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Abstract: The Bekenstein bound takes the holographic principle into the realm of

flat space, promising new insights on the relation of non-gravitational physics to quan-

tum gravity. This makes it important to obtain a precise formulation of the bound.

Conventionally, one specifies two macroscopic quantities, mass and spatial width, which

cannot be simultaneously diagonalized. Thus, the counting of compatible states is not

sharply defined. The resolution of this and other formal difficulties leads naturally

to a definition in terms of discretized light-cone quantization. In this form, the area

difference specified in the covariant bound converts to a single quantum number, the

harmonic resolution K. The Bekenstein bound then states that the Fock space sector

with K units of longitudinal momentum contains no more than exp(2π2K) independent

discrete states. This conjecture can be tested unambiguously for a given Lagrangian,

and it appears to hold true for realistic field theories, including models arising from

string compactifications. For large K, it makes contact with more conventional but

less well-defined formulations.
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1. Introduction

It was recently shown [1] that the Bekenstein bound [2,3] can be derived from a gener-

alized form [4] of the covariant bound on the entropy of lightsheets [5]. This derivation

becomes exact for weakly gravitating systems in flat space. It yields

S ≤ πMa/~, (1.1)

where S is the entropy of a matter system with energy up to M and spatial width up

to a.
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The width a is the distance between any pair of parallel planes clamping the system.

For example, if the system fits into a rectangular box, a can be taken to be its shortest

side. Hence, (1.1) is actually stronger than Bekenstein’s original version, S ≤ πMd/~,

which referred to the diameter d of the smallest sphere capable of enclosing the system.

Earlier derivations of the Bekenstein bound applied the generalized second law

of thermodynamics to systems that are slowly lowered into a black hole, prompting

a controversy about the role of quantum effects and other subtleties arising in this

rather nontrivial process. The new derivation of Bekenstein’s bound is immune to such

difficulties as it takes place in the benign environment of flat space and involves no

accelerations.

Most importantly, the new derivation identifies the Bekenstein bound as a special

limit of the covariant bound [5], a conjectured empirical pattern underlying the holo-

graphic principle [6–8]. This limit is both intriguing and especially simple because it

applies to weakly gravitating systems. It can be tested entirely within quantum field

theory, without inclusion of gravity. Moreover, as we will argue in a separate pub-

lication [9], the absence of Newton’s constant in the Bekenstein bound signifies that

key aspects of quantum mechanics can be derived from classical gravity together with

the holographic relation between information and geometry. Hence, it will be of great

importance to obtain a completely well-defined and unambiguous formulation of the

Bekenstein bound.

Of course, our understanding of the Bekenstein bound is no worse than that of the

covariant bound. However, for the purposes of the covariant bound [5], the entropy S

can be satisfactorily defined as the logarithm of the number of independent quantum

states compatible with assumed macroscopic conditions. Such conditions, at the very

least, are always implicit in the specification of the area appearing on the right hand

side of the bound. Because this area must be large in Planck units, the bound can only

be challenged by systems with large entropy. This is why in most situations that are

of interest for testing the bound, such as in cosmology and for macroscopic isolated

systems, thermodynamic approximations are valid and the value of S is not sensitive

to subtleties (such as the definition of “compatible”).

By contrast, the Bekenstein bound and (by extension) the generalized covariant

bound [4] are most readily challenged by systems with few quanta. This makes them

sensitive to the details of the entropy definition. Indeed, various authors, using inequiv-

alent definitions, have reached different conclusions about the validity of the Bekenstein

bound [3, 10–25]. Our point of view is that any concise formulation that renders the

Bekenstein bound well-defined, nontrivial, and empirically true will capture a poten-

tially interesting fact about Nature. Moreover, it may have implications in the general

context of the covariant bounds, and it may help us sharpen their definitions as well.
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Hence, we use a variety of considerations to seek such a definition.

We have recently argued [26] that S should be defined microcanonically, as the log-

arithm of the number of exact eigenstates of the Hamiltonian with energy E ≤ M and

spatial width no greater than a. In particular, only bound states (states with discrete

quantum numbers) contribute to the entropy, since scattering states have infinite size,

and the only alternative—ad hoc imposition of boundary conditions—can be shown to

trigger violations of the bound.

This definition, summarized in Sec. 2, is quite successful heuristically. However, it

does retain one annoying ambiguity (Sec. 3): The spatial width of a quantum bound

state is not sharply defined. Though wavefunctions tend to be concentrated in finite

regions, they do not normally have strictly compact support. For example, there is a

tiny but nonzero probability to detect the electron a meter away from the proton in

the ground state of hydrogen. Of course, the width can be assigned some rough value

corresponding to the region of overwhelming support. But this forces us to answer

the sharp question of whether or not a given state contributes to S by an inherently

ambiguous decision whether the state can be considered to have width smaller than a.

This problem is compounded by a practical difficulty: the Hamiltonian methods

required for the computation of bound states are often intractable in quantum field

theory. Moreover, we show that aspects of the formulation of Bekenstein’s bound have

no justification from the point of view of its more recent derivation (which we regard as

its real origin). Specifically, we criticize that not one but two macroscopic parameters

are specified, and that these parameters act only to limit, but not to fix, the mass and

size of allowed states.

In Sec. 4 we systematically develop modifications designed to resolve these prob-

lems. Guided by the derivation of Bekenstein’s bound from the GCEB, we construct a

Fock space of states directly on the light-sheet via light-cone quantization. This allows

us to identify the surplus parameter in the bound as a pure gauge choice. Moreover,

light-cone quantization famously facilitates the use of Hamiltonian methods in quantum

field theory. Two other problems, most notably the width ambiguity, remain.

However, in the light-cone frame, one can adopt a different gauge which fixes the

maximum width of states instead of the total momentum. In this gauge it becomes

possible to identify the light-sheet periodically on a null circle of fixed length. Quanti-

zation on this compactified background is known as discretized light-cone quantization

(DLCQ). One of its simplifying features, much exploited in QCD calculations, is that

the Fock space breaks up into distinct sectors preserved by interactions, so that the

Hamiltonian can be diagonalized in each of them separately. Each sector is character-

ized by the number of units of momentum along the null circle, K.

The integer K (the “harmonic resolution”) subsumes the two macroscopic param-
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eters M and a. The Fock space contains a finite number of bound energy eigenstates

for each integer K. The entropy S is defined to be the logarithm of that number, and

the Bekenstein bound takes the form

S ≤ 2π2K (1.2)

in DLCQ.

In this form the bound is unambiguously defined and free of all of the earlier prob-

lems we had identified. The width of quantum states is imposed by the compactifica-

tion. The bound manifestly contains only one parameter, K, to which all contributing

microstates correspond exactly. Because of the further simplification of the Fock space

structure, DLCQ is even better suited for finding bound states than ordinary light-cone

quantization. Thus, all of the shortcomings we identified are resolved.

An interesting question is whether the refined definition of entropy developed here

for flat space can be lifted back to the more general environment in which the covariant

bounds operate. Here we hit upon a puzzle. Since our prescription involved compact-

ifying a null direction (or equivalently, demanding periodicity), it does not naturally

extend to curved space. When the contraction of a light-sheet cannot be neglected, its

generators cannot be periodically identified.

It is intriguing that by demanding a completely unambiguous formulation of the

Bekenstein bound, and taking seriously that entropy bounds are tied to null surfaces,

one is naturally led to the framework of discretized light-cone quantization. Tradi-

tionally, DLCQ has been considered no more than a convenient trick for simplifying

numerical calculations in QCD. More recently, it appeared in a more substantial role

in the context of the Matrix model of M-theory [27, 28]. Its independent emergence in

the context of entropy bounds suggests that DLCQ may have wider significance. If this

were the case, then the spectra at finite harmonic resolution may have a direct physical

interpretation.

2. Defining entropy

We will now discuss our starting point for the definition of entropy in the Bekenstein

bound. In Ref. [26], a combination of formal and empirical arguments led us to adopt

a definition in which only bound states contribute to the entropy. That is,

S(M, a) ≡ logN (M, a), (2.1)

where N is the number of independent eigenstates of the Hamiltonian, with energy

eigenvalue

E ≤ M, (2.2)
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total three-momentum eigenvalue

P = 0, (2.3)

and with spatial support over a region of width no larger than a. The bound takes the

form

S(M, a) ≤ πMa/~. (2.4)

We now summarize the arguments for this formulation.

The restriction to exact energy eigenstates is motivated not only by the conceptual

clarity of the microcanonical ensemble [29]. The bound explicitly contains the mass

(and not, for example, a temperature) on the right hand side. Thus, energy is a natural

macroscopic parameter to which microstates must conform, via Eq. (2.2). Moreover, in

the derivation of the Bekenstein bound from the GCEB, the mass enters explicitly as

the source of focussing of light rays; no other thermodynamic quantities appear. There

are also empirical reasons: alternative definitions (involving, for example, ensembles

at fixed temperature [30] or mixed states constructed from states other than energy-

eigenstates [24]) were found to lead to violations of the bound.

Obviously, the bound is nontrivial only for states with finite width a. Yet, we

expect energy eigenstates to be spread over all of space. Indeed, for states which are

also eigenstates of the total spatial momentum, the overall phase factor corresponding

to the total momentum signifies a complete delocalization of the center of mass. This

conundrum can be resolved by integrating over all spatial momenta. In practice, it is

simpler to continue to work with eigenstates of the full four-momentum, but to factor

out and ignore the center of mass coordinates. We demand only that the wavefunction

have finite spreading in the position space relative to the center of mass.

In free field theory, however, the constituents of multi-particle states are not bound,

but are delocalized relative to each other. Therefore, the bound is essentially trivial in

free field theory: multi-particle states have infinite spatial width and do not contribute

to the entropy. One way of enforcing finite width would be to impose rigid bound-

ary conditions by fiat. This type of prescription leads to apparent violations of the

bound [26]. In fact it is physically incomplete, because the material enforcing the as-

sumed boundary conditions (for example, a capacitor with enough charge carriers [25])

is not included in the mass and width.

Therefore the finite width requirement can be satisfied only if interactions are

properly included from the start. Real matter systems localize themselves by the mutual

interactions of constituent particles. In situations where the bound has nontrivial

content, this implies that N counts energy eigenstates with finite spatial width. In

other words, the only contribution to N (M, a) comes from bound states, which have
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no continuous quantum numbers. This statement can be thought of as a precise version

of Bekenstein’s requirement [13, 25] that only “complete systems” be considered.

In Ref. [26] this conclusion was supported by an empirical analysis. We began

with a free scalar and imposed boundary conditions by fiat. Then we estimated the

mass of the materials necessary for enforcing them. Lower bounds on the mass of these

additional components were obtained in two different ways, using different necessary

conditions for localization. We found that only one such condition—the need for inter-

actions so that particles can bind—gives rise to extra energy sufficient to uphold the

bound in each of a diverse set of problematic examples [26]. The study of incomplete

systems thus informs us that interactions should be key to the definition of a complete

system.

Each bound state gives rise to a continuous three-parameter set of energy eigen-

states related by boosts. Since these states all represent the same physical state in

different coordinate systems, we should not count them separately, but mod out by

overall boosts. Usually this is done implicitly by picking a Lorentz frame and declaring

it to be a rest frame of the “system”. The condition (2.3) formalizes this requirement

by requiring that the spatial components of the total four-momentum of each allowed

state must vanish.

3. Problems of the present formulation

The form (2.1), (2.4) is an improvement over less precise (or obviously incorrect) state-

ments of the Bekenstein bound, but it is still not satisfactory. We will now identify

some of its shortcomings. We list four problems: one ambiguity, one practical difficulty,

and two formal shortcomings.

3.1 Width ambiguity

This is the most pernicious problem because it renders the entropy S manifestly am-

biguous and appears to invite violations of the bound.

Energy eigenvalues are precisely defined, but the spatial width of a bound energy

eigenstate is an ambiguous concept. In order to define a width at all, one has to ignore

the overall phase factor corresponding to the complete delocalization of the center of

mass. One can ask, however, about the spreading of the wave function in the remaining

position space relative to the center of mass. As we discussed in Sec. 2, this spreading

is infinite for scattering states, but finite for bound states. However, wave functions

of bound states do not normally have strictly compact support in this position space;

generically, one expects at least exponential tails outside any finite region. How are we

to define the width of such a state precisely?
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One possibility is to call a state localized to a spatial region V of width a if it is

unlikely to find any of its constituents outside of V, i.e., if the normalized wavefunc-

tion obeys a condition of the form 1 −
∫
V
|Ψ|2 < η. But this introduces an arbitrary

parameter η ≪ 1, to which the integer N (M, a) is necessarily somewhat sensitive. A

second possibility, which we will also dismiss shortly, is to modify the Fock space con-

struction by considering theories on flat backgrounds in which one spatial direction is

compactified on a circle of length a.

The problem is particularly serious for single particle states. Multiparticle bound

states can be expanded into superpositions of product states. The corresponding po-

sition space functions yield a spatial width relative to the center of mass. The center

of mass itself is always completely delocalized for momentum eigenstates, and the cor-

responding overall phase factor must be ignored to get a finite answer. But by this

definition, single particle states of free fields would be assigned zero spatial size, lead-

ing to obvious violations of the bound.

3.2 Inadequacy of Hamiltonian methods

Bound states are exceedingly difficult to find exactly in quantum field theory. In

strongly coupled theories even the vacuum is highly nontrivial and differs significantly

from the Fock space vacuum of the free theory. For this reason, Hamiltonian dynam-

ics is usually abandoned in favor of a Lagrangian formulation that lends itself to the

computation of scattering amplitudes, but not of bound states.—This does not neces-

sarily signal a fundamental problem, but it does appear to render the verification of

the bound intractible precisely for the theories in which it is most interesting.

3.3 Extra macroscopic parameters

This and the following objection are related to the derivation of Bekenstein’s bound

from the GCEB [26]: We will show that the statement of the Bekenstein bound in

Sec. 2 is inconsistent with its covariant origin.

The entropy S in the GCEB is associated with matter systems whose energy focuses

the cross-sectional area of certain light-rays by ∆A = A − A′ [26]. Hence, ∆A is the

natural “macroscopic parameter” held fixed while counting compatible states. The

derivation of the Bekenstein bound from the GCEB converts this area difference into

the product Ma. This suggests that the entropy in the Bekenstein bound should not

be obtained by specifying mass and width separately. Only their product, Ma, should

be held fixed as a single macroscopic parameter, because only this product matters as

far as the amount of focussing is concerned.
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To emphasize this, let us define a new dimensionless variable:

K =
Ma

2π~
, (3.1)

where a factor of 2π has been inserted for later convenience. We define N (K) as the

number of bound states with vanishing total momentum, whose rest mass times spatial

width does not exceed 2πK~. With S(K) ≡ logN (K), the bound takes the form

S(K) ≤ 2π2K. (3.2)

Technically, this reformulation remedies our objection. However, Eq. (3.2) appears

to lead to a messy picture, in which states of hugely different energy ranges and spatial

sizes all contribute to the entropy for given K. In particular, Eq. (3.2) rules out the

possibility of resolving the width ambiguity (Sec. 3.1) by formally compactifying on a

spatial circle of fixed length.

3.4 Excess parameter range

We have defined N = eS as the number of states with energy and width up to M and

a [or with a product of energy and width up to K, in the modification (3.2)]. However,

the derivation of the Bekenstein bound from the GCEB [26] does not actually support

the inclusion of states with less energy or smaller size. Whether two surfaces, or their

areas A and A′, or only the area difference A − A′ ∼ Ma ∼ K is held fixed: in

either case, only those states should be admitted whose energy and width correspond

precisely to K. But this would render the bound trivial: except for accidental exact

degeneracies, the number of states corresponding precisely to the specified parameters

would be either zero or one. Moreover, such a formulation would exacerbate the earlier

problem of width ambiguity.

4. DLCQ as a precise definition of entropy

4.1 Assessment

Two of the problems we have listed concern the fact that parts of our definition of

entropy are hard to justify from the point of view of the GCEB. As we turn to remedy

the situation and reformulate the Bekenstein bound, it is therefore appropriate to look

to its covariant heritage for clues. Indeed, there is a crucial aspect of the covariant

bounds that the form (2.1), (2.4) of Bekenstein’s bound fails to capture: The GCEB

refers to quantum states on a portion of a light-sheet [4, 5]. That is, it applies to a

hypersurface with two spatial and one null dimension, as opposed to a spatial volume.
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Because of the restriction to energy eigenstates, the time at which the bound is

evaluated is irrelevant, but this does not mean that the proper definition of the entropy

is equally transparent in all frames. In Sec. 2, it was implicit that the Fock space is

constructed by equal-time quantization of the field theory in the usual manner; then

the energy eigenstates conforming to the specified macroscopic parameters are counted.

But why artificially introduce an arbitrary time coordinate, when the light-sheet L

already picks out a (null) slicing of spacetime?

It is far more natural to regard L itself as a time slice, to construct a Fock space

of states on it, and to count the number of bound states directly on the light-sheet.

The derivation of Bekenstein’s bound becomes exact in the limit G → 0, i.e., when all

curvature radii induced by matter are much larger than the matter system itself [26].

In this limit, L does not contract and constitutes a front [31]: a null hyperplane in

Minkowski space, given for example by t+x = const. The construction of a Fock space

on this hypersurface is known as front-form quantization (and, less appropriately but

more frequently, as “light-cone quantization” or quantization in the infinite momentum

frame) [32–35]. We will briefly review the formalism; then we will show how it addresses

the problems we have identified.

4.2 Light-cone quantization

With the coordinate change

x+ =
t + x√

2
, x− =

t − x√
2

, (4.1)

the metric of Minkowski space is

ds2 = 2dx+dx− − (x⊥)2, (4.2)

where x⊥ stands for the transverse coordinates, y and z. The total four-momentum

has components

P+ = P− =
E + P x

√
2

, P− = P+ =
E − P x

√
2

, (4.3)

and transverse components P⊥ = (P y, P z).

In light-cone quantization, x+ plays the role of time, whereas the longitudinal

coordinate x− replaces the third spatial variable. The momentum compontent P+ plays

the role of a Hamiltonian; P− is called the longitudinal momentum. Both quantities

are positive definite.

One-particle states are created by acting on the vacuum with operators a†
k−k⊥

corresponding to modes

uk−k⊥
∼ exp(ik+x+ + ik−x− + ik⊥x⊥). (4.4)
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(We suppress extra indices distinguishing different fields and additional scalar, vector,

or matrix factors for normalization and components.) After integrating out all zero-

modes1 the one-particle longitudinal momentum, k−, is strictly positive. The one-

particle light-cone energy is given by

k+ =
m2 + k2

⊥

2k−

. (4.5)

Because of the positivity of k−, and because P− is conserved, all interaction terms

contain at least one annihilation operator. There are no terms like a†
k−,1

a†
k−,2

a†
k−,3

.

Hence, there are no radiative corrections to the vacuum, and the Fock space can be

constructed just as in the free theory. (This constitutes one of the chief advantages of

light-cone quantization.)

As usual, the Fock space consists of products of one-particle states obtained by

acting several times with creation operators. The free part of the Hamiltonian takes

the form

Hfree =

∫ ∞

0

dk−

∫
d2k⊥ k+ a†

k−k⊥
ak−k⊥

. (4.6)

Bound states are eigenstates of the full Hamiltonian with no continuous quantum num-

bers. Bound states can be represented by wavefunctions that describe their decom-

position into the Fock space states. Thus, light-cone quantization permits a Lorentz-

invariant constituent interpretation of bound states even in strongly coupled theories

such as QCD [37].

4.3 The Bekenstein bound in front form

Let us now formulate Bekenstein’s bound in the light-cone frame. We go back to its

derivation from the covariant bound, from which the Bekenstein most directly emerges

in the covariant form [1]

S ≤ π(Pak
a)∆α/~. (4.7)

Here α is an affine parameter along the generators of the light-sheet L, and ∆α is

the length of the partial light-sheet occupied by the matter system in question, i.e.,

the “affine width” of the system as seen by a set of parallel light-rays. ka = dxa/dα

is the future-directed null vector tangent to the light-sheet, and Pa is the total four-

momentum [1] of the matter system.2

1This may generate additional potential terms which capture nontrivial aspects of the structure of

the vacuum such as symmetry breaking [36].
2Here P a is defined so that its components correspond to the energy and the physical momentum

components, e.g., P x > 0 for a particle moving in the positive x-direction. We choose the metric
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In Ref. [1] this expression was further simplified by specializing to an arbitrary

rest frame. Then the spatial momentum components vanish, the affine width becomes

ordinary spatial width, and one obtains Eq. (1.1). We will now express Eq. (4.7) in

light-cone coordinates instead.

We take the light-sheet L to be the null hypersurface x+ = const.3 In the form

(4.7), the Bekenstein bound is invariant under rescaling of the affine parameter. We

choose α = x−, so that the affine width is

∆α = ∆x−. (4.8)

Then the tangent vector ka = dxa/dα has components (0, 1, 0, 0) in the metric (4.2).

The expression (Pak
a) is thus simply the longitudinal momentum P−, and Eq. (4.7)

takes the form

S ≤ πP−∆x−/~. (4.9)

Note that the light-cone energy, P+, does not appear in the bound. It is also

independent of the value of the transverse momenta, P⊥. P− and ∆x− aquire opposite

factors under boosts, so that the product P−∆x− remains invariant. Indeed, boosts

can be interpreted simply as a rescaling of the affine parameter. In this sense, manifest

Poincaré invariance, though spoiled when specializing to a spatial frame, is nearly

retained by the front form expression (4.9). That is, Poincaré transformations have no

effect on Eq. (4.9) except for rescalings of the affine parameter.

So far, we have only expressed the bound in a new coordinate system. Next, we

turn to the question of defining S in the light-cone frame. Here we reap some benefits

that allow us to address two of the four shortcomings listed in Sec. 3.

The direct analogue of the prescription (2.1) would be to specify two macroscopic

parameters, P− and ∆x−, and to define the entropy by

S = logNLCQ(P−, ∆x−), (4.10)

where NLCQ(P−, ∆x−) is the number of eigenstates of the total four-momentum, whose

longitudinal momentum and affine width do not exceed the specified parameters.

We also require an analogue of the gauge condition, Eq. (2.3), to ensure that

states related by overall boosts are counted only once. This condition can be adapted

to the light-cone frame by fixing those components of the four-momentum which are

signature (+−−−) used in most of the field theory literature on light-cone quantization. By contrast,

in Ref. [1] the usual (−+++) convention was used, and −P a stood for the physical energy-momentum

four-vector, so Eq. (4.7) took the same form.
3This differs from Ref. [1], where the light-sheet was the hypersurface t−x = 0. The change is made

to conform to the usual choice of surfaces of constant time in the light-cone quantization literature.
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canonically treated as spatial, namely P− and P⊥. The transverse momenta can be set

to zero as before:

P⊥ = 0, (4.11)

which projects out states related by transverse boosts. However, one of the peculiarities

of the light-cone frame is that the longitudinal momentum is strictly positive for massive

states. It cannot be gauge-fixed to zero by boosting. In order to mod out by longitudinal

boosts, P− must instead be set to an arbitrary positive constant:

P− = const. (4.12)

This exposes the “macroscopic parameter” P− specified in the definition (4.10) of

the entropy as a gauge choice. Only the width ∆x− is a physical parameter. Thus, when

the bound is formulated in the light-cone frame, the existence of only one macroscopic

parameter is manifest, and the objection in Sec. 3.3 is resolved.

In Sec. 3.2 we objected that Hamiltonian methods, which are crucial to the identifi-

cation of bound states and thus to our definition of entropy, are impractical and hardly

used in quantum field theory. But in fact, light-cone quantization facilitates the use

of Hamiltonians considerably. For example, the light-cone Hamiltonian P+, unlike the

energy E, can be evaluated from the other four-momentum components without use of

a square root; see Eqs. (4.5) and (4.6). Moreover, the ground state of the free theory

is also a ground state of the interacting Hamiltonian. For these and other reasons,

light-cone quantization has emerged as a leading tool for finding the spectrum and

wavefunctions of bound states in QCD and other interacting theories [37]. Although

we were guided to the front form by a different consideration (the covariant pedigree of

Bekenstein’s bound), we thus find that light-cone quantization is custom-designed for

the task of defining the relevant entropy.

4.4 Resolving the width ambiguity by compactification

Having succeeded in resolving two of the four problems identified in Sec. 3, we now

turn to the two remaining difficulties—in particular, the dreaded width ambiguity.

Let us rewrite Eq. (4.9) in the manifestly Lorentz-invariant form:

S(K) ≤ 2π2K, (4.13)

where K is an arbitrary non-negative number specified as a macroscopic parameter. In

the light-cone frame, K is given by

K =
P−∆x−

2π~
. (4.14)
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Once P− is gauge-fixed to a constant, specification of the parameter K is equivalent to

specification of ∆x−.

Its manifest boost invariance allows us to think of the front form of Bekenstein’s

bound in two ways. In both versions, K is the single macroscopic parameter. Until now

we have chosen to gauge-fix P− and obtain a bound for every positive K, concerning

the entropy of states whose maximal width depends on K as

∆x− = 2πK~/P−. (4.15)

An alternative, equivalent option is to gauge-fix ∆x− but leave P− to be determined

by

P− = 2πK~/∆x−. (4.16)

This also yields a bound for every positive K, concerning the entropy of states of fixed

width but K-dependent maximal longitudinal momentum.

Both pictures yield the same number of states, because every physical state allowed

for a given value of K is mapped to a boosted version of itself when the picture is

changed. But the second picture, in which the width is gauge-fixed, serves as a point

of departure for a new formulation of the Bekenstein bound which circumvents the

ambiguity of the width of a quantum state.

We may now directly enforce a kind of width limit on quantum states simply by

compactifying the x− direction on a light-like circle of affine length ∆x−. This contrasts

with the rest frame, in which no such unique compactification is possible, because the

spatial width a is still variable even after specifying Ma and gauge-fixing the three-

momentum to zero. Because ∆x− can be gauge-fixed, and can be fixed to the same

value independently of K, we can consistently compactify on a fixed null circle.

Note that a prescription that involves compactification is a genuine modification

of the bound.4 It changes the spectrum, especially at small values of K. The finite

size of the longitudinal direction means that the distinction between bound states and

scattering states can only be based on the bahavior in the transverse directions. If this

prescription is the correct formulation of the Bekenstein bound, then the application

of the bound to real systems will require choosing K so large that the effects of com-

pactification are negligible. In any case, the ambiguity of defining the spatial width of

a quantum states forces a compactified formulation upon us.

This presents us with the task of constructing a Fock space of states on a light

front with periodic boundary conditions. Fortunately, this formalism is well understood;

indeed, discretized light-cone quantization [38,39] is one of the chief tools for calculating

bound states in QCD [37]. Let us briefly review the key elements.
4It is thus a more radical step than merely going to the light-cone frame, which is merely better

adapted but physically equivalent to ordinary Lorentz frames.
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4.5 Discretized light-cone quantization

Compactification of the x− direction discretizes all longitudinal momenta, which must

be integer multiples of 2π~/∆x−. In particular, the parameter

K =
P−∆x−

2π~
(4.17)

is now a non-negative integer called the harmonic resolution. The correspondingly

modified Fock space construction is called discrete light-cone quantization (DLCQ).

One-particle states still correspond to modes

uk−k⊥
∼ exp(ik+x+ + ik−x− + ik⊥x⊥), (4.18)

but now their longitudinal momentum is discrete:

k− =
2πn~

∆x−
, (4.19)

where n is a positive integer.

Because P− is conserved by interactions, the Fock space decomposes into an infinite

number of inequivalent sectors, one for each nonnegative integer K. Note that the

one-particle states have positive, quantized longitudinal momenta, which must add

up to 2πK~/∆x− in the K-th sector. This makes the Fock space sectors of DLCQ

comparatively simple. For example the K = 1 sector can only contain one-particle

states, all of which have k− = 2π~/∆x−.

4.6 The Bekenstein bound in DLCQ form

Given a field theory in discretized light-cone quantization, let NDLCQ(K) be the number

of bound states in the sector of the Fock space with harmonic resolution K. By bound

states we mean those states in the spectrum of the Hamiltonian P+ which are discrete

up to overall boosts. We define the entropy

SDLCQ(K) = logNDLCQ(K). (4.20)

The Bekenstein bound in DLCQ form is the conjecture that

SDLCQ(K) ≤ 2π2K. (4.21)

For completeness we summarize the gauge conditions again. Previously they cor-

responded to fixing the total momentum, as in Eq. (2.3), or Eqs. (4.11) and (4.12). In

the DLCQ formulation, we still must set the transverse momenum components to a

fixed value; for example,

P⊥ = 0. (4.22)
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We no longer gauge-fix P−; that is replaced by picking an arbitrary but fixed com-

pactification length ∆x−. Note that the spectrum depends trivially on ∆x−, and the

entropy (4.20) in the sector K does not depend on ∆x− at all.

Let us summarize how the problems listed in Sec. 3 have been resolved by formu-

lating the Bekenstein bound in DLCQ. The problem of defining the width of quantum

states (Sec. 3.1) is circumvented, because width enters only implicitly through the

fixed compactification scale, to which all states conform by construction. The entropy

S is defined unambiguously by the specification of only a single parameter, K, which

corresponds to the area difference in the GCEB, as demanded in Sec. 3.3. All states

contributing to S correspond precisely to the sector with K units of longitudinal mo-

mentum, and not to a range (as was criticized in Sec. 3.4). The light-cone frame is

ideal for the use of Hamiltonian methods and computation of bound states, and discrete

light-cone quantization facilitates this task further [37].

5. Discussion

We have achieved our goal of obtaining a precise formulation of the Bekenstein bound

which also satisfies several formal constraints related to its origin from bounds on

light-sheets. We were motivated by the expectation that Bekenstein’s bound captures

constraints that the holographic principle imposes on the physics of flat space—a point

of view that will be discussed in detail in a forthcoming publication [9]. In this section,

we note that the DLCQ form of Bekenstein’s bound is empirically viable. We also point

out some implications and puzzles arising from the null compactification.

5.1 Validity

We expect that the Bekenstein bound in DLCQ form, Eq. (4.21), is valid for realistic

field theories. Many explicit calculations of spectra in DLCQ have been carried out

(see Ref. [37] for a review), especially in the context of QCD. In a preliminary survey,

we have found no results which contradict Eq. (4.21). It will be an interesting task to

check the bound systematically against existing results and to calculate more spectra

for further verification. Because of the rapidly increasing complexity of diagonalizing

the Hamiltonian, results in the literature pertain mostly to small values of K, but this

is the most interesting range in any case. When a large number of quanta is present,

the bound tends to be easily satisfied [40]. Violations of the bound would require a

surprisingly strong growth of the number of bound states with K, at low K.

The species problem, which appeared to be resolved by interactions [26], resurfaces

in the DLCQ form. One can write down Lagrangians that populate the K = 1 sector

with an arbitrary number Q of fundamental one-particle states. Unless the theory is
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confining, the bound will thus be violated if Q > exp(2π2) ≈ 3×108. We interpret this

as a prediction that Lagrangians with such a large number of fields are not consistent

with quantum gravity. Certainly there are no indications that such Lagrangians would

be realistic.

Before we took the step of null compactification, the restriction to bound states

followed automatically from the requirement of finite spatial width. Now, however, it

must be imposed explicitly. Particles can scatter off to infinity in the uncompactified

transverse dimensions. Scattering states contribute a continuous part to the spectrum,

which must be ignored when calculating the entropy. An interesting question, which we

do not investigate here, is whether long-lived resonances can be treated in a controlled

way. Even the proton is probably metastable, not to speak of ordinary macroscopic

systems, to which the bound ought to apply nevertheless. It may turn out that such

states are effectively included because they have stable antecedents at finite K where

the resolution does not suffice to describe the decay products.

Our prescription has a further restriction which, one hopes, can be relaxed without

sacrificing precision: that the transverse spatial dimensions are noncompact. One would

like to consider not only exact Minkowski space (with the required null identification),

but also compactifications from higher-dimensional theories. The resulting tower of

Kaluza-Klein modes gives an infinite number of species from the lower-dimensional

point of view. If we wish to apply the bound to flat space with compact dimensions, it is

natural to restrict to the massless sector. In many string compactifications, this sector

can still contain a considerable number of species (Q ∼ 104), but we are not aware

of examples which exceed the bound. Another acceptable limit may be to consider

only states which are so well localized in the compact dimension that the situation is

equivalent to higher-dimensional flat space. However, it is difficult to distinguish such

bound states from states which would become unstable in the decompactification limit.

5.2 Implications and Puzzles

The precision gained by compactifying a null direction comes at a price. The spectrum

in the sectors with small K differs from the true spectrum of the theory, which is

strictly recovered only in the decompactification limit K → ∞. At finite K, sufficiently

complex systems and fine spectral features are not resolved.

However, DLCQ does approximate physical states with Ma/~ ≪ K very well [36].

Thus, for sufficiently large K, the DLCQ form does connect with more traditional but

less precise formulations of Bekenstein’s bound, in which a particular matter system

with fixed mass and size is given.

What is somewhat mysterious is whether and how our refinement of the entropy

definition lifts back to the more general light-sheets allowed by the covariant entropy
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bound. In the weak gravity limit, the specific light-sheets chosen for the derivation of

Bekenstein’s bound become a null hyperplane (x + t = const). But generically, the

cross-sectional area of light-sheets decreases. Such light-sheets cannot be periodically

identified along the null direction. It may be more useful to think of DLCQ as an

imposition of periodicity rather than the physical compactification of light-rays.

The appearence of DLCQ when making Bekenstein’s bound precise may indicate

that this form of quantization plays a preferred role in the emergence of ordinary flat

space physics from an underlying quantum gravity theory (just as null hypersurfaces

may have a special significance in how general relativity arises). If this is the case, we

will eventually discover a physical interpretation of the spectra at finite K.
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