the previous subsection.

Now, let us return to the deformed YM theory. In this case φi’s are periodic,

so the wave function (3.14) is not well defined. One can make it well defined by
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adding images under φi → φi +2π. This, as in the previous subsection, replaces

∆(φ) =
∏

1≤i<j≤N (φj − φi) with

∆H(φ) =
∏

1≤i<j≤N

2 sin

(
φi − φj

2

)
.

Alternatively, we can express the wave function in terms of the holonomy basis,

by undoing the Fourier transform. This gives:

ZqY M (C)(U) =
∑

R

dimq(R) TrRU.

where the quantum dimension of representation R is given by (3.11). Note that

dimq(R) becomes dim(R) in the limit gs → 0.

Finally, to get back to the physical theory by turning on p and θ. As

explained in [6], the difference between the physical and the topological theory

is only that the Hamiltonian of the former is not vanishing, and it is given by8

H =
1

2
gsp C2 − iθC1.

This gives the area dependence to the amplitudes. For example, the amplitude

for an annulus of length T = 1 is

ZqY M (A)(U1, U2) =
∑

R

qpC2(R)/2 eiθR TrRU1 TrRU2.

Since we can change the area of the pant P and the cap C by adding annuli,

the corresponding amplitudes of the physical theory are:

ZqY M (P )(U1, U2, U3) = f
∑

R

1

dimq(R)
qpC2(R)/2 eiθR TrRU1 TrRU2 TrRU3,

and

ZqY M (C)(U) =
1

f

∑

R

dimq(R) qpC2(R)/2 eiθR TrRU,

where we have normalized the area of the resulting surface to one. The nor-

malization factor f , which is independent of the Ui’s, cannot be fixed by this

argument and depends on the normalization of the path-integral. Consistency

8 See footnote 4, on page 15.
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with the previous discussion leads to f = 1/S00. From these we can get arbi-

trary amplitudes of our deformed 2d YM theory on any Riemann surface by

sewing.

For example, we can finally compute the partition function on a genus g

Riemann surface. We do so by sewing (2g − 2) pant amplitudes and find

ZqY M (Σg) = S2−2g
00

∑

R

(
1

dimq(R)

)2g−2

qpC2(R)/2 eiθR,

where we have set the area of the surface to 1 (we also need the prefactor

α(gs, θ), discussed before, in comparing with black-hole physics). Note that

this amplitude, at p = 0 = θ, is identical to that of the Chern-Simons theory on

Σg × S1. For general p but θ = 0 this is equivalent to the result for the Chern-

Simons theory on a circle bundle over Σ where the circle bundle is identified

with the circles of fixed norm of the L2 bundle over Σ. The only difference

being that here k is not an integer and we do not have the usual truncation of

representations which occurs for integer k.

Finally, in the above, we have mainly been considering wave-functions in

the polarization where we specify A on the boundary. We can rewrite all the

amplitudes corresponding to manifolds with boundaries in terms of keeping

Φ = −igs
∂

∂A
fixed on the boundary. For example, consider the pant amplitude.

ZqY M (P )(V1, V2, V3) =
∑

R1,R2,R3

ZV (P )R1,R2,R3
TrR1

V1 TrR2
V2 TrR3

V3,

where, since only eiΦ is well defined,

Vi = eiΦi (i = 1, 2, 3).

Now, viewed from the three-dimensional perspective, we have a three-manifold

with three T 2 torus boundaries. Fixing V = eiΦ on the boundary, fixes the

holonomy around a-cycle of the T 2 say (corresponding to the S1 fiber over the

pant P ), whereas fixing U = Pei
∮

A fixes holonomy around the b cycle. Now

we’ve derived the amplitude corresponding to fixing U . We could compute

from it the amplitude with V fixed if we could exchange the a and the b cycle.
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Fortunately, in the Chern-Simon theory, such operation is well known and is

implemented by the S matrix

SR1R2

of the WZW model. So we have:

ZV
R1,R2,R3

=
∑

R

SR1RSR2RSR3R

S0R
qpC2(R)/2 eiθC1(R). (3.15)

The right hand side, at p = 0 = θ is simply the Verlinde formula, for non-integer

k. This of course is not a surprise: in that case, we are effectively computing a

Chern-Simons amplitude on S1 × S2 with Wilson-lines on S1 in representation

R1,R2,R3 over three points in the S2, and the results are the fusion coefficients,

analytically continued to arbitrary k using the Verlinde formula [13].

4. Black Hole Entropy

In this section we will count the number of BPS states of the black hole that

arises from N D4-branes on C4 with any number of D0-branes and D2-branes

wrapping Σ. As we will note below, in order to do this we have to perform

a modular transformation on the partition function evaluated in the previous

section.

In the topologically twisted N = 4 YM theory discussed in the last section

we turned on observable corresponding to D-brane charges

S4d =
1

2gs

∫

C4

trF ∧ F +
θ

gs

∫

C4

trF ∧K,

where K is Kähler class of Σg. TheD0 andD2 brane charges q0, q1 are measured

by

q0 =
1

8π2

∫

C4

trF ∧ F, q1 =
1

2π

∫

C4

trF ∧K. (4.1)

It was shown in [14] that the functional integral

ZqYM =

∫
DA exp

(
− 1

2gs

∫

C4

trF ∧ F − θ

gs

∫

C4

trF ∧K
)

with an appropriate gauge fixing has an expansion of the form,

ZqYM =
∑

q0,q1

Ω(q0, q1;N) exp

[
−4π2

gs
q0 −

2πθ

gs
q1

]
, (4.2)
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where Ω(q0, q1;N) is the Euler characteristic of the moduli space of U(N) in-

stantons in the topological sector set by (4.1) and it can also be regarded as the

Witten index for the black hole with the given D-brane charges. By setting

ϕ0 =
4π2

gs
, ϕ1 =

2πθ

gs
,

the instanton expansion of ZqYM can be expressed as

ZqYM =
∑

q0,q1

Ω(q0, q1;N) exp
[
−q0ϕ0 − q1ϕ

1
]
. (4.3)

For the non-compact manifold C4 , the charges q0, q1 can be fractional. We will

find below that q0 ∈ 1
2pZ and q1 ∈ 1

pZ.

The expressions we gave for ZqYM in the previous section, however, are

expansions in q = e−gs as in (3.10)9

ZqYM(Σg) =α(gs, θ) q
− pρ2

2

× 1

N !

′∑

~n∈ZN




∏

i<j

[nj − ni]q




2−2g

q
p
2 ~n·~n eiθ~n·~e,

(4.4)

where
∑′

~n the modified sum omitting ni = nj for i 6= j, α(gs, θ) is defined in

(3.13), and ~e = (1, 1, . . . , 1). Fortunately, the beautiful fact that N = 4 YM

theory has S-duality saves the day. The S-duality implies that ZqYM(gs, N) is

a modular form, which turns the expression (4.4) into the form (4.3). We will

now demonstrate this.

Let us first review the genus g = 1 case studied in [2]. For g = 1, the

partition sum can be expressed in terms of elliptic functions [15] as in

ZqYM(T 2) =
q

Nθ2

2pgs
+

(1−p)
2 ρ2

N !

[
ϑ(z, τ)N − N !

2!(N − 2)!
ϑ(z, τ)N−2ϑ(2z, 2τ) − · · ·

]
, (4.5)

where ϑ(z, τ) =
∑

n∈Z e
πiτn2+2iπzn and

z =
θ

2π
, τ =

i

2π
pgs.

9 We have chosen the normalization of the qYM path integral to include the prefactor

α(gs, θ) q−
pρ2

2 . This choice is required for the factorization into chiral blocks in section 5.
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Note that the first term ϑ(ζ, τ)N in the right-hand side of (4.5) is obtained

from (4.4) by ignoring the constraints ni 6= nj for i 6= j, and the other terms

ϑ(z, τ)N−2ϑ(2z, 2τ) + · · · are corrections to incorporate these constraints. Ap-

plying the modular transformation,

ϑ(z, τ) =
1√
−iτ e

−iπ z2

τ ϑ

(
z

τ
,−1

τ

)
, (4.6)

to the first term (4.5), we find

ZqYM(T 2) =
q

(1−p)
2 ρ2

N !

(
2π

pgs

)N
2 ∑

~m∈Z

e−
1
2p

~m2ϕ0+ 1
p

~m·~eϕ1

+ · · · . (4.7)

The other terms can be transformed similarly. Comparing this with (4.7), we

find that q0, q2 are fractions q0 ∈ 1
2p

Z, q1 ∈ 1
p
Z and that the Witten index of

black hole states is given by

Ω(q0, q1;N) = #

∣∣∣∣{ ~m ∈ ZN | q0 =
1

2p
~m2, q1 =

1

p
~e · ~m}

∣∣∣∣+ · · · .

For g = 0, things are simpler since the factor
∏

i<j [ni −nj ]
2
q automatically

takes into account the constraints ni 6= nj (i 6= j) and we may extend summa-

tion over unrestricted ni ∈ Z without any subtractions. It is useful to expand

this factor as a sum over the Weyl group W of U(N) as in

∏

1≤i<j≤N

[ni − nj ]q =
∑

w∈W

ǫ(w)q−w(ρ)·n, (4.8)

where ǫ(w) = ±1 is the parity of the Weyl group element w. We can then

express the partition sum as

ZqYM(S2) =
q

Nθ2

2pgs
+ N

12−
(p2−5p+2)

2p
ρ2

N !

∑

w,w′∈W

ǫ(w)ǫ(w′)
N∏

k=1

ϑ(zk(w,w′), τ) (4.9)

where

τ =
i

2π
pgs, zk(w,w′) =

1

2π
(θ − igsak(w,w′)) , (4.10)

and

ak(w,w′) = w(ρ)k + w′(ρ)k.
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Now we use the modular transformation (4.6) of ϑ(z, τ) to recast ZqYM(S2) in

the form:

ZqYM(S2) =
q

N
12−

(p2−5p+2)
2p

ρ2

N !

(
2π

pgs

)N/2 ∑

w,w′∈W

ǫ(w)ǫ(w′)

×
∑

~n∈ZN

exp

[

−2π2

pgs

(
~n+

igs

2π
~a(w,w′)

)2

+
2πθ

pgs
~n · ~e

]

.

(4.11)

It is instructive to compare this with mathematical results on the Euler

characteristic of the moduli space of instantons on the four-manifold C4 =

O(−p) → P1.

When p = 1, the partition function (4.11) can be expressed as

ZqYM = f(ϕ0)

[
∑

n

e−
1
2 n2ϕ0−nϕ1

]N

, (4.12)

for some ϕ0 dependent factor f(ϕ0). The prefactor would be related to the

bound state of the D0 brane to the D4 brane which is ambiguous in the present

context due to the non-compactness of the D4 brane. (In the compact case it

would have been η−Nχ(C4)(ϕ0).) However the D2 branes bound to D0 and D4

branes are unambiguous because they are frozen on the compact part of the

geometry, which is the Riemann surface. In this case, C4 is the total space

of O(−1) over P1, which is a blowup of C2 at one point, and (4.12) exactly

reproduces the ϕ1 dependence of the blow-up formula conjectured in [14] and

proven in [16].

When p = 2, (4.11) becomes

ZqYM =
q

ρ2+N
12

2N !

(
2π

pgs

)N/2 ∑

w,w′∈W

ǫ(w)ǫ(w′)q−
1
2p

a(w,w′)2

×
∑

~n∈ZN

(−1)~n·~a(w,w′)e−
1
4
~n2ϕ0− 1

2
~e·~nϕ1

=
q

ρ2+N
12

2N !

(
2π

pgs

)N/2 ∑

w,w′∈W

ǫ(w)ǫ(w′)q
1

4πp
a(w,w′)2

×
N∏

i=1




∑

r=0, 1
2

(−1)2rai(w,w′)
∑

n∈Z

e−(n+r)2ϕ0−(n+r)ϕ1



 .

(4.13)
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Note that the characters of the level 1 SU(2) affine Lie algebra are given by

χlevel 1
r (ϕ0, ϕ1) =

∑
n e

−(n+r)2ϕ0−(n+r)ϕ1

∏∞
n=1(1 − e−nϕ0)

,

where r = 0, 1
2

corresponds to the spin 0 and 1
2

representations respectively.

Since (4.13) shows that the ϕ1-dependence of ZqYM is given by a product of

N of such characters, one can expanded ZqYM as a sum over the characters of

the SU(2) affine Lie algebra of level N with ϕ0 dependent coefficients. This

agrees with the result by Nakajima [17] that the level N affine algebra acts

on the cohomologies of the moduli space of U(N) instantons on O(−2) → P1,

which is our C4 in the case of p = 2. The choice of the SU(2) representation

is determined by the boundary condition at the infinity. Since the S-duality

transformation mixes up the boundary conditions, it is reasonable that ZqYM

computed in the previous section becomes a sum of the affine SU(2) characters

after the S-dual transformation.

Thus, we have demonstrated for g = 0 and 1 that our computation of

ZqYM based on the reduction to the q-deformed 2d YM on Σg agrees with

the instanton expansion of the N = 4 YM on C4 and that ZqYM is indeed

the generating function of the BPS black hole that arises from wrapping D4-

branes on C4. It would be interesting to test this for g ≥ 2 also. Our next

task, however, is to relate ZqYM to closed topological string amplitudes on the

Calabi-Yau manifold X .

5. Large N Limit of ZqYM and the Relation to Perturbative Topolog-

ical Strings

The deep relation, conjectured in [1], between 4-dimensional black holes

and topological strings predicts that the partition function of black holes on X

ZBH = ZqYM, for large charges, is related to the perturbative topological string

partition function Ztop on X as

ZqYM ∼ ZtopZ̄top. (5.1)

In this section we will aim to get a better understanding of this relation by

considering the large N (i.e. large black hole charge) limit of the quantum 2d

YM theory on a Riemann surface Σ of genus g.
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The conjecture of [1] predicts a precise relation of the parameters of the

YM theory describing the black hole and the dual gravity, or topological string

theory. According to the conjecture [1], when one relates the black hole to the

topological string theory, the moduli of the Calabi-Yau manifold are fixed by

the black hole attractor mechanism. This fixes the real parts of the projective

coordinates (X0, X1) on Calabi-Yau moduli space to magnetic charges of D6

and D4 branes and their imaginary parts are the chemical potentials ϕ0, ϕ1 for

the electric D0 and D2 brane charges. In the current setup, there is no D6 brane

magnetic charge, and we have N D4 branes. Now, the magnetic charge for a

single D4 brane, if we measure in terms of electric units of D2 branes wrapping

Σ, is given by the intersection number of Σ and the 4-cycle the D4 brane wraps.

In the present case this is

#(Σ ∩ C4) = p+ 2g − 2,

as can easily be seen by deforming Σ away from C4 = L2 → Σ using a generic

section of L1. Thus, in the black hole background, the projective moduli for

the closed topological string are fixed to be

X0 = i
ϕ0

π
, X1 = (p+ 2g − 2)N − i

ϕ1

π
. (5.2)

In the previous section, we saw that the chemical potentials are related to the

qYM parameters as ϕ0 = 4π2

gs
, and ϕ1 = 2πθ

gs
, so that

X0 =
4πi

gs
, X1 = (p+ 2g − 2)N − 2i

θ

gs
.

Since the Kähler modulus t corresponding to the base Σ of the Calabi-Yau

manifold is given by

t = 2πi
X1

X0

in terms of projective coordinates, we expect that the topological closed string

theory which is the gravity dual of the U(N) 2d qYM theory has t fixed to be

t =
1

2
(p+ 2g − 2)Ngs − iθ. (5.3)
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The large N limit of the ordinary 2d YM theory, a cousin of our theory,10

was studied in [3]. They find that, at large N , the Hilbert space of the YM

theory factorizes as

HYM → Hchiral ⊗Hantichiral

with Hchiral corresponding to representations R+ with much less than N boxes,

and Hantichiral corresponding to representations R− of order N boxes. The

same will apply to the q-deformed YM theory. Corresponding to this, the

partition function ZqYM should factorize as

ZqYM ∼ Z+
qYM Z−

qYM. (5.4)

It is natural to expect that the two factorizations (5.1) and (5.4) are related.

More precisely, one would expect that chiral qYM partition function Z+
qYM can

be written as a holomorphic function of t, and identified with the topological

string amplitude Ztop(t)

Z+
qYM(N, θ, gs) ∼ Ztop(t, gs).

We will show that this is indeed the case in the class of Calabi-Yau manifolds

at hand, with some important subtlety that we will describe in detail below.

The cases X = L1 ⊕ L2 → Σg for g ≥ 1 and g = 0 work somewhat

differently in their technical aspects, so we will consider them separately below.

5.1. Factorization into Chiral Blocks for Genus g > 1 Case.

We consider the large N limit of the BH partition function (3.12) for g > 1

ZqYM(Σg) = α(gs, θ)
∑

R

S2−2g
0R q

p
2 C2(R)eiθC1(R).

As we will show below in this section the natural value of the normalization

constant α(gs, θ) is as defined in (3.13). Here R labels U(N) representations.

It will be more convenient use the decomposition of R in terms of SU(N)

representation R and the U(1) charge m. First, we will have to recall how

various quantities pertaining to U(N) relate to those of SU(N) and the U(1).

10 Since q = e−gs and gs ∼ g2
YM, the ordinary 2d YM theory with finite gYM is not a limit of

our q-deformed theory.
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The Young-tableaux of R differs from that of R by having r columns of

length N attached:

Ri = Ri + r, i = 1, . . . , N − 1

RN = r.
(5.5)

The U(1) charge is then given by

m = |R| +Nr, r ∈ Z.

The U(N) Casimir’s are related to the SU(N) Casimir’s as

C1(R) = m, C2(R) = C2(R) +
m2

N
, (5.6)

where

C2(R) = kR +N |R| − |R|2
N

, kR =

N−1∑

i=1

Ri(Ri − 2i+ 1) (5.7)

Their quantum dimensions are equal

dimq(R) = dimq(R) =
∏

1≤i<j≤N

[Ri −Rj + j − i]q
[j − i]q

.

Just as for ordinary 2d YM [3], the factorization of the Hilbert space at large N

is captured by writing an irreducible SU(N) representation R in terms of the

coupled representations R+R̄− with R+ and R− labelling states in Hchiral and

Hantichiral, respectively. The Casimir’s decompose as follows: the U(1) charge

m of R becomes

m = Nl + |R+| − |R−|,

where l = r +R−,1, and

C2(R+R̄−) = C2(R+) + C2(R−) + 2
|R+||R−|

N
. (5.8)
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R

+

−

R

_

R−

Fig.4 The figure depicts an SU(N) representation R as a coupled representation

R+R̄−. The representation R̄− is conjugate to representation R−.

Using this, and trading N and θ for t and t̄ defined by (5.3), the qYM

partition function becomes

ZqYM(Σg>1) = α(gs, θ)
∑

l∈Z

∑

R+,R−

(
S00 dimqR+R̄−

)2−2g

q
p
2 (kR+

+kR−)eiθ(|R+|−|R−|)

× q
pN
2 (|R+|+|R−|)e−

(t2−t̄2)l

2(p+2g−2)gs e−
p(t+t̄)l2

2(p−2+2g) e−pgsl(|R+|−|R−|).

(5.9)

So far, we have merely rewritten (5.9) and now we are ready to turn to its

factorization at large N . The key fact, shown in Appendix B, is the following

relation

qρ2+ N
24 S00 dimq(R+R̄−) =

M(q) ηN (q)

KR+R−
(Q, q)

W 2
R+

(q)W 2
R−

(q)

× (−)|R+|+|R−|q−
1
2 (kR+

+kR−
)Q− 1

2 (|R+|+|R−)

(5.10)

where M(q) is MacMahon function, η(q) = q
1
24

∏∞
j=1(1 − qj) and

KR+R−
(Q, q) :=

∑

P

Q|P |WPR+
(q)WPR−

(q) (5.11)

Moreover, the normalization factor α(gs, θ), defined in (3.13), can be written as

α(gs, θ) = |Υ(t, gs)|2
(
qρ2+ N

24

)2−2g

(5.12)
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where

Υ(t, gs) = exp

(
− t3

6p(p+ 2g − 2)g2
s

+
(p+ 2g − 2)t

24p

)
. (5.13)

Using (5.10) and (5.12) we can recast ZqYM
g>1 in the large N limit as a sum of

“chiral blocks”:

ZqYM(Σg>1) =
∑

l∈Z

∑

R1,...,R2g−2

ZqYM,+
R1,...,R2g−2

(
t+ pgsl

)
ZqYM,+

R1,...,R2g−2

(
t̄− pgsl

)
. (5.14)

The chiral block ZqYM,+
R1,...,R2g−2

is defined by

ZqYM,+
R1,...,R2g−2

(t) =Z0(t, gs) η
t χ

(p−χ)gs e−
t(|R1|+...|R2g−2|)

(p−2+2g)

×
∑

R

q
1
2 (p+2g−2)kRe−t|R| WR1R(q) . . .WR2g−2R(q)

W0R(q)4g−4

(5.15)

which agrees, as we will discuss below, with the perturbative topological string

amplitudes with (2g − 2) stacks of D-branes inserted in the fiber. The extra

prefactor η
t χ

(p−χ)gs needs to be explained. However this factor has only a genus

0 contribution perturbatively. Namely, by using the modular property of the

Dedekind eta function, we find that this factor contributes as

η
t χ

(p−χ)gs ∼ exp

(
− ct

g2
s

)
+ (non − perturbative),

where c = π2χ
6(p−χ) . It is reassuring that this can be viewed as a correction to the

topological string amplitudes at genus zero. This is possible because the power

of t is less than three and the fact that topological string partition function at

genus 0 is ambiguous up to the addition of a quadratic polynomial in t. Thus

we can redefine the degree 0 contributions (2.5) to be

Ẑ0(t, gs) = Z0(t, gs) exp

(
− ct

g2
s

)
. (5.16)

We will come back to the interpretation of the blocks in the topological

string context, after we have discussed the genus zero case.
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5.2. Factorization into Chiral Blocks for Genus g = 0 Case.

To find the large N limit of the q-deformed YM partition function on a

genus zero Riemann surface ZqYM(S2) we proceed in a similar way, except that

we write the quantum dimension of the coupled representation R+R̄− slightly

differently: (see Appendix B)

qρ2+ N
24 S00 dimq(R+R̄−) =M(q)ηN (q)NR+R−

(Q, q)(−)|R+|+|R−|

× q−
kR+

+kR−
2 Q−

|R+|+|R−|

2 ,
(5.17)

where q = e−gs , Q = e−gsN as before, and

NR+R−
(Q, q) :=

∑

P

(−)|P |Q|P |WPR+
(q)WP T R−

(q). (5.18)

Using (5.17) and (5.18) as well as (5.8), we find the large N limit of ZqYM(S2)

given by (3.10) is

ZqYM(S2) =
∑

l∈Z

∑

R1,R2

ZqYM,+
R1,R2

(
t+ pgsl

)
ZqYM,−

R1,R2

(
t̄− pgsl

)
, (5.19)

where the chiral block, ZqYM,+
R1,R2

(t), is defined by

ZqYM,+
R1,R2

(t) = Ẑ0(t, gs) q
kR1

+kR2
2 e−

t(|R1|+|R2|)

(p−2)

×
∑

R

q
(p−2)kR

2 e−t|R| WR1R(q)WRRT
2
(q).

(5.20)

and the ‘anti-chiral block’, unlike the higher genus case, is transposed:

ZqYM,−
R1,R2

(t̄) = Z+
RT

1 ,RT
2

(t̄)(−)(|R1|+|R2|)

5.3. Large N Expansion and Perturbative Topological String

To summarize the results of the previous two subsections, we have found

that in the large N expansion the partition function of the q-deformed YM

theory corresponding to N D4-branes on the zero section of L1 in

XΣ = L1 ⊕ L2 → Σ
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factorizes as

ZqYM(Σ) =
∑

l∈Z

∑

R1,...,R|2g−2|

ZqYM,+
R1,...R|2g−2|

(t+ lpgs)Z
qYM,+
R1,...R|2g−2|

(t̄− lpgs), (5.21)

where p is related to the degree of L1 by deg(L1) = −p. What is the interpre-

tation of the chiral block in terms of the topological string theory on X?

For concreteness, let us focus on g ≥ 1 case. According to (5.15), the chiral

blocks are expressed as

ZqYM,+
R1,...,R|2g−2|

(t) = Ẑ0e
−

t(|R1|+...|R2g−2|)
(p−2+2g)

∑

R

WR1R(q) . . .WR2g−2R(q)

W0R(q)4g−4
q

1
2 (p+2g−2)kRe−t|R|,

where Ẑ0 contains the classical pieces (5.16).

First notice that in the large N expansion of the q-deformed YM partition

function, there is a limit where the anti-chiral theory decouples, namely taking

t̄→ ∞, at fixed t. Here we are treating t and t̄ as independent variables. In this

limit only the trivial representation contributes in the sum over R1, ..., R2g−2

in (5.14) because of the factors e−
t̄(|R1|+...|R2g−2|)

(p−2+2g) in ZqYM−. Thus, we find

lim
t̄→∞

ZqYM(t, t̄) = ZqYM,+
0,...,0 (t),

up to a trivial anti-chiral piece. A look back at section 2 shows that this is

exactly equal to the perturbative closed topological string partition function

(2.3) for the same Calabi-Yau:

ZqYM,+
0,...,0 (t) = Ztop(XΣg

)(t).

Thus, in the limit where the anti-chiral part of the qYM theory decouples, we

recover the perturbative topological string theory amplitude on X , at the value

of Kähler parameter fixed by the attractor mechanism.

However, this is clearly not all, and |Ztop(XΣg
)(t)|2 is but the first in the

sum over chiral blocks in the large N expansion of qYM on Σg. Amazingly, the

other chiral blocks also have an interpretation in terms of theory on Xg, but

now involving D-branes! Another look back at section 2 shows that the object

which appears in the higher chiral blocks is also topological string amplitude

on X , but with with (2g − 2) D-branes in the fiber over (2g − 2) points on Σ
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given in equation (2.6), with the degrees of the line bundles adjusted to the

Calabi-Yau at hand, i.e. deg(L1) = 2g − 2 + p, deg(L2) = −p. Moreover, the

D-branes are moved off the Riemann surface by an amount t/(p+2g−2). With

this understanding, we have the identity:

ZqYM,+
R1,...,R|2g−2|

(t) = Ztop
R1,...,R|2g−2|

(t),

It should be clear from the preceding discussion that Ztop
R1,...,R|2g−2|

(t) can itself

be obtained as a t̄ → ∞ limit of the qYM amplitude – this time one obtained

by gluing (4g−4) “dual” pant vertices (3.15) to get a Riemann surface of genus

g with (2g − 2) punctures [18].

To understand the geometric meaning of the chiral blocks, it is useful to

express the large N -expansion of ZqYM in terms of an integral over (2g − 2)

holonomies V1, · · · , V2g−2 ∈ U(∞) as

ZqYM(Σg>1) =
∑

l∈Z

∫
dV1 · · ·dV2g−2 Z

top
(
gs, t+ pgsl;V1, . . . , V2g−2

)

× Ztop
(
gs, t̄− pgsl;V

−1
1 , . . . , V −1

2g−2

)
,

(5.22)

where

Ztop
(
gs, t;V1, . . . , V2g−2

)
=

∑

R1,...,R2g−2

Ztop
R1,...,R2g−2

TrR1
V1 . . .TrR2g−2

V2g−2,

and we used the orthogonality of the characters (2.2). Each of the D-branes on

the fiber described in section 2.1 intersects with C4 at a non-contractible circle

on its worldvolume. Thus, one can regard Vi (i = 1, ..., 2g − 2) as a holonomy

of the gauge field on the i-th stack of D-branes around the cycle, keeping track

of the way the worldsheet ends on the D-branes. We take the number of D-

branes at each stack to be infinite so that the representations R1, ..., R2g−2 can

be arbitrary.

These D-branes are directly related to the presence of Ω-points in the large

N limit of the ordinary 2d YM theory [3]. To see the connection, it is useful to

move to a more geometric basis for the chiral blocks. We can do this by using the

Frobenius formula, which expresses the trace TrR(U) for any representation R
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in terms of a sum of products of traces of U in the fundamental representations

as

TrR(U) =
1

n!

∑

σ∈Sn

χR(σ)tr~k(σ)V, (5.23)

where

tr~k(σ)V =
∏

i=1

(
trV i

)ki(σ)
.

The sum in (5.23) is over elements of symmetric group Sn of n elements, where

n = |R| is the number of boxes in the Young diagram corresponding to the rep-

resentation R, χR(σ) is the character of the representation of Sn corresponding

to the same Young diagram, tr is the trace over the fundamental representation,

and ki(σ) is the number of cycles of length i in the permutation σ ∈ Sn. Note

that tr~k(σ)V depends only on the conjugacy class of the permutation σ. By

using the orthogonality relations (2.2) it follows from (5.23) ,

∫
dV tr~kV tr~k′V

−1 = δ(~k,~k′)ζ(~k),

where

ζ(~k) =

∞∏

i=1

ik
a
i ka

i !.

One can re-express (5.22) as

ZqYM(Σg) =
∑

l∈Z

∑

~k1,...,~k2g−2

Ztop
~k1,...,~k2g−2

(gs, t+pgl) Z
top
~k1,...,~k2g−2

(gs, t̄−pgl)
2g−2∏

a=1

ζ(~ka), (5.24)

where Ztop
~k1,...~k2g−2

is defined by

Ztop(gs, t;V1, ..., V2g−2) =
∑

~k1,...,~k2g−2

Ztop
~k1,...~k2g−2

(gs, t) tr~k1V1 · · · tr~k2g−2V2g−2. (5.25)

By construction, Ztop
~k1,...,~k2g−2

(gs, t) is the topological string amplitude with

the constraint that the worldsheet ends on the a-th stack of D-branes with

ka
i boundaries wrapping on the non-contractible cycle i-times (i = 1, 2, ...).

The expression (5.24) suggests that the complete topological string partition

function includes gluing of the holomorphic and anti-holomorphic topological

string amplitudes together so that the boundaries of the holomorphic and the
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anti-holomorphic worldsheets match up on the D-branes. Note that the combi-

natorial factor
∏2g−2

a=1 ζ(~ka) is exactly the number of ways the boundaries can

be glued together. Since Ztop is an exponential of a sum of connected world-

sheets, the full topological string partition function involves arbitrary numbers

of connected worldsheets, holomorphic and anti-holomorphic. Thus, despite

the appearance of D-branes, worldsheets contributing to the topological string

amplitudes are still closed, except that they are piecewisely holomorphic or

anti-holomorphic.

In this way, the 2g−2 stacks of D-branes generate analogues of the 2g−2 Ω

points that appear in the large N limit of the ordinary 2d YM [3]. To complete

the story, one would need to explain why exactly 2g − 2 D-branes are involved

in the non-perturbative completion of the string theory on L1 ⊕ L2 → Σg. We

will come back to this below.

So far we have focused on higher genus g ≥ 1 Riemann surfaces. Things

work in an analogous way for S2. In this case, the chiral qYM blocks given by

ZqYM,+
R1,R2

= Ẑ0q
kR1

+kR2
2 e−

t(|R1|+|R2|)

(p−2)

∑

R

q
(p−2)kR

2 e−t|R| WR1R(q)WRRT
2
(q)

are computing partition functions of topological strings with two infinite stacks

of D-branes in the fibers over 2 points on the S2,

ZqYM,+
R1R2

(t) = Ztop
R1,R2

(t),

where the right hand side is computed using technology of section 2, up to the

(ambiguous) pieces Ztop → Ẑ0Z
top which for us are defined in (5.16). We can

write the above in an alternative way which makes contact with the topological

vertex.

ZqYM,+
R1R2

(t) = Ẑ0 q
kR1

2 e−
t(|R1|+|R2|)

p−2

∑

R

e−t|R| q
(p−1)kR

2 C0R1RT (q)C0RR2
(q), (5.26)

where CR1R2R3
is the topological vertex defined in [5]. This is the partition

function of the topological A-model on O(−p) ⊕ O(p − 2) → P1 with non-

compact Lagrangian D-branes inserted at the two of the four external lines in

the web-diagram. Note that for p = 1 the above expression for the topological

string amplitude is not completely satisfactory since

t =
1

2
(p− 2)N gs − iθ,
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so Re(t) ≤ 0. The meaning of this in the black hole context is that, even

though we started with N D-branes, their effective charge is negative, and

they really correspond to anti D-branes. In terms of the topological string, we

should rewrite the amplitude in terms of the flopped geometry with the Kähler

parameter given by

t̂ = iπ − t,

with Re(t̂) > 0. Indeed, as we show in appendix C, we can rewrite the chiral

block ZqYM,+
R1,R2

(t) as follows:

ZqYM,+
R1,R2

(t) = Ẑ0(t)(−)−
1
12 e−

t̂
12

∑

R

(−)|R|e−t̂|R|CR1R2R(q)C00RT (q). (5.27)

Analogously to g > 1 case, we can write partition sum as

ZqYM(S2) =
∑

l∈Z

∫
dV1dV2 ZqYM,+

(
t+pgsl;V1, V2

)
ZqYM,−

(
t̄−pgsl;V

−1
1 , V −1

2

)
, (5.28)

where

ZqYM,+
(
t;V1, V2

)
=
∑

R1,R2

ZqYM,+
R1,R2

(t) TrR1
V1 TrR2

V2.

5.4. Topological String Interpretation

Above we have found that there is an apparent discrepancy between the

prediction of [1] that ZBH = |Ztop|2 and the explicit computation of the black

hole ensemble which leads to

ZBH =
∑

α

|Ztop
α |2.

Moreover there is an extra sum over integers: This extra sum has been explained

in [2] as being related to summing over RR fluxes in the geometry (or alterna-

tively it is required for making the chemical potential has suitable periodicity

in the imaginary direction). However the extra sum over chiral blocks labelled

by α which is given by topological string amplitudes with D-branes may appear

to be in contradiction with [1]. It turns out that there is no contradiction [18],

and this is related to the fact that the Calabi-Yau is non-compact and has more

moduli coming from the non-compact directions. Taking these into account is

equivalent to writing the black hole partition function in terms of the D-brane

blocks as given above. See [18] for more detail.
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6. The 4d Black Holes and the c = 1 String.

As is well known, the mirror symmetry implies that the B-model on the

conifold

zw − xy = t̂ (6.1)

is the same as a t̂ → 0 limit of the A-model topological string on O(−1) ⊕
O(−1) → P1, where t̂ is the Kähler parameter of the P1. On the other hand, it

is also well known that B-model topological string on the conifold is the same

as the bosonic c = 1 string at the self dual radius, where t̂ is identified with the

cosmological constant [19]. Given the results of the previous sections, we should

also be able to give a non-perturbative formulation for the B-model topological

string on the conifold, and hence also of the c = 1 string theory. In other words,

it follows by the mirror symmetry that the small t̂ limit of ZqYM(S2) gives the

non-perturbative formulation of the c = 1 string.

Recall that perturbative c = 1 amplitudes depend effectively only on the

ratio µ of the cosmological constant and gs,

µ =
t̂

gs
=
N

2
+ iα,

where α = (π− θ)/gs. One would expect that this extends to non-perturbative

contributions as well – the only finite mass D-brane in the B-model on the

conifold is a D3-brane wrapping the S3 of size t̂, whose action is then µ = t̂
gs

.

Given this, taking a small t̂ limit at fixed µ, is equivalent to taking to a small

gs limit keeping µ fixed.

Consider the partition function of the qYM for g = 0, p = 1 obtained in

section 4,

ZqYM(S2) =

(
2π

gs

)N/2

q
N
12 S00(q,N)

∑

n∈ZN

exp

(
−2π2n2

gs
+

2π

gs
θ

N∑

i=1

ni

)
. (6.2)

The small gs limit of the S00(gs, N) factor is well known to be (see [20]) given

by (2πgs)
N2

2

vol(U(N))

(
2π
gs

)N/2

. Then, in the sum over instantons only the ~n = 0 sector

survives in the limit, and we have a prediction for the non-perturbative partition

function Zc=1 of the c = 1 string as

Zc=1 =
(2πgs)

N2

2

vol(U(N))

(
2π

gs

)N

. (6.3)
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The answer suggests what is the underlying theory which provides the non-

perturbative completion of c = 1 string. It is simply the 2D topological YM

theory. This can be seen by taking the gs → 0 limit of the qYM path integral.

This theory should be the effective theory of N D3 branes on the non-compact

3-cycle which is dual to the S3 of the conifold (in the same sense as 2d qYM is

effectively describing the N = 4 topological YM on the D4 branes.).

In studying this theory at large N , we can use the results of the large N

limit of qYM theory that we already studied which led to

ZqYM(S2) =
∑

l∈Z

∑

R1,R2

ZqYM,+
R1,R2

(
t+ gsl

)
ZqYM,−

R1,R2

(
t̄− gsl

)

and take the gs → 0 limit of that, which is the same as giving a chiral decom-

position of (6.3) at large N .

Using the results in the appendix C, it is easy to show that

AR1R2
= lim

gs→0
ZR1R2

(6.4)

is given by

AR1,R2
(µ) = a(gs, µ)

dimR1(µ) dimRT
2 (µ)

vol(U(µ))
.

Here dimR(µ) is given by

dimR(µ) = d(R)
∏

∈R

(µ− i( ) + j( )),

where i, j( ) label the location, i.e. the row and the column, of the box in the

Young tableaux of R. The coefficient d(R) is related to the dimension of the

corresponding symmetric group representation

d(R) =
∏

∈R

1

h( )
,

where h( ) is the hook length of the corresponding box in R. Finally, coefficient

a(gs, µ) is given by

a(gs, µ) = (2πgs)
µ2

2

(
2π

gs

)µ

e
i2πµ2

3 eiδ ,
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where the phase eiδ is independent of µ and can be attributed to the ambiguity

of the definition of the chiral block. By vol(U(µ)) we denote a function obtained

by expanding the volume of the unitary group U(M), in powers of 1/M , and

in the result, setting M = µ.

Thus, we find that, at largeN the non-perturbative c = 1 partition function

factorizes as

Zc=1 ≈
∑

l∈Z

∑

R1,R2

AR1,R2

(
µ− l

)
ART

1 ,RT
2

(
µ̄+ l

)
(−)(|R1|+|R2|) (6.5)

The equality holds only in the asymptotic expansion, and we have denoted

this by “≈”.

It is natural to ask what the interpretation of chiral blocks AR1R2
is. First

of all, note that the vacuum chiral block

A00(µ) =
a(gs, µ)

vol(U(µ))
,

in the 1/µ expansion is precisely the vacuum amplitude of the c = 1 string.

The higher chiral blocks in (6.5) are related to the scattering amplitudes of

perturbative c = 1 string at self-dual radius [21].

Recall that c = 1 string is free when written in terms of fermions. Corre-

spondingly, the S-matrix elements are diagonal in terms of fermions,

SR(µ) = 〈R|S|R〉, (6.6)

and can be brought into the form (see for example [22]),11

SR =

#diag(R)∏

i=1

Γ(iµ+ fi + 1)Γ(−iµ+ hi + 1) cos
[π
2

(fi + iµ)
]
cos
[π
2

(hi − iµ)
]
,

where #diag(R) stands for the number of boxes on the diagonal of R and the

free fermion state |R〉 is expressed as:

|R〉 =

#diag(R)∏

j=1

ψ−(hi+
1
2 )ψ

∗
−(fi+

1
2 )|0〉,

11 From now on we will not be careful about constant factors like π, 2 etc
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where the fermion and hole momenta are defined as fi = Ri−i and hi = RT
i −i.

The similarity with our blocks becomes apparent if we use

Γ(x)Γ(1 − x) =
π

sin(πx)

to rewrite SR as

SR =

#diag(R)∏

i=1

Γ(iµ+ fi + 1)

Γ(iµ− hi)

cos
[

π
2 (fi + iµ)

]
cos
[

π
2 (hi − iµ)

]

sin [π(iµ− hi)]

= exp



− iπ
2

#diag(R)∑

i=1

(hi + fi)




∏

∈R

(iµ− i( ) + j( )) +O(e−µ)

Note that for c = 1 string the cosmological constant µ is real, while in the

topological string context µ is complex parameter. In what follows we’ll take

advantage of the analytic continuation provided by the topological string, and

make no particular distinction between µ and iµ. With this in mind, in the

expression we recognize elements of (6.5),

SR(µ) = exp



− iπ
2

#diag(R)∑

i=1

(hi + fi)



 dimR(µ)

d(R)
. (6.7)

We will express Zc=1 as an overlap of D-brane wave functions below. This

will also allow us to interpret the result as a tachyon scattering amplitude.

6.1. Zc=1 as an Overlap of D-Brane Wave Functions.

It is natural to expect, given the discussion of the preceding sections, that

the higher chiral blocks are computed by a particular D-brane amplitude on

the B-model conifold geometry. In the c = 1 string theory language, this would

correspond to a particular tachyon scattering amplitude [22].

Moreover, we expect to be able to formulate Zc=1, in the large N expansion

as an overlap of D-brane wave functions

Zc=1 =

∫
Dx1Dx2|ZD−brane(x1, x2)|2, (6.8)
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for some appropriate D-brane configuration and appropriate measure Dx on

the space of hermitian matrices of infinite rank. Using the relation of the B-

model on the conifold with c = 1 string, ZD−brane can also be thought of as a

particular coherent state scattering amplitude of the c = 1 string

ZD−brane = Zscatt..

We will show that, ZD−brane(x1, x2) is a wave function in holomorphic polar-

ization given by

ZD−brane(x1, x2) =
∑

R1,R2

AR1,RT
2
TrR1

x1TrR2
x2

Moreover there is a natural measure

Dx = dxdx̄ exp [tr(xx̄)] (6.9)

over commuting Hermitian matrices x, x̄ with the property that

∫
Dx TrR1

xTrR2
x = δR1,R2

,

so that (6.8) holds.

Consider c = 1 amplitude with coherent state of incoming and outgoing

tachyons turned on

S(t, t̄) = 〈t|S|t̄〉, (6.10)

where

|t〉 = exp

(
∞∑

n=1

tn
n
α−n

)
|0〉,

and α−n are the usual boson creation operators corresponding here to the

tachyon momentum modes. We can relate this to a D-brane correlation func-

tion in the B-model on the conifold (6.1). As explained in [22], the effective

B-model theory is a theory of a chiral boson (corresponding to the tachyon) on

the Riemann surface12

xx̄ = µ,

12 View x, x̄ here as independent complex variables.
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and the fermions of this chiral boson are the D-branes. The Riemann surface

is a cylinder with two asymptotic regions corresponding to large x or large x̄.

Sending outgoing and ingoing tachyon pulses is equivalent by bosonization to

placing D-branes at points xi, x̄i near one of two boundaries on the Riemann

surface. The xi, x̄i, viewed as eigenvalues of infinite dimensional matrices x and

x̄, are related to coherent states of tachyons by

tn = trxn, t̄n = trx̄n. (6.11)

This provides an identification between |t〉 and D-brane configurations |x〉,

|t〉 = |x〉.

The scattering amplitudes (6.10) are related by bosonisation to the formula

(6.6) we had above. Namely, bosonisation relates

|R〉 =
∑

~k

χR(C(~k))

z~k
|~k〉,

where

|~k〉 =
∏

n

(α−n)kn |0〉.

Note that in terms of 〈x|R〉 = TrRx and 〈x|~k〉 = tr~kx this is just the relation

(5.23) where z~k is also defined.

From this we can write S(t, t̄) as

S(t, t̄) =
∑

R

SR TrRx TrRx̄,

where SR is the scattering amplitude in (6.6). The left hand side is better

thought of in terms of tachyon scattering, the right in terms of D-brane (or

fermion) amplitudes. More generally, any tachyon scattering amplitude can be

related to a D-brane correlation function, by bosonisation.

We will now see that

∑

R1,R2

AR1,RT
2
TrR1

x1TrR2
x2
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does correspond to a scattering amplitude of the c = 1 string, and thus to a

D-brane amplitude. First of all, using properties of tensor product coefficients

NR
R1R2

,13 and the definition of SQ(µ) in (6.7) it is easy to see that, up to a

µ-independent phase (and a trivial prefactor), the above is equal

∑

R1,R2

∑

Q

NQ
R1R2

d(Q) SQ TrR1
x1 TrR2

x2

This can be directly interpreted as a tachyon scattering amplitude as follows.

First it is easy to prove14 that

∑

R1,R2,R

NR
R1R2

TrR1
x1 TrR2

x2|R〉 = |t1 + t2〉

where |t1,2〉 are coherent states corresponding to |x1〉 and |x2〉, and we defined

|t1 + t2〉 = exp
(∑

n

1

n
(t1,n + t2,n)α−n

)
|0〉

Finally, using

1

n!
(α−1)

n|0〉 =
∑

R

1

n!
χR(1n)|R〉 =

∑

R

d(R) |R〉

(the sum is over representations R of n boxes), we see that

∑

R1,R2

AR1,RT
2
TrR1

x1TrR2
x2 = 〈1|S|t1 + t2〉

where

|1〉 := exp(α−1)|0〉.

To summarize, we found that
∑

R1,R2
AR1,RT

2
TrR1

x1TrR2
x2 corresponds to a

tachyon scattering amplitude, and thus also to a D-brane correlation function.

To complete the claim that this in fact gives the D-brane or scattering amplitude

13 These satisfy
∑

R
NR

R1R2
TrRx = TrR1x TrR2x essentially by definition, and relation we need∑

R1,R2
N

Q
R1R2

dim(Q) = dim(R1)dim(R2) is a special case of this when x is the identity matrix,

x = id.
14 For example, evaluate the above formula by contracting with arbitrary 〈x| and prove that

exp(
∑

n
1
n
trxn trx̄n) =

∑
R

TrRx TrRx̄.
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which computes Zc=1, we need a natural inner product where the overlap of

the above wave functions would agree with the 1
µ expansion of Zc=1.

In the context of tachyon scattering this is straightforward. Recall that

there is a canonical measure on the space of coherent states ψ(t) = 〈t|ψ〉

〈ψ|χ〉 =

∫
Dt ψ̄(t̄) χ(t)

where

Dt =

∞∏

n=1

1

n
dtn dt̄n exp

(
− tn t̄n

n

)
.

This is the same inner product as the natural inner product in the |~k〉 or |R〉
basis – in other words,

∫
Dt |t〉〈t̄| is the identity operator15. Putting everything

together, it immediately follows

Zc=1 =

∫
Dt1Dt2 |Zscatt.(t1, t2)|2 (6.12)

where

Zscatt.(t1, t2) = 〈1|S|t1 + t2〉.

The above expression is very reminiscent of the idea of [23]: The state 〈1|
above is a chiral version of a black hole state. It is as if in the non-perturbative

formulation of the c = 1 theory we have been forced to consider a black hole

state. Moreover the formula (6.12) is analogous to computing the decay of the

black hole state to arbitrary tachyon state. It would be very interesting to

develop this picture further, especially in view of the fact that we have an exact

non-perturbative formulation in terms of which (6.12) is only an asymptotic

large charge expansion.

We could stop here, however, this way of writing Zc=1 is not very natural

if one wants to relate it D-branes. To do this we need an inner product in the

x-basis corresponding to D-brane positions.

〈ψ|χ〉 =

∫
Dx ψ̄(x̄) χ(x)

15 For example, one can easily check that
∫
Dt 〈~k| t 〉〈 t̄ |~k′ 〉 = z~k

δ(~k,~k′) as it should be to

agree with the definition of |~k〉.
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We can use define this by asking that it is compatible with the inner product

in the R− basis, i.e.

∫
Dx TrRx TrQx̄ = 〈Q|R〉 = δQ,R

We will show in the appendix D, that the inner product exists, and can explicitly

be given in terms of (6.9) as claimed above.

We have thus shown that we can alternatively write Zc=1 in terms of D-

brane amplitude

ZD−brane(x1, x2) =
∑

R1,R2

AR1,RT
2
TrR1

x1TrR2
x2

as

Zc=1 =

∫
Dx1Dx2 |ZD−brane(x1, x2)|2,

and where

ZD−brane(x1, x2) = Zscatt.(t1, t2)

with t1,2 and x1,2 related by (6.11).
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Appendix A. The Cap Amplitude of 2d (q)YM and the Fourier Trans-

form

In this appendix we compute the path integral on a disk of the ordinary 2d

YM theory and its q-deformed version, in Φ basis instead of the usual holonomy

basis. In the holonomy basis, it is given by:

Z2dYM(C)(U) =
∑

R

dim(R)TrRU,

where as before U = Pe
∮

A. The Fourier transform to the Φ basis is given by

the following path integral over the boundary of the disk,

Z2dYM(C)(Φ) =

∫
dU e

1
gs

∮
∂C

TrΦA
Z2dYM(C)(U).

Since the YM path integral localizes to configurations where Φ is covariantly

constant,so in particular Φ and A commute, integrating over the angles gives

(see [24] for details. There, effectively the same matrix integrals were considered

in a related context)

Z2dYM(C)(Φ) =

∫ ∏

i

dui ∆H(u) e
1

gs

∑
i

~φ·~u Z2dYM(C)(~u),

where we defined an anti-hermitian matrix u by U = eu, and ∆H(u) =
∏

α>0 sin(~α · ~u). comes from the Haar measure on U(N). We can compute

the integral by using

TrRU := χR(~u) =

∑
ω∈w(−1)ωeω(~λR+~ρ)·~u

∑
ω∈w(−1)ωeω(~ρ)·~u

,

where λR is the highest weight vector of the representation R and ~ρ is the Weyl

vector; the Weyl denominator formula

∏

α>0

sin(~α · ~u) =
∑

ω∈W

(−1)ωeω(~ρ)·~u;

and by writing the dimension of representation R as

dim(R) = lim
t→0

χR(t~ρ). (A.1)
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Plugging this into the integral, and performing a sum over the weight lattice

we get

Z2dYM(C)(φ) = lim
t→0

∫ ∏

i

dui e
∑

i
~φ·~u/gs

∑
ω∈W (−1)ωδ(~u− tω(~ρ))∏

α>0 sin(t~α · ~ρ) ,

or, by computing the integral

Z2dYM(C)(φ) = lim
t→0

∑
ω∈W (−1)ωet~φ·ω(~ρ)

∏
α>0 sin(t~α · ~ρ)

= lim
t→0

∏
α>0 sin(t~α · ~φ)∏
α>0 sin(t~α · ~ρ) .

Finally, this is equal to the expression we gave in section 3

Z2dYM(C)(φ) =
∏

i<j

φi − φj

i− j
,

up to a constant multiplicative factor
∏

i<j(i− j) which we had dropped there.

Note that the analogue of this for the q-deformed amplitude,

ZqYM =
∑

R

dimq(R)TrRU,

is simply obtained by setting

t = gs

in the formula for the dimension of representation (A.1), and not taking the

small t limit:

dimq(R) = χR(gs~ρ).

This gives the path integral on the disk for the qYM theory

ZqYM(C)(φ) =
∏

i<j

[φi/gs − φj/gs]q
[i− j]q

as claimed in section 3 (where we needed the inverse of this Fourier transform).
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Appendix B. dimq(RS̄) in terms of KRS or NRS

The quantum dimension of the coupled representation has the form

dimq(RS̄) = dimqR dimqS

cR∏

i=1

cS∏

j=1

[Sj +Ri +N + 1 − j − i][N + 1 − j − i]

[Sj +N + 1 − i− j][Ri +N + 1 − j − i]
, (B.1)

where cR is the number of rows in R and Ri is the number of boxes in the i-th

row. Now we let q = e−gs and express dimqR as

dimqR = Q−
|R|
2 WR(q−1)

cR∏

i=1

Ri∏

j=1

(1 − q−i+jQ), Q = e−gsN . (B.2)

We write each of the products in (B.1)and (B.2)in the exponential form:

cR∏

i=1

cS∏

j=1

(
1 − qSj+Ri−j−i+1Q

)
= exp

(

−
∞∑

n=1

g1(q
n)Qn

n

)

,

where g1(q) =
∑cR

i=1

∑cS

j=1 q
Sj+Ri−j−i+1.

cR∏

i=1

cS∏

j=1

(
1 − qSj−j−i+1Q

)
= exp

(
−

∞∑

n=1

g2(q
n)Qn

n

)
,

where g2(q) =
∑cR

i=1

∑cS

j=1 q
Sj−j−i+1.

cR∏

i=1

cS∏

j=1

(
1 − qRi−j−i+1Q

)
= exp

(
−

∞∑

n=1

g3(q
n)Qn

n

)
,

where g3(q) =
∑cR

i=1

∑cS

j=1 q
Ri−j−i+1.

cR∏

i=1

cS∏

j=1

(
1 − q−j−i+1Q

)
= exp

(
−

∞∑

n=1

g4(q
n)Qn

n

)
,

where g4(q) =
∑cR

i=1

∑cS

j=1 q
−j−i+1.

cR∏

i=1

Ri∏

j=1

(1 − q−i+jQ) = exp

(

−
∞∑

n=1

fR(qn)Qn

n

)

,

where fR(q) =
∑cR

i=1

∑Ri

j=1 q
−i+j .
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So that dimq(RS̄) is re-casted as

dimq(RS̄) = Q−
|R|+|S|

2 WR(q−1)WS(q−1) exp

(

−
∞∑

n=1

MRS(qn)Qn

n

)

, (B.3)

where MRS(q) = g1(q) + g4(q) − g2(q) − g3(q) + fR(q) + fS(q).

It turns out that MRS(q) = fRS(q) where

fRS(q) = (q − 2 + q−1)fR(q)fS(q) + fR(q) + fS(q).

Now, we relate dimq(RS̄) with the functions KRS(q) and NRS(q) defined

as follows:

KRS(Q, q) :=
∑

P

Q|P |WPR(q)WPS(q) = WR(q)WS(q)
∞∏

i=1,j=1

(1 −Qxiyj)
−1, (B.4)

NRS(Q, q) :=
∑

P

(−)|P |Q|P |WPR(q)WP T S(q) = WR(q)WS(q)

∞∏

i=1,j=1

(1 −Qxiyj), (B.5)

where xi = qRi−i+1/2, yj = qSj−j+1/2. We used the definition of WR1R2
in

terms of Schur functions sR:

WPR(q) = sR

(
q−i+1/2

)
sP

(
qRi−i+1/2

)
(B.6)

and the properties of Schur functions

∑

R

sR(x)sR(y) =
∏

i,j

(1 − xiyj)
−1,

∑

R

sR(x)sRT (y) =
∏

i,j

(1 + xiyj). (B.7)

As follows from [25] the functions KRS and NRS are expressed in terms of

fRS(q) as

KRS(Q, q) = K..(Q, q) WR(q) WS(q) e
∑

∞

n=1

fRS (qn)Qn

n , (B.8)

NRS(Q, q) = N..(Q, q) WR(q) WS(q) e−
∑

∞

n=1

fRS (qn)Qn

n , (B.9)

where we denoted the trivial representation with R = . and where N..(Q, q) =

(K..(Q, q))
−1.

Now using WR(q−1) = (−)|R|WRT (q) = (−)|R|q−
kR
2 WR(q) we find the

relations

dimq(RS̄) = K..(Q, q)NRS(Q, q)(−)|R|+|S|q−
kR+kS

2 Q−
|R|+|S|

2 , (B.10)
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dimq(RS̄) =
K..(Q, q)

KRS(Q, q)
W 2

R(q)W 2
S(q)(−)|R|+|S|q−

kR+kS
2 Q−

|R|+|S|
2 . (B.11)

Finally, we use that

qρ2+ N
24S00 = M(q)ηN(q) N..(Q, q)

to obtain the relations used in section 5:

qρ2+ N
24S00 dimq(RS̄) = M(q)ηN(q) NRS(Q, q)(−)|R|+|S|q−

kR+kS
2 Q−

|R|+|S|
2 ,

qρ2+ N
24S00 dimq(RS̄) =

M(q)ηN (q)

KRS(Q, q)
W 2

R(q)W 2
S(q)(−)|R|+|S|q−

kR+kS
2 Q−

|R|+|S|
2 .

Appendix C. Expressing p = 1, g = 0 Chiral Blocks in terms of S-

Matrix.

Below we compute the genus g=0, p=1 chiral block in terms of S-matrix.

Let us define tK as t = iπ + tK and write the chiral block as

ZqYM,+
R1,R2

(t) = Ẑ0e
t(|R1|+|R2|)q

kR1
2 Z ′

R1R2
(tK),

where

Z ′
R1R2

(tK) :=
∑

R

(−)|R|e−tK |R|C0R1RT (q)C0RR2
(q).

First, we use the definition of the vertex in terms of Schur functions

CR1R2R3
= q

kR1
2 sR3

(qρ)
∑

η

sRT
1 /η(qR3+ρ)sR2/η(qRT

3 +ρ)

to recast the sum Z ′
R1R2

(tK) as

Z ′
R1R2

(tK) = (−)|R2|sR1
(qρ)

∑

R

sR(λqρ+R1)
∑

η

sR/η(q−ρ)sRT
2 /η(q−ρ),

where ρi = −i+ 1
2 , i = 1, . . . ,∞ and λ = e−tK .

Next, we use the identities

∑

R

sR(λqρ+R1)sR/η(q−ρ) = sη(λqρ+R1)
∏

i,j

(
1 − λqRi

1−i+j
)−1
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and ∑

η

sRT
2 /η(q−ρ)sη(λqρ+R1) = λ|R2|sRT

2
(λ−1q−ρ, qρ+R1)

and bring Z ′
R1R2

(tK) into the form

Z ′
R1R2

(tK) = (−)|R2|sR1
(qρ)

∏

i,j

(
1 − λqRi

1−i+j
)−1

λ|R2|sRT
2
(λ−1q−ρ, qρ+R1).

This can be further simplified by using

∏

i,j

(
1 − λqRi

1−i+j
)−1

=
∏

i,j

(
1 − λq−i+j

)−1
cR1∏

i=1

Ri
1∏

j=1

(
1 − λq−i+j

)
.

Now we recall the formula for quantum dimension

dimqR1(q, λ) = λ−
|R1|

2 sR1
(q−ρ)

cR1∏

i=1

Ri
1∏

j=1

(
1 − λq−i+j

)
,

and compare Z ′
R1R2

(tK) with WR1RT
2
(q, λ) :=

S
R1RT

2

S00

WR1RT
2
(q, λ) = dimqR1(q, λ)λ

|R2|
2 sRT

2
(λ−1q−ρ, qρ+R1).

We use sR1
(qρ) = (−)|R1|q−

kR1
2 sR1

(q−ρ) to find

Z ′
R1R2

(tK) = (−)|R1|+|R2|e−
tK
2 (|R1|+|R2|)q−

kR1
2 N..(λ, q)WR1RT

2
(q, λ),

where λ = e−tK , N..(λ, q) =
∏

i,j

(
1 − λq−i+j

)−1
. The chiral block is then

expressed in terms of WR1RT
2

as follows

ZqYM,+
R1,R2

(t) = Ẑ0(t) N..(λ, q)e
tK
2 (|R1|+|R2|)WR1RT

2
(q, λ), (C.1)

where t = iπ + tK .

If we now let t̂ = −tK and express WR1RT
2
(q, λ) as in [26]

WR1RT
2
(q, λ) =

e
t̂
2 (|R1|+|R2|)

N(e−t̂, q)

∑

R

(−)|R|e−t̂|R|CR1R2R(q)C00RT (q),

we find the “flopped” expression for the chiral block:

ZqYM,+
R1,R2

(t) = Ẑ0(t)
N(et̂, q)

N(e−t̂, q)

∑

R

(−)|R|e−t̂|R|CR1R2R(q)C00RT (q). (C.2)

52



The final step is to use the relation [26]

N(Q, q) = N(Q−1, q)(−Q)−
1
12

to bring the flopped chiral block into the form:

ZqYM,+
R1,R2

(t) = Ẑ0(t)(−et̂)−
1
12

∑

R

(−)|R|e−t̂|R|CR1R2R(q)C00RT (q). (C.3)

Appendix D. The Inner Product of D-Brane Wave Functions in c = 1

String

Here we show that the matrix integral
∫

Dx TrRx TrQx̄ =

∫
dxdx̄ exp [tr(xx̄)] TrRx TrQx̄.

in the definition of the c = 1 string overlap equals
∫

Dx TrRx TrQx̄ = δQ,R.

This is a so called “normal” matrix integral, meaning that x and x̄ are com-

muting matrices.

We will begin with an analogous finite M integral and than take M to

infinity. Integrating over the angles in the above formula is standard, where

one gets

1

M !

∫ ∏

i

dxi dyi ∆(x) ∆(x̄) exp [tr(xx̄)] TrRx TrQx̄

It is useful here to change variables to x and z where

x̄ = z/x,

which gives

1

M !

∫ ∏

i

dxidzi

xi
e
∑

i
zi
∑

ω,ω′

(−1)ω+ω′ ∏

i

xi
Rω(i)−ω(i)−Qω′(i)+ω′(i)zi

Qω′(i)+M−ω′(i)

where we have in addition used the trace formula

TrRA =
deti,j(A

Rj+M−j
i )

∆(A)
,
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which holds for any matrix A, and written

det(Aij) =
∑

ω

(−1)ωA1ω(1) . . .AMω(M)

Integrating over xi gives zero, unless R = Q and ω = ω′ and we are left with

computing
∏

i

∫
dzi e

zi zi
Qi+M−i =

M∏

i=1

(Qi +M − i)!

All in all this gives, for rank M matrix

1

vol(U(M))

∫
dxdx̄ exp [tr(xx̄)] TrRx TrQx̄ ∝ (2π)

M2

2 + M
2

vol(U(M))

dim(Q)

d(Q)
δR,Q.

Taking M → ∞ limit of this corresponding to matrices of infinite rank gives

lim
M→∞

∫
dxdx̄ exp [tr(xx̄)] TrRx TrQx̄ = δR,Q,

where we used that, for largeM the dimension of SU(M) representation dim(R)

becomes the dimension of the corresponding symmetric group representation

d(R) (up to an infinite factor M |R| which we absorb in x, x̄ and factors such as

πM which go into renormalizing the measure).
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